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Absrfucf-This paper discusses an approach to the implementation of a 
linear phase finite impulse response filter for which the cutoff frequency is 
controlled tbrougb a small number of parameters. The approach is base4J 
on a transformation implemented by replacing a subnetwork in a prototype 
network. 

I. INTROIXJCTI~N 

I 

T IS OFTEN OF INTEREST to implement in hard- 
ware a digital filter for which the cutoff frequency is 

variable. One possible approach is to vary all of the filter 
coefficients in such a way that the cutoff frequency varies 
in the desired manner. This, of course, requires the ability 
to vary a number of parameters. Furthermore, the filter 
coefficients are generally a complicated function of the 
filter cutoff frequency. This procedure may perhaps be 
practical when we wish to vary the filter cutoff frequency 
only occasionally. It would generally be more desirable, 
however, to construct the filter in such a way as to permit 
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the cutoff frequency to be controlled by only a single 
parameter. 

One approach to implementation of a variable cutoff 
digital filter in which the cutoff frequency could be con- 
trolled through a single parameter was suggested by 
Schuessler and Winkelnkemper [ 11. In their approach each 
of the delay elements in the structure for a prototype filter 
is replaced by a first-order all pass network. This has the 
effect of replacing the delay operator by an all pass 
transformation in the filter transfer function. The 
frequency response of the transformed filter is then identi- 
cal to the frequency response of the prototype filter on a 
distorted frequency scale. As the parameter of the all pass 
network is varied, the distortion of the frequency axis is 
varied, and thus so is the filter cutoff frequency. The use 
of this procedure is restricted to a finite impulse response 
(FIR) prototype filter since for an IIR prototype filter a 
structure with delay-free loops results. When the all pass 
transformation is applied to an FIR prototype filter the 
resulting filter has an impulse response of infinite length 
due to the fact that the all pass network is recursive. 
Furthermore, even if the prototype filter has linear phase, 
the phase of the transformed filter will be nonlinear. 

In some applications it may be desirable and important 
to implement a variable cutoff filter for which the impulse 
response is of finite length and the phase is linear if a 
linear phase FIR prototype filter is used. In this paper we 
discuss a class of transformations for which these proper- 
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ties of the prototype filter are preserved. In the next 
section we consider the class of transformations and in 
Section III we discuss the resulting network structures for 
implementation of the variable cutoff filters. 

II. FREQUENCY TRANSFORMATIONS FOR LINEAR 
PHASE VARIABLE FILTERS 

Consider a causal linear phase FIR filter with an im- 
pulse response h(n) of length 2N + 1. Any linear phase 
filter of this type can be expressed in the form 

h(n)=ho(n-N) (1) 

where ho(n) is the jmpulse response of a zero phase FIR 
filter which is symmetric, i.e., 

Fig. 1. First-order frequency transformation. 

h,(n) = h,( - n). (2) Since zO(eio) is still expressible as a cosine polynomial, 

From (1) and (2), it follows that H(z), the transfer func- 
the corresponding unit sample response is still symmetri- 

tion of the linear phase filter can be expressed as [2] 
cal. However, it is now of length 2NP+ 1. The transfer 
function s(z) corresponding to the causal- linear phase 

H(z) = z -NH,(z) 
filter is then 

Pa) 

where 
ri (z) = z -“ii()(z). (7) 

Ho(z)=ho(0)+ $ h,(n)[z”+z-“I. 
As the coefficients A, in the transformation of (6) are 

PI 
varied the relationship between the prototype frequency 

n=l rtsponse HO(ej“‘) and the transformed frequency response 

Since terms of the form (z”+z-“) can be expressed in 
H,(e’“) varies. By appropriately constraining the 

the form 
coefficients A, the cutoff frequency, transition width, etc., 
can bl varied. In order to guarantee that the transforma- 

z+z-’ [ 1 
tion of (6) represents a mapping of H,(z) for z on the unit 

z”+z-“=2T,, - 2 circle, the coefficients in (6) must be constrained such that 
for -77<Q<77,~coso~< 1. 

where T,,(x) is a Chebyschev polynomial of nth order, A particularly useful case of the transformation (6) 
H,(z) can be rewritten as appears to be the first-order transformation of the form 

H,(z)= 2 a(n) v n=O [ 1 n 
coso=A,+A,coscL (4) (8) 

The resulting mapping is illustrated in Fig. 1.’ This trans- 

where the coefficients a(n) are related to h,(n) through the 
formation is %imilar to that used by Siegel [3] and by 

coefficients of the Chebyshev PolYnomials. The frequency 
Rabiner and Herrmann [4] to analytically relate optimum 

response of the linear phase filter is thus 
FIR filter &signs. For the case of a variable low pass 
filter we may wish to constrain the transformation so that 

Pa) (9) 
where in which case we require that A,+ A 1 = 1. The substitution 

H,(e’“)= n&z(n)(cos,)n. 
thus takes the form 

P) cosw=A,+(l -A,)cosG (10) 

The basic approach to obtaining a variable cutoff linear with the constraint that 
phase filter is to apply a transformation to H,,(z) which 
preserves the frequency characteristics but distorts the 

O<A,<l (11) 

frequency _axis. Specifically, let us consider a frequency 
response H,(e’y obtained from H,(ej”) by the substitu- 

in order to ensure that lcoswj < 1. If the prototype filter is 
low pass with a cutoff frequency of wc then the trans- 

tion of variables formed filter will have a cutoff frequency Q2, where 

cosw= k~oA,(cosq’. (6) 
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Fig. 2. First-order frequency transformation with A,+ A, = 1. 

xxfy+ ~~~~~f$ = my z-1 z-I z-1 
Fig. 3. Implementation of linear phase FIR filter. 

The relationship between the prototype filter and the 
transformed filter with the constraint of (9) is illustrated 
in Fig. 2. We observe that with a low pass prototype filter 
as A, varies between zero and unity the cutoff frequency 
of the transformed filter is always greater than or equal to 
the cutoff frequency of the prototype filter. The reverse 
situation can be obtained by choosing A, = (1 + A,) so that 

(13) 
In this case the transformation is given by 

coso=A,+(1+A,)cos~ (14) 
with the constraint that 

-l<A,<O. 

For a low pass prototype filter, as A, varies, the cutoff 
frequency of the transformed filter will now be less than 
or equal to the cutoff frequency of the prototype filter. In 
more general situations we may wish to specify a different 
relationship between the parameters A, and A i. For exam- 
ple, fo; a bandpass prototype filter we may want to 
constrain A, and A, such that the center frequency of the 
filter remains fixed and only the bandwidth is varied. 

It should be stressed that the use of the transformation 
of (6) or (8) is directed at the implement&ion of a digital 
filter for which the cutoff frequency is easily varied 
through a small number of parameters. In general, even 
when the prototype filter is an optimal filter [2], the filter 
resulting after the transformation of (6) or (8) will not be 
optimal. However, a variable cutoff filter which is always 
optimal and for which the cutoff frequency varies over a 
reasonable range can, in general, only be implemented by 

changing all of the filter coefficients for each setting of the 
filter cutoff frequency. 

III. NETWORK STRUCTURES FOR IMPLEMENTATION 
OF LINEAR PHASE VARIABLE CUTOFF FILTERS 

Taylor Structure 

From (3a) and (4), the transfer function of the causal 
linear phase prototype filter can be expressed in the form 

(15a) 

= jOa(n)zmN+c[ -In. (15b) 

A direct implementation of H(z), as expressed in (15b), is 
shown in Fig. 3 in signal flow graph notation, where each 
of the branches with transmittance (1 + z -2)/2 would be 
implemented by ‘a subnetwork. The resulting structure 
corresponds to a special case of the Taylor structure [5] 
for linear phase FIR filters. We note that each of the 
subnetworks has a maximum gain of unity, whi_ch is 
generally convenient for scaling purposes. Now, let H,(Z) 
denote the transfer function of the zero phase transformed 
filter and H,,(z) the transfer-function of the zero phase 
prototype filter. From (6), H,,(Z) and He(z) are related 
through the substitution 

z+z-’ -= 
2 (16) 

and consequently, combining (4), (7) and (16), 

which can be rewritten as 

H(Z) = 5 a(n)TdPCN-“) 
n-0 

[ &‘i,Z*-P( 1?f-2)I] 

(18) 

or 

k(Z)= $ a(n)Z-P(N-“)[ljp (Z)]” Pa) 
PI=0 

where 

Pb) 

An implementation of the transfer function (19) is de- 
picted in Fig. 4. We observe that it is the same general 
configuration as in Fig. 3 with the sections with transfer 
function (1 + z -2)/2 replaced by fip(Z) and the first- 
order delay branches replaced by Pth-order delays. The 

, 
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Fig. 4. Implementation of linear phase variable cutoff filter with Pth- 
order transformation. 

Fig, 5. Implementation of linear phase variable cutoff filter with first- 
order transformation. 

characteristics of the transformed filter are then varied by 
changing the coefficients A,+,; . + ,A,. We note that 
since the impulse response of the transformed filter is of 
length 2NP + 1 the minimum number of delays required is 
2NP. Consequently, the structure of Fig. 4 is not canonic 
in the number of delays required.’ 

For the first-order transformation, i.e., B= 1, (19) be- 
comes 

i(Z)= f$ a(n)Z-(N-“) A,Z-‘+A 
n=O [ 

,( 1+:‘)]I 

(20) 

and the network of Fig. 4 reduces to that shown in Fig. 5. 
Each of the networks presented in Figs. 3 through 5 can 
be rearranged slightly with resulting tradeoffs in delay 
registers, modularity, and scaling requirements. The ones 
presented are intended to be generally indicative of the 
way in which transformations of the form of (6) can be 
incorporated into the filter structure. 

Cascade Form Structure 

As an alternative to the Taylor structure discussed 
above the linear phase prototype filter can be imple- 
mented as a cascade of the fourth-order Taylor sections 

‘In the networks of Figs. 3 and 4 the number of delays required can be 
reduced slightly. In Fig. 3, for example, the first two delays fed by the 
output of the coefficient branches a(0) and a(1) can be shared with the 
delays in the first two networks with transfer function (1 + z -2)/2. This 
results in only a modest reduction in delay elements at the expense of 
modularity in the overall structure. 

Fig. 6. Cascade form implementation of linear phase FIR filter using 
fourth-order Taylor sections. 

HJZ, 
r---- --------------_---_-- ______ I 
I I 
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bJll I 
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Fig. 7. Canonic implementation of linear phase variable cutoff filter 
with first-order transformation. 

and the transformation of (16) applied. Specifically, H(z) 
as given by (15a) can be factored into the form 

H(z)= II ,“i: [zp2jobk(n( qln] t21a) 

= y [ i bk(n)z-2+n[ q]‘]. Plb) 
k=l n=O 

The resulting filter structure corresponds to a cascade of 
fourth-order Taylor sections of the form of Fig. 3 as 
depicted in Fig. 6. To obtain the variable cutoff linear 
phase filter, each fourth-order section is transformed in 
the same manner in which the Taylor network of Fig. 3 
was transformed to obtain the network of Fig. 4. For the 
general transformation of (16) the resulting variable cutoff 
filter is not canonic in the number of delays. For the 
first-order transformation, however, with P= 1 the trans- 
formed network can be rearranged to be canonic in the 
number of delays. The resulting structure is depicted in 
Fig. 7. 
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