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Unequal  Bandwidth  Spectral  Analysis using Digita 

Abstracf-The  application to unequal  bandwidth  and  vernier 
spectrum analysis of a technique  referred to as digital  frequency 
warping is discussed. In this technique  a sequence is transformed  in 
such  a  way  that the Fourier  transforms of the original  and  trans- 
formed sequences are  related  by  a  nonlinear  transformation of the 
frequency axis. An equal  bandwidth analysis carried  out on the 
transformed sequence then  corresponds to an  unequal  bandwidth 
analysis of the original sequence. 

A comparison is presented between the bandwidth as a  function 
of frequency  for the digital  warping  technique  and  proportional 
bandwidth  analysis. An analysis of the effects of finite register  length 
in  implementing  digital  frequency  warping is also presented. 

S 
I. INTRODUCTION 

PECTRAL analysis has traditionally played an impor- 
tant role in the more  general area of signal  processing. 

With  the development of the fast Fourier transform (FFT) 
algorithm and the present t.rend in digital hardware it has 
become  increasingly practical t o  carry out sophisticated 
spect,ral analysis digitally [l]. 

In its mosC straightforward application in digital spec- 
tral analysis, the use of the FFT corresponds t o  an analysis 
carried out with a filter bank  with equal bandwidDh filters 
uniformly spaced  over the  entire signal band [a]. In  many 
spectral analysis applications, however, it is desira,ble to  
have  the analysis bandwidth change with frequency. For 
example,  in the analysis of noise generated by mechanical 
systems for detecting potential failures it is often important 
to  utilize proportional bandwidth or constant Q analysis 
so that  the form of the spectrum is invariant under a  time 
scaling of the signal resulting, for  example,  from a change 
in speed of the system. Such an analysis has been referred 
t o  a? a form invariant spectral analysis [.?I. In  other 
inst.ances, it  is desirable to  analyze wide bandwidth  dat'a 
while obtaining high resolution at  the low frequencies. In  
this case, it is  generally  desired to  have  the analysis band- 
width increase with  frequency but  the exact form of the 
bandwidth as a function of frequency is not crucial. 

Another example of what can be regarded as spectral 

analysis with  an analysis bandwidth which is frequency 
dependent is a vernier analysis. In  this case, we are 
interested in an analysis over a small portion of the  band, 
with  the  effective filter spacing much smaller than  the 
effective filter width or with the filter bandwidth  much 
smaller than t'he spectral resolution available in the  data 
so that  the spectrum is  oversampled in frequency. Such an 
analysis is often useful  when  one  is interesOed in detecting 
and measuring the center frequency of a  narrowband 
component with  a simple  peak-picking algorithm on the 
spectrum. This corresponds to  a  very fine spectral sampling 
in a part of the frequency band, a,nd  none or very low 
spectral sampling in the remainder of t'he band. One pro- 
cedure  for obtaining a vernier spectral analysis is t o  im- 
plement a high-order discrete Fourier transform (DFT) . 
This results in a fine spectral sampling  over the entire 
frequency band  and is therefore inefficient. Another pro- 
cedure  which has been  used  utilizes the chirp x-transform 
algorithm 141. 

In  this paper, the application of a technique referred to  
as digit'al frequency  warping t o  unequal ba,ndwidth spectral 
analysis will  be  discussed. This technique transforms a 
sequence in such  a way that,  the Fourier transforms of the 
original and  transformed sequences are related by a non- 
linear t,ransformation of the frequency  axis. An equal 
bandwidth analysis carried out on the transformed 
sequence then corresponds to  an  unequal  bandwidth analy- 
sis of the original  sequence.  While the class of frequency 
transformations afforded by this technique does not permit 
proportional bandwidth analysis, it does permit an 
analysis in which the analysis bandwidth increases  or 
decreases with frequency and also permits a vernier 
analysis. 

In  the following  discussion, we will present a framework 
for  discussing the problem of spectral analysis. Wewill then 
discuss in a general sense how unequal  bandwidth spect'ral 
analysis can be  implemented  by first implcment,ing a non- 
linear distortion of the frequency  axis,  followed by  an 
unequal  bandwidth analysis. We then apply these ideas 
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consideration in the use of this technique is its sensitivity 
to arithmetic roundoff  noise. Thus, we conclude the paper 
with an analysis of these effects. 

11. GENERAL  SPECTRAL ANALYSIS 
Let f (n)  denote a sequence of data and F ( Q )  its Fourier 

transform. A set of measurements of the spectrum as 
viewed through a spectral window  will  be denoted  by Gk 
with1 

The fact that  the spectral window H (Q,Qk) is a function of 
two varia,bles indicates that  the shape and in particular, 
the width of the window can change with  the center fre- 
quency o b .  When the spectral window H ( Q , f i k )  depends 
only on the difference (0 - Q k )  (1) becomes 

and equal bandwidth analysisresults. The spectral measure- 
ments G k  can be thought of as corresponding qualitatively t o  
filter bank  outputs where  each filter has  the same spectral 
shape  with only the center frequency fh changing  along 
the filter bank. Generally, it is desirable to  choose the 
low-pass prototype filter characteristic H (0) to  approxi- 
mate  unity over a band of frequencies with a width which 
we  will denote by B and zero outside the  band  and to  
choose the spacing of the center frequencies,  i.e., - 0,) 
to  equal the constant B independent of k. In  this  way, the 
band is covered by nonoverlapping  filters. Alternatively, 
for vernier analysis the spacing of the center frequencies 
is chosen to be much less than  the filter width. 

If the spectral analysis corresponds to proportional 
bandwidth analysis then (1) takes  the form 

In  this case, the effective filter width is proportional to  the 
center frequency. Here the  effective filters become  wider 
as  the center frequency increases. 

Generally,  when data  are analyzed using the  DFT, a 
finite length window w (n) is applied to  the  data and the 
DFT of the product  computed.  The  magnitude of the 
DFT values then correspond to spectral samples G k  as 
specified by ( 2 )  with Qk = ,452,. The Fourier transform of 
the  data window w (n)  corresponds to  the spectral window 
H (Q) . Thus, a direct application of the DFT results in  an 
equal resolution analysis. A commonly  used procedure for 
approximating  a constant Q analysis or more generally 
unequal resolution is to sum adjacent measurements Gk’s 
obtained via DFT, with the number of bins summed 

so that with  a  sampling period of T, the  sampling  frequency 2r /T 
Throughout  this  paper we will use a  normalized  frequency  scale 

corresponds to 0 = 28. 

increasing with frequency. This first requires, of course, a 
DFT calculation of sufficiently high  order. 

111. UNEQUAL BANDWIDTH  SPECTRUM 
ANALYSIS BASED  ON  FREQUENCY 

TRANSFORMATION 
The DFT computes spectral samples whose magnitude 

is of the form 

corresponding to  an equal bandwidth analysis of f(n). 
Let us consider a sequence f ( n )  which is related to  f ( n )  
in such  a  way that 

F ( Q )  = P(6)  ( 5 )  

where il = e(0). An equal resolution analysis of P(B) 
according to (4) leads t o  the coefficients 

or, since d = e @ ) ,  

with = kO(Qo). This no  longer has the form of an equal 
resolution analysis but, except  for the factor dO(0) /dQ,  
still retains the general  form of (1). Thus, we can interpret 
(7) as an unequal resolution analysis of f(n) modified by 
the frequency characteristic dO/dQ. This  spectral weighting 
can be  compensated  for prior to  the spectral analysis by 
means of an appropriate preemphasis, or can be  taken  into 
account in interpreting the spectral coefficients. The correc- 
tion is particularly simple  when e (0) is close to linear since 
it reduces to a constant spectral weight. 

If the low-pass  filter H (0) has  a  bandwidth B, and if we 
assume that e@) is approximately linear over any  interval 
of length B, then  the bandwidth of HCe((12) - kO(QO)] is B 
divided by  the slope of e(@ at  O(Q)  = k0(Qo). Thus, if 
e(n) has  slope  monotonically  decreasing with 0, then  the 
bandwidth of the analysis will  monotonically increase with 
Q. 

If e(Q) is linear with slope e’ (0)  > 1 in a  range of fre- 
quencies, then a vernier analysis can  be achieved  over that 
range, with  bandwidth  depending on B and the slope 8’ (0) .  
For a given B, the steeper e ( Q ) ,  the finer the analysis. 

For the specific  case in which  we  would like a  constant 
percentage bandwidth analysis, e ( 0 )  is of the form 

e (Q) = ccl In a2Q ( 8 )  

so that (7) takes  the form 

where 
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f i k  = az(k-’)fiok. (9b) 

There is not available a  simple  procedure  for  modifying  a 
sequence to obtain a logarithmic frequency transformation 
of the form of (8). However,  a  procedure has been de- 
veloped for obtaining a frequency transformation of a 
specific  forrn. In  the next section, we  briefly  review this 
procedure and  then discuss its use  for unequal resolution 
analysis. As a measure of the behavior of the resolut’  ,ion as 
a function of frequency,  we  compare it with  constant 
percentage bandwidth. 

IV. FREQ~DENCY WARPING USING AN 
ALIJ-PASS TKAYSFORl\IATION 

A procedure  for implementing a frequency transforma- 
tion of the form 

8(Q) = ( a  - nu) + 2 arctan --_--______ 
1 - acos (D - Q,) 

a sin ($2 - D,) 

has been discussed [SI, [A]. The frequency warping 
achieved is restrict.ed to  the functional form of (10) and 
can only be varied within the flexibility  afforded by  the 
parameters a and Q,. A plot of O ( Q )  for Qa = 0 and several 
values of a is depicted in Fig. 1. 

To implement this frequency warping, we consider t m  
sequences f(n) and f(n) with Fourier transforms related 
by 

F[exp ($)I = 8 ’ {  exp C .#(it)]]. 
With e(D) of the form of (IO), and assuming that f (n)  is 
zero  for “/L < 0, it has been  shown [C;] that f(n) and f ( n )  
can be related by 

m 

f ( k )  = exp ( - - j ~ t u ~ , ) f ( , , ~ ) ~ / ~ ( ~ ~ )  (11) 
rL-0 

where H k ( x )  , the z-transform of h k  (7t,) is given by 

f (1 - a2)z -1  ( z--l - a >,I 
.. 

(1 - az-1) 1 - ax-’ IC > 0 

k = 0. 

This corresponds to processing f( - n )  exp ( jst,n) with the 
system shown in Fig. 2 .  The sequence j ( n )  is obtained hy 
sampling the  outputs along thc cascadc  chain at 72 = 0, i.e., 

j ( n )  = gk(o ) .  (13) 

In  a practical implementation of this system, the sequence 
f(72) would be of finite length  and it would often not be 
necessary to  reverse the direction of the  input sequence 
since this does not affect the magnitude of F[exp ( j Q ) ]  
and 8’re.p ( j Q )  ] and only changes the sign of the phase of 

E’or Q, = 0 and a positive, we note from Fig. 1 that  the 
slope is monotonically  decreasing with frequency and 

FCexp ( jfi) 1, 

0 k::: L 1- 
0 l7/2 l r f i  

Fig. 1. Frequency  transformation of (10) for several  values of the 
parameter a. 

consequently, an analysis using the warping given by (IO) 
with 0, = 0 will have an analysis bandwidth which  in- 
creases with frequency. With Q, # 0, the analysis band- 
width will he minimum around D = a,. 

To utilize the frequency transformation for vernier 
analysis we note that with a > 0 t’he curves of Fig. 1 are 
close to linear in  the vicinity of the origin, with slope 
greater  than  unity. More generally with the transforrna- 
tion of (IO), for a > 0, the slope is greater than  unity  in a 
frequency range of width 2 cos-’ a centered a t  Qu. A 
suitable choice of a and I?, the analysis  bandwidth  on the 
fi axis, allows  us to perform a narrow and approximately 
constmt bandwidth analysis around st, at  the expense of an 
increasingly larger bandwidth elsewhere.  An  example of 
such an analysis  is shown in Yig. 3. In  li’ig. 3(a) is shown 
t.he input sequence  consisting of 51.2 ms of speech  weighted 
by a Hanning window. Fig. 3 (h) shows the result of apply- 
ing a 512 point IVT to  the sequence in Pig. 3 (a). Fig. 3 (e) 
corresponds to  applying a, 512 point FIiT to  the sequence 
obtained by warping the sequence of Fig. 3 (a). The par- 
ameters used  were a = $ and Q, = 31n/256. This value of 
Qu corresponds to  the location of the arrow in E‘ig. 3 (b) . 
Only  a portion of the resulting spectrum is  displayed in 
Fig. 3(c) , specifically the portion between the markers 
in  Fig. 3 (b) . Fig. 3 (d) is similar t o  Figs. 3 (b)  and 3 (e). 
In  Fig. 3 (d) , a was  chosen equal to 2 and  the portion of the 
spectrum of the warped sequence  displayed is narrower. 

We wish  now t ( J  compare the analysis as provided by  the 
warping of (10) with constant percentage bandwidth 
analysis. To present the basis  for the cornparison  procedure 
it is helpful to refer to E’ig. 4, indicating the manner in 
which  a filter with bandwidth 8 is reflected by the curve 
8 (Q) . The bandwidth of the filter ap$ied to  the sequence 
j ( n )  is 

B = 6 2  - h’ (14) 

and  its center frequency is 

a‘ = ‘2 (h2 -- hl). (15) 

The bandwidth and center  frequency of the equivalent 
filter applied to f(n) are 
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f ( -n )  I 

1-az-I I -a 2-1 I - 02 -1  1-0 2-1 

z-‘- a 2-I-o - -  (1-a2) 2-I - . .. 
e 

B (n) B,i(n) - g2(n)  (n) 

Fig. 2. Cascade  chain of networks to  implement frequency warping. 
3 

I I , 
0 I 2 3 4 5 

k H z  

L. 0.47 k H z  I 
(dl 

Fig. 3. (a) 51.2 ms of speech weighted by a Hanning window. 
(b) Spectrum  obtained  by  applying a 512 point FFT to  the 
sequence in (a). (e) Spectrum  obtained  by applying the FFT to 
the sequence  obtained by warping the sequence  in (a)  with 
a = l/2, sl, = 31~/256.  (d) Similar to  (b) and (e) but  with 
a = 3/4. 

B = 0 2  - a1 (16) 

0, = 5 (52‘2 + a,). (17) 
The Q of the effective filters applied t o  the sequence f (n)  
is defined as 

& = -  0, 
B 

For  a constant percentage bandwidth analysis we require 
that Q be  independent of Qc and consequently, that B be 
proportional t o  4 .  That  this is in fact so for the logarithmic 
transformation 

f? = a1 In a29 

follows in a straightforward manner. 

01 0 2  

J - L  
n 

----iBl--- 

Fig. 4. Transformation of a  filter with  bandwidth B^ by  the warping 
curve O ( 0 ) .  

To evaluate Q for the transformation of ( lo),  we might 
compute the center frequencies and  bandwidths reflected 
through  this frequency transformation. The exact com- 
putation of the  bandwidths leads to  unwieldy  expressions 
and w e  will instead base the comparison on an approximate 
analysis. The approximate analysis corresponds to assum- 
ing that O(0) is linear over an  interval  with  width 8 in 8. 
With  this approximation, 8 and B can be simply related 
by  the slope of e (a) at 0 = QC and fiC and QC are  simply 
related by 

f i C  = e(QC) .  (19) 

For a I 1/2, the error is  less than 1 percent for 0 2 8 5 
2 ~ / 3 2  and less than 3 percent for 8 5 2?r/16. The corre- 
sponding  maximum errors for a 5 15/16  become, re- 
spectively, 3.5 percent and 10 percent. 

With  the assumption that e(9) is linear over the range 
Q2 - stl with slope 0’(0,), 8 and B are simply related by 

8 = BO’ (ac).  (20) 

Thus,  the Q of the effective filter is 

Q = - = 7 O’(9,). Q C  Q c  

B B  

For constant percentage bandwidth, Q is constant, while 
the Q given in (21) is a function of 9,. To compare this 
with  constant Q, we define the error relative t o  a constant 
value Qr as 

where we have  denoted the dependence of the error and Q 
on !A. With  the error expressed in this way, Qr is, of  course, 
arbitrary  and  the error is therefore dependent on what 
constant Q value we choose t o  compare Q ( Q C )  with. Con- 
sequently, it is convenient to  display the error in terms of 
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a - 0 2  
[L 
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W 

Fig. 5. Error  curves for the use of digital  frequency  warping to  approximate  constant  percentage  bandwidth. The 
parameters for each of the curves  are  listed  in  Table 1. 

log [ 1 + 8 ( Q C )  ] since 

log[l + E('&) 1 = log Q (Qc) - log Q?. (23) 

With &(ac) presented in  this way, a change in Q1. is re- 
flect'ed by a vert,ical displacement of the error curve. Since, 
from ( X ) ,  &(a,) is proportional t o  116, it is also  con- 
venient to consider Q7 to be proportional to I/&. Thus we 
express QT as Q?. = C / B .  

In Fig. 5, a set of error curves are displayed for different 
values of a and 0,. For each value of a,  the different num- 
bered curves presented correspond to a change in &. It 
was also convenient for the purpose of displaying these 
curves, to  adjust  the vertical position of  each  curve so that 
they  are  tangent to & = 0. Thus, each curve displayed 
has associated with it a different value of C. 

A table of the values of Qa and C for each curve is given 
in  Table I. We note on these curves that for each value of 
a, those curves which are simple convex curves appear to 
be  quite similar. It has been  verified  computationally 
that for values of modulation  between those given, linear 
interpolation provides a close approximation. To  discuss 
how the error curves should be  interpreted, let us consider a 
specific  exa,mple. Let' us assume that we wish to investigate 
the deviation from constant Q for a = 1/2. Referring to 
the appropriate  set of error curves, we note that from 
curve 3 , .  Fig. 5(b), corresponding to a modulation 
of zero, it is possible to have  a positive error relative to  
QT = 0.90/& between 0 and 10 percent  in the frequency 
range 0 .42~  5 CY 5 0 . 9 3 ~ .  Alternatively by shlfting the 
same curve downward, we  see that it is possible to have  an 
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0 0.1 - 

LT -0.2 

0 = 3/4 

( 4  

I 

0.6 

0.4 

a 
+.- ? 0 .2  

0" 0. I 

0 0  
I 

-0.1 

LL -0 .2  
Lz 

w 

I a = 15/16 

( 4  
Fig. 5. (Continued.) 

error between f 1 0  percent relative to Q1. = 1/B in  the 
frequency range 0 . 2 6 ~  5 0 5 1.047. For a = 3/4 with 
Q, = 0, it is possible to  have  an error between f 10 percent 
in  the frequency range 0 . 4 3 ~  5 8 5 1.05 ?r with Qr = 
0.43/8. We note that for QT t o  be  same for the two differ- 
ent values of a, & can  be larger if a = 1/2 than if a = 3/4. 
Thus,  with a = l/2, a wider bandwidth analysis can be 
used  on the sequence f(n).  

In a practical setting, we may wish to use the frequency 
warping to  implement an approximation to  a constant Q 
analysis. Given the frequency range to be analyzed and 
the allowable deviation from constant Q, we can then use 
the curves of Fig. 5 to choose the parameters a and Qa. The 
design procedure will. generally  be of a trial  and error kind. 
The choice of 0, will  generally  depend  on the range to  be 

analyzed. The parameter a influences- that value of Qr so 
that as a increases the value o f  8 required to approximate 
a given Q will  decrease requiring a finer resolution analysis 
of f ( n ) .  A t  the same time, it, is generally  possible to extend 
the frequency range to lower  frequencies as a increases. 

In  the application of the frequency warping technique 
we have presented, three  parameters play a fundamehtal 
role: Q,, a and 8. While  no particular problem  is connected 
with  the modulation frequency a,, some  comments are  in 
order about a and E .  In  the constant Q approximation, 
values of a close to unity allow us toAextend the analysis to 
low  frequencies and small values of B are needed to approx- 
imate  a high Q+. In  the vernier application,'we again use 
large cb's and small B's. Shce a represents the pole location 
of the digital networks of Fig. 2 and B is inversely propor- 
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TABLE I 

a Curve No. 4 C 

Fig.  5(a)  1/4 1 
2 

4 
3 

5 

Fig.  5(b) 1 /2 
2 
1 

Fig.  5(c) 314 1 
2 
3 
4 
5 
6 
7 

Fig. 5(d) 15/16 1 
2 

0.25 
0.55 
1 
1 .5  
2 

-0.5 
-0.32 

0 
0.5 
1.0 
1.5 
2.0 

-0.53 
-0.25 

0 
0 . 5  
1 
1.5 
2 

-0.57 
-0.4 

0 
0.5 
1 

2 
1 .5  

1 . 4  
1.9 
2 . 2  

2.9 
2.5 

0.75 
0.66 

0.90 
1.1 
1 . 2  
1.4 
1 .6  

0.29 
0.35 
0.39 
0.47 
0.55 

0.70 
0.63 

0.064 
0.073 
0.089 
0.11 
0.12 
0.14 
0.16 

tional to  the  FFT size, that is to  the  output length of 
the warping netyork, we conclude that  in specific applica- 
tions a  very long chain of all-pass networks will be used 
with the poles  close to  the  unit circle. Consequently, we 
would  expect that with finite register length arithmetic 
considerations of roundoff  noise  will play an  important 
role. Thus,  the next  section  is directed toward  an analysis 
of roundoff  noise in implementing digital frequency warp- 
ing. 

V. NOISE ANALYSIS OF DIGITAL 
FREQUENCY  WARPING 

An implementation of the system of Fig. 2 in terms of 
multipliers,.ddeiays and adders is s@o& in Fig. 6. Note 
that, after  the first delay, the  outputs of this system differ 
from those of Fig. 2 by  a fact.or of (1 - uz) . Since the 
system of Fig. 6 implies a simpler hardware  structure, it is 
thg system of Fig. 6 that will  be analyzed with regard t,o 
roundoff  noise. The factor (1 - uz> is  easiiy accounted for 
in  a number of ways such as dividing f ( 0 )  by (1 - uz) and 
applying a scale factor of (1 - ai) in interpreting  the 
amplitude .of the sequence f (  n)  . 

In  analyzing the roundoff  noise, we  will consider only 
fixed point arithmetic and assume that rounding is applied 
after multiplication. The register length d l  be considered 
to be b-bits  plus  sign so that  the error due t o  rounding  is 
between  plus and minus 4 -2-5. We will assume that  the 
Sounding error can  be represented statistically. Thus, 
whit,e  noise generators can be inserted after  the multipliers 
to account -for roundoff noise as shown in Fig. 7 [7]. 

Each of the noise generators ek(n) are assumed t o  be 
uncorrelated, white, uniformly distributed in amplitude 
between- f3.2" '  with variance u,2 = (1/12) .awb: The 
total noise output  at  the kth tap is denoted by m(n). 

-I -I 
I'T 

Y 

go(n) g,(n) g,(n)  g,(n) 
Y Y Y 

Fig. 6. Block diagram representation of warping  network. 

_ I  LI _ I  

Let Hk, ' ( z )  denote the transfer function from the  kth 
noise  source input t o  the  rth  output  tap where r 2 k. 
Then, since we assume that  the a(n)  are white and 
uncorrelated 

u,12(~) = var ( ~ ' ( n ) )  

= ue2 ' - / r  1 Hk,,rexp ( ju>1/2 dm. (24) 
k=O 2'7r -T 

It can be verified by inspection of Fig. 7 that 

1 
Ho,o(z) = - 

Substituting into (24) it then follows that 
1 

1 - a2 
u,2(0) = - ue2 (25a) 

1 + d )  1 

(1 - a")" 1 - u2 
a?(r )  = ["'--- + ' r  -1 u62 r 2 1. (25b) 

It is interesting to  note  that  the increase of u d ( r )  with r is 
relatively mild. If we assume that u is not close to  unity 
then for r large ad( r )  is approximat,ely proportional to, r .  

In addition t o  computing the  output noise variance, 
however, we must consider the effect of limited dynamic 
range. With limited dynamic range taken  into account, 
we can  compute a noise-to-signal ratio at each output  node 
in the network of Fig. 6. 

Let us  assume that we do not allow the register length to 
be saturated  and  that we scale the  input t o  prevent this 
in  the worst  case.  Applying this constraint, we can  com- 
pute  the variance of the  output signal and  the noise-to- 
signal ratio at each stage. Specifically, let h,,k(n) denote 
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the impulse response of the system from the  input  to  the 
kth  output node and &(n) denote the  output  at  the kth 
node. With  input 2 (n) of finite length N ,  i.e., 2 (n) = 0 
for n < 0 and n 2 N ,  it follows that 

N 

I sk(n> I 5 max I h O . k ( T )  1. 
over n r=O 

To avoid exceeding the dynamic range, we require that 
I &(n) I < 1 for all k ,  which is guaranteed  by scaling the 
input  amplitude so that 

max [ ~ ( n ) ]  < 1/M 
over n 

where 
N 

M = max C I ho,k(r) I .  

If we assume that  the  input. is white noise uniformly 
distributed  in  amplitude between plus and minus l/M, 
then az2 = 1/ ( 3M2) and  the variance of the  output signal 
sk(n) is 

over k 7-4  

1 1  
3M2 1 - a2 

u*2(0) = - - 

= - 
1 aZ(1 + u2) 

3M2 (1 - a”)” 
k 1 1. (26b) 

Combining (25)  and (26),  the  output noise-to-signal ratio 
is 

Thus, the noise-to-signal ratio is a monotonic function of k 
and consequently, the largest noise-to-signal ratio occurs 
in  the  last stage.  Then,  with K + 1 denoting the number 
of stages  in the system,  and assuming K >> 1, the noise- 
to-signal ratio  in  the  last st,age can be approximated as 

To observe how the noise-to-signal ratio is influenced by 
the  parameters K, a and N ,  we must consider the influence 
of ehese parameters on M .  To this end, we  consider S ( k )  
defined as 

N 
S ( k )  = I hO,k(r> I ( 28) 

r=O 

so that 

M = max [ S ( k ) ] .  

Fig. 8 shows a  plot of X ( k )  for  several  different  values of a 
as a function of N and k. There  are a number of trends 
evident from these plots. First, we note that for a given N 

over k 
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Fig. 8. S(k)  for several  values of a as a function of N and k. (a) 

a = 1/2. (b) a = 3/4. (c) u = 15/16. 

K 

and a, S ( k )  reaches a maximum and  then decreases. Fur- 
thermore, this maximum reached  for k is small compared 
with N ,  and  the  value of k for  which S ( k )  reaches  a maxi- 
mum decreases as a increases. Consequently, it is reason- 
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able to consider M to  be independent of K in  (27). Thus, 
from (27),  the noise-to-signal ratio does not increase 
rapidly with K ,  i.e., it is relatively insensitive to  the num- 
ber of stages. 

The  above analysis is  based  on the assumption that  at 
each node the signal value is constrained to  be within the 
limits prescribed by  the resister length. A less  pessimistic 
analysis can also be carried out, for which  we are willing 
t o  permit register saturation to  take place a certain per- 
centage of the time. Based on this  statistical approach, 
an approximate analysis can be developed  for an‘  input 
signal which is  Gaussian  white noise. To develop this 
analysis let us consider an  input signal which is  Gaussian 
white noise with variance uf2. Then  the signal at each node 
is  also Gaussian. With ( k )  denoting the variance of the 
output signal at  the kth node, it follows that 

Thus, 

1 
1 - a2 

ns2(O) = Uf.‘ - 

a*(1 + a?) 
u,2(k) = up k 2 1. 

(1 - a”>” 

For a > l/*, u,2(1) > u,2(0). We note, furthermore, 
that u,2(k) is independent of k for k > 0. Thus,  let US 

assume that  the maximum output signal variance occurs 
for k = 1. Since we have assumed that  the signal is  Gaus- 
sian, it will exceed the register length a certain percentage 
of the  time  and  as we scale the  input signal the  output 
signal variance is scaled and consequently so is the  sat- 
uration  rate. It is generally convenient to consider t.his 
rate  to be  independent of a in which  case we scale uf such 
that us2(k)  is constant, i.e., u,2(k) = C. We would  choose 
the value of C, i.e., of the variance of the Gaussian prob- 
ability density function, on the basis of the accepted over- 
flow rate, which is represented by  the area under the 
Gaussian curve outside the range - 1 5 s 5 1.  With C 
constant,  the maximum output noise-to-signal ratio for 
k 2 1 is given by 

Thus,  the noise-to-signal ratio increases monotonically 

with k and hence the largest noise-to-signal ratio occurs in 
the  last stage. With K + 1 stages, and K relatively large, 
and  substituting u? = 2-2b, the noise-to-signal ratio 
in  the  last stage can  be  approximated as 

If, for  example, we consider a = 2 and K = 29 

In general, we would  choose the constant C on the basis  of 
the percentage of the time we are willing to  permit the 
register length  to be sahrated.  For example, let us choose 
C so that  the  standard deviation of the  output is 2, i.e., 
C = 1/16 and  saturation probability is approximately 
6 X lW5. Then 

or, in d B ,  

10  loglo c$) ‘v 31.8 - 6b. 

Thus, for example  wit,h b = 17, the noise-to-signal ratio 
is approximately  minus 70 dB. If we choose C instead so 
that  the  standard deviation is 1/2, then  with b = 17, the 
nojse-to-signal ratio is minus 76 dB  and  the  saturation 
probability is  less than 5 X 
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