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Abstract

Rate-conversion systems are used in an array of applications, including the oversampled
audio and video CODECs often found in entertainment and communications systems. It is
common practice for many such systems to sample signals at rates which are much faster
than the minimum required to represent some bandwidth of interest, and high-quality filters
are often implemented at this fast rate. Therefore, their designs tend to be computationally-
expensive. A number of structures have been proposed to address this, including polyphase
implementations and folded structures for linear-phase FIR filters. In this thesis, tech-
niques which combine benefits from both classes of structures are discussed, and an efficient
class of structures is proposed. The Generalized Transposition Theorem is also reviewed
to demonstrate that an efficient downsampling structure also implies an equally efficient,
closely-related upsampling structure. Techniques are investigated for designing minimum-
multiply filters for the class of structures presented, and methods are discussed for designing
filters that, for a given set of frequency domain filter specifications, often require fewer mul-
tipliers and have smaller maximum error than Parks-McClellan designs.
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Title: Ford Professor of Engineering
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Chapter 1

Introduction

Rate conversion plays a central role in many signal processing settings. Oversampling

CODECs and asynchronous signal processors make extensive use of rate conversion, and

their implementations often rely on high-rate discrete-time filters. Efforts to reduce the com-

putational cost of these filters have, broadly speaking, occurred on two fronts. One such

effort concentrates on improvements in flow graph structures; key results include polyphase

implementations and folded structures with time-symmetric impulse responses.[3][4][6][10][15]

Another effort involves using filter design techniques, including the Parks-McClellan algo-

rithm and the METEOR toolkit, as methods for choosing efficient filters from some set of

permissible designs.[11][12] Drawing on these results, this thesis proposes a class of struc-

tures and corresponding FIR filter design techniques. The proposed structures are shown to

require fewer multiplications per unit time than polyphase or folded implementations. The

proposed design techniques are capable of designing filters which have smaller maximum er-

ror than Parks-McClellan designs and which also require fewer multiplications per unit time.

Downsampling systems are discussed, and the Generalized Transposition Theorem[4][6] is

reviewed as a method for obtaining upsampling systems from these downsampling struc-

tures.

For many applications encountered in practice, such as oversampling CODECs, rate

conversion by a rational factor is desired, and the required input-output relationship is that

of the system in Figure 1-1. Any system which implements the converter in Figure 1-1 will be

referred to as a generalized rational rate conversion system. This thesis will discuss methods

for efficiently implementing generalized rational rate conversion systems with integer L, M

11
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x[n] y[n]
v[n] w[n]

H(ejω)L M

Figure 1-1: Generalized rational rate-conversion system.

and even, time-symmetric, FIR (ETSF) impulse responses h[n] = F−1{H(ejω)}.

The ETSF constraint on the impulse response of H(ejω) is well-aligned with many appli-

cations in practice. This class of filters has linear phase, which is a desirable trait in certain

audio and communications settings, for example. Restricting L/M to be rational is common

in practice as well. For example, Figure 1-1 for M = 1 and integer L is characteristic of the

upsampling stage found in many oversampling D/A converters.

1.1 Decomposing the design problem

The process of selecting the filter frequency response H(ejω) and an appropriate flow graph

implementation may be decomposed into two steps. First, a rate-conversion structure is

selected which can implement a wide range of filters H(ejω). This step also implies a cor-

respondence between each implementable filter design and its computational cost. Second,

a filter frequency response H(ejω) is selected which meets the posed system specifications,

including limits on computational cost. Exceptions to this two-step method (including

techniques for designing multi-stage rate converters)[5][6][14] have been shown to give very

efficient implementations, but decomposing the process into two stages has the advantage of

resulting in systems which can be easily reconfigured to implement a wide range of H(ejω).

1.1.1 Choosing a structure

A number of structures have been proposed for implementing systems of the form of Figure

1-1 for filters with ETSF impulse responses. One way to implement this system is to

choose a direct-form implementation for H(ejω). This implementation often requires the

computation of many multiplications per unit time. Structures have been proposed to

improve upon this, typically by taking advantage of a particular known property of the

overall system or of the filter to achieve computational gains.

Folded structures take advantage of ETSF filters to reduce the number of required

multiplications per unit time. Because every value taken on by the impulse response h[n]

12



of an ETSF filter occurs a minimum of two times (with the possible exception of the value

at the point of symmetry), a folded structure can be used to reduce by approximately

one half the required number of multiplications per unit time compared to a direct-form

implementation. An example of a folded structure is shown in Figure 1-2. A generalized

rational rate-converter may be obtained by adjoining an expander-by-L to the input of this

system and a compressor-by-M to its output.

PSfrag replacementsv[n]

w[n]

z−1
z−1z−1z−1

z−1 z−1 z−1

b0 b1 b2 bk

Figure 1-2: Folded implementation of an ETSF filter.

Polyphase structures take advantage of two features: the FIR property of the filter and

the fact that the filter falls between an expander and a compressor block in Figure 1-1.

When these conditions hold, the response of H(ejω) can be decomposed into polyphase

components G`(e
jω), and the noble identities[15] can be applied to interchange multipliers

with compressors or expanders. The resultant structure requires the same number of mul-

tipliers as a direct-form implementation, but all multipliers now operate at the sampling

rate of either the input x[n] or the output y[n]. It is often the case that the sampling rate

of either x[n] or y[n] is slower than that of v[n] in Figure 1-1. Consequently, this manipu-

lation gives a system which requires fewer multiplications per unit time than a direct-form

implementation. An example of a polyphase implementation for a rational rate converter

is shown in Figure 1-3.

Folded implementations for rational rate converters take advantage of filters with time-

symmetric impulse responses but do not take advantage of the fact that the filter falls in

between an expander and a compressor. Polyphase structures take advantage of this fact,

but do not take advantage of time-symmetry. The structures proposed in Chapter 4 take

advantage of both properties. They also have the additional property of requiring exactly

13
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Figure 1-3: Polyphase implementation of a rational rate-conversion system.

one multiplier for each different value taken on by h[n] for all n, independent of the number

of times it may repeat.

1.1.2 Choosing a filter frequency response H(ejω)

The Parks-McClellan algorithm is often used for linear-phase FIR filter design, a practice

which can perhaps be explained by the attractive error metric which the algorithm mini-

mizes. The algorithm designs a zero-phase filter (or a linear-phase filter by introducing a

delay) which minimizes the maximum frequency-domain error between the desired filter and

the approximated filter in bands of interest. Specifically, the approximation to the desired

filter which minimizes the maximum error is found by solving

min
{he[n]:0≤n≤K}

(

max
ω∈F

|E(ω)|

)

, (1.1)

where F is the closed subset of 0 ≤ ω ≤ π delineating the bands of interest and he[n] is the

positive-time part of the zero-phase approximated filter h[n], with DTFT H(ejω).[10] E(ω)

is defined in terms of the desired response Hd(e
jω), the approximated response H(ejω) and

an error weighting function W (ω) as

E(ω) = W (ω)
[

Hd(e
jω) − H(ejω)

]

. (1.2)

Two aspects of Equation 1.1 are of note here. To begin with, the equation minimizes
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the error metric by choosing values of he[n] for consecutive samples from n = 0 to n = K,

inclusive. While this formulation does specify the number of required multiplications per

unit time when using a given structure, the designed filter is not guaranteed to be the opti-

mal filter with this computational cost across all structures. Using the structures proposed

in Chapter 4, for instance, allows for the possibility of obtaining a filter with smaller peak

error than a Parks-McClellan design while requiring the same or fewer multiplications per

unit time. This possibility arises when the design process is allowed the freedom to pick K

possibly nonconsecutive tap locations, in addition to their coefficient values.

Equation 1.1 also specifies that the Parks-McClellan algorithm minimizes the maxi-

mum error in bands of interest. For many applications the maximum error may serve as a

more appropriate optimality criterion than, for instance, the mean-squared error, but in the

common circumstance where a filter must be designed to meet some set of tolerances, the

use of a maximum-error-minimizing algorithm less directly addresses the design problem.

Furthermore, the fact that the Parks-McClellan algorithm designs a filter with minimal

maximum error for a fixed, integer filter length leads to the common situation where filters

are over-designed with respect to posed frequency specifications. Bounding frequency de-

viations instead of trying to minimize them is also an integral concept in formulations for

optimization problems where the number of multiplications per unit time is minimized.

Both of these issues can be more directly addressed when the filter design problem is

instead formulated in terms of a linear program. The application of linear programming to

filter design has been investigated by Steiglitz, Parks, and Kaiser in [12], and the closely-

related problem of using linear programming techniques to choose sensor weights for detec-

tor arrays has received attention as well.[8] The problem of designing minimum-multiply,

constraint-based filters for rate conversion systems is addressed from a linear programming

perspective in Chapter 5.

1.2 Outline of thesis

Before discussing methods for designing and implementing efficient rate-conversion systems,

some key concepts are underscored. One important notion is the use of the Generalized

Transposition Theorem as a method for finding a flow graph for an upsampling system from

the flow graph for a downsampling system. This concept is reviewed in Chapter 2 and can
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be applied throughout the thesis wherever a downsampling system is discussed. It is for

this reason that efficient downsampling structures, only, are proposed in the thesis.

Chapter 3 discusses the relationship between filter designs, structures, and computa-

tional cost. This relationship gives rise to a number of subtle issues which become integral

points in later chapters, so the topic first receives attention in this chapter.

Because the process of designing efficient rate-conversion systems is decomposed into

the stages of selecting efficient structures and choosing efficient filter designs, a chapter is

devoted to each. Efficient structures for rate-conversion systems are therefore proposed in

Chapter 4, and efficient filter design techniques are discussed in Chapter 5.

16



Chapter 2

Complementary rate-conversion

systems

LTI systems are commonly realized using one of a set of canonical structures, and a cor-

respondence between certain of these structures with equivalent system functions is given

by the Transposition Theorem.[9][10] Efficient implementations for rate-conversion systems,

however, rely on linear subsystems which are not time-invariant. Many time-varying real-

izations have been proposed, including structures with time-varying multipliers,[4][6] multi-

stage implementations,[5][6][14] and the well-known polyphase class of structures.[3][6][10][15]

While the Transposition Theorem makes no general correspondence between time-varying

structures, the Generalized Transposition Theorem[4][6] does relate a time-varying structure

implementing a given input-output relationship to a structure implementing its generalized

transpose. An arbitrary structure consisting of expanders, compressors, and LTI subsystems

furthermore has a generalized transpose which requires the same number of multiplications

per unit time as the original structure.[4] The generalized transpose of a rate converter is

another rate converter with a reciprocal conversion factor, so the Generalized Transposi-

tion Theorem is utilized as a method for obtaining an efficient upsampling structure from

a given efficient downsampling structure and vice-versa. The relationship between a rate-

conversion system and its generalized transpose is discussed in Section 2.1, and a derivation

of the Generalized Transposition Theorem is given in Section 2.2.
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2.1 The generalized transpose for rate-conversion systems

An arbitrary linear system with input x[n] and output y[n] is fully characterized by the

superposition sum

y[n] =
∞
∑

m=−∞

g[n,m]x[m], (2.1)

where g[n,m] describes this linear homomorphism relating x[n] to y[n]. The generalized

transpose of g[n,m] is defined as

gT [n,m] ≡ g[−m,−n]. (2.2)

Note that gT T
[n,m] = g[n,m].

Two systems with input-output relationships which are generalized transposes of one

another are referred to as being complementary. To illustrate the implications of this

definition within the context of rate-conversion systems, consider again the generalized

rate-conversion system in Figure 1-1. Its respective input and output x[n] and y[n] are

related by

y[n] =
∞
∑

m=−∞

h[Mn − m]xL[m], (2.3)

where h[n] is the LTI impulse response of the filter described by H(ejω) and where

xL[n] =







x[n/L], n/L ∈ Z

0, otherwise
.

Equation 2.3 is represented in the form of Equation 2.1 for g[n,m] defined as

g[n,m] =
∞
∑

p=−∞

∞
∑

q=−∞

CM [n, p]h[p − q]EL[q,m], (2.4)

where the expander function EL and compressor function CM are respectively defined as

EL[n,m] =







1, m = n
L

0, otherwise
(2.5)
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and

CM [n,m] =







1, m = Mn

0, otherwise
. (2.6)

The generalized transpose of g[n,m] is therefore

gT [n,m] =

∞
∑

p=−∞

∞
∑

q=−∞

CM [−m, p]h[p − q]EL[q,−n]

=

∞
∑

p=−∞

∞
∑

q=−∞

EL[−q,−n]h[q − p]CM [−m,−p].

Noting that EL[−m,−n] = CL[n,m] and CM [−m,−n] = EM [n,m], gT [n,m] becomes

gT [n,m] =
∞
∑

p=−∞

∞
∑

q=−∞

CL[n, q]h[q − p]EM [p,m]

=

∞
∑

p=−∞

∞
∑

q=−∞

CL[n, p]h[p − q]EM [q,m]. (2.7)

Comparing Equations 2.4 and 2.7 illustrates that the complement to a generalized rate-

conversion system differs from the original system only in that the compression and expan-

sion factors are interchanged. Figure 2-1 summarizes this result.PSfrag replacements

x[n] y[n]H(ejω)L M

PSfrag replacements

x[n]
y[n]

H(ejω)

L
M

x̃[n] ỹ[n]H(ejω)M L

Figure 2-1: Complementary rational rate-conversion systems.

2.2 The Generalized Transposition Theorem

Because complementary rate-conversion systems have input-output relationships which are

generalized transposes of one another, the Generalized Transposition Theorem can be used

as a prescription for finding a structure for one system given the structure of its complement.

This result is illustrated in [4], which as part of the proof represents branch functions in
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terms of two-dimensional discrete-time Fourier transforms. In this section, an alternate

proof for the Generalized Transposition Theorem is presented using time-domain arguments.

For an arbitrary linear flow graph network, the signal at a given node is equal to the

summed contribution from all branches connecting to it, in addition to some potential

contribution from an external source. Denoting the signal at node k as wk[n], the branch

contribution from j to k as vjk[n], and the external input to k as xk[n], the signal at node

k is written as

wk[n] = xk[n] +
∑

j

vjk[n]. (2.8)

A given branch contribution vjk[n] from node j to node k relates, in turn, to node signal

wj [n] in terms of a branch function hjk[n,m] as

vjk[n] =
∑

m

hjk[n,m]wj [m]. (2.9)

The signal at node k is therefore related to signals at other nodes by

wk[n] = xk[n] +
∑

j

∑

m

hjk[n,m]wj [m]. (2.10)

The Generalized Transposition Theorem is stated with respect to these definitions, and the

result is illustrated in Figure 2-2.

Theorem 2.2.1 (Generalized Transposition Theorem) Given a flow graph for a single-

input, single-output linear system, a flow graph for the complementary system is obtained

by reversing the direction of every branch, replacing each branch function h[n,m] with its

generalized transpose h[−m,−n], and exchanging the system input and output.

In setting up the proof, consider a linear network with node variables wk[n], branch

contributions vjk[n], external contributions xk[n], and branch functions hjk[n,m]. Consider

also a second network (which for convenience will be referred to as the “tilde network”)

with the same topology and with node variables w̃k[n], branch contributions ṽjk[n], external

contributions x̃k[n], and branch functions h̃jk[n,m].1

1The constraint of topological equivalence is not particularly restrictive. An arbitrary number of nodes
and branches with branch functions hjk[n, m] = 0 and h̃jk[n, m] = 0 are allowed in both networks, so any
choice of original and tilde networks can be considered topologically equivalent. Unless otherwise stated,
limits of summation are likewise assumed to extend from −∞ to ∞ without loss of generality.
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∞
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∞
∑

m=−∞

g[−m,−n]x̃[m]

Figure 2-2: Illustration of the Generalized Transposition Theorem.

The proof begins by stating the following fact:

∑

k

(

∑

n

w̃k[n]wk[−n] −
∑

n

w̃k[−n]wk[n]

)

= 0. (2.11)

Applying Equation 2.8 to Equation 2.11 for both the original and tilde networks gives

∑

k





∑

n



xk[−n] +
∑

j

vjk[−n]



 w̃k[n] −
∑

n



x̃k[−n] +
∑

j

ṽjk[−n]



wk[n]



 = 0.

This simplifies to

∑

k

∑

j

∑

n

(vjk[−n]w̃k[n] − ṽjk[−n]wk[n]) +
∑

k

∑

n

(xk[−n]w̃k[n] − x̃k[−n]wk[n]) = 0.

(2.12)

The branch functions for the tilde network are defined in terms of the branch functions for

the original network as

h̃jk[n,m] ≡ hkj [−m,−n]. (2.13)

Re-stating Equation 2.9,

vjk[−n] =
∑

m

hjk[−n,m]wj [m], (2.14)

21



and applying this to Equation 2.13 gives

ṽjk[−n] =
∑

m

h̃jk[−n,m]w̃j[m] =
∑

m

hkj [−m,n]w̃j [m]. (2.15)

Substituting Equations 2.14 and 2.15 into Equation 2.12 gives

∑

k

∑

j

∑

n

∑

m

hjk[−n,m]wj[m]w̃k[n]

+
∑

k

∑

j

∑

n

∑

m

−hkj[−m,n]w̃j [m]wk[n] (2.16)

+
∑

k

∑

n

(xk[−n]w̃k[n] − x̃k[−n]wk[n]) = 0.

Rearranging indices of summation allows elimination of the quadruple sums, so Equation

2.16 becomes
∑

k

∑

n

(xk[−n]w̃k[n] − x̃k[−n]wk[n]) = 0. (2.17)

Imposing the condition that only a single node a in the original network has contribution

from an external input and that only a single node b in the tilde network has contribution

from an external input, the summation over k in Equation 2.17 reduces to

∑

n

xa[−n]w̃a[n] =
∑

n

x̃b[−n]wb[n].

Applying the naming convention from Figure 2-2,

∑

n

x[−n]ỹ[n] =
∑

n

x̃[−n]y[n]. (2.18)

Relating x[n] and y[n] by Equation 2.1 therefore gives, without loss of generality,

∑

n

x[−n]ỹ[n] =
∑

n

x̃[−n]
∑

m

g[n,m]x[m],

and manipulations on the indices of summation result in the relation

∑

n

x[−n]ỹ[n] =
∑

n

x[−n]
∑

m

g[−m,−n]x̃[m]. (2.19)

Because x̃[n], g[n,m], and ỹ[n] do not depend on x[n] and because Equation 2.19 holds for
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all x[n],

ỹ[n] =
∑

m

g[−m,−n]x̃[m] =
∑

m

gT [n,m]x̃[m]. (2.20)

Reversing the direction of all branches in a single-input, single-output network, replacing

each branch function with its generalized transpose, and exchanging the system input and

output therefore gives a complementary system.

When the network for a rate-conversion system consists only of expanders, compressors,

and LTI subsystems, the prescribed structure for the complementary network is also defined

in terms of these blocks.

Corollary 2.2.1 For a single-input, single-output, linear flow graph which implements a

generalized rate-conversion system and which consists only of expanders, compressors, and

LTI branch functions, a complementary rate-conversion system can be obtained by reversing

the direction of every branch, changing all expanders-by-L to compressors-by-L, changing

all compressors-by-M to expanders-by-M , and exchanging the system input and output.

The relationship between expander and compressor blocks in the original and transposed

networks is verified by recalling ET
L [n,m] = EL[−m,−n] = CL[n,m] and CT

M [n,m] =

CM [−m,−n] = EM [n,m]. An LTI branch between nodes j and k with impulse response

f [n] relates the signal wj [n] to the branch contribution vjk[n] in terms of the convolution

sum

vjk[n] =
∑

m

f [n − m]wj [m],

so the corresponding branch function is h[n,m] = f [n − m] = h[−m,−n] = hT [n,m]. LTI

branch functions are therefore preserved under generalized transposition.

An important result discussed in [4] is that for a wide class of system architectures,

any structure consisting of expanders, compressors, and LTI branch functions requires the

same number of multiplications per unit time as its complementary structure. Briefly,

this is shown by observing that a compressor-by-L connecting node j to k in the original

network corresponds to an expander-by-L connecting node k to node j in the complementary

network, and as long as the system is assumed to be running synchronously, the relative

rates of nodes j and k are preserved.
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Chapter 3

Computational cost

As has been alluded to thus far, the term “efficient” will refer throughout the thesis to

the number of multiplications per unit time. The process of evaluating the efficiency of

multirate systems will therefore be reviewed in this chapter. The relationship between

structures, filter designs, and computational cost will also be discussed.

3.1 Computational cost for multirate systems

The efficiency of a multirate system is determined by two properties of its flow graph: the

number of multipliers and the clock rate at which each multiplier operates. While counting

the number of multipliers is usually a straightforward task, determining the rate at which

each one operates often requires additional work. In multirate systems, the sampling rates

in different sections of a flow graph are often understood to be related by the presence

of multipliers, expanders, and compressors. Specifically, these blocks define relationships

between the sampling rates of the nodes to which they are connected, therefore introducing

notions of synchronism in the system. A summary of these notions follows:

• A multiplier block produces 1 output sample per 1 input sample, and the sampling

rate of its output is equivalent to the sampling rate of its input.

• An expander-by-L block produces L output samples per 1 input sample, and the

sampling rate of its output is L times the sampling rate of its input.

• A compressor-by-M block produces 1 output sample per M input samples, and the

sampling rate of its output is 1/M times the sampling rate of its input.
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While these blocks impose rules which relate the sampling rates between nodes, they

are not alone sufficient to find the sampling rate at any particular node. When a sampling

rate is specified at some node in a flow graph consisting of expanders, compressors, and

multipliers, however, these rules imply sampling rates for every node in the system. The

specification of sampling rates therefore introduces notions of time in a flow graph consisting

of compressors, expanders, and multipliers.

The efficiency metric, “required number of multiplications per unit time,” depends ex-

plicitly on notions of time. Therefore, the computational cost of a flow graph cannot be

evaluated unless the sampling rate at some node in the system is known. The process of min-

imizing the number of multiplications per unit time in a generalized rational rate-conversion

system, however, can still be discussed as long as its input and output sampling rates are

known to be fixed. To demonstrate this, consider two rational rate-conversion systems, Sys-

tem A and System B, which have identical flow graphs. Systems A and B have respective

positive input sampling rates RA and RB . Denoting the required number of multiplications

per unit time MA and MB for Systems A and B respectively, the computational costs for

the two systems are related by

MB =
RB

RA
MA.

Minimizing MA therefore also minimizes MB for all fixed, positive RA and RB. It is for

this reason that the design of efficient rate-conversion systems will be discussed without the

specification of sampling rates.

When a quantification of computational cost is required for systems with unspecified

sampling rates, “multiplications per output sample” will be used, and this value will gen-

erally be represented by the variable C. The metric will be considered equivalent to “mul-

tiplications per unit time,” where the time unit is one sample interval of the output signal.

Minimizing the required number of multiplications per output sample for a rational rate-

conversion system therefore also minimizes the required number of multiplications per unit

time.

3.2 Effect of computational cost on filter design

This thesis approaches the design of rate-conversion systems by first proposing efficient

structures, then investigating filter designs which have small computational cost when im-
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plemented using these structures. The act of choosing a structure therefore imposes a corre-

spondence between each filter design and its computational cost. The process of designing

efficient filters depends, in turn, on the structure that is chosen. It is for this reason that

the relationship between structures and the computational cost of filter designs is discussed

in this section.

The relationship is developed somewhat abstractly, with the goal of illustrating issues

which motivate later chapters. In particular, the correspondences between filter designs and

computational cost which are imposed by polyphase and folded structures are determined,

and the correspondence which is imposed by the efficient structure proposed later in the

thesis is also discussed. Systems of the form of Figure 1-1 which use ETSF filter designs

with integer group delay are considered.

While polyphase structures do not exploit possible time-symmetry in h[n], they do have

the advantage of requiring the same number of multiplier blocks as direct-form implemen-

tations for H(ejω) while performing each of these multiplications once per sample period

at the slowest rate in the system. An ETSF filter of the form

h[n] = bn0
δ[n − n0] +

K
∑

k=1

bk {δ[n − (n0 + k)] + δ[n − (n0 − k)]} (3.1)

which is implemented using a polyphase structure is therefore said to have computational

cost

Cpoly = Lmin

{

1,
M

L

}

, (3.2)

where L = 2K + 1 is the filter length. Cpoly represents the required number of multipli-

cations per output sample of the system when using a polyphase implementation. (An

implementation is assumed to be chosen in which all multiplications are performed at the

slower of the output rate and the input rate.) Folded implementations take advantage of the

ETSF property of the impulse response h[n] but perform all multiplications at the highest

rate in the system. K + 1 multipliers are required, and the computational cost of a folded

implementation is therefore

Cfold =

(

L− 1

2
+ 1

)

M (3.3)

multiplications per output sample.

The structure proposed in this thesis requires one multiplier block for each different
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value taken on by h[n] for all n on the interval n ∈ [n0 − K,n0 + K]. As in the polyphase

case, each multiplication is performed once per sample period and at the slowest rate in

the system. The computational cost of the proposed structure, in terms of the number of

required multiplications per output sample, is therefore

Cprop = U min

{

1,
M

L

}

, (3.4)

where U is the number of unique values of h[n] on the interval n ∈ [n0 − K,n0 + K].

The form of Equation 3.4 raises the question of how to design filters with many re-

curring coefficient values, i.e., with small U . Broadly speaking, this process is related to

quantization, since the coefficients of the resultant filter will be drawn from a small set

of values. As an alternative to solving the quantization problem in general, results from

sparse array design[8] and sparse approximation theory[7][13] can be used to reduce U by

designing filters where the value h[n] = 0 often recurs. With this restriction of the design

problem and for ETSF impulse responses h[n], an upper bound Ū on U is stated in terms

of the number of time indices where h[n] is nonzero, ||h[n]||0, as

U ≤ Ū =

⌈

||h[n]||0
2

⌉

. (3.5)

For ETSF filters, the computational cost of the proposed structure accordingly has an upper

bound C̄prop which relates to Cprop as

Cprop ≤ C̄prop =

⌈

||h[n]||0
2

⌉

min

{

1,
M

L

}

. (3.6)

Note that Cpoly ≥ C̄prop and Cfold ≥ C̄prop for fixed L and M .

To summarize the interplay between structures and filter design techniques, consider

first how the computational cost for each structure grows with increasing filter length and

zero-norm for fixed L and M . From Equations 3.2, 3.3 and 3.6, the following trends are

noted:

Cpoly ∝ L (3.7)

Cfold ∝ L + ηfold (L) (3.8)

C̄prop ∝ ||h[n]||0 + η̄prop (||h[n]||0) , (3.9)
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where ηfold (L) and η̄prop (||h[n]||0) vanish for large L and ||h[n]||0, respectively. Denote the

set of all filter designs where L ≤ ` and ||h[n]||0 ≤ k as H [`, k]. It is therefore true that

H [`, k] ⊆ H [` + γ, k + ε] (3.10)

for arbitrary ` and k and all nonnegative γ and ε, so the existence of a feasible filter design

with given upper limits on length and zero-norm also implies the existence of feasible designs

for arbitrarily-increased upper limits on length and zero-norm. In other words, increasing

the allowable filter length or number of nonzero coefficients in any filter design algorithm

can never cause feasible designs to become infeasible.

While Equation 3.10 may seem to make an obvious point, it introduces interesting

structure into the relationship between Cpoly, Cfold, C̄prop, and H [`, k]. This relationship is

illustrated in Figures 3-1 and 3-2. A single point (`, k) on these plots represents a class of

designs H [`, k]; the triangular shape is a result of the fact that the zero-norm for a filter can

be no greater than its length. Shading in Figure 3-1 represents the trend in computational

cost which is exhibited by both Cpoly and Cfold, and shading in Figure 3-2 corresponds

to the trend exhibited by C̄prop. Hatched areas in both figures represent example regions

where feasible designs exist, i.e., where H [`, k] contains a feasible design. Note that because

Equation 3.10 holds, the hatched region on each plot must extend toward increasing length

L and zero-norm ||h[n]||0. The lower-left boundary of the hatched region, however, depends

on the particular set of filter designs which will be considered feasible. The problem of

determining the most efficient implementation for a filter given a set of feasible impulse

responses and a class of flow graph structures therefore involves finding the lightest-shaded

point which is contained in the hatched area on these plots.

To gain intuition for the structure of these plots, consider first the point in Figure 3-1

where the most efficient feasible design lies. Because the leftmost corner of the hatched

region is the lightest-shaded point in the hatched region, this point represents the set of

designs which contains the most efficient feasible filter. This point also falls along the

dotted line, which represents filter designs where the upper bound on ||h[n]||0 is L. Figure

3-2 indicates, however, that the leftmost point in the hatched region does not contain the

most efficient design for the trend in computational cost which is exhibited by the proposed

structure. Finding a more efficient design involves searching below and to the right of this
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point, which indicates that increasing the filter length L while decreasing the zero-norm

||h[n]||0 has the potential to give more efficient designs. This observation can by intuitively

justified by the argument that decreasing the number of nonzero filter coefficients while

increasing the possible times to which they apply trades off degrees of freedom in terms of

coefficient value for increased degrees of freedom in terms of coefficient location, thereby

exploring a different design space.

Figures 3-1 and 3-2 also explain why the Parks-McClellan algorithm is well-suited to

find efficient designs for folded and polyphase implementations but cannot, in general, find

the most efficient filter designs for the proposed structure. In both figures, points along the

dotted line correspond to sets of filter designs where the zero-norm ||h[n]||0 is no greater

than the length L. Design techniques which make no special restrictions on ||h[n]||0, such

as the Parks-McClellan algorithm, can therefore be used to explore this space. Because the

dotted line in Figure 3-1 contains the point where the most efficient feasible filter exists,

the Parks-McClellan algorithm can be used to iteratively search along this line and find

a design of minimal cost subject to frequency constraints, assuming that the filter will be

implemented using a folded or polyphase structure. This is the technique that is used in

[12]. The proposed structure relates ||h[n]||0 and L to computational cost as in Figure

3-2, so the dotted line is not guaranteed to contain filter designs which have minimum

computational cost when implemented using this structure. It is therefore possible that for

the proposed structure, there exist feasible filters with lower computational cost than ones

which the Parks-McClellan algorithm can generate. The design techniques presented in this

thesis consequently investigate the set of filters represented by the region below the dotted

line.
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Figure 3-1: Example feasibility region, superimposed on trend in computational cost for
polyphase and folded structures. Hatched area represents design problems which are feasible
for a posed set of frequency constraints, and shading indicates computational cost. The
Parks-McClellan algorithm operates at points along the dotted line.
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Figure 3-2: Example feasibility region, superimposed on trend in computational cost for
presented implementation. Hatched area represents design problems which are feasible
for a posed set of frequency constraints, and shading indicates the number of required
multiplications per unit time. The Parks-McClellan algorithm operates at points along the
dotted line, and the presented techniques search for feasible designs below it.
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Chapter 4

Efficient structures

Flow graphs for rate-conversion systems often make use of compressor and expander blocks,

and the noble identities can be used to exchange expanders and compressors with certain

LTI branch functions. A number of structures have been proposed to take advantage of this

fact, a broad class of which relate to the well-known polyphase structure.[3][6][10][15] An-

other property commonly encountered in FIR-based rate conversion systems is coefficient

redundancy, where the impulse response of the filter takes on the same value for multi-

ple time indices. Because coefficient redundancy necessarily occurs in ETSF filters, the

issue can be exploited for a large class of desirable rate-conversion systems. Efficiencies

which take advantage of coefficient redundancy can, in a general way, be combined with

polyphase techniques to yield further improvements, and the structures proposed in this

chapter address this. Drawing on the Generalized Transposition Theorem presented in [4]

and discussed in Chapter 2, the techniques in this chapter will be applied to the down-

sampling case with the understanding that the Generalized Transposition Theorem can be

invoked to find a complementary upsampling system which is optimally efficient in the same

sense.

4.1 Exploiting coefficient redundancy

In this section the implementation of FIR filters with redundant coefficients is explored. A

class of structures which implements such filters using fewer multipliers than corresponding

direct-form implementations is presented, and the result is illustrated within the context of

linear-phase FIR filters.

33



4.1.1 General technique for FIR filters

For the implementation of FIR filters with redundant coefficients, efficiencies can be intro-

duced in a straightforward way. Specifically, when a filter with impulse response h[n] and

z-transform H(z) is written in the form

H(z) =

U−1
∑

k=0

ck

nmax
∑

p=nmin

dk,pz
−p, dk,p ∈ {0, 1}, (4.1)

where

h[n] = 0 ∀n > nmax, n < nmin,

and where the coefficients ck represent the U unique values taken on by the filter’s impulse

response, U multiplications are required per input sample to the filter. In particular, imple-

menting the system using the structure in Figure 4-1 takes advantage of this representation.

Writing H(z) as

H(z) =

nmax
∑

p=nmin

bpz
−p

and matching polynomial terms with those in Equation 4.1 gives

bp =

U−1
∑

k=0

ckdk,p. (4.2)

Equation 4.2 therefore relates the structure in Figure 4-1 to the feed-forward coefficients

for the FIR filter it implements.

4.1.2 Application to linear-phase FIR filters

Since ETSF filters have impulse responses which are symmetric about some integer or half-

integer point n0, 2n0 ∈ Z, their coefficients bp can be represented as

bn0−` = bn0+`, 2n0, n0 + ` ∈ Z,

which from Equation 4.2 gives

bn0−` =
U−1
∑

k=0

ckdk,n0−` =
U−1
∑

k=0

ckdk,n0+`, 2n0, n0 + ` ∈ Z, dk,p ∈ {0, 1}. (4.3)
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Figure 4-1: General structure for exploiting coefficient redundancy. Coefficients dk,p with
value dk,p = 1 represent connections at corresponding nodes.

Choosing the multiplier coefficients ck as

ck =







bn0+k, n0 ∈ Z

bn0+k+ 1

2

, n0 + 1
2 ∈ Z

, k ≥ 0

implies from Equation 4.3 that

bn0−` =























U−1
∑

k=0

bn0+kdk,n0−` =

U−1
∑

k=0

bn0+kdk,n0+`, n0 ∈ Z

U−1
∑

k=0

bn0+k+ 1

2

dk,n0−` =
U−1
∑

k=0

bn0+k+ 1

2

dk,n0+`, n0 + 1
2 ∈ Z

, n0+` ∈ Z, dk,p ∈ {0, 1}

35



which is satisfied by

dk,p =







δ[k − |n0 − p|], n0 ∈ Z

δ[k + 1
2 − |n0 − p|], n0 + 1

2 ∈ Z

. (4.4)

This choice of dk,p gives the well-known folded structure discussed in [10]. It is illustrated

for a typical n0 + 1
2 ∈ Z case in Figure 4-2.
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Figure 4-2: Folded implementation of an ETSF filter.

4.2 Polyphase implementation

Polyphase structures are widely used in rate-conversion systems to efficiently implement

FIR filter designs. With this motivation, a polyphase implementation of the structure in

Figure 4-1 is presented. Rate conversion systems consisting of an anti-aliasing filter H(ejω)

followed by a compressor-by-M are considered, and this arrangement is depicted in Figure

4-3. It is shown that for any system represented in this form, where H(z) is a length-L FIRPSfrag replacements

x[n] y[n]
w[n]

H(ejω) M

Figure 4-3: General downsampling arrangement for which efficiencies are discussed.

filter whose impulse response takes on U unique values, the polyphase implementation of

Figure 4-1 provides an implementation requiring U multiplications per output sample and

employing M compressor blocks. Because all multiplications in this structure are performed

at the rate of the output signal y[n], the system can be prepended by an expander-by-L to
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implement a generalized rational rate converter. If the input rate of this resulting system

is slower than that of the output rate, the generalized transpose of the system in Figure

4-3 can instead be implemented first and then cascaded with an appropriate compressor

block. Using these manipulations, the polyphase implementation of Figure 4-1 can be used

to realize generalized rational rate converters where all of the multiplications are performed

at the slowest rate in the system, whether this rate occurs at the system input or output.

Equation 4.1 implies the following input-output relationship between the input x[n] and

the output w[n] for the system in Figure 4-1:

w[n] =

nmax
∑

p=nmin

x[n − p]

U−1
∑

k=0

ckdk,p, dk,p ∈ {0, 1}. (4.5)

Compressing w[n] by a factor of M results in a new signal y[n] which is related to w[n] by

y[n] = w[Mn]. Applying this relationship to Equation 4.5 gives

y[n] =

nmax
∑

p=nmin

x[Mn − p]

U−1
∑

k=0

ckdk,p, dk,p ∈ {0, 1}. (4.6)

By decomposing x[n] into its polyphase components

xp[n] = x[Mn − p], (4.7)

Equation 4.6 becomes

y[n] =

nmax
∑

p=nmin

xp[n]

U−1
∑

k=0

ckdk,p, dk,p ∈ {0, 1}. (4.8)

The relationship between x[n] and y[n] is therefore represented as a cascade of a single-

input, multiple-output system (Equation 4.7) with a multiple-input, single-output system

(Equation 4.8). The relationship between x[n] and xp[n] in Equation 4.7 can be expressed

in terms of the following equations:

vp[n] = x[n − p] (4.9)

xp[n] = vp[Mn]. (4.10)

This separates one branch of the single-input, multiple-output system into a cascade of an
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LTI delay-by-p with a compressor-by-M . The transfer function of Equation 4.9 is therefore

Vp(z)

X(z)
= z−p ,

and invoking the identity

p = Mbp/Mc + ((p))M ∀p ∈ Z,M ∈ Z
+

gives
Vp(z)

X(z)
= z−p = z−{Mbp/Mc+((p))M } = z−Mbp/Mcz−((p))M . (4.11)

The relationship between x[n] and vp[n] in Equation 4.9 can, in turn, be expressed using

the following two equations:

up[n] = x[n − ((p))M ] (4.12)

vp[n] = up[n − Mbp/Mc]. (4.13)

The relationship between x[n] and a given xp[n] is therefore described by Equations 4.10,

4.12, and 4.13, which represent a cascade of three single-input, single-output systems.

Because the system from up[n] to xp[n] (Equations 4.13 and 4.10) consists of an LTI

block whose z-transform contains only integer powers of zM , followed by a compressor-by-

M , the downsampling noble identity can be applied. This manipulation results in a new

set of equations which equivalently describe the relation between up[n] and xp[n]:

rp[n] = up[Mn] (4.14)

xp[n] = rp[n − bp/Mc]. (4.15)

The system from x[n] to xp[n] can now be implemented as a cascade of Equations 4.12,

4.14, and 4.15. As a final manipulation, the order of summation in Equation 4.8 is changed,

resulting in

y[n] =

U−1
∑

k=0

ck

nmax
∑

p=nmin

xp[n]dk,p, dk,p ∈ {0, 1}. (4.16)

Equation 4.16 demonstrates the explicit use of U multipliers. Note that there are,

however, at most M unique systems from x[n] to rp[n] (described by a cascade of Equations
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4.12 and 4.14), since Equation 4.12 gives at most M unique results up[n] for all p ∈ Z and

Equation 4.14 has a dependence on p which is only involved in choosing the appropriate

input up[n]. Because Equation 4.14 implements compression by a factor of M and there are

at most M unique signals rp[n], at most M compressors are required when implementing the

overall system from x[n] to y[n] using Equations 4.12, 4.14, 4.15, and 4.16, and U multipliers

are required. Figures 4-4 and 4-5 depict an implementation which uses M compressors and

U multipliers, all of which operate at the output rate.

4.3 Comparison of results

A comparison between computational requirements for different implementations of the sys-

tem in Figure 4-3 is summarized in Table 4.1. H(z) in this system represents a length-L

filter whose impulse response takes on U unique values. The number of required multipli-

cations per output sample are compared, in addition to the number of required compressor

blocks.

Structure
Multiplications per

output sample
Compressors

Direct-form L · M 1
Polyphase L M
Presented U M

Table 4.1: Comparison of computational requirements for different implementations of a
downsampler-by-M based around a length-L FIR filter with U ≤ L unique coefficients bp.

A similar comparison is illustrated in Table 4.2 for the case where H(z) is a length-L

ETSF filter and h[n0 − `] = h[n0 + `] ∀(n0 + 1/2), (n0 + `) ∈ Z (h[n] is symmetric about

a half-integer point n0). This case is discussed in Subsection 4.1.2, where the number of

unique values taken on by h[n] is at most U = L/2.

Another set of FIR filters which take advantage of the class of structures discussed in

this chapter have impulse response samples with known value h[n] = 0 for certain values

of n in the range nmin ≤ n ≤ nmax. Chapter 5 considers design algorithms for generating

filters with this property.
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Structure
Multiplications per

output sample
Compressors

Direct form L · M 1
Folded delay line L · M/2 1

Polyphase L M
Presented L/2† M

Table 4.2: Comparison of computational requirements for different implementations of a
downsampler-by-M based around a length-L linear-phase FIR filter. †This assumes U =
L/2. It is also possible, however, that U < L/2. In this case, the computational cost of the
presented structure is further reduced.
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Chapter 5

Design of efficient filters

In this chapter the problem of designing filters for efficient rate conversion systems is in-

vestigated. The filters discussed in this chapter will be restricted to the widely-applicable

ETSF class of designs. In particular, special attention will be paid to filters which lend

themselves to efficient implementations when using the structures presented in Chapter 4.

It was demonstrated in Chapter 3 that the Parks-McClellan algorithm is not, in general,

capable of generating filters with minimum computational cost when implemented using

these structures. Alternative design methods will therefore be investigated. Since many of

the techniques will be centrally formulated in terms of linear programs, discussions of the

applicability of linear programming to filter design will be included throughout.

5.1 Design constraints and error metrics

With the understanding that the presented arguments extend easily to the general ETSF

case, the discussion focuses on methods for designing ETSF filters whose point of symmetry

is n = 0. Specifically, impulse responses of the form

h[n] = b0δ[n] +
K
∑

k=1

bk (δ[n − k] + δ[n + k]) , b0, . . . , bK ∈ R (5.1)

with associated DTFT

H(ejω) = b0 +

K
∑

n=1

2bn cos (ωn) , b0, . . . , bK ∈ R (5.2)
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are considered. Note that from this definition, the length of the filter is L = 2K + 1, and

the filter necessarily has a real DTFT.

Within the scope of Equation 5.1, the filter design process can be generally formulated

as finding the design parameters K, b0, . . . , bK which satisfy

min
K,b0,...,bK

f(K, b0, . . . , bK) s.t. h[n] ∈ C, K ∈ Z
+ (5.3)

where C denotes some set of feasible impulse responses and f(K, b0, . . . , bK) is an optimiza-

tion metric over the design parameters. The design problems that will be addressed are

taken from Table 5.1, which partitions the respective sets of feasible designs C and optimiza-

tion metrics f that will be considered. In all cases, the output of the optimization is h[n], and

Equation 5.1 relates h[n] to the design parameters. The ideal desired response is denoted

hd[n], and the frequency error of the designed filter is defined as E(ejω) ≡ H(ejω)−Hd(e
jω).

W (ω) is a weighting function which pre-emphasizes the error so that it is minimized to a

greater extent for larger values of W (ω). Nz is the set of time locations on the interval [0,K]

where the impulse response h[n] is constrained to be zero. Note that since the discussion is

restricted to zero-phase filters, n ∈ Nz ⇒ bn = 0 ⇔ h[n] = 0 ⇔ h[−n] = 0. Prior work is

referenced for problems which are related to, but do not constitute, the main focus of the

chapter.

min ⇓ s.t. ⇒ K fixed
bn = 0 ∀n ∈ Nz

K fixed

max
ω∈F

∣

∣W (ω)E(ejω)
∣

∣ ≤ δ

K fixed
∫ π

−π

∣

∣E(ejω)
∣

∣

2
dω [10] [10] [1],[2]

max
ω∈F

∣

∣W (ω)E(ejω)
∣

∣ (5.2.1) (5.2.2) (5.2.1)

||h[n]||1 T T (5.2.3)
||h[n]||0 T T (5.2.4)

Table 5.1: Optimization metrics and feasibility constraints for different filter design prob-
lems. Designs marked (k) are addressed in Subsection k, those denoted [j] are discussed
in reference j, and those marked T represent optimization problems which have the trivial
solution h[n] = 0.

The number of unique nonzero sample values Û taken on by an ETSF impulse response

h[n] is bounded as

Û ≤

⌈

||h[n]||0
2

⌉

.
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Making the fairly general assumption that all nonzero values of h[n] for 0 ≤ n ≤ K are

unique,

Û =

⌈

||h[n]||0
2

⌉

. (5.4)

Minimizing ||h[n]||0 therefore corresponds to minimizing the number of multipliers required

by the structures in Chapter 4 when all nonzero values of h[n] for 0 ≤ n ≤ K are unique.

While it is possible to further reduce computational cost by finding filters with recurring

nonzero values, formulating the problem in terms of finding filters with small ||h[n]||0 al-

lows the use of a number of results from sparse array design[8] and sparse approximation

theory.[7][13]

Although only one non-trivial entry from Table 5.1 explicitly minimizes ||h[n]||0, the

different design constraints on h[n] impose relevant bounds on ||h[n]||0 for each problem

considered. Upper limits on ||h[n]||0 are listed in Table 5.1 for each design constraint.

Constraint: K fixed
bn = 0 ∀n ∈ Nz

K fixed

max
ω∈F

∣

∣W (ω)E(ejω)
∣

∣ ≤ δ

K fixed

Norm limit: ||h[n]||0 ≤ 2K + 1 ||h[n]||0 ≤ 2K + 1 − |Nz| ||h[n]||0 ≤ 2K + 1

Table 5.2: Bounds on ||h[n]||0 for each design constraint.

In an attempt to interrelate and summarize the non-trivial problems from Table 5.1, entries

are compared in terms of their optimization metrics and design constraints.

5.1.1 Minimum squared-error designs (row 1)

The squared-error optimization metric has the convenient property of being representable

in terms of the induced inner product on the Hilbert space l2, so a rich body of theory can

be invoked to find analytic solutions for many of the corresponding design problems. The

first entry in row 1 represents the optimization problem

min
b0,...,bK

K
∑

k=−K

(h[k] − hd[k])2, (5.5)

with solution

h[n] =







0, |n| > K

hd[n], otherwise
, (5.6)
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and the second entry in row 1 corresponds to

min
b0,...,bK

K
∑

k=−K
k/∈Nz

(h[k] − hd[k])2, (5.7)

with solution

h[n] =







0, |n| > K or |n| ∈ Nz

hd[n], otherwise
. (5.8)

The third entry, which represents the class of problems where the total energy in E(ejω)

is minimized, subject to constraints on the peak value of
∣

∣W (ω)E(ejω)
∣

∣, does not in gen-

eral have a closed-form solution. It does, however, draw a connection between minimum

squared-error designs and notions of peak error. This entry also points to the common

practice of specifying filter designs in terms of inequality constraints on H(ejω), which for

many minimum squared-error filters effectively mitigates the impact of Gibbs’ phenomenon

on E(ejω). For the remainder of the non-trivial problems in Table 5.1, similar notions

of specifying constraints on, and often minimizing, the peak value of
∣

∣W (ω)E(ejω)
∣

∣ will

dominate problem formulations as discussion of the total energy in E(ejω) is dropped.

5.1.2 Minimum peak error designs (row 2)

The first entry in row 2 represents the class of optimization problems which is addressed by

the well-known Parks-McClellan algorithm. Within the context of this chapter, however, a

close approximation to the problem will be cast into the framework of linear programming.

This formulation will also be useful in addressing closely-related subsequent problems.

The second entry in row 2 will be the first such problem to draw on this framework. For

designs with equivalent ||h[n]||0, the second entry can, but does not necessarily, give filters

with smaller peak frequency error than the first entry. This property is tied to the fact that

for this design problem, the alternation theorem (on which the Parks-McClellan algorithm

is based) does not apply. This formulation also characterizes many related engineering

problems, including min-max filter design for architectures where multipliers are known

to be broken with output value forced to zero, as well as beamformer design for array

processing applications with fixed but nonuniform transducer locations.

Because maxω∈F |W (ω)E(ejω)| is minimized in this row and because the respective sets

of feasible responses h[n] for the first and third entries are related by
{

h[n]
∣

∣ K fixed
}

46



⊇
{

h[n]
∣

∣ maxω∈F |W (ω)E(ejω)| ≤ δ, K fixed
}

, the third entry is discussed in the same

section as the first entry. This is specifically done because an optimal solution to the first

entry is guaranteed to be the corresponding optimal solution to the third entry, as long as

a solution to the third entry exists. The computational methods reviewed in Section 5.2.1

can therefore be used to solve this design problem.

5.1.3 Constrained peak error designs (column 3)

Many design specifications are, in practice, formulated in terms of the peak allowable error

as maxω∈F |W (ω)E(ejω)| ≤ δ. Filter design techniques have therefore been developed for a

number of such problems over an array of optimality criteria. The minimum error energy and

minimum peak error problems (corresponding to column three’s first two entries) received

attention in the previous two subsections.

Since minimizing ||h[n]||0 also minimizes the number of required multipliers for the class

of design problems presented, it would be convenient if there were a straightforward way to

obtain a minimal zero-norm filter, given a set of design specifications. This problem unfor-

tunately relies in general on a combinatoric search whose complexity grows exponentially

with K. The third entry in column three therefore represents a proposed relaxation of this

optimization metric which is often used for sparse approximation and can be formulated

in terms of a single linear program.[7][13] While minimizing the one-norm of h[n] does not

explicitly return a filter with the minimum number of nonzero coefficients, it does tend to

result in filters which have very small coefficients, and zeroing these small coefficients often

results in filters which very nearly meet the original design requirements.

The fourth entry explicitly designs filters with minimal zero-norm, subject to a set of

frequency-domain specifications. While computationally expensive, the combinatoric search

involved in the design process can be expedited by taking advantage of the hierarchical

nature of the underlying search tree. The economy of using a true minimal zero-norm

design procedure is still questionable, however, given the often marginal reduction in error

over near-optimal approaches.
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5.2 Minimum-multiply designs

The following filter specifications characterize the design problems which will be considered

for the remainder of the chapter. These specifications were chosen to demonstrate the

behavior of each design technique using filters of relatively short length.

• Filter type: lowpass

• Passband edge: 0.2π (Hd(e
jω) = 1, ω ∈ [0, 0.2π])

• Stopband edge: 0.25π (Hd(e
jω) = 0, ω ∈ [0.25π, π])

• Error in passband:
∣

∣E(ejω)
∣

∣ ≤ 0.01 ∀ω ∈ [0, 0.2π]

• Error in stopband:
∣

∣E(ejω)
∣

∣ ≤ 0.1 ∀ω ∈ [0.25π, π]

The specifications bounding passband and stopband error can be equivalently formulated

as

max
ω∈F

|W (ω)E(ejω)| ≤ 0.1

where

F = [0, 0.2π] ∪ [0.25π, π]

and

W (ω) =







10, 0 ≤ ω ≤ 0.2π

1, 0.25π ≤ ω ≤ π
.

Entries from Table 5.1 are compared for this set of specifications, with the goal of illustrating

the sense in which each design technique minimizes the number of required multipliers.

5.2.1 Filters with constrained length and minimum peak frequency error

The Parks-McClellan algorithm obtains solutions to the class of optimization problems

minimize max
ω∈F

∣

∣W (ω)E(ejω)
∣

∣ subject to K fixed (5.9)

The following related problem differs from 5.9 only in that its set of feasible impulse re-

sponses is further restricted by an additional constraint:

minimize max
ω∈F

∣

∣W (ω)E(ejω)
∣

∣ subject to max
ω∈F

∣

∣W (ω)E(ejω)
∣

∣ ≤ δ, K fixed (5.10)
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Denoting the set of feasible impulse responses for 5.9 as

C5.9 =
{

h[n]
∣

∣ K fixed
}

(5.11)

and those for 5.10 as

C5.10 =

{

h[n]
∣

∣ max
ω∈F

|W (ω)E(ejω)| ≤ δ, K fixed

}

= C5.9∩

{

h[n]
∣

∣ max
ω∈F

|W (ω)E(ejω)| ≤ δ

}

,

(5.12)

it becomes clear that C5.10 ⊆ C5.9. This implies that if no solution exists to 5.9, no solution

exists to 5.10. An optimal solution to 5.9 will furthermore be an optimal solution to 5.10

as long as a solution to 5.10 exists, and any optimal (and feasible) solution to 5.10 will also

be an optimal (and feasible) solution to 5.9. A recap of these implications follows.

(a) No solution to 5.9 exists =⇒ no solution to 5.10 exists

(b) An optimal solution h[n] to 5.9 satisfies maxω∈F |W (ω)E(ejω)| > δ =⇒ no solution

to 5.10 exists

(c) An optimal solution h[n] to 5.9 satisfies maxω∈F |W (ω)E(ejω)| ≤ δ =⇒ h[n] is an

optimal solution to 5.10

A solution to 5.10 can therefore be found by solving 5.9 and evaluating (a)-(c).

While the Parks-McClellan algorithm prescribes an efficient method for solving 5.9, the

focus will be on a close linear-programming approximation which has been used by Steiglitz,

Parks and Kaiser[12] and which will be built upon for the remainder of the chapter. In
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standard linear program form, this approximation is described by

minimize δ

subject to δW (ω0) − b0 −

K
∑

n=1

2bn cos(ω0n) ≥− Hd(e
jω0)

δW (ω1) − b0 −
K
∑

n=1

2bn cos(ω1n) ≥− Hd(e
jω1)

...

δW (ωp) − b0 −

K
∑

n=1

2bn cos(ωpn) ≥− Hd(e
jωp)

δW (ω0) + b0 +

K
∑

n=1

2bn cos(ω0n) ≥ Hd(e
jω0)

δW (ω1) + b0 +
K
∑

n=1

2bn cos(ω1n) ≥ Hd(e
jω1)

...

δW (ωp) + b0 +

K
∑

n=1

2bn cos(ωpn) ≥ Hd(e
jωp)

δ ≥ 0

Here, ω0, . . . , ωp ∈ F represent a dense grid of frequency samples over which the metric

maxω∈{ω0,...,ωp} |W (ω)E(ejω)| is minimized.

The MATLAB linear program solver linprog was used to solve this optimization prob-

lem. With the goal of finding the minimum-multiply filter within this framework, the design

constraint K was varied and the program was repeatedly run until the minimum-K filter

satisfying the design constraints was found. A convenient property of designing filters ac-

cording to this problem statement is that the minimum K which falls below some maximum

value Kmax ≥ K can be found by solving approximately log2 Kmax linear programs.[12] For

the set of design specifications assumed throughout this section, acceptable filters are ob-

tainable when K ≥ 26. The magnitude response and impulse response of the designed filter

for K = 26 are respectively depicted in Figures 5-1 and 5-2.

The number of required multipliers when implementing this design using a direct-form

structure is 2 ·26+1 = 53, and the number of required multipliers when using the structure

in Figure 4-1 is 26 + 1 = 27.
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Figure 5-1: Magnitude response of filter which minimizes maxω∈F

∣

∣W (ω)E(ejω)
∣

∣ subject to
K = 26. Dotted lines represent design specifications.

5.2.2 Filters with constrained coefficient values and minimum peak fre-

quency error

Using the fact that any multiplier with coefficient value zero can be removed (and therefore

costs nothing, according to the assumed efficiency metric), and noting that the impulse

response in Figure 5-2 takes on several near-zero values, the question arises as to whether

it is possible to set coefficients to zero and obtain a filter which still meets the design

specifications. The alternation theorem, which provides a necessary and sufficient condition

for having a unique, optimal design according to 5.9, does not preclude this possibility.

Paraphrasing from [10], the alternation theorem states that given a filter h[n] in the form of

Equation 5.1, h[n] is the unique filter which minimizes maxω∈F

∣

∣W (ω)E(ejω)
∣

∣ if and only if

W (ω)E(ejω) exhibits at least (K +2) alternations over the set ω ∈ F . It does not, however,

imply that there exist no other filters which, for fixed K, are feasible with respect to a fixed

set of inequalities in frequency. In Figure 5-2, for instance, h[13] and h[−13] are very close

to zero. As it turns out, explicitly setting to zero h[13] and h[−13] results in a filter which

does not have minimum maxω∈F

∣

∣W (ω)E(ejω)
∣

∣ but which does still meet the stated design

specifications.

Additionally, the alternation theorem makes no comparison between a solution h[n] to
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Figure 5-2: Impulse response of filter which minimizes maxω∈F

∣

∣W (ω)E(ejω)
∣

∣ subject to
K = 26.

5.9 and some other filter ĥ[n] which satisfies ||ĥ[n]||0 ≤ ||h[n]||0 but which in the form of

Equation 5.1 requires K̂ > K. This point is investigated by considering the case where a

minimum peak error filter h[n] is designed with fixed K and where certain values of h[n]

are constrained to be zero. The problem is more compactly stated as follows:

minimize max
ω∈F

∣

∣W (ω)E(ejω)
∣

∣ subject to bn = 0 ∀n ∈ Nz, K fixed, (5.13)

where Nz ⊆ [0,K]. The associated set of feasible impulse responses is described by

C5.13 =
{

h[n]
∣

∣ bn = 0 ∀n ∈ Nz, K fixed
}

. (5.14)

A close linear program approximation to this optimization problem which builds on the
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formulation from the previous subsection is described by

minimize δ

subject to δW (ω0) − b0 −

K
∑

n=1

2bn cos(ω0n) ≥− Hd(e
jω0)

δW (ω1) − b0 −
K
∑

n=1

2bn cos(ω1n) ≥− Hd(e
jω1)

...

δW (ωp) − b0 −

K
∑

n=1

2bn cos(ωpn) ≥− Hd(e
jωp)

δW (ω0) + b0 +

K
∑

n=1

2bn cos(ω0n) ≥ Hd(e
jω0)

δW (ω1) + b0 +
K
∑

n=1

2bn cos(ω1n) ≥ Hd(e
jω1)

...

δW (ωp) + b0 +

K
∑

n=1

2bn cos(ωpn) ≥ Hd(e
jωp)

δ ≥ 0

bn = 0 ∀n ∈ Nz

Denote K5.9 as the variable K from 5.9 and Equation 5.11, and K5.13 as the variable

K from 5.13 and Equation 5.14. Furthermore, denote δ5.9 = maxω∈F

∣

∣W (ω)E(ejω)
∣

∣ for the

optimal solution to 5.9 and δ5.13 = maxω∈F

∣

∣W (ω)E(ejω)
∣

∣ for an optimal solution to 5.13.

If K5.13 = K5.9, C5.13 ⊆ C5.9, so δ5.13 ≥ δ5.9. In other words, 5.13 can give no smaller

maximum weighted error than 5.9 for the same fixed K.

For K5.13 > K5.9, however, it is not generally impossible that δ5.13 < δ5.9. The relation-

ship between δ5.13 and δ5.9 is therefore specifically governed for fixed K5.9, K5.13 (> K5.9),

W (ω), and Hd(e
jω) by choice of Nz. Furthermore, relating the zero-norm of a solution to

5.13, ||h5.13[n]||0, with that of a solution to 5.9, ||h5.9[n]||0, reveals little about how δ5.13

and δ5.9 generally compare. While this point may seem somewhat disparaging within the

context of minimum-multiply filter design, it does at least leave open the possibility of

finding filters from 5.13 which use fewer multipliers than designs from 5.9 and which have

δ5.13 < δ5.9. It is in fact possible to have any combination of ||h5.13[n]||0 < ||h5.9[n]||0 or
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||h5.13[n]||0 > ||h5.9[n]||0 with δ5.13 < δ5.9 or δ5.13 > δ5.9, for K5.13 > K5.9. Since the cases

where ||h5.13[n]||0 < ||h5.9[n]||0 with δ5.13 < δ5.9 and where ||h5.13[n]||0 > ||h5.9[n]||0 with

δ5.13 > δ5.9 are perhaps the most interesting, examples of these situations follow.

Consider first the favorable scenario where ||h5.13[n]||0 < ||h5.9[n]||0 and δ5.13 < δ5.9 for

K5.13 > K5.9. The solution to 5.9 for K5.9 = 26 was presented in the previous subsection and

is depicted in Figures 5-1 and 5-2. This design has δ5.9 = 0.088 with zero norm ||h5.9[n]||0 =

53. Solving 5.13 for Nz = {4, 9, 13, 17, 18, 22, 25, 26, 27, 29, 30, 31} and K5.13 = 32, however,

gives a design with δ5.13 = 0.075 < 0.088 and with ||h5.13||0 = 39 < 53, as illustrated in

Figures 5-3 and 5-4. This solution meets the posed set of design specifications.
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Figure 5-3: Magnitude response of filter which minimizes maxω∈F

∣

∣W (ω)E(ejω)
∣

∣ subject to
bn = 0 ∀n ∈ {4, 9, 13, 17, 18, 22, 25, 26, 27, 29, 30, 31}, K = 32. Dotted lines represent design
specifications.

Consider now the unfavorable scenario where ||h5.13[n]||0 > ||h5.9[n]||0 and δ5.13 > δ5.9

for K5.13 > K5.9. Solving 5.13 for Nz = {6, 22, 30} and K5.13 = 32 gives a design with

δ5.13 = 0.11 > 0.088 and with ||h5.13||0 = 59 > 53. This solution is shown in Figures 5-5

and 5-6 and does not meet the stated set of design specifications.

It is clear that this optimization problem is capable of producing filters with smaller peak

error and zero norm than the Parks-McClellan algorithm. It has also been demonstrated,

however, that this formulation can return filters with greater peak error and larger zero norm

than a comparable Parks-McClellan design. The next two subsections therefore investigate
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Figure 5-4: Impulse response of filter which minimizes maxω∈F

∣

∣W (ω)E(ejω)
∣

∣ subject to
bn = 0 ∀n ∈ {4, 9, 13, 17, 18, 22, 25, 26, 27, 29, 30, 31}, K = 32. Solid dots represent values
of h[n] which are constrained to be zero.

formulations which address this concern.

5.2.3 Filters with constrained peak frequency error and minimum ||h[n]||1

One way to obtain a filter with no greater zero norm than a corresponding Parks-McClellan

result is to explicitly find a minimum zero norm filter subject to a set of feasible designs

which is a superset of feasible Parks-McClellan results. This formulation is unfortunately

nonlinear in the cost metric, so it cannot be described in terms of a single linear program.

Because minimizing the one-norm of a function often yields results with small coefficients

bk, and because one-norm minimization can be cast as a single linear program, the following

optimization problem is considered:

minimize ||h[n]||1 subject to max
ω∈F

∣

∣W (ω)E(ejω)
∣

∣ ≤ δ, K fixed (5.15)

This formulation is often used in the area of sparse approximation as a relaxation of

minimizing ||h[n]||0,[7][13] and the corresponding close approximation can be cast in terms

of a linear program as
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Figure 5-5: Magnitude response of filter which minimizes maxω∈F

∣

∣W (ω)E(ejω)
∣

∣ subject to
bn = 0 ∀n ∈ {6, 22, 30}, K = 32. Dotted lines represent design specifications.

−30 −20 −10 0 10 20 30
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

PSfrag replacements

Time n

h
[n

]

Figure 5-6: Impulse response of filter which minimizes maxω∈F

∣

∣W (ω)E(ejω)
∣

∣ subject to
bn = 0 ∀n ∈ {6, 22, 30}, K = 32. Solid dots represent values of h[n] which are constrained
to be zero.
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minimize ε0 +

K
∑

n=1

2εn

subject to − b0 −

K
∑

n=1

2bn cos(ω0n) ≥− Hd(e
jω0) − δW (ω0)

...

− b0 −
K
∑

n=1

2bn cos(ωpn) ≥− Hd(e
jωp) − δW (ωp)

b0 +

K
∑

n=1

2bn cos(ω0n) ≥ Hd(e
jω0) − δW (ω0)

...

b0 +

K
∑

n=1

2bn cos(ωpn) ≥ Hd(e
jωp) − δW (ωp)

ε0 + b0 ≥ 0

...

εK + bK ≥ 0

ε0 − b0 ≥ 0

...

εK − bK ≥ 0

ε0 ≥ 0

...

εK ≥ 0

While solutions to 5.15 often have a number of small coefficients bk and therefore come

close to designs where many coefficients are set to zero, some method must be used after the

optimization to determine which multipliers will be explicitly removed. The technique used

here is simple thresholding; coefficients bk with magnitude |bk| < Γ are, for some fixed Γ, set

to zero. After this process, the resulting filter is no longer a minimal one-norm design, nor

is it generally a minimal zero-norm design, nor is it even guaranteed to meet the posed set

of design constraints. Because this approach is capable of designing filters which very nearly

satisfy the requirements, often with smaller zero-norms than comparable Parks-McClellan
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designs, the technique is presented as a valuable heuristic method.

As an example, consider the case where 5.15 is solved for K = 32 and threshold Γ =

0.002. The resultant filter, depicted in Figure 5-7, has zero-norm ||h[n]||0 = 41. This

filter nearly meets the stated specifications, but violates the stopband constraint by a small

amount, as illustrated in Figure 5-8. The impulse response of the final design is depicted

in Figure 5-9. While this filter does not strictly meet the set of design specifications, it is

an acceptable design with respect to a slightly-relaxed set of tolerances.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

PSfrag replacements

Normalized frequency ω/π (half cycles / sample)

∣ ∣

H
(e

jω
)∣ ∣

Figure 5-7: Magnitude response of filter designed by minimizing ||h[n]||1 subject to
maxω∈F

∣

∣W (ω)E(ejω)
∣

∣ ≤ δ, K = 32, followed by setting coefficients bk with |bk| < 0.002 to
zero. Dotted lines represent design specifications.

5.2.4 Filters with constrained peak frequency error and minimum ||h[n]||0

As was mentioned in the previous subsection, explicitly finding a minimal zero-norm filter

which meets the posed set of design constraints is equivalent to obtaining a minimum-

multiply filter under the assumption that multipliers with value zero can be removed. The

optimization is more formally stated as

minimize ||h[n]||0 subject to max
ω∈F

∣

∣W (ω)E(ejω)
∣

∣ ≤ δ, K fixed (5.16)
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Figure 5-8: Detail of stopband in Figure 5-7, illustrating that this filter violates the stopband
design constraint by a small amount.

While this problem cannot be solved in terms of a single linear program, an algorithm can

be prescribed in terms of multiple linear programs. Specifically, solving 5.13 2K+1 times,

where each time Nz is chosen from the set of all subsets of [0,K], and picking the overall

feasible solution with smallest zero-norm, results in a minimal zero norm design. While this

problem may be computationally tractable for very small K, setting K = 32, for instance,

requires over 4 billion iterations, and using 33 multipliers is already well within the limits of

many practical design budgets. Still, certain properties associated with this formulation are

worth noting. In particular, the following two points relate iterations of 5.13 for the same

K and can be used to arrive at a pruned search scheme for solving 5.16 more efficiently:

• Solution to 5.13 for Nz = A meets the posed design constraints ⇒ solutions to all

problems 5.13 for Nz ⊆ A meet the posed design constraints

• Solution to 5.13 for Nz = A violates the posed design constraints ⇒ solutions to all

problems 5.13 for Nz ⊇ A violate the posed design constraints

Since the topology of the pruned search tree depends largely on the particular choice of

design constraints, it is difficult in general to predict what kinds of gains in efficiency may

be expected. A solver which uses these techniques was implemented in MATLAB and run

on a PowerMac G5 for K = 32. The program was manually terminated after three weeks
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Figure 5-9: Impulse response of filter designed by minimizing ||h[n]||1 subject to
maxω∈F

∣

∣W (ω)E(ejω)
∣

∣ ≤ δ, K = 32, followed by setting coefficients bk with |bk| < 0.002 to
zero. Symbols × represent values of h[n] which were zeroed.

of runtime without arriving at an optimal solution, underscoring the relevance of 5.15 as a

relaxation of 5.16.

5.3 Comparison of results

In this section, the computational cost of the downsampler-by-4 in Figure 5-10 is evaluated

for the different filter designs and structures discussed in this thesis. Table 5.3 summa-
PSfrag replacements

x[n] y[n]
w[n]

H(ejω) 4

Figure 5-10: Downsampling system for comparing computational cost of filter designs.

rizes results from each design method. The variable C represents the number of required

multiplications per output sample. Contrast, in particular, the cost of implementing a

Parks-McClellan design (Figure 5-1) using a direct-form structure with that of implement-

ing the design in Figure 5-3 using the presented structure. Both systems meet the stated

design constraints, but the latter has significantly reduced computational cost.
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problem
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5-1
minmax

ω∈F

∣

∣W (ω)E(ejω)
∣

∣

s.t. K fixed
212 108 53 27

5-3

minmax
ω∈F

∣

∣W (ω)E(ejω)
∣

∣

s.t. bn = 0 ∀n ∈ Nz,
K fixed

260 132 65 21

5-7

min ||h[n]||1
s.t. max

ω∈F

∣

∣W (ω)E(ejω)
∣

∣ ≤ δ,

K fixed;
|bk| < 0.002 zeroed

260 132 65 21

Table 5.3: Required number of multiplications per output sample for different filter designs
and structures in a downsampler-by-4 configuration.
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