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Abstract—Oversampled A-to-D converters commonly rely on
sharp-cutoff, discrete-time filters that operate at fast input
sampling rates. Filter design techniques for such filters typically
use the length of the impulse response as an indicator of
computational cost, assuming that each filter tap requires a
multiplier.[5][6] This paper describes methods for designing zero-
phase filters with sparse impulse responses, i.e., with many zero-
valued coefficients, and presents rate-conversion structures for
efficiently implementing these designs. By combining polyphase
methods and delay-line folding, the structures presented require
only one multiplier for each unique value in the impulse response
of the filter.

I. INTRODUCTION
Techniques to reduce the computational cost of rate-

conversion systems have, broadly speaking, occurred on two
fronts. One such effort concentrates on improvements in flow
graph structures; key results include polyphase implementa-
tions and folded delay line structures with time-symmetric
impulse responses.[1][2][3][4][8] Another effort involves us-
ing filter design techniques, including the Parks-McClellan
algorithm and the METEOR toolkit, as methods for choosing
efficient filters from some set of permissible designs.[5][6] In
this paper, we consider the problem of designing zero-phase
filters for which the impulse response is sparse, i.e., where
||h[n]||0 is small, and propose structures that require fewer
nonzero multiplications per unit time than either polyphase
or folded implementations alone. The proposed techniques
are capable of designing filters with smaller maximum error
and greater sparsity than Parks-McClellan designs. While
this paper focuses on downsampling systems, equally-efficient
upsampling structures are obtained from these by invoking the
Generalized Transposition Theorem[2].

II. DESIGN OF SPARSE ZERO-PHASE FILTERS
Many rate-conversion systems employ filters with linear

phase; we focus on techniques for designing this class of
filters. In particular, our emphasis is on methods for designing
zero-phase filters with sparse impulse responses. Efficient
implementations of these designs are made by omitting mul-
tipliers which correspond to the zero-valued coefficients. We
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will therefore use the sparsity of a filter impulse response h[n]
as an indicator of its computational cost. Formally, the sparsity
will be stated in terms of ||h[n]||0, the number of time indices
at which the impulse response is nonzero.
We are concerned with designing FIR filters that have

symmetric impulse responses, i.e. h[n] of the form

h[n] = b0δ[n] +
K

∑

m=1

bm (δ[n − m] + δ[n + m]) ,

and consequently frequency responses H(ejω) that are real-
valued. Denoting the desired frequency response as Hd(ejω),
the error is

E(ejω) ≡ H(ejω) − Hd(e
jω).

We will also refer to an error-weighting function, denoted
W (ω).
The general problem of designing the most-sparse, zero-

phase, FIR filter that meets a given set of constraints in the
frequency domain is computationally difficult. We therefore
consider two relaxations of the problem.

A. Minimax-optimal filters with constrained coefficients

One approach to designing sparse filters is to perform an
optimization in which a specified subset Nx of coefficients
is explicitly constrained to have value zero. The formulation
of this problem is the same as that of the minimax-optimal
filter design problem, with an additional constraint for each
coefficient that is preset to zero:

minimize max
ω∈F

∣

∣W (ω)E(ejω)
∣

∣ subject to bn = 0 ∀n ∈ Nx.

(1)
Equation 1 can be formulated in terms of a linear program

and consequently has an efficient solution. In practice, this for-
mulation is approximate, since E(ejω) can only be evaluated
on a finite grid. However, the evaluation may be performed
over a reasonably-dense grid without incurring prohibitive
computational cost.
The optimization in Eq. 1 is typically capable of resulting

in filters with smaller maximum error and smaller ||h[n]||0
than a Parks-McClellan design with the same desired response,
for a particular choice of Nx. However, other choices of Nx

may yield filters with greater maximum error and greater



||h[n]||0 than comparable Parks-McClellan designs. In general,
the choice of Nx can have a significant impact on the error in
the resulting filter.

B. Minimum-multiply sparse filters

As an alternative to pre-specifying the set Nx we can
consider an algorithm to obtain the most-sparse filter, i.e. the
filter with the smallest ||h[n]||0, that meets a set of frequency-
domain constraints. However, this problem is computationally
difficult. We therefore consider a computationally-tractable
relaxation that is based upon minimizing ||h[n]||1. This op-
timization problem is formulated as

minimize ||h[n]||1 subject to max
ω∈F

∣

∣W (ω)E(ejω)
∣

∣ ≤ δ. (2)

W (ω) and δ specify the maximum permissible frequency
domain error.
Approximating ||h[n]||0 with ||h[n]||1 is a practice that has

been used in the fields of compressive sampling and convex
optimization.[7] In the context of filter design, minimizing
||h[n]||1 typically results in filters which have some coeffi-
cients that are small in value. The resulting designs are made
sparse by setting these small coefficients to zero. The overall
design algorithm is:
(1) Solve Eq. 2.
(2) Set h[n] = 0 for all n where |h[n]| < Γ.
While this process designs filters that may not, in general, meet
the original frequency domain specifications, this approach
empirically seems to lead to designs in which the constraints
are exceeded by an acceptably small amount.

III. EFFICIENT STRUCTURES

As is well-known, a folded delay line structure requires
half as many multiplications per unit time as a direct-form
implementation, since each multiplier computes the value of
the impulse response for two time indices. In the context
of rate-conversion systems, however, the canonical polyphase
structure is often a more efficient choice. In this section we
present a downsampling-by-M structure that incorporates both
folding and polyphase and thus is more efficient than either by
itself. A complementary upsampling structure may be obtained
by invoking the Generalized Transposition Theorem.[2]
The proposed structure requires M compressors and one

multiplier for each unique value taken on by the impulse
response of the filter. Each multiplier operates at the output
sampling rate of the system (the slower sampling rate) when
implemented synchronously.
We first consider a structure for a zero-phase, FIR filter that

utilizes one multiplier for each unique value taken on by its
impulse response h[n]. This structure will then be combined
with a polyphase structure to implement a downsampling
system.
Consider the z-transform H(z) of a zero-phase, FIR filter

expressed in terms of the set C of unique values ck ∈ C taken

on by its impulse response h[n]:

H(z) =
U−1
∑

k=0

ck

K
∑

p=0

dk,p (zp + z−p)

1 + δ[p]
, dk,p ∈ {0, 1}. (3)

Here, the dk,p select the time indices of h[n] to which the
value ck applies.
In Fig. 1 we illustrate a structure that implements Eq. 3. One

multiplier is required for each value ck, and U multipliers are
needed in total. Note that U ≤ (L + 1)/2, where L is the
length of the impulse response of the filter.

Fig. 1. Zero-phase, FIR structure requiring |C| multipliers. Interconnections
are made for dk,p that have value 1.

Cascading the structure in Fig. 1 with a compressor-by-
M as indicated in Fig. 2 forms an integer downsampling
system where all multipliers operate at the input sampling
rate. We next apply a polyphase rearrangement of Fig. 2
in which all multipliers instead operate at the output rate.
The structure is developed by first separating the filter into
a cascade of a single-input, multiple-output delay system and
a multiple-input, single-output multiplier system. Applying
the downsampling noble identity results in the polyphase
implementation.

Fig. 2. Downsampling system based on Fig. 1.

The system in Fig. 1 has an input-output relationship defined
by

w[n] =
K

∑

p=0

x[n − p] + x[n + p]

1 + δ[p]

U−1
∑

k=0

ckdk,p, (4)

where dk,p ∈ {0, 1}. Cascading a compressor-by-M with the
system such that y[n] = w[Mn] results in

y[n] =
K

∑

p=0

x[Mn − p] + x[Mn + p]

1 + δ[p]

U−1
∑

k=0

ckdk,p.



By separating x[n] into the polyphase components

xp[n] = x[Mn − p], (5)

we have

y[n] =
K

∑

p=0

xp[n] + x−p[n]

1 + δ[p]

U−1
∑

k=0

ckdk,p. (6)

The relationship between x[n] and y[n] is therefore represented
as a cascade of a single-input, multiple-output system (Eq.
5) with a multiple-input, single-output system (Eq. 6). Let us
express Eq. 5 as a cascade of a delay system and a compressor
system:

vp[n] = x[n − p] (7)
xp[n] = vp[Mn] (8)

Applying the downsampling noble identity to Eqns. 7 and 8
results in the following equations which relate x[n] and xp[n]:

u((p))M
[n] = x[n − ((p))M ] (9)

r((p))M
[n] = u((p))M

[Mn] (10)
xp[n] = r((p))M

[n − &p/M'] (11)

Finally, changing the order of summation in Eq. 6 gives us

y[n] =
U−1
∑

k=0

ck

K
∑

p=0

xp[n] + x−p[n]

1 + δ[p]
dk,p. (12)

The cascade of Eqns. 9-12, illustrated in Fig. 3, constitutes
our downsampling system. The resemblance of Eq. 6 to Eq.
4 is reflected in the similarity between the interconnection
structures in Figs. 1 and 3.

IV. RESULTS
To demonstrate the performance of the proposed structures

and filter design techniques, we consider the following set of
specifications for a 4 : 1 downsampling lowpass filter:

• Passband edge: 0.2π
• Stopband edge: 0.25π
• Error in passband: |E(ejω)| ≤ 0.01
• Error in stopband: |E(ejω)| ≤ 0.1

These specifications were chosen to compare designs using
filters of relatively low order.
The minimum-length Parks-McClellan filter that meets the

design constraints is illustrated in Fig. 4. The filter in Fig. 5
was designed using the technique in Subsection II-A with a
choice of Nx for which the specifications were met. This filter
has a smaller zero-norm than the Parks-McClellan design.
The filter in Fig. 6 was designed using the technique in

Subsection II-B, which does not require specification of Nx.
The filter has the same zero-norm as the design where Nx

is set (Fig. 5). While this filter does not strictly meet the
design specifications, it is an acceptable design with respect
to a slightly-relaxed set of tolerances.
In Table I we compare the computational cost of each

of these filters in our downsampler-by-4 configuration, im-
plemented using a folded structure, a canonical polyphase
structure, and the polyphase structure presented in Section III.
For all structures, we assume that multiplications by 0 are
not implemented. Computational cost is stated in terms of the
number of required multiplications per output sample of the
system.
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Fig. 3. Polyphase implementation of downsampling system in Fig. 2. M compressors and |C| multipliers are required. The folded delay lines can be
implemented in two layers: one for delay elements (gray) and another implementing advances (black).

Design technique Illustration of
designed filter

Cost,
folded structure

Cost, polyphase
structure

Cost, presented
structure

Parks-McClellan Figure 4 108 53 27
Constrained coefficients
(Subsection II-A) Figure 5 84 41 21

Minimize ||h[n]||1, zero small
coefficients (Subsection II-B) Figure 6 84 41 21

TABLE I
COMPUTATIONAL COST OF DOWNSAMPLER-BY-4, IN TERMS OF THE NUMBER OF REQUIRED MULTIPLICATIONS PER OUTPUT SAMPLE.
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Fig. 4. Magnitude response (a) and impulse response (b) of minimum-length Parks-McClellan filter that meets the design constraints. Dotted lines in (a)
represent design specifications. K = 26, ||h[n]||0 = 53.
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Fig. 5. Magnitude response (a) and impulse response (b) of filter where some coefficients are constrained to zero (Subsection II-A). This choice of zeroed
coefficients results in a filter that meets the design constraints. Dotted lines in (a) represent design specifications. Solid dots in (b) represent values of h[n]
that were constrained to have value zero. K = 32, ||h[n]||0 = 41.
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Fig. 6. Magnitude response (a) and impulse response (b) of filter where ||h[n]||1 is minimized, subject to the design constraints, and where coefficients
ck with |ck| < 0.002 are zeroed (Subsection II-B). Dotted lines in (a) represent design specifications. Symbols × in (b) represent values of h[n] that were
zeroed. K = 32, ||h[n]||0 = 41.


