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ABSTRACT

Traffic flow instabilities have many potential negative consequences,
including increased danger of collisions, higher fuel consumption,
faster of abrasion of roadways, and reduction of overall traffic
throughput. Instabilities occur even if modern forward-looking
adaptive cruise control systems are used. In this paper, we present
an architecture for controlling vehicle density that uses coordination
between adjacent vehicles to attain desired safe followingdistances,
without generating these types of instabilities in the process. The
presented architecture has several additional desirable properties,
including being robust to sensor failures and measurement inconsis-
tencies, as well as allowing for inhomogeneous vehicle dynamics.

Index Terms— Traffic flow instabilities, cooperative control,
conservation.

1. INTRODUCTION

We are all only too familiar with traffic flow instabilities, including
alternating stop-and-go driving conditions. A variety of simple mod-
els of traffic flow predict waves of density and speed moving along
roadways, e.g. [1–30], particularly at higher traffic density. As is dis-
cussed in [31], a primary root cause is drivers’ feedback control of
vehicles. Even with modern forward-looking adaptive cruise control
systems, the cascade of many such systems will tend to increasingly
amplify perturbations as they are passed down a chain of vehicles,
resulting in an overall instability.

This paper presents a signal-flow architecture for controlling the
distances between vehicles in a chain, and doing so in a way that
avoids the type of instabilities previously mentioned. Thearchitec-
ture also has several other attractive properties, including the ability
to incorporate an absolute maximum speed limit, the abilityto allow
for inhomogeneous safe following distances, and the ability to allow
for diverse vehicle dynamics. Potential system failures, e.g. sensor
inaccuracies and sensor failures, can often be handled without hav-
ing catastrophic results. It is in this sense that the presented architec-
ture is considered to be robust. [32] The architecture, which is based
upon localized measurements and communication between adjacent
vehicles, may be viewed as a cooperative control algorithm.[33] A
centralized control mechanism is not required.

2. GENERAL ARCHITECTURE

The general signal-flow architecture is depicted in Fig. 2(a), with
the variableN being used to denote the number of vehicles in the
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chain. It is formulated as a continuous-time system, with the time
index omitted from signals in this figure for clarity. We willuse a
moving reference frame, so that a chain of vehicles traveling at a
target velocity with respect to the road is moving at zero velocity
with respect to the reference frame.

Each gray region in Fig. 2(a) represents a vehicle in the chain
and encompasses the sensors, speed control dynamics, and signal
processing used in implementing the portion of the architecture that
resides in that vehicle. In an intermediate vehicle in the chain, a par-
ticular vehiclek operates by measuring its respective front-facing
and rear-facing inter-vehicle distancesdk(t) and dk+1(t), apply-
ing respective memoryless nonlinearitiesfk andgk to the measure-
ments, and performing the additions, subtractions and distributions
indicated in the figure. This includes transmitting signalsto adjacent
vehicles and receiving signals from adjacent vehicles, e.g. via a wire-
less link. In each vehicle, a command signalb3k−2(t) is sent to the
systemhk, which incorporates the vehicle speed control mechanism
in addition to the vehicle dynamics. Each functionhk may generally
be non-linear, time-varying and may contain memory, with the key
requirement being that it satisfies the following condition, expressed
as a relationship between the signalb3k−2(t) and the vehicle veloc-
ity denotedvk(t) = da3k−2(t)/dt:

sign(b3k−2(t)) = sign(vk(t)) . (1)

In this sense, the attractive properties of the presented signal-flow
architecture pertain to a vehicle chain where the dynamics of each
individual vehicle may belong to a broad class.

An example of a functionhk that satisfies Eq. 1 is a continuous-
time integrator, realized as a cruise control mechanism that instan-
taneously sets the vehicle velocity, measured within the moving ref-
erence frame, to the value ofb3k−2(t). The system may also incor-
porate a mechanism to limit the maximum allowable velocity.De-
scribed in this way, the example system requires the abilityto instan-
taneously change velocity and therefore is impossible to realize in a
physical vehicle in practice. However we emphasize that thecondi-
tion in Eq. 1, which is a condition on signals, can be satisfied, e.g. if
the input signalsb3k−2 are sufficiently smooth and vary sufficiently
slowly with respect to the response time of the systemhk.

Fig. 2(b-c) illustrates some example alternative realizations of
systems within the presented architecture, obtained by setting cer-
tain of the memoryless nonlinearitiesfk and gk to zero. As will
be discussed in Subsection 3.2, all systems within the architecture,
including those in Fig. 2(b-c), will exhibit desirable stability proper-
ties. The systems in Fig. 2(b-c) therefore serve to illustrate one sense
in which the architecture is robust. In particular, if loss of a sensor is
detected, the associated memoryless nonlinearity can be set to zero,
resulting not in a catastrophic situation but rather in another realiza-
tion of a system within the presented architecture.



3. CONSERVATION AND VARIATIONAL PRINCIPLES

The key arguments underlying the stability, robustness andtransient
behavior of the presented architecture are formulated using the gen-
eral approach discussed in [34]. Broadly speaking, the arguments
in [34] are based on the idea that when a signal processing algorithm
exhibits a conservation principle resembling the form of power con-
servation in physical systems, e.g. in electrical networks, the algo-
rithm will also typically exhibit many of the desirable properties of
those systems, e.g. the many results in [35]. A critical point with the
line of reasoning in [34] is that a reference physical systemis not re-
quired in relating the structure of the algorithm to conservation and
the associated desirable properties. The identification and synthesis
of conservation principles are instead often a matter of appropriately
organizing algorithm variables so that the equations describing con-
servation naturally emerge, independent of whether the equations
describe a particular physical system of interest.

The key property that we derive from this perspective is thata
system constructed according to the presented architecture will tend
toward a minimum point of an overall potential function related to
inter-vehicle distance. This behavior is reminiscent of the principle
of minimum heat, and more generally the so-called principles of de-
creasing content and co-content, in electrical networks. [36–38] As
the property relates changes in individual vehicles to variations in an
overall potential function, it provides a method for analyzing the way
that a specific vehicle affects other vehicles in the system.In partic-
ular, the variational perspective facilitates the analysis of the dynam-
ics of the overall system in recovering from perturbations resulting
from, e.g., changes in the desired inter-vehicle distances, changes in
the desired speeds, unexpected braking, or temporary system mal-
functions.

3.1. Conservation principle

Following the general approach in [34], we proceed by identifying
an organization of the variables in the system in Fig. 2(a) that results
in a pair of orthogonal vector spaces. Referring to this figure, the
claims in particular are that:

(C1) The vector of variablesak(t) lies, for all time, in a vector
subspace ofR3N−2 denotedA,

(C2) The vector of variablesbk(t) lies, for all time, in a vector
subspace ofR3N−2 denotedB, and

(C3) The vector subspacesA andB are orthogonal.

Denoting the vector of variablesak(t) as

a(t) = [a1(t), . . . , a3N−2(t)]
T (2)

and the vector of variablesbk(t) as

b(t) = [b1(t), . . . , b3N−2(t)]
T , (3)

(C1)-(C3) can be written formally as

a(t) ∈ A ⊆ R
3N−2, ∀t (4)

b(t) ∈ B ⊆ R
3N−2, ∀t (5)

〈a, b〉 = 0, ∀ a∈ A, b ∈ B. (6)

In Eq. 6,〈a, b〉 is used to denote the standard inner product on the
corresponding real vector space of column vectors.

Demonstrating that Eqns. 4-6 hold is facilitated by rearranging
the system in Fig. 2(a) so that it takes a form where the linear, mem-
oryless interconnecting structure is represented using a signal-flow

graph, as depicted in Fig. 3. Following the convention in [39], sig-
nals corresponding to multiple incident branches directedtoward a
node are summed. Referring to Fig. 3, it is straightforward to verify
the validity of Eq. 4 by noting that for all time, the variables ak(t)
are related via the memoryless, linear signal-flow graph that is de-
picted in the top portion of that figure, and consequently a vector
composed of these variables lies in a vector subspaceA ⊆ R

3N−2.
Similarly, Eq. 5 is verified by observing that the variablesbk(t) are
related via the memoryless, linear signal-flow graph depicted in the
bottom portion of Fig. 3, and consequently a vector composedof
these variables lies in a vector subspaceB ⊆ R

3N−2.
The key observation used in verifying the validity of Eq. 6 is

that the memoryless, linear signal-flow graph interconnecting the
variablesbk(t) in the bottom portion of Fig. 3 is the negative trans-
pose of the memoryless, linear signal-flow graph interconnecting the
variablesak(t) in the top portion of that figure. Still referring to this
figure, we denote the vector of input variables to the top interconnec-
tion; the vector of output variables from the bottom interconnection;
the vector of input variables to the bottom interconnection; and the
vector of output variables from the bottom interconnectionrespec-
tively as

ca = [a1, a4, a7, . . . , a3N−5, a3N−2]
T , (7)

da = [a2, a3, a5, a6, . . . , a3N−4, a3N−3]
T , (8)

cb = [b2, b3, b5, b6, . . . , b3N−4, b3N−3]
T , (9)

db = [b1, b4, b7, . . . , b3N−5, b3N−2]
T . (10)

Using Eqns. 7-10, the relationship between the inputs and outputs in
the top interconnection in Fig. 3 can be written as

da = Gca, (11)

with G denoting a matrix that encodes the memoryless, linear func-
tion implemented by the top interconnection graph. As the bottom
interconnection in Fig. 3 is the negative transpose of the top intercon-
nection in that figure, the relationship between the inputs and outputs
in the bottom interconnection can be written as

db = −GT cb. (12)

Writing the expression for the inner product between the vectors a
and b, rearranging terms, substituting in the expressions in Eqns. 7-
10, and substituting in the expressions in Eqns. 11 and 12 results
in

〈a, b〉 = a1b1 + · · · + a3N−2b3N−2 (13)

= a2b2 + a3b3 + a5b5 + a6b6 + · · · + a3N−3b3N−3

+a1b1 + a4b4 + a7b7 + · · · + a3N−2b3N−2 (14)

= dT

a cb + cT

a db (15)

= cT

a G
T cb − cT

a G
T cb (16)

= 0. (17)

From the perspective of the behavior of the interconnection, the
vector of inputs ca is uncoupled from the vector of inputs cb, i.e. the
constraints coupling the two vectors of input variables ca and cb in
Fig. 3 are imposed not by the linear interconnecting systems, but
rather by the functionsfk, gk andhk. From this, in addition to the
fact that the vectors aand bindividually lie in vector subspaces, it
can be concluded that Eqns. 13-17 represent a statement of subspace
orthogonality. The relationship between orthogonality ofvector sub-
spaces and the structure of signal-flow graphs is discussed in greater
detail in Section 4.3 of [34].



Eq. 13 is also illustrative of the sense in which Eqns. 4-6 arere-
garded as a conservation principle. Specifically, the form of Eq. 13
resembles the expression for power conservation in physical sys-
tems, e.g. electrical networks. We emphasize, however, that Eqns. 4-
6 represent conservation of a quantity that is non-physical, in the
sense that the meaning and units of theakbk product is not necessar-
ily that of power, nor any other physical quantity. I.e. the variables
ak may naturally represent units of length, although the variables
bk represent signals internal to each vehicle that can have somewhat
arbitrary units or that may be unitless. The conservation principle
emerges in the presented architecture not as a consequence of a fun-
damental physical law but rather as a consequence of the specific
interconnection that was selected in its development.

3.2. Variational principle

As is discussed in [34], the existence of a physical or non-physical
conservation principle that takes the form of Eqns. 4-6 often facil-
itates the identification of variational principles that can be used to
characterize the behavior of the associated system. In the case of the
system depicted in Fig. 3, Eqns. 1, 4, 5, and 6 imply that the sys-
tem will tend toward a point of minimum local cost of the following
constrained minimization problem:

min
x1,...,xN

G1(d2) + FN (dN) +

N−1
X

k=2

Fk(dk) + Gk(dk+1).

s.t. d2 = x1 − x2

... (18)

dN = xN−1 − xN

x1 = 0

The functionsFk(dk) andGk(dk) denote the integrals of the respec-
tive memoryless, nonlinear functionsfk andgk. In particular,

Fk(y) =

Z y

fk(τ )dτ (19)

Gk(y) =

Z y

gk(τ )dτ, (20)

with the lower limits of integration in Eqns. 19-20 being an arbitrary
value that is related to a constant term added to the functionsFk and
Gk, consequently having no effect on the values of the variables xk

for which (18) is minimized.
We demonstrate that the cost in (18) is nonincreasing by first

noting that the conservation principle in Eqns. 4-6 implies

〈da(t)/dt, b(t)〉 = 0,∀t. (21)

We will usea′

k(t) = dak(t)/dt andb′k(t) = dbk(t)/dt to denote the
time derivatives of the respective signalsak(t) andbk(t). Referring
to Fig. 3, the terma′

1(t)b1(t) evaluates to zero, and Eq. 21 can be
written in the form of Eq. 14 as

0 = a′

2(t)b2(t) + a′

3(t)b3(t) + · · · + a′

3N−3(t)b3N−3(t)

+a′

4(t)b4(t) + a′

7(t)b7(t) + · · · + a′

3N−2(t)b3N−2(t). (22)

Eq. 1 implies that each term in the bottom line of Eq. 22 is nonnega-
tive, and consequently the sum of the terms in the right-handside of
the top line of Eq. 22, denotedp(t), is nonpositive. This statement
is written formally as

p(t) = a′

2(t)b2(t) + a′

3(t)b3(t) + · · · + a′

3N−3(t)b3N−3(t) ≤ 0.
(23)

Fig. 1. Discrete-time simulation results forN = 9, with
fk(dk(t)) = ln(dk(t)), k = 2, . . . , 9, gk(dk+1(t)) =
ln(dk+1(t)), k = 1, . . . , 8, and with the systemshk being real-
ized as discrete-time approximations to continuous-time integrators,
corresponding to vehicles having speed control systems that com-
pensate the vehicle dynamics so thatvk(t) ∝ b3k−2(t). The asso-
ciated cost terms in (18) areFk(dk) = Gk(dk) = (ln dk − 1)dk,
i.e. with a minimum point atdk = 1 and with distances less than
1 incurring greater cost than distances that are greater than1. The
systemshk, k = 1, . . . , 9 are all identical, with the exception ofh6,
which has a larger constant of integration than the others, represent-
ing perhaps a higher-performance vehicle that has the ability brake
and accelerate more suddenly. Vehicle1 is manually perturbed at it-
eration step50, vehicle2 is manually perturbed at iteration step100,
and vehicle6 is manually perturbed at iteration step350, with the
duration of each perturbation being50 iteration steps.

We observe thatp(t) is the time derivative of the cost function in
(18), resulting in

d

dt

 

G1(d2(t)) + FN (dN (t)) +

N−1
X

k=2

Fk(dk(t)) + Gk(dk+1(t))

!

= g1(d2(t))d
′

2(t) + fN(dN (t))d′

N(t)

+
N−1
X

k=2

fk(dk(t))d′

k(t) + gk(dk+1(t))d
′

k+1(t)

= b2(t)a
′

2(t) + b3N−3(t)a
′

3N−3(t)

+
N−1
X

k=2

b3k−3(t)a
′

3k−3(t) + b3k−1(t)a
′

3k−3(t)

= p(t) ≤ 0.
(24)

The form of (18) illustrates the sense in which the presented
architecture deals with measurement inconsistencies gracefully.
Specifically, any inconsistencies in resource difference measure-
ments can be factored into the functionsgk(x) andfk(x), causing
the overall system to reach an equilibrium point that differs from
that of a system having consistent measurements, although does not
result in instabilities.

4. SIMULATION RESULTS

A discrete-time simulation of the architecture is depictedin Fig. 1,
illustrating that the effects of position perturbations die out as the
chain recovers. Future work includes performance evaluation of the
architecture in other situations that may be encountered inpractice.



Fig. 2. (a) General architecture. (b) Implementation where the front-facing distance measurement in vehiclek is not used. (c) Implementation
consisting of vehicles using exclusively front-facing distance measurements.

Fig. 3. Representation of the architecture in Fig. 2(a) in a form that facilitates the identification of a conservation principle. Light gray regions
indicate portions of the system that are implemented withinvehicles. Dark gray regions indicate signals that are shared between adjacent
vehicles via a wireless link.
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