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Signal  Reconstruction  from  Signed  Fourier 
Transform  Magnitude 

Abstract-In this  paper,  we  show  that  a one-dimensional or multidi- 
mensional  sequence  is  uniquely  specified  under  mild  restrictions by  its 
signed Fourier  transform  magnitude  (magnitude  and 1 bit of phase  in- 
formation). In addition, we develop a numerical  algorithm to recon- 
struct  a  one-dimensional or multidimensional  sequence  from its Fourier 
transform  magnitude.  Reconstruction  examples  obtained using this 
algorithm are also  provided. 

I 
I. INTRODUCTION 

N a  variety of contexts,  such as electron  microscopy [ l ] ,  
X-ray  crystallography [ a ] ,  optics [ 3 ] ,  and  Fourier  transform 

signal coding [4], it is desirable to reconstruct  a  sequence  from 
partial  Fourier  domain information. As a  consequence,  con- 
siderable attention has  been  paid to this  area,  and  some signifi- 
cant results have been  developed. It  has  been previously  estab- 
lished [5]-[7]  that  under very  mild  restrictions  a  finite  extent 
one-dimensional (1-D) or  multidimensional (MD) sequence  is 
uniquely  specified to  within  a scale factor  by  the  tangent  of  its 
Fourier  transform  (FT)  phase,  and  algorithms  for  implement- 
ing the  reconstruction have been  developed. It is well known 
that,  in  contrast,  the  FT  magnitude does not  uniquely specify 
a 1-D sequence.  For MD sequences, the FT magnitude  specifies 
a  sequence to  within  a  translation, sign, and a  central  symme- 
try  [7], [8], and  reconstruction  algorithms developed so far 
have been successful [7]  for  only a very restricted class of MD 
sequences. 

From  the above  results, on  the  question  of  unique specifica- 
tion  of  a  sequence,  there  appear to  be significant  differences 
between  I-D  and MD sequences, and  between  the  tangent  of 
the  FT phase and the  FT magnitude.  In  addition, the tangent 
of  the phase and  the  magnitude  of a  complex  number,  which 
have been  considered  in previous studies,  do  not  completely 
specify the  complex  number.  In  this  paper, we show  that if 
the signed FT magnitude  (magnitude  and  one  bit of phase in- 
formation) is considered  rather than  the  FT  magnitude,  there 
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are only  minor  differences on  the question  of  unique  specifi- 
cation  of a  sequence,  between 1-D and MD sequences,  and 
between  the  tangent  of  the  FT phase  and the signed FT 
magnitude.  In  particular, it is shown  that  under very mild 
restrictions, the signed FT magnitude is sufficient to uniquely 
specify  a I-D or MD sequence. We note  that  the  tangent  of 
the phase and  the signed magnitude  of  a  complex  number 
completely  specify  the  complex  number. 

In  Section I1 of  this  paper,  the basic theory  is presented. In 
Section 111 an  algorithm for  implementing  the  reconstruction 
is discussed, and  Section IV illustrates several examples. 

11. THEORY 
In  this  section, we  discuss the unique  specification of a se- 

quence  by  its  FT  magnitude  and 1 bit  of phase. We initially 
consider the one-dimensional (1-D)  case and  then  extend  the 
1-D result to  the multidimensional (MD) case. Before we pre- 
sent the theoretical  results, we define the  notation  that will be 
used throughout  the  paper. 

Let x(n)  denote  a 1-D sequence  which is causal and finite  ex- 
tent so that x(n) is zero  outside 0 < n < L - 1. Furthermore, 
we restrict x ( n )  to  be  real-valued. Let X ( z )  and X ( o )  repre- 
sent the z transform  and  Fourier  transform  of x(n) ,  so that 

X ( z )  = x(n)z-" 
L -  1 

n=o 

The  Fourier  transform X ( o )  can be  represented in  terms of its 
real part X,(w) and imaginary  part Xz(o), or  in  terms  of  its 
magnitude IX(w)l and  phase O,(w) as follows: 

X(W) = X ,  (a) + ~X,(W) = I X ( ~ ) /  eieJU). (3 1 
To ensure that O,(o) is well defined at all a, we  assume that 
X ( z )  has  no zeros on  the  unit circle.  The phase functione,(o) 
in ( 3 )  represents  the principal value of  the phase so that 

-71 < e,(o) G 71. (4) 

The 1-bit FT phase information will be  represented  by  the 
function Sz(o) defined as 

+I a- n<e,(w)+ 

S2(W) = (5) 

- 1 otherwise 
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' I  
Fig. 1. Mapping of the 1-bit  phase function. 

I U 

Fig. 2. Fourier  transform  magnitude,  phase,  1-bit  phase,  and  signed 
magnitude  of  the  sequence X ( z )  = 1 + 32-l + 52-' + 2zF3. 

where a is a known  constant  in  the range of 0 < CY < rr. Thus, 
the complex  plane is divided into  two regions separated  by  a 
straight  line passing through  the origin and at an angle a with 
the real axis, as shown  in Fig. 1,. For  example,  for a = n/2, 
S,"/'(W) represents the algebraic  sign  of Re{X(o)). More  gen- 
erally, s:(~) is the algebraic  sign  of  Re{ei(n/2-c")X(o)). The 
algebraic  sign  of zero is assumed to be positive. 

The  function  GZ(w) is defined  as 

G,"(w> = s $ ( ~ ) l X ( ~ ) l  (6 )  

and will be  referred to  as the signed Fourier  transform  magni- 
tude since it  contains  both  magnitude  and sign information. 
An example  of  IX(o)l, &(a) ,  S:(W), and G:(w) when a =  
rr/2 and  X(z) = 1 + 32-1 + S Z - ~  t 22-3 is shown  in Fig. 2. 

Finally, given a  positive  integer N ,  we define  a  constant P 
and  an interval R as 

N -  1 p=-  
2 

and R = (0, n) for N odd 

N 
2 

P = - and R = (0, rr] for N even. 

Statement A I :  Let x ( n )  and y (n )  be two real,  causal, and 
finite  extent sequences. If IX(w)l= I Y(o) l ,  x(n)  and y (n )  
can  always  be  expressed as 

x(n)  = b(n) * a(n) 

and 

y (n) = Eb(n) * a(N - 1 - n)  

where E = +1 or - 1 and a(n) and b(n)  are  real,  causal, and fi- 
nite  extent sequences  with N corresponding to  the length  of 
a(n), i.e., a(n) = 0 outside 0 < n < N - 1. 

Statement A2: Let b(n)  be  a  real,  causal, and  finite  extent 
sequence. For  any positive  integer N ,  the  equation 

Re {B(z) z - ( N - 1 ) / 2  1 z = e  j w )  = 0 

is satisfied  for at least P distinct values of w in  the interval R ,  
where P and R are as defined in (7). 

Statement A3: Let a(n) be a real sequence  which is zero 
outside 0 < n < N - 1. If the  equation 

is satisfied  for at least P ;distinct values of w in the interval R ,  
then  it is identically  equal to zero  and a(.) = a(N - 1 - n). 

We use the above three  statements,  whose  proofs are shown 
in  the  Appendix, to demonstrate the following theorem: 

Theorem 1: Let x(n)  andy(n) be two real,  causal, and  finite 
extent sequences  with z transforms  which have no zeros on  the 
unit circle. If G,"/'((o) = G;/'(w) for all w, then x(n)  = y(n) .  

To show  Theorem 1, we note  from (5) and (6)  that  the  con- 
dition G;'' (w) = G?/'(o) is equivalent to 

sign{& (0)) IX(w)l= sign{ y, (0)) I Y(o)I (8) 

which  in  turn implies that IX(w)l = I Y(w)l, and  therefore  that 

sign{XR(w)) = sign{ Y, (0)). (9) 

From  Statement A l ,  then, x(n)  and y (n )  can be expressed  as 

x(n)  = b (n) * a(n) 

v ( ~ ) = ~ b ( n ) * a ( N -  1 - n )  (10) 

where E = +1. Fourier  transforming (IO) we obtain 

X ( 0 )  = A ( o )  B(o) 

Y(wj = E e-iw(N-l) A(-  01 ~ ( o ) .  (11) 

To show  that e = 1 in (1 l), we evaluate (9) at w = 0 and recog- 
nize that X,(O) = A(0) B(0) and Y,(O) = eA(0) B(O), so that 

sign(d(0) B(O)} = sign(eA(0) B(O)). (1 2) 

Since X(o) is not  zero  at w = 0, (12) requires that E = +I .  
Since E = 1, from (lo), showing that x(n)  = y(n)  is equivalent 

to showing that  a(nj = a(N-  1 - n). Toward  this  end, we con- 
sider the sum 

(7) x, (a) 4- y, (a). 

The  uniqueness  of  a 1-D sequence  when the signed Fourier  From (1 1) with E = 1, it can  be  shown that 
transform  magnitude G;(W) is specified is based on  the fol- 
lowing  statements.  The  proof  of  these  statements is given in 
the  Appendix.  Re[fj(W)e-iw(N-1)/2].  (13) 

X,(w) + Y,(w) = 2 Re[A(w)ejW(N-1)/2 I .  



From  Statement A2, there  are  at least P distinct values of w in 
the interval R which we denote as ai, i = 1 ,2 ,  * . , P for which 

Re[B(wj)e-iWi(N-1)/2] = 0 ,  i = 1 ,2 ,  . . . , P, wi E R .  (14) 

From  (13)  and (14), 

X , ( w i ) + Y R ( w j ) = O ,   i = l , 2 ; . - , P , w i E R .  (15) 

From  (9), both  terms of the  left-hand side  of (15) have the 
same sign for all 0. Since a  sum  of  two  terms having the same 
sign can  be  zero  only  when both  terms  are  zero, we  have 

x, (Wi)  = Y, (Wj) = 0 

and  therefore also, 

X,(wi)- Y,(wi)=O, i = l , 2 ; . - , P , w i E R .  (16) 

From (1 1) and  the  fact  that e = 1, it can  be  shown that (1 6) 
can  be  expressed as 

X,(WJ - Y,(OJ = -2  Im[A(oi)efWi(N-1)/2] 

. Im[B(oi)e-iWi(N-1)/2 1 = 0 ,  

i = 1 , 2 ; . .  ,P ,wiER.  (1 7) 

Since B(w) is not  zero  for  any w ,  it follows from  (14)  that  the 
second  factor  in (1 7) satisfies the  property 

Im[B(wj)e-iWi(N-')/2] # 0 ,  i =  1 , 2 ; * -   , P , o i E R .  (18) 

From (1 7)  and  (1 S), 

Im[A(wj)eiwi(N-1)/2] = 0, i = 1 ,2 ,  . . . , P, E R.  (19) 

From (19) and  Statement  A3, a(n) = a(N  - 1 - n)  so that  x(n) 
= y(n) ,  thus  demonstrating  Theorem 1. 

The  result in  Theorem  1  can  be  generalized  in  various ways. 
Specifically, in  Theorem 1, we  have assumed that a = n/2, 
which is a specific representation of the  1-bit phase informa- 
tion.  It can be shown that  the  statement is true  for  other 
choices  of 0 < a < n. When a = n so that S:(w) = sign  [O,(w)], 
a  sequence is uniquely  specified  by G:(o) when  x(0) = 0. 
Theorem 1 can also be extended to anticausal  (left-sided) se- 
quences. The  proofs  of  these  extensions  can  be  found  in [9]. 
When the above  extensions  are  incorporated  in  Theorem 1, we 
have the following general theorem: 

Theorem 2: Let x(n)  and y (n )  be two real, causal (or anti- 
causal), and  finite  extent  sequences,  with  z  transforms  which 
have no zeros on  the  unit circle. If G:(w) = GF(w) for all w 
and 0 <a  < K,  then x ( n )  = y(n) .  When a = n, if G,"(w) = 
G;(w) and x(0) =y(O) = 0, then x(n)  =y(n) .  

Theorems 1 and  2 explicitly  require that  the sequences  be 
real-values and causal (or anticausal). The necessity  of  these 
conditions can be  illustrated  through  counterexamples.  Con- 
sider  first the condition  that  the sequences be real, and  let y (n )  
equal e""-")x(n) where  x(n) is real, In this case, it is straight- 
forward to  show that G:(w) = GF(w). Since G:(o) does  not 
uniquely  specify  x(n), G;(w) does not  uniquely specify y(n) .  
To indicate  the necessity  of the causality  (or  anticausality) 
condition, consider as one  counterexample  the  two-sided  se- 
quences x(n)  and y (n )  for which the z transforms  are 

X(Z) = -2' t 6 - z - ~  = (Z + 2 - z-')(-z t 2 + Z-I)  

Y ( z ) = z ~   + 4 ~ + 2 - 4 ~ - '   + z - ~ = ( z + ~ - z - ' ) ~ .  (20) 

For  these two sequences it can be easily shown  that Ix(w)l = 

I y(U)l and S,"//"(O) = S,"/'(w). In this  case, then,  x(n)  and 
Y(n)  are different  sequences, but  they have the same  signed FT 
magnitude. 

In  Theorems  1  and  2,  uniqueness  results were presented as- 
suming that  the signed spectral  magnitude  of  a  finite  length se- 
quence is known  for all frequencies  in the interval (0 ,  27r). In 
the case  of FT phase,  it is possible to generalize the uniqueness 
results to  the case in which the  FT phase is known  only  for  a 
finite  number of distinct  frequencies.  Specifically, it  has been 
shown , .  [6]  that  for a  finite  length  sequence of length N which 
has no symmetric  (zero-phase)  factors in  its  z  transform,  any 
(N - 1) samples of  the  FT phase are  sufficient to  uniquely  de- 
fine  the sequence to within  a scale factor.  Therefore,  since the 
FT phase  need not be known  for all 0, such  a  result  has  been 
useful [6] in  the development of practical  algorithms  for  re- 
contructing  a  finite  length  sequence  from  its FT phase  samples. 
Unfortunately, however,  a  fixed  finite  set  of signed magnitude 
samples is not always  sufficient to  uniquely  specify  a  real, 
causal, and  finite  length  sequence.  For  example, consider the 
following two causal sequences of length N = 3. 

~ ( n )  = 1 .O 6(n) t 2.6 6(n - 1) + 1.2 6(n - 2) (21 1 
y (n )=1 .26(n )+2 .66(n -  l)t 1.06(n-  2).  (22) 

Since y (n )  is obtained  from  x(n)  by flipping both of the zeros 
of X ( z )  about  the  unit circle, both x(n)  and y ( n )  have the 
same  spectral  magnitude. Furthermore, in the interval (0 ,  n) 
the real part of the  Fourier  transform of x(n)  is equal to  zero 
at only  one  frequency, w = 0 .477023~  and  the real part of 
the  Fourier  transform  of y (n )  is equal to zero  only at w = 
0.52616671. Therefore,  the signed magnitude  of X(w) is equal 
to  the signed magnitude  of Y ( o )  for all w outside the intervals 
(0.477023~,  0.526166~) and  (-0.526166n, - 0.477023n). 
Consequently,  an  arbitrary  number of  signed magnitude  sam- 
ples within  this region is not sufficient to distinguish x(n)  from 

Even though a  real,  causal,  finite extent sequence is not 
uniquely  specified by samples of its signed FT magnitude  at  a 
finite  number of arbitrary  frequencies,  it is specified by sam- 
ples of  its signed FT magnitude at a  finite  number  of  properly 
chosen  frequencies  which  are  different  for  different  sequences. 
Specifically, for x(n)  which is zero  outside 0 < n < N - 1, the 
FT magnitude IX(w)I is completely  specified  by ( N -  1) dis- 
crete  Fourier  transform  (DFT) samples in  the interval (0 ,  n). 
The  1  bit  of FT phase Sz(w) is completely  specified by 
the positions  of its  discontinuities  and by its value at o = 0. 
Since the  function Sc(o) has  at  most 2N discontinuities  in 
(-n, +x), G:(w) is completely  specified  by  a  maximum of 3N 
samples at  properly  chosen  frequencies. 

In the above discussion,  we considered  only I-D sequences. 
We now  extent  Theorem  2 to  MD sequences. Let x(n)  denote 
an MD sequence x(nl ,  n z ,  . . . , nM),  and  let G:(w) denote the 
signed FT magnitude  of  x@),  where G:(o) represents G $ ( ~ I ,  
w 2 ,  . . . , w ~ )  and is given by S,"(o)lX(w)l. We define  an MD 
sequence x(n)  to have a  one-sided region of  support in the M- 
dimensional space n ,  , n 2 ,  . . . , nM if it has  nonzero values for 
only  one  polarity  of each ni. For  example,  for  a  two-dimen- 
siorial sequence  there  are four possible regions of  support 

Y (n). 
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which  are  consistent  with the sequence being one  sided,  cor- 
responding to  the  four  quardrants, Theorem 3 ,  which  follows, 
represents  a  generalization  of  Theorem 2 to  encompass MD 
sequences. 

Theorem 3: Let x(n)  and y(n)  be  two real  finite  extent se- 
quences  with  one-sided support  and  with  z  transforms which 
havenozerosat  lzlI=lzzl=.. .=lzMl=l.   IfG,"(w)=G;(w) 
for all o and 0 < a < 71, then x(n) = y(n). When a = 71, if 
G:(w) = G;(o)  and x(0) = y(0)  = 0, then x(n) =y(n). 

We demonstrate  the validity of Theorem 3  for  a 2-D se- 
quence  which  has the first-quadrant  support size M I  X M2 so 
that 

x ( n l ,  n 2 )  = y ( n l ,  n z )  = 0 outside 0 < n l  < M1 - 1  and 

. 0 < n 2  <Mz - 1. 

The  proof  for  a higher  dimension and  for  a  different  quadrant 
support is analogous to  the 2-D case with the first-quadrant 
support. To demonstrate  Theorem 3, we map  the  2-D se- 
quences x(nl, n 2 )  and y ( n l ,  n z )  into  two 1-D sequences x^@) 
and y^(n) by  the following  transformation: 

?(n1 . M2 + n2) = x(n1,  n2) 

v ^ b l  "2 -t n 2 )  =y(n1, n2).  (23) 

In  essence, the transformation  in  (23)  corresponds to  mapping 
a  2-D sequence to  a  I-D sequence  by  concatenating  the  columns 
of the  2-D sequence.  Clearly, x^(n) and y^(n) given by  (23) are 
real,  causal, and  finite  extent sequences.  From  (23), it is clear 
that  the  transformation is invertible.  Furthermore, it can be 
shown [lo]  that 

and 

= Y(Ol3 0 2 )  I wl= w . M 2 ,  wz= w .  (24) 
From  (24), it follows that  the signed FT magnitudes  of x^(n) 
and $(n) are  specified  by the signed FT magnitudes of x(nl, 
n 2 )  and y ( n l ,  n 2 ) .  Therefore,  if G;(wl, oz) = G;(wl, 02),  

then G$(w) = G$(w). In  addition, since X(z1 , z 3 )  and Y p l ,  
zz)'have  no zeros  at lzll = lz21 = 1,  from  (24),X(z)  and Y(z) 
have no zeros on  the  unit circle.  Since x^(n) and y^(n) satisfy 
all the  conditions  in Theorem 2,  it follows from Theorem  2 
that ?(n) =3(n). Since the  transformation  (23) is invertible, 
x(nl, n 2 )  = y ( n l ,  n 2 )  as  required  by  Theorem 3. 

The  condition  that X(o) # 0 at  any o is much more  restric- 
tive for  2-D sequences than for  I-D  sequences, since X ( z )  = 0 
represents  surfaces  in the  (zl,  z2) plane  for  2-D  sequences and 
points  in  the z plane  for 1-D sequences.  From the  proof of 
Theorem 3 described  above,  however, it is not necessary to  re- 

magnitude is required,  but  the sequence  may have a factor- 
izable  z  transform and is uniquely  specified in the  strict sense. 

111. ALGORITHM 

In  Section 11,  we showed that  under  certain  conditions  a se- 
quence is uniquely  specified by its signed FT  magnitude. In 
this  section, we discuss an  algorithm to implement  the  recon- 
struction  of  a  sequence x(n)  from  its signed FT  magnitude. 
The  sequence x ( n )  is assumed to  satisfy  the  conditions of 
Theorem 3. In  addition,  its signed FT magnitude  GZ(w) is 
assumed known. 

The  algorithm that we have developed is an  iterative  proce- 
dure  which is similar in  style to  other iterative  procedures 
studied  by  Gerchberg-Saxton [ 11  ] and  Fienup [ 121. In  the 
iterative  algorithm,  the "time" domain  constraint  that x(n)  is 
real  and  finite extent  with  a one-sided  region of support,  and 
the  frequency  domain  constraint  that  the  signed FT magnitude 
of x(n)  is  given by GZ(a), are  imposed  separately in each 
iteration.  Specifically,  let X,(w) denote  the  estimate of X(w) 
at  the p t h  iteration. The  estimate X , ( o )  is inverse Fourier 
transformed to  the time  domain to obtain xL(n) 

x&) = F-' [X,(o)] 

From x;@), we generate  an  estimate x i ( n )  which  satisfies the 
time  domain  constraints 

where A represents the  known  support region of x@). 

frequency  domain to  obtain X ; ( o )  as follows: 
The  sequende x;(.) is then Fourier  transformed  back to  the 

X i ( 0 )  = F[x;(n) ]  

The  new  frequency  domain  estimate X,+,(w) is then  obtained 
by  enforcing the  constraint  that G," (0) = GZ(w) as follows: . p+1 

Specifically, the  correct magnitude is substituted  for  the  esti- 
mated  magnitude. If S:;(o) = SZ(w), then  the phase  of the 
estimate is retained.  Otherwise, the estimate is reflected about 
a  line that passes through  the origin  with angle a to  correct  the 
sign of S:;(o). This  completes  one  iteration. The  initial  esti- 
mate X, ( a )  we have used is given by 

quire X(o) f 0 at  any o. We only nee! to  require that X(w) X,(o) = IX(o)l dexo@') (29) 
f 0 at  the slices of o needed to  form X(W)  in  (24).  This is a 
much less restrictive  condition than  the  condition  in  Theo- where is given  by 
rem 3. 

The  theoretical  result  in  Theorem 3 differs from  that by 
Hayes [5] in several respects.  In the result  by Hayes [5], only 
samples of the  FT magnitude  are  required, but  the sequence is 
restricted to  have a  nonfactorizable  z  transform  and  the  unique a+- f o r S Z ( o ) = - I .  
specification  of the sequence is only to  within a sign,  a  transla- 
tion,  and  a  central  symmetry. In  Theorem 3, the signed FT The  iterative  algorithm discussed above is illustrated  in  Fig. 3. 

1 71 
a - - for SZ(w) = +1 

2 
exo (0) = (30) 

71 

2 
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X p ( k l  

IDFT + '  
D I S C A R D  IMAGINARY PART 

TRUNCATION, 

x P [.I 
DFT 

t 
SUBSTITUTE I X ( k 1 I  FOR 1 X p l k ) l ;  
C H A N G E  &p(kl  TO 2Q -+xp(k l  IF 

Sip(kl # S i  (kl 

11 

X p + l ( k )  

7 

Fig. 3. Block  diagram of the iterative  algorithm. 

The  asymptotic  behavior  of  the  algorithm in Fig. 3 has not 
yet been  studied  theoretically. We have observed  experimen- 
tally that  a stable  estimate  of  the  sequence to  be  retrieved is 
always attained  after  a large number  of  iterations. 

To implement the algorithm  in Fig. 3 ,  the  Fourier  and  in- 
verse Fourier  transform  operations  are  approximated by dis- 
crete  Fourier  transfrom  (DFT)  and inverse DFT  (IDFT)  opera- 
tions.  Although the uniqueness is not guaranteed in terms  of 
the signed FT magnitude  samples, we have empirically ob- 
served that  the algorithm  reconstructs  the  desired  sequence 
provided that  the signed FT magnitude is densely  sampled  in 
the  frequency  domain, so that  the FT magnitude is completely 
specified and  the discontinuities of Sz(w) are individually  re- 
solved by the samples  of s $ ( ~ ) .  The FT magnitude IX(o)l is 
completely  specified by samples  of IX(o)] when the  DFT 
size is twice the size of the  known  support  of x(n)  in  each 
dimension. 

IV. EXAMPLES 

The  algorithm discussed in Section 111 has been used to re- 
construct  a  variety  of  different 1-D and 2-D sequences from 
their signed FT magnitudes.  In  this  section, we present  some 
of  these  examples. 

Fig. 4 illustrates  one  example  in  which  a I-D sequence is re- 
constructed  from  its signed FT  magnitude. In  Fig.  4(a) is 
shown  a 47-point sequence  obtained by sampling  female  speech 
at a 10 kHz  rate.  In Fig. 4(b) is shown the sequence  recon- 
structed  by using the iterative  algorithm  with the  DFT size of 
1024  after 50 iterations. In addition to  the above  example,  a 
number of other examples have been  considered. In all cases, 
we observed that  the algorithm  reconstructs  the  desired 
sequence. 

Fig. 5 illustrates  an  example  in  which a 2-D sequence is re- 
constructed  from  its signed FT magnitude.  In Fig. 5(a) is 
shown an image  of size 256 X 256 pixels. In Fig. 5(b) is shown 
the image  reconstructed  by using the iterative  algorithm using 
the  DFT size of 512 X 512  after 10 iterations. 

+%& 
Iff/-.,. 

(a) 

(b) 
Fig. 4. Speech  segment  sampled at 47 points. (a) Original  sequence. 

(b) Reconstructed  sequence  after 50 iterations. 

(b) 
Fig. 5. Image  of  size 256 X 256 pixels.  (a)  Original  image. (b) Recon- 

structed image after 10 iterations. 

In  addition to  the examples  shown in this  section, we have 
studied  a  number  of  other examples. From these  examples, 
we have made the following  observations about  the iterative 
algorithm.  First,  for  sequences  satisfying the uniqueness  con- 
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straints, if a  DFT size below  some  threshold value is used,  the 
algorithm  does not lead to  the desired  sequence. The  threshold 
value  is different  for  different  sequences,  and we have not  yet 
found  a  simple  way to  determine  the  threshold value for  a 
given sequence.  In  practice,  therefore, the  DFT size is typically 
much larger than  the  threshold value to  reconstruct a sequence 
from  its signed FT magnitude.  Second, the  DFT size required 
is typically much larger (by  more than  a  factor of 10 typically) 
than  the size of  the  data  for 1-D signals. For  2-D signals, we 
have observed that  the  DFT size of 2 N X   2 N  when the  data 
size is N X N is sufficient  for all examples we considered.  This 
difference is in part  due to  the  fact  that  the magnitude of 
2 N  X 2 N  DFT  when  the  data size is N X N uniquely  specifies 
a 2-D sequence  within  a sign factor, a translation,  and  a  central 
symmetry, and  therefore  the ambiguity that needs to  be  re- 
solved by 1  bit  of  phase  information is much less for 2-D sig- 
nals than  for 1-D signals. Third,  the  threshold  DFT length is 
approximately  the same  for  different  choices  of a!, as long as Q! 

is not  too close to  0 or n. As a! approaches 0 or n, the thresold 
length is significantly  increased.  The  choice of a! = n/2 permits 
the use of  FFT routines  specific to  real  sequences,  and there- 
fore, uses less computation time and less storage  space. 
Fourth,  the convergence rate of the iterative  algorithm is rapid 
initially and becomes slow as the number  of  iterations is in- 
creased. Fifth, we have observed that  the mean  square  error 
between  the original  and  reconstructed  sequences  decreases 
monotonically  as  the  number of iterations  increases. Sixth, 
the convergence  rate  of the algorithm  can be significantly  im- 
proved by using an  acceleration  procedure  similar to  that used 
by Oppenheim et al. [ 131. Further details on  the behavior  of 
the  iterative  algorithm  can  be found  in Van Hove [9]. 

V. CONCLUSIONS 
In  this  paper,  we have shown that  a 1-D or MD sequence is 

uniquely  specified  under  mild  restrictions by  its signed FT 
magnitude. In  addition,  we have developed an iterative  algo- 
rithm to reconstruct  a 1-D or MD sequence from  its signed FT 
magnitude. When this  result is combined with  the previous  re- 
sult [SI on  the problem  of  reconstructing  a 1-D or MD se- 
quence  from  its  FT phase, we obtain a very general  result that 
a 1-D or MD sequence is uniquely  specified by  its  FT phase or 
its signed FT magnitude.  In  addition,  under mild restrictions, 
an  iterative  algorithm  which is similar  in  style  can be used to  
reconstruct  a 1-D or MD sequence from  its  FT phase  or signed 
magnitude. 

APPENDIX 
Statement A I :  Let x ( n )  and y ( n )  be  two real,  causal,  and 

finite  extent sequences. If IX(o)l = I Y ( o ) l ,  x ( n )  and y (n )  
can  always  be  expressed as 

x(n)  = b(n) * a(n) 

y (n )  = €b(n)  * a(N-  1 - n)  

where e = t 1  or - 1 and a(n) and b(n) are real,  causal,  and 
finite  extent  with N corresponding to  the length  of a(n), Le., 
a ( n ) = O o u t s i d e O < n < N -  1. 

Proof: A general  expression  of the z transform X ( z )  of  a 
sequence x ( n )  which  is  causal  and  has  a  finite  support is given 

(A1 . l )  

where zi, i = 1 ,  2, . . . , Q, are the zeros of X @ ) ,  x. is the first 
nonzero  sample,  and n1 is the positive  initial  delay  in x(n) .  It 
is well known  that  the  FT magnitude  of  a  finite extent 1-D se- 
quence  remains  unchanged  only  when the sequence is subject 
to  linear  shifts, sign inversions, and/or zero  “flipping.”  The z 
transform Y ( z )  may therefore  be  written as 

Y ( z )  =+Z-n2Xo n (1 - z jz- ’ )  n ( - z j   t z - l )  
i e { u }  ie{ r }  

(A 1.2) 

where nz is the positive  initial  delay in y(n) ,  {r} is the  set of in- 
dexes  of the R zeros  of Y ( z )  which  are  zeros of X ( z )  reflected 
across the  unit circle,  and { u }  is the set of indexes  of  zeros 
which  are  unchanged from X ( z )  to  Y(z) .  We may also  write 
( A l . l )  and  (A1.2) as 

X ( z )  = A ( 2 )  . B ( z )  

Y(2) = X ( z )  . B(z )  

or 

x(n)  = a(n) * b (n)  

y (n )  = *c(n) * b(n) (Al.3) 

where 

A(z )  = 2 - h  - n2) n (1 - Ziz-1) 

B(z)  = Z - n 2 X o  n (1 - Ziz-1) 

C(z )=  n ( - z i   t z -1 ) .  (Al.4) 

i e { r }  

i e { u }  

i e { v }  

We now show that c(n) is a(n) time  reversed,  represented by 
a‘(.). The  length  of the sequence a’(n) i s N =  n 1  - n2 t R t I ,  
if we include the leading  zeros.  Therefore, 

a’(n) = a(N - 1 - n)  

A’(z) =A(z-l)z-(jv-l) = z-R n (1 - ZjZ) = C(Z) 
iE{ r }  

so that c(n) = a(N-  1 - a). From  (A1.3), the sequences x ( n )  
and y ( n )  are  expressed  in the  adequate  form. To  characterize 
a(n) and b(n), we  examine  their z transforms.  Since B ( z )  con- 
tains  only  a  finite number of negative powers  of z ,  the sequence 
b(n) has  a  finite  causal support. Since A ( z )  and A ’(z) = C(z) 
contain  only  negative  powers  of z ,  it follows that a(n) and 
a(N - 1 - n)  are  causal so that a(n) is zero  outside 0 < n < 
N - 1. If the z transform X ( z )  contains  a pair of  complex  con- 
jugate  zeros,  than  they  must  both  belong to  { u }  or  both  to { r }  
for y (n )  to  be  real-valued.  The z transforms A ( z )  and B(z )  
may  therefore  contain  complex zeros  only in conjugate  pairs so 
that a(n) and b(n) are  real.  In the case n2 > n 1, we simply  ex- 
change the roles  of x ( n )  and y(n) .  This  completes  the  proof  of 
Statement Al .  
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Statement A2: Let b(n)  be  a  real,  causal,  and  finite extent 
sequence.  For  any positive integer N ,  the equation 

Re  {B(z) z-(~-')/' I j w }  = 0 z = e  

is satisfied for  at least P distinct values of w in  the interval R 
where P and R are as defined  in (7) of  the  text. 

To prove  this statement, we introduce  the  notion  of  un- 
wrapped  phase. Given a  Fourier  transform M(w) which  has no 
zeros, we define  its  unwrapped phase @M(w) as the  unique 
continuous  function  of w which satisfies 

~ ( o )  = ~ ~ ( u ) l e i @ ~ ( ~ )  (A2.1) 

for all w and  which  takes the value of 0 or -n at w = 0. The 
unwrapped phase has the following  properties. If we define 
the  function F(w)  as 

F(o) = D(0) B(w)  (A2.2) 

then if follows that 

@do) = @ D ( O )  @B (a) 2 

where 
CY = 1 if G D ( 0 )  = &(O) = -7r 

0 otherwise. (A2.3) 

The  unwrapped FT phase @B (w)  of  a causal sequence b(n)  
satisfies 

@B (0)  2 @B (TI. (A2.4) 

q w )  = e-iw(N-1)/2 (A2.5) 
The  unwrapped phase of  the  function 

is 
N -  1 

2 
G D ( 0 )  = -0 -. (A2.6) 

We now  proceed to  the proof  of  statement A2. We consider 
the  unwrapped phase @ ~ ( w )  of  the  function 

~ ( a )  = B(w)e-iw(N-1)/2. 

The  equation  Re(F(w)) = 0 has the same roots as the  equation 

GF(w) = It + kn, with k an  integer, 
2 

since F(w)  has no zeros.  From our previous  discussion, we 
have 

@F(n) - @F(o) = @B(n) - @B(o) GD(.) - @D(o)  

Since the  continuous  function @F(o) decreases at least by 
(N - 1)/2 n on the interval R ,  it follows that  the  graph  of 
@ ~ ( w )  crosses at least N/2 lines  of phase n/2 + k n  in (0, n] if 
N is even and at least (N - 1)/2 such  lines in (0, 7r) if N is odd. 
Fig. 6 shows @F(w)  when b(n) = S(n), for  the cases N = 4 and 
N =  5 .  

Statement A3: Let a(n) be  a real va1ue.d sequenced  which is 
zero  outside 0 < n < N - 1. If the  equation 

Im {~(z )   dN-1) /2  1 i w }  = o 
z = e  

-7r 

-2 

$CWi 

(4 (b) 
Fig. 6 .  Unwrapped  phase of the function F(w)  for b(n) = 6(n).  (a) N = 

4. (b) N = 5. 

is satisfied  for at least P distinct values of w in the interval R ,  
then it is identically  equal to zero  and a(n )  = a(N - 1 - n). P 
and R are  defined  as  in (7) in the  text as 

N -  1 p =- 
2 

and R = (0 ,  n) for N odd 

N 
P = - and R = (0 ,  n] 

2 
for N even 

Proof for  N Odd: With the use of trigonometric  formulas, 
we obtain 

N- 1 
= a(.> sin (-1 - n)  w 

N -  1 

n=O 
(A3.1) 

(A3.2) 

Since the set  of  the (N - 1)/2 functions sin w ,  sin 2 u ,  . . . , sin 
(N - l ) w / 2  is a  Chebyshev  set on the interval (0 ,  n) as is shown 
in [9] and since G ( o )  has  at  least (N - 1)/2 distinct roots  in 
the interval (0 ,  n), it  follows that  the coefficients  of the  ex- 
pansion  in the right-hand  side  of (A3.2) must vanish 

a ( T - n )  N -  1 =a (y + n )  = o ;  

N -  1 
n = 1 , 2 ; . .  - 

' 2  

or 

a ( n ) = a ( N -   1 - n ) ;   n = O , l ; - . , N . -  1. 

When N is even, the  expansion  of G(w) is 

Since the  functions sin 012, sin 3 ~ 1 2 ,  . . . , sin N - 1/2 w 
form  a  Chebyshev  set on  the interval (0, n] as is shown  in 
[9] , it follows that 
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or 

a ( n ) = a ( N -  1 - n ) ;  n = O , l ; * . , N -  1. 

This completes  the proof of Statement A3. 
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