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Signal  Reconstruction from Phas 
MONSON H.  HAYES, JAE S. LIM, AND ALAN V. OPPENHEIM, FELLOW, IEEE 

Abstract-In  this  paper, we develop a set of conditions  under which 
a sequence  is  uniquely specified by the phase or samples of the phase of 
its  Fourier  transform, and  a similar set  of  conditions  under which a 
sequence is uniquely specified by the magnitude of its  Fourier  trans- 
form. These  conditions  are  distinctly  different  from the  minimum  or 
maximum  phase  conditions,  and  are  applicable to  both one-dimensional 
and  multidimensional sequences. Under the specified  conditions, we 
also develop several algorithms which may be used to reconstruct a 
sequence  from  its phase or magnitude. 

I. INTRODUCTION 
OR both continuous-time and discrete-time signals, the 
magnitude and phase  of the Fourier transform are, in 

general, independent functions, i.e., the signal cannot be 
recovered from knowledge of either alone. Under certain  con- 
ditions, however, relationships exist between these com- 
ponents.  For example, when the signal  is minimum phase or 
maximum phase, the log magnitude and phase are related 
through  the Hilbert transform. This relationship has been 
exploited in  a variety of ways in many fields including net- 
work theory, communications, and signal  processing [ 11-[3]. 

In this paper we develop a set of conditions under which a 
discrete-time sequence is completely specified to within a scale 
factor by the phase of its Fourier transform, without  the re- 
striction of minimum or maximum phase, and propose several 
algorithms for implementing the reconstruction of a signal 
from the phase of its Fourier transform.  In Section I1 we con- 
sider the case in which the phase is specified at all frequencies, 
and in Section 111 the case in which the phase  is specified at  a 
discrete set of frequencies. Algorithms for implementing the 
reconstruction are developed in Section V. In Section IV, we 
develop a different set of conditions, again without  the restric- 
tion of minimum or maximum phase, in which a discrete-time 
sequence is completely specified 'by  the magnitude of its 
Fourier transform. In Section VI, we extend  the results of 
Sections 11, 111, IV, and V to the case of multidimensional 
sequences. 

11. UNIQUENESS OF A SEQUENCE WITH A PHASE 
FUNCTION SPECIFIED AT ALL FREQUENCIES 

The sequences that we consider are  real with rational z-trans- 
forms. Since we are interested in conditions under which the 
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sequence can be uniquely specified by  the phase  of its Fourier 
transform,  the Fourier transform is assumed to converge, i.e., 
the region of convergence of the z-transform includes the  unit 
circle. 

For such sequences, we first show that  a finite length 
sequence is uniquely specified by the phase  of its Fourier 
transform if its z-transform has no zeros in reciprocal pairs or 
on the  unit circle.' More specifically, denoting the phase of 
the Fourier transform of x [n]  and y [n]  by O,(o) and OJw), 
respectively, we have the following. 

Theorem 1: Let x[n]  and y [n] be two finite length se- 
quences whose z-transforms have no zeros in reciprocal pairs 
or on the  unit circle. If O,(w) = 0,(w) for all w,  then x [ n ]  = 
Py[n] for some positive constant 0. If tan O,(o) = tan OJo) 
for all w,  then x [n] = fly [n]  for some real constant 0. 

To demonstrate the validity of Theorem 1, we note first of 
all that if a finite-length sequence g [ n ]  with z-transform G(z) 
has a phase which is zero or n for all w, then g [ n ]  is an  even 
sequence, i.e., g [ n ]  =g[-n] .  Consequently, G(z)  has  zeros in 
conjugate reciprocal pairs so that if  G(z) has a zero at  z = zo, 
then G(z) must also  have a zero at  z = l/z$. Now assume that 
x [ n ]  and y [n]  both satisfy the  conditions of Theorem 1 and 
define g[n]  as 

d n l  =xk3 *y[-nI (1) 

so that 

G(z) = X(z) Y( 1 /z). (2)  

If O,(o) = 0Jo) or if tan O,(w) = tan 0,,(o), then the phase 
of g [ n ]  is zero or n. Therefore, g [ n ]  is an  even sequence and 
thus  the zeros of G(z) occur in conjugate reciprocal pairs. 
Since the zeros of G(z)  are collectively the zeros  of X(z) and 
Y(l/z), if X(z,) = 0, then either X(l/zo) = 0 or Y(zo) = 0. 
However, because the conditions of Theorem 1 exclude re- 
ciprocal zeros or zeros on the  unit circle, x(~,) and X(l/zo) 
cannot both be zero. Thus, if X(zo) = 0, then Y(zo) = 0 and 
vice versa, i.e., the zeros of X(z) and Y(z) are identical. Con- 
sequently, since g [ n ]  is  an all zero sequence,' 

X(Z> = P Y(Z> (3 4 
or 

x[nl =Pv[nI .  (3b) 

Since we are considering  only sequences which are  real, zeros occur 
in  complex  conjugate pairs. In the following discussions, this  symmetry 
is implicitly  assumed,  particularly in reference to reciprocal zeros. 

*When  we refer to  a sequence as  an all-zero (all-pole) sequence,  this 
should  be interpreted  to mean that  the z-transform has only zeros 
(poles) except possibly at  z = 0 or z = -. 
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Combining (1) and (3b), we have 

g [ n ]  = @ [ n ]  * x [ - n ] .  (4) 
Since the phase  of x [ n ]  * x [ - n ]  is always zero, if O,(w) = 
O,,(o), then  the phase of g [ n ]  is zero so 0 must be a positive 
constant. If tan O,(w) = tan $,,(a), then  the phase of g [ n ]  is 
zero or 77 so 0 must be real. 

An interpretation of Theorem 1 is  suggested  by the  ob- 
servation that  for  a rational z-transform, in general, a zero at 
z = zo and a pole at z = l/zg contribute  the same phase but 
different magnitude to the Fourier transform. Thus, with 
phase information alone, there is an  inherent ambiguity in 
the z-transform in  the sense that  a zero (pole) at z = zo asso- 
ciated with the original sequence can potentially  only be 
identified from the given  phase as either a zero (pole) at 
z = zo or  a pole (zero) at z = l/zg and this ambiguity'cannot 
be further resolved without additional information. The 
finite length condition in Theorem 1 resolves this ambiguity 
by restricting the z-transform to have only zeros except 
possibly at  z = 0 or at z = 00. The additional condition  that 
the z-transform has no zeros in reciprocal pairs eliminates the 
possibility of zero phase components  in  the z-transfrom which, 
of course, could never  be recovered from phase information 
alone. The  conditions in Theorem 1 also eliminate the possi- 
bility of zeros on  the  unit circle. While the theorem can  be 
modified to allow for  the possibility of zeros on the  unit 
circle, the result becomes somewhat more complicated and we 
have chosen not  to include this additional generality. 

Although Theorem 1 requires that x[n] be an all-zero se- 
quence, a dual to Theorem 1 can be formulated for an all- 
pole sequence. Specifically, let ?[n] denote  the convolutional 
inverse  of a sequence x [n] , i.e., 

x [ n ]  *x"[n] =6[n]. (5 1 
Then we have the following. 

Theorem 2: Let x [ n ]  and y [n] be two sequences whose 
z-transforms have no poles in reciprocal pairs, and which have 
finite duration convolutional inverses.  If t9,(o) = O,(o) for 
all o, then x [ n ]  = fly [n] for some positive constant 0. If 
tan O,(o) = tan O,(w) for all a, then x [n] = fly [ n ]  for some 
real constant 0. 

Theorem 2 follows directly from Theorem 1. Since the 
phase  of the Fourier transform of ?[n] is the negative  of the 
phase of the Fourier transform of x [ n ] ,  x"[.] is uniquely 
specified to within a positive scale factor by  the phase  of the 
Fourier transform of x [n], by virtue of Theorem 1. Since 
x [ n ]  is uniquely specified by ?[n] ,  Theorem 2 follows. 

In Section IV we will consider a number of numerical algo- 
rithms which can be implemented on  a digital computer  for 
reconstructing a sequence from its phase under the  condi- 
tions of Theorem 1 or Theorem 2. At this point, however, 
we discuss a conceptual algorithm which may potentially have 
a practical implementation but which, more importantly, 
serves to lend insight into Theorems 1 and 2. We outline  the 
algorithm under the conditions of Theorem 1 since it is  easily 
modified for  the  conditions of Theorem 2. 

Let O,(w) denote  the specified phase function from which 
the sequence is to be reconstructed and $,(a) the associated 

unwrapped phase [ 3 ] .  From  the  conditions of Theorem 1, 
X(z) is restricted to be of the form 

Nl N2 
X(Z) =CZno n (1 - UkZ-') n (1 - bkZ) (6)  

k=l k=l 

with C real, no an integer, lak/ < 1, lbkl < 1 for all k ,  and 
ak # bf for any k and 1. 

Step 1: The algebraic sign of C is obtained  from &(a) 
using the  fact  that O,(O) is zero if and only if C is positive 
[ 3 ] .  The value of no in (6) is obtained from the unwrapped 
phase as 

1 
no = - [8,(77) - 8,(0)]. (7) 

77 

Step 2: From  the unwrapped phase function and the value 
of no obtained in Step 1, a new phase function is specified as 

cpX(o) Li 8 x ( ~ )  - now - e,(o). (8) 

Using the Hilbert transform, a minimum phase sequence 
x,in[n] can be specified which has the phase cpx(o). The 
z-transform Xmin(z) of xmin[n] is  given by [3], [ 4 ]  

A 

Nl n (1 - akZ-1) 

n (1 - bZz-1) 
Xmin(Z) = N2 

k = l  
(9) 

k=1 

where the coefficients ak and bk are identical to those  in (6). 
Since pole-zero cancellations cannot occur in (9) by virtue 
of the  condition  in Theorem 1 which implies that ak # bf for 
any k or 1, the coefficients ak in (6) can be  obtained from the 
zeros of Xmin(z) and the coefficients bZ, and thus bk in (6) 
can  be obtained from the poles of Xmin(z). 

The condition in Theorem 1 that  there are no zeros in re- 
ciprocal pairs ensures that there are no pole-zero cancellations 
in (9). If the original sequence has reciprocal zeros, then  the 
algorithm above may still be applied to recover  all but those 
zeros in X(z) which are in reciprocal pairs. 

111. UNIQUENESS OF A SEQUENCE  WITH A PHASE 
FUNCTION SPECIFIED AT DISCRETE FREQUENCIES 

In Theorems 1 and 2, we assumed that  the phase function 
was specified at all frequencies. A similar set of theorems can 
be stated if the phase is specified at  a sufficient number of 
discrete frequencies. As in Section 11, we assume the sequences 
are real with rational z-transforms with a region of conver- 
gence that includes the  unit circle. Then, an extension of 
Theorem 1 to discrete phase  samples is given by  the following. 

Theorem 3: Let x [ n ]  and y [n ]  be two finite length se- 
quences which are zero outside the interval3 0 <n G N -  1 
with z-transforms which have no zeros in reciprocal pairs or 
on the  unit circle. If Ox(w) = OJw) at ( N -  1) distinct fre- 
quencies in the interval 0 < w < 77, then x [ n ]  =fly [n] for 

3More  generally, x [ n ]  need  only be zero  outside  any  finite  interval of 
length N. This added  generality, however, is not considered in order 
to simplify the following discussions. 
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some positive constant p. If tan O,(w) =tan O,(w) at (N - 1) 
distinct frequencies in the interval 0 < w < T ,  then x [ n ]  = 
fly [n ]  for some real constant 0. 

The validity of Theorem 3 follows in an almost identical 
manner to  that of Theorem 1. Specifically, consider a  finite 
length sequence g [ n ]  for which g [ n ]  = 0 outside the interval 
(-N + 1) < n < (N - 1). Let G(w) = I G(w)( eJeg(w) denote 
the Fourier transform of g [ n ]  with O,(w) zero or n at N - 1 
distinct frequencies wl, w2,  * * . ,  ON-^ between zero and T ,  

i.e., 

Og(wk)=o or n for k = l ; - . , N -  1 

with 

W k # U l  for k f l  

and 

O<wk<n for k = l ; . * , N - l .  

Then, G(wk) is  real and 

N - 1  

n = - N + l  

Or, equivalently 

N-1 
{ g [ n ]   - g [ - n ] }  s i n n q  = O  k = 1,2,  

n = I  

Equation (1 2) implies that [ 51 

{ g [ n ]  - g [ - n ] }  = 0 n = 1 , .  - * , N -  1, 

... 

i.e., g [ n ]  is  an  even sequence. Now, consider two sequences 
x [ n ]  and y [n ]  satisfying the  conditions of Theorem 3 and 
having the same  phase at ( N -  1) distinct frequencies between 
zero and T.  As with Theorem 1, we form the sequence 

g [ n l   = x b l   * v [ - n I .  (14) 

Since g [ n ]  = 0 outside the interval (-N f 1 )  < n < (N - 1) and 
Og(wk)  satisfies (lo), g [ n ]  is  an  even sequence. For reasons 
identical to those used  in justifying Theorem 1, it then follows 
that 

x b l  =Pv[nI (1 5) 

where fl is a positive constant if the phase samples of x [ n ]  and 
y [n] are equal and a real constant if tangents of the phase 
samples  are equal. 

Although Theorem 3 requires that x [ n ]  be an all-zero se- 
quence, a dual to Theorem 3 for an all-pole sequence is  easily 
formulated in terms of the convolutional inverse. Specifically, 
we  have the following. 

Theorem 4: Let x [ n ]  and y [n] be two sequences whose 
z-transforms have no poles  in reciprocal pairs, and which have 
convolutional inverses that are zero outside the interval 
0 < n < N  - 1. If O,(w) = Oy(w) at (N - 1) distinct frequen- 
cies in the interval 0 < w < T ,  then x [ n ]  = fly [n] for some 
positive constant fl. If tan O,(o) = tan O,(w) at ( N -  1) dis- 
tinct frequencies in the interval 0 < w < T ,  then x [ n ]  = by [n ]  
for some real constant fl. 

Theorem 4 follows from Theorem 3 in  the same manner that 
Theorem 2 follows from Theorem 1. 

It should be noted  that Theorem 1 implies that any finite 
duration sequence, x [ n ] ,  which has a z-transform with no 
zeros on the  unit circle or in conjugate reciprocal pairs  is 
uniquely specified to within a scale factor by its phase, O,(o). 
Although there are many finite duration sequences with phase 
O,(w) which are not related to  x [ n ]  by  a scale factor, x [ n ]  is 
the only sequence which satisfies the z-transform constraints 
of Theorem 1. A similar statement, of course, can be made in 
the  context of Theorem 3 .  

In Section V, numerical algorithms are developed for recon- 
structing a sequence x [ n ]  from its phase  when the sequence 
satisfies the constraints of Theorem 1. Although x [ n ]  is 
uniquely specified to within a scale factor by  its phase, some 
additional knowledge of x [n ]  is assumed to guarantee that  the 
sequence obtained from  the algorithm satisfies the constraints 
of Theorem 1 and thus  that  it is the correct sequence. The 
additional information which is  assumed  is the location of the 
first nonzero  point of x [ n ] .  In this case, as we next show, if 
x [ n ]  satisfies the constraints of Theorem 1 and if it is known 
that x [ n ]  = 0 outside the interval 0 < n < N  - 1 with x[O] # 0, 
then scaled  versions of x [ n ]  are the only sequences which are 
zero outside the given interval and have the same  phase (or 
phase  samples) as x [n].  Specifically, we have the following. 

Theorem 5: Let x [ n ]  be a sequence which is zero outside 
the interval 0 < n < N  - 1 with x[O] # 0 and which has a 
z-transform with no zeros in reciprocal pairs or on the  unit 
circle. Let y [ n ]  be any sequence which is zero outside the 
interval 0 <n < N -  1 .  If Oy(w) = O,(o) at ( N -  1) distinct 
frequencies in the interval 0 < w < T ,  then y [n] = D X  [n] for 
some positive constant 0. If tan Oy(w) = tan &(a) at ( N -  1) 
distinct frequencies in the interval 0 < w < T ,  then x [n ]  = 
fly [n] for some real constant 0. 

Note that,  in  contrast to Theorem 3, there are no constraints 
on the location of the zeros of y [n] .  Thus, y [n] may be any 
finite duration sequence which is zero outside the interval 
O < n < N - l .  

To demonstrate the validity of Theorem 5, we first form the 
sequence g [ n ]  = x [n ]  * y [-n] . As discussed previously, since 
g [ n ]  = 0 outside the interval (-N f 1) < n G (N - 1) and the 
phase of its Fourier transform satisfies (lo), g [ n ]  is an even 
sequence. Now let Nl - 1 represent the location of the last 
nonzero point in x [ a ] ,  i.e., x [ n ]  = 0 for n Z N l  and 
x [ N l  - 1 1  # 0. Then 

N,-1 N-1 
G(z) =X(z) Y(z-’) = x [ n ]  z - ~  y [ n ]  zn. (16) 

n =o n = o  

Since g [ n ]  is even and x[O] # 0, y [n] = 0 for n > N l  so that 
the number of zeros of y [n]  is less than or equal to the num- 
ber of zeros of x [ n ] .  Now, for reasons identical to those used 
in justifying Theorem 1 ,  if g [ n ]  is an even sequence and if 
x [ n ]  has no zeros in reciprocal pairs, then for each zero of 
x [ n ] ,  y [n] must also  have the same zero. Even thou&y[n] is 
not restricted to the class of sequences with no zeros in recip- 
rocal pairs or on the unit circle, from our previous result,y[n] 
cannot have more zeros than x [ n ] ,  and therefore, y [ n ]  = 
p x [ n ] .  For reasons identical to those used in justifying 
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Theorem 1, 0 is a positive constant if the phase samples of 
x [ n ]  and y [n ]  are equal whereas 0 is a real constant if the 
tangents of  the phase samples are equal. 

Although Theorem 5 requires that  the sequence be an all- 
zero sequence, a  dual to  Theorem 5 for an all-pole sequence 
is easily formulated in terms of the convolutional inverse. 
Specifically, we have the following. 

Theorem 6: Let x [ n ]  be a sequence whose z-transform has 
no poles in reciprocal pairs or  on  the  unit circle, and whose 
convolutional inverse  is zero outside the interval 0 < n < N - 1 
and nonzero  at n = 0. Let y [n]  be any sequence whose con- 
volutional inverse is zero outside the interval 0 < n < N - 1 .  If 
6,,(0) = 6,(0) at ( N -  1) distinct frequencies in the interval 
0 < o < T ,  then x [ n ]  = fly [n]  for some positive constant 0. 
If tan 6,,(0) = tan O,(w) at ( N -  1) distinct frequencies in  the 
interval 0 < w < x ,  then x [ n ]  = 0y[n]  for some real con- 
stant 0. 

Theorem 6 follows from Theorem 5 in the same manner that 
Theorem 2 follows from Theorem 1. Again note  that,  in con- 
trast to Theorem 4, there are no constraints on  the  location 
of the poles of y [ n ]  . 

IV. UNIQUENESS OF A SEQUENCE WITH A SPECIFIED 
MAGNITUDE FUNCTION 

In Section 11, several sets of conditions are presented which 
establish a uniqueness between a sequence and its phase func- 
tion. Unlike the case for minimum or maximum phase  se- 
quences, there is no dual statement of uniqueness between a 
sequence and its magnitude function under the same set of 
conditions. However, under a  different set of conditions  a 
sequence is uniquely specified to within a sign and a time 
shift by the magnitude of the Fourier transform. The condi- 
tions are embodied in the following theorems. 

Theorem 7: Let x [ n ]  and y [n ]  be two sequences whose 
z-transforms contain no reciprocal pole-zero pairs and which 
have  all poles, not  at z = 00, inside the  unit circle and all 
zeros, not  at z = 0, outside the  unit circle. If the magnitudes 
of the Fourier transforms of x [ n ]  and y [ n ]  are equal, then 
x [ n ]  = ky [n t m ]  for some integer m. 

A dual to this theorem is the following. 
Theorem 8: Let x [ n ]  and y [ n ]  be two sequences whose 

z-transforms contain  no reciprocal pole-zero pairs and which 
have  all poles, not  at z = 0, outside the  unit circle and all 
zeros, not  at  z = m, inside the unit circle. If the magnitudes of 
the Fourier transforms of x [ n  J and y [ n ]  are equal,  then 
x [ n ]  = ky [n  t m ]  for some integer m. 

Since the justification of Theorem 7 is almost identical to 
that  of Theorem 8, we will focus only on the first. The 
validity of Theorem 7 is  suggested by noting  that  a zero (pole) 
at  z = zo  and  a zero (pole) at  z = 1/z$  contribute  the same 
magnitude to the Fourier transform. Therefore, with magni- 
tude  information  alone, there is an  inherent ambiguity in the 
specification of  the sequence in that  a zero (pole) of  the 
original sequence can potentially only be identified from  the 
magnitude as either a zero (pole) at  z = zo  or  at z = l/zg. In 
Theorem 7, this ambiguity is  resolved by restricting the poles 
to lie inside the  unit circle and the zeros to lie outside while 
in Theorem 8, the  condition is the reverse. The additional 
condition  that  there are no conjugate reciprocal pole-zero 

pairs eliminates the possibility of all-pass terms which con- 
tribute  only to the phase and not the magnitude. 

To more formally demonstrate Theorem 7, let x [ n ]  and 
y [n ]  be two sequences which satisfy the  conditions of Theo- 
rem 7. The z-transforms of x [ n ]  and y [n]  may therefore be 
expressed in  the form 

% 
(l - akZ) 

P(z) = czn0 
k=1 

P I  
(1 7 )  n (1 - bkz-l) 

k=1 

with ak # b f  for any k and I ,  and where C is a real constant, 
no is an integer, and lakl< 1 , Ibk I < 1 for all k .  Denoting 
the z-transforms of x [ n ]  and y [ n ]  by X(z) and Y(z), respec- 
tively, we wish to show that if X(z) and Y(z) both have the 
same magnitude on the  unit circle then x [ n ]  = ky [n + rn] for 
some integer m. Consider  G(z) defined as the ratio X(z)/Y(z). 
Since  X(z) and Y(z) both have the same magnitude on the  unit 
circle, G(z) must be entirely all-pass with unity magnitude, i.e., 
for a  zero  at z = zo there must be a pole at  z = l/z$ and vice 
versa. Therefore, G(z) consists only of poles and/or zeros at 
z = 0 or  at  z = 00 and conjugate reciprocal pole-zero pairs. Be- 
cause of the  conditions in Theorem 7, this in turn requires 
that  for any zero (or pole) of X(z) at  z = zo there must be a 
zero (or pole) of Y(z) at  z = l/z$ which, for zo # 0 or 00, 
violates the  conditions in Theorem 7 since one will  always be 
inside and the  other outside the  unit circle. Thus, G(z) must 
be of the form 

G(z) = +zm (1 8) 

or, equivalently, 

x [ n ]  = ky[n t m ]  (19) 

for some integer m. 
A conceptual algorithm similar to that considered in Section 

I1 can be developed for the reconstruction of a sequence to 
within an algebraic sign and a delay from  the magnitude of its 
Fourier transform under the  conditions of Theorem 7 or 
Theorem 8. We outline  the procedure below under the  con- 
ditions of Theorem 7,  It is  easily modified for  the  conditions 
of Theorem 8. 

Let IX(w)l denote the specified magnitude function. Using 
the Hilbert transform, a minimum phase sequence xmin[n] 
can be specified which has the same magnitude function.  The 
z-transform Xmin(z) of xmin [n ] is given by 

Nl fl (I - azz-') 

P I  
Xmin(Z) = I CI k= l  2 (20) n (1 - bkz-1) 

k =1 

i.e., it has the same poles as  X(z) and the zeros are reflected 
inside the  unit circle. Since the  conditions of Theorem 7 ex- 
clude the possibility of pole-zero cancellation, the coefficients 
a;, and  thus ak in (17), can  be obtained from the zeros of 
Xmin(z) and the coefficients bk in (17) can be obtained from 
the poles of Xmin(z). 
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v. NUMERICAL ALGORITHMS FOR RECONSTRUCTION 
FROM  SAMPLES OF A PHASE FUNCTION 

In Section 11,  we presented two sets of conditions, embodied 
in Theorems 1 and 2 ,  under which a sequence is uniquely 
specified to within a positive  scale factor  by  the phase of its 
Fourier transform. In this section, we describe two numerical 
algorithms which can be used to reconstruct a sequence satis- 
fying the requirements of Theorem 1 from samples of its phase 
function when the location of the first nonzero  point of x [ n ]  
and the interval outside of which x [ n ]  is zero are known. 
Although these algorithms will only be  discussed in terms of 
reconstructing sequences satisfying the  conditions of Theorem 
1, the  reconstruction of sequences meeting the requirements 
of Theorem 2 may be accomplished by simply reconstructing 
the finite length sequence %In] defined in ( 5 )  using the nega- 
tive of the specified phase  samples and then  computing  the 
convolutional inverse sequence. 

The first algorithm presented below  is  an iterative technique 
in which the estimate of X [ . ]  is improved in each iteration. 
This algorithm is similar to the iterative algorithms developed 
by Gerchberg and  Saxton [ 6 ]  and Fienup [ 7 ]  for  reconstruct- 
ing a signal from magnitude information and to the iterative 
algorithm developed by Quatieri [ 8 ]  for reconstructing a 
signal from its phase under the assumption that  the signal is 
minimum phase. The second algorithm is a closed form solu- 
tion which is obtained by solving a  set of linear equations. 
Under the  conditions specified in Theorem 1, this algorithm 
provides the desired sequence x [ n ]  to within a scale factor 
when the location of the first nonzero point of x [ n ]  and the 
interval outside of which x [n] is zero are known. 

In  the discussions which follow, x [ n ]  is  used to denote  a 
sequence which satisfies the conditions of Theorem 1 and is 
zero outside the interval 0 d n d N - 1 with x [ O ]  # 0. In  the 
more general  case  (see footnote 3) ,  a linear phase term may be 
added to  the given phase to accomplish this. 

A.  Iterative  Algorithm 
The M-point discrete Fourier transform (DFT) of x [ n ]  will 

be denoted as 

= I X(k>I e 
i o  x (k) 

(2 1) 
where it is assumed that  M 2 2N.  Then, an iterative technique 
to reconstruct the sequence x [ n ]  from the M samples of its 
phase e,@), k = 0, 1, - - , M - 1, as illustrated in Fig. 1 and 
may be described as follows. 

Step 1: We begin with I Xo(k) l ,  an initial guess of the  un- 
known DFT magnitude and form  the first estimate, X,@), of 
X(k) using the specified phase function, i.e., 

Xl(k )  = IXO(k)l e ie,(k) 
(22) 

Computing the inverse DFT of X,@) provides the first esti- 
mate, x1 [ n ] ,  of x [ n ] .  Since an M-point DFT is used, x1 [ n ]  is 
an M-point sequence which is, in general, nonzero  for N < n d 

Step 2: From x1 [ n ] ,  another sequence, y1 [ n ] ,  is defined by 
M -  1. 

Step 3: The magnitude I Yl(k)l of the M-point DFT of 
y1 [n] is then considered as a new estimate of IX(k)l and  a 

I 
I 
I 
I 
I 
I 

t r p  

I 
I 
I 
I r - l  M-POINT DFT 
I 
I 
I 

I 
A 
I 
I 

I 
I 
I 
I 

M-POINT IDFT 

I 
I 

Fig. 1. Block diagram of the iterative algorithm for  reconstructing  a 
signal from its  phase. 

From this, a new estimate x z [ n ]  is obtained from the inverse 
DFT of X ,  (k).  Repetitive application of Steps 2 and 3 defines 
the  iteration. 

In this iterative procedure, the  total squared error between 
x [ n ]  and its estimate is nonincreasing with each iteration.  To 
see this,  let x p   [ n ]  denote  the estimate after the pth iteration 
and define the error E p  as 

From Parseval's theorem, 

Since X(k)  and X p ( k )  have the same phase, then 
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Original  Sequence 

TABLE I 
ITERATIVE RECONSTRUCTION OF A SEQUENCE FROM ITS PHASE 

XfO] X I 1 1  

4.000 1.892 

4.000 2.022 

4.000 2.040 

4.000 2.012 

4.000  1.647 

4.000  1.855 

4.000 1.996 

4.000 2.000 

4.0 2.0 

X P I  xf31 

-9.935 

3.615  -10.335 

3.331 

-10.804  4.456 

-10.947  4.849 

-10.245  4.875 

-10.671  4.902 

-10.991 4.997 

-11.000 5.000 

-11.0 5.0 

Using the triangle inequality  for vector differences, (27) be- 
comes 

with equality holding if ex@) = O p - l  (k )  where Op-l (k) is the 
phase of Yp-l(k). Again  using  Parseval's theorem, (28) 
becomes 

Since 

then 

n = o  n =o 

(30) 

with equality if and only ifyp-l [ n ]  = x p - l   [ n ] .  Therefore, 

Ep Q E p - l .  (31) 

Although (3 1) is not sufficient to guarantee the convergence 
of the algorithm, it has recently been proved [9]  that this 
algorithm always  converges if M > 2N and if x [n ]  satisfies the 
constraints of Theorem 5. Consistent with this theoretical 
result, in all the examples that we have considered so far, we 
have empirically observed that  the algorithm converges to 
the correct solution when M > 2N even though  the  number of 
iterations required to achieve a small total squared error  is, in 
general, quite large. We have also observed that increasing M 
may increase the rate of  convergence of the algorithm, but 
such an increase obviously results in an increase in  the num- 
ber of computations required for each iteration.  The develop- 
ment  of techniques to increase the rate of convergence are cur- 
rently under investigation and some preliminary results are 
reported  in [lo]. 

xi41 Xf61 xf51 

5.113  13.886 7.115 

4.845  14.123 6.679 

4.272  14.642  5.577 

4.075 14.901 5.159 

5.015  15.286  6.563 

4.459 15.104 5.723 

4.013 15.003 5.019 

& 4.000 5.000 15.000 

x17 I 

-4.961 

-5.379 

-5,854 

-5.961 

-4.640 

-5.412 

-5.984 

-6.000 

-6.0 

Total  Squared 
Error 

11.961 

7.050 

8.925-10-' 

6.792.10-' 

6.117 

1.229 

9.109.10-2 

4 .118 .10 -~  

Two examples of the iterative procedure applied to a mixed 
phase sequence x [ n ]  of length 8 are shown in Table I. In  the 
first example, an FFT of length 16 was used. In  the second 
example, the FFT length was extended to 128 points.  In both 
cases, the initial guess of the  unknown magnitude was chosen 
to be a  constant, and the scaling factor 0 was chosen so that 
the resulting sequences have the same  value at  the origin as 
x [ n ] .  The results after 10,  100, 500, and  1000  iterations are 
presented along with the values of the  total squared error. 

B. Closed Form Solution 
A closed form solution4 for reconstructing a sequence x [ n ]  

from samples of  its phase, B,(o), follows from the definition 
of Ox(w). With &(o) defined so that - 1 ~  <O,(o) < r, we 
have 

- x [ n ]  sin no 
N - 1  

tan Ox(w) = N -  1 
n =o 

(32) x x [ n ]  cos no 
n=o  

For the case in which Ox(o) = -f?1/2 so that  tan ex(o) = fm, 
(32) is equivalent to 

N - 1  
x [ n ]  cos n o  = 0. (33) 

Sampling tan &(a) at N -  1 distinct frequencies ol, 02, * * , 
W N - ~  with o < o k < v  for k = 1 , 2 , * . . , N -  1 and using a 
standard trigonometric identity, (32) and  (33) can be written 
as 

n = o  

N - 1  
sin ' nokl 

n=1 

= -x[O]  sin &(wk), if ex(&) f kg (344 

4A closed form  solution similar to  the  one presented in this  section 
can be  obtained by expressing the real and imaginary  parts of X(w) in 
terms  of the given phase and  then relating the real  and imaginary parts 
through the discrete  Hilbert  transform  relations for causal sequences. 



67 8 IEEE TRANSACTIONS ON ACOUSTICS,  SPEECH, AND  SIGNAL PROCESSING, VOL. ASSP-28, NO. 6 ,  DECEMBER 1980 

N -  1 
x [ n ]  cos n o k  = - x [ O ] ,  if &(a,) = ?; (34b) 

for k = 1,2,  - , N - 1. Equation (34) represents ( N -  1) 
linear equations in the ( N -  1) unknowns of x[n] which, 
when augmented by the  equation x[O] = x [ O ] ,  can  be ex- 
pressed in matrix form as 

n = l  

Sx = x[O]  b (35) 

where x represents the vector of elements of x [ n ]  . Any solu- 
tion s [n] to (35) has the  property  that s [n] i s  zero outside the 
interval 0 < n < N  - 1, has the correct value at n = 0, and has 
the same tangent of the phase  as x [ n ]  for N -  1 distinct fre- 
quencies between zero and n. Thus, from Theorem 5, we 
conclude that s [n]  = x [ n ]  . Therefore, there is a unique solu- 
tion to (35). This implies that S-' , the inverse  of the  matrix 
S, exists and  that x [ n ]  is  given by 

x = x [ O ]  S - l b .  (36) 

Since x[O] is not known, in general, (36) specifies x [ n ]  to 
within an unknown scale factor x[O]  . To specify x [ n ]  to 
within a positive  scale factor, we first assume that x [0] > 0 
and determine the phase  of x in (36). If the resulting phase 
does not differ from B,(w), then x[O]  > 0 ;  otherwise 

In reconstructing x [ n ]  from O,(w) using (36), it should be 
noted  that we have some control over the  matrixS. Since the 
elements of the  matrix S are functions of the samples of 
O,(o), S can be changed by choosing a different set of fre- 
quency samples. This control over S may be useful, for 
example, in avoiding potential numerical instabilities in com- 
puting the inverse matrixS-'. 

Compared with  the iterative algorithm, the closed form solu- 
tion presented above has the advantage that  the desired 
sequence is guaranteed to be the solution to (35) and,  in addi- 
tion,  no  iterations are required in order to reach a  solution. 
On the  other  hand,  (35) requires computing the inverse of an 
( N -  1) X ( N -  1) matrix which may lead to numerical prob- 
lems and severe roundoff errors, particularly as N becomes 
large. 

The algorithm discussed  above has been applied to a variety 
of different examples. Consistent with our theoretical results, 
in all examples we  have considered, the desired solutions have 
been obtained. Specifically, for  the sequence shown in Table 
I, the closed form solution was used to reconstruct the 
sequence from its phase. The phase samples used to define the 
matrix S were first chosen to be equally spaced between zero 
and n, and  then were randomly selected between zero and n. 
Withm the limits of finite precision arithmetic, in both cases 
the sequence was reconstructed exactly when the scaling 
factor was chosen so that  the  solutions obtained had the 
correct value at the origin. 

Finally, it should be noted that if the first nonzero point of 
x [ n ]  is not  at n = 0 but rather at n = no > 0, then  the  matrix 
S will be singular. This follows from the observation that x is 
a  solution to the  equation Sx = 0. However, it is straightfor- 
ward to show that  the location of the first nonzero point of 
x [n J is  given by 

x[O]  <o.  

no = N  - rank (S ) .  (37) 

This equation, therefore, suggests  an algorithm which may 
be used to determine, from phase samples, the interval over 
which a sequence is nonzero when the sequence satisfies the 
constraints of Theorem 1. 

VI. EXTENSION TO MULTIDIMENSIONAL SEQUENCES 
In this section, we extend  the results of Sections 11-V to 

the case of multidimensional sequences. This extension is 
achieved by mapping a multidimensional sequence into  a 1-D 
(one-dimensional) sequence and then applying the results for 
1-D sequences. Since the extension of the 2-D case to se- 
quences of higher dimension is straightforward, our discussions 
in this section will concentrate on the 2-D case.  Again, we 
consider only sequences which are real, have rational z-trans- 
forms, and have Fourier transforms that converge. 

Let x [nl, n 2 ]  represent a 2-D sequence which has a rational 
z-transform with X(o 1 ,  w 2 )  given by 

where A ( w l ,  w2)  is a 2-D polynomial of degree &Il in 
exp [ j w l ]  andM2 in exp [ jw2]  and where B ( o l ,  w 2 )  is a 2-D 
polynomial of degree Nl in exp [ j w l ]  and N 2  in exp [ jw, ] .  
Suppose we form a  1 -D sequence [n]  or s2 [n] by 

or 

x^,[n] = x [ n - M m , m ]  
m 

m =-m 

where M 2 max (&Il, N l )  and N 2 max (M2,  N2) .  Then it can 
be shown [I 11, [ 121 that  the transformation in (39) is invert- 
ible and that 

~ 1 ( W ) = X ( ~ 1 , ~ 2 ) ~ w , = w N , w , = w  (404 

and 

From (40), it is  clear that  the phase  of [n] or s 2 [ n ]  is 
specified by the phase of x [ n l ,  n2 J and the magnitude of 

[n] or x^2 [n]  is specified by  the magnitude of x [ n l ,   n 2 ] .  
Therefore, all the theorems and numerical algorithms devel- 
oped in Sections 11-V for 1-D sequences may be extended to 
2-D sequences by first transforming them into  1-D sequences 
using (39) and then applying the 1-D results to the resulting 
1-D sequences. Thus, for example, Theorem 1 may be ex- 
tended to 2-D sequences as follows. Let x [ n l ,   n 2 ]  and 
y [nl ,  n2 J be two 2-D sequences such that  the  two 1-D' se- 
quences x [ ~ ]  and y [n J obtained from transforming x [nl, n 2 ]  
and y [nl, n2 J using (39) are finite in length and have no zeros 
in reciprocal pairs or on  the unit circle. If Ox(wl, w2)  = 
6,,(wl, 02) for all o1 and w2,  then x [ n l ,  n 2 ]  = Py[nl, n2J for 
some positive constant p. If  tan B,(ol,  w 2 )  = tan O,,(ol, w2)  
for all w1 and w 2 ,  then x [ n l ,  n 2 ]  = / 3 y [ n 1 , n 2 ]  for some real 
constant 0. 

If x [ n l ,   n 2 ]  is a 2-D sequence with finite  support, then the 
transformation given by (39) can  be reduced to a simpler 
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Fig. 2. Image reconstruction  from phase information. 

form. Specifically, let x [ n l ,  n2J  be zero outside  the region 
O < n l  <Nl - 1 and O < n 2  < N 2  - 1. Then (39) can be 
rewritten as 

?1[n1N+n21 = X [ n ~ , n , l ,  

with N > N l  and O < n 2  < N -  1 

(4 1 a) 

or 

22[n1 +n2MI =x[n1,n,l, 

with M2N2 and O<n, < M -  1. 

(41 b) 

Clearly, the  transformatjon  in (41)Ais invertible and it can be 
easily shown [ 121 that X1 (a) and X 2  (a) are given by (40). 

As an illustration of the results of this section,  a 2-D se- 
quence representing the  intensity of an image x [ n l ,  n2 J was 
created which is zero outside  the zegion 0 <nl  < 11 and 
0 < n2 < 11. From  the phase of X, (0) defined by (40a) 
with N = 12, the closed form solution was used to reconstruct 
x [ n l ,  n2]. With the scale factor chosen so that  the recon- 
structed image had the same value at  the origin as x [ n l ,  n2] ; 
the  result, shown in Fig. 2, is indistinguishable from the 
original. For  illustration,  the image shown has been enlarged 
by means of  a zero-order hold. 

Finally, it should be noted  that this approach of transform- 
ing n-D sequences into their 1-D projections provides only a 
partial solution to the multidimensional phase-only problem 
since it circumvents the fundamental issues  involved in multi- 

dimensional phase-only signal reconstruction. Specifically, 
this approach imposes constraints on a I-D projection of an 
n-D sequence rather  than directly on  the n-D sequence. In 
addition,  although  it may not be  possible to perform a phase- 
only reconstruction of an n-D sequence from a particular pro- 
jection, this does not preclude the possibility that there exists 
another projection for which the  reconstruction is possible. 
Therefore, with this approach,  it is difficult to determine 
which multidimensional sequences may be reconstructed from 
their phase. I t  is possible, however, to generalize Theorem 1 
to n-D sequences [13]. However, due to the absence of a 
fundamental theorem of algebra for polynomials in more 
than one variable, the proof of this theorem [14] is more 
abstract than that required in the one-dimensional case. 

VII. CONCLUDING REMARKS 
In this paper, we have developed a set of conditions under 

which a sequence is uniquely specified by the phase or samples 
of the phase of  its Fourier transform, and a similar set of con- 
ditions under which a sequence is uniquely specified by  the 
magnitude of its Fourier transform. Under the specified con- 
ditions, we have also developed several algorithms which may 
be used to reconstruct a sequence from its phase or magnitude. 

Even though  the results reported  in this paper seem to 
answer some of the  important questions on  the general prob- 
lem of signal reconstruction from its phase or magnitude, there 
are a variety of issues that remain to be investigated. One such 
issue pertains to the  conditions under which a sequence can be 
recovered from its magnitude. The conditions that we have 
developed under which a sequence can be reconstructed from 
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its phase are quite general  and most  finite  extent sequences  of 
practical interest satisfy these conditions. However, the  con- 
ditions we have  developed  under  which a sequence  can  be 
reconstructed from its magnitude  appear to be  very restrictive. 
For example,  few  sequences  of practical interest have all the 
poles  within the  unit circle and all the zeros outside  the  unit 
circle. It may  be possible, however, to relax these conditions 
by  imposing other  constraints which do  not exclude  sequences 
of practical interest.  Another issue that requires further 
investigation is an  understanding  of the sensitivity of the 
reconstructed sequence to inaccurate  information  about the 
original (unknown) sequence. For example, in most practical 
problems  of interest,  the phase may not be  known  exactly  due 
to errors such  as  measurement  noise and it is important to 
understand  the  effects of  these errors on  the reconstructed 
sequence.  These  and other  important issues are currently 
under investigation. 

The results reported  in  this paper  have the  potential to be 
applicable to a variety of practical problems. For  example, 
consider an image  which  is blurred  by an optical  system whose 
transfer function is not known and  suppose that we  wish to 
reduce the  effect of the blurring. If the blurring function is 
symmetrical so that  the tangent of the phase  is unaffected  by 
the blurring and if the original image satisfies the  conditions 
developed in this paper for its unique reconstruction  from  the 
tangent of its phase, then  the results of this paper are poten- 
tially applicable. As another  example, consider the signal 
coding  problem. In signal  coding by Fourier transform  tech- 
niques, both  the magnitude  and  phase are typically coded and 
transmitted. Since the results of this paper  show that most 
finite extent sequences  can be recovered from samples  of their 
phase, it is  reasonable to attempt  to  code  only  the phase and 
then  reconstruct  the signal from  the coded  phase.  These and 
other  potential application areas are also currently under 
investigation. 
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