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We review and interpret previous results of Fourjer synthesis of a signal from its partial Fourier-domain informa-
tion. Specifically, the high intelligibilities of the phase-only, signed-magnitude-only, and one-bit-phase-only sig-
nals are shown to be closely related to one another. In addition, we review and interpret previous results and devel-
op new results on exact reconstruction of a signal from its partial Fourier-domain information.

'

1. INTRODUCTION

In a variety of practical problems, only partial Fourier-
domain information is available about a signal, and it is de-
sired either to reconstruct the signal exactly or to synthesize
a signal that in some sense has some intelligibility consistent
with the original signal. Over the past several years a number
of results related to this problem have been developed in the
Digital Signal Processing Group at MIT. 1In this paper, we
summarize these previously reported results and in Section
4 present a number of new results and interpretations related
to one aspect of the problem.

In broad terms, the partial Fourier-domain information that
we have assumed to be available is the Fourier-transform (FT)
phase alone, the FT magnitude alone, or, as we define in more
detail in Section 2, the signed FT magnitude corresponding
to magnitude together with a bipolar function (1) repre-
senting one bit of phase information at each frequency. The
attempt to reconstruct a signal exactly from FT-magnitude
information is commonly referred to in the literature as the
phase-retrieval problem.! Correspondingly, reconstruction
from FT phase alone is typically referred to as the magni-
tude-retrieval problem. Although both of these are of po-
tential practical importance, it is generally acknowledged that
the phase-retrieval problem is more common since there are
many situations in areas such as electron microscopy,? x-ray
crystallography,3 and optical astronomy* in which the mag-
nitude or the intensity of a diffraction pattern or an inter-
ference pattern is recorded and from which it is hoped that
more-complete information can be recovered. Although the
companion situation, in which only the FT phase is available,
is perhaps of less practical significance, there are important
situations in which it arises. One is when a signal is distorted
by filtering with a symmetrical, zero-phase blurring or
point-spread function, as could occur in defocusing in some
optical systems. In this case, the magnitude is degraded in
an unknown way, but the phase is retained undegraded. Li
and Kurkjian5 have also shown how some problems in ar-
rival-time estimation can be formulated as a magnitude-re-
trieval problem. Specifically, a situation encountered in
applications such as seismics and ocean acoustics is that of an

0030-3941/83/111413-08$01.00

unknown wavelet propagating nondispersively in a rever-

beratory or multipath environment. Two receivers placed

in such an environment will each record the arrival of this

wavelet numerous times, each time with a different attenua-

tion factor. The method proposed for estimating the arrival

times and attenuations at each receiver corresponds to con-

structing a finite-length sequence whose phase equals that of

the cross spectrum of the two received signals and conse-

quently is known. This information, together with the fi-

nite-length constraint, is then used to recover the original

sequence. An additional problem in which only phase in-

formation is available arises in the field of paleomagnetism, -
in which, by an examination of core samples from the earth,

a history of the direction, but not of the strength, of the

magnetic field over time can be obtained. It would be highly

desirable to be able to estimate or recover from this phase or ,
direction history the associated strength or magnitude of the

original magnetic field.

In all the problems above, and in the discussion that follows,
there are two distinct sets of issues. As we discuss in Section
2, it is often possible to synthesize a signal in a more-or-less

“ straightforward way from partial information that captures
much of the intelligibility of the signal, even if it is not an ac-
curate reconstruction on a point-by-point basis. A separate
and distinctly different question and set of issues relate to the
conditions under which exact réconstruction is possible from
the partial information and the algorithmic issues associated
with this reconstruction. OQur previous work on this is sum-
marized in Section 3, and some new interpretations and results
related to one aspect of the topic are developed in Section
4,

In developing the discussion in the remainder of the paper,
we consider both one-dimensional and multidimensional
signals and their FT’s. Notationally, a general N-dimensional
signal will be denoted by f(x), where x = (x1,%9,...,%N)is
the vector of independent variables, and its associated N-
dimensional Fourier transform by F(w), where w = (wy, ws,
..., wn). A one-dimensional signal and its associated FT are
denoted by f(x) and F(w), respectively. When the discussion
applies explicitly to discrete-time signals, the signal is denoted

-by f(m).
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The FT is, of course, a complex-valued function, which we
express in Cartesian form as

F(w) = Fr(w) + jFi(w), 6y

where F,(w) and F;(w) are the real and the imaginary parts,
respectively, and in polar form as

F(w) = Mi(w)exp[jfp(w)], 2

. where M;(w) and 0/(w) are the magnitude and the phase, re-
spectively, and —w < fy(w) < 7. In this representatlon of
course, My(w) is always real and nonnegative. g

We also make reference to a representation to which we
refer as a signed-magnitude and phase representation, cor-.

responding to signed magnitude and its generalization. In
this representation, we express F(w) in the form

F(w) = Af(w)exp[jr(w)], (3)

where 1[/}((0) is restricted to the interval —(7/2) < Yr(w) <
(w/2) and

Af(w) = My(w)sign[F, (w)]. 4)

For example, if F(w) is real but not necessarily positive in the
magnitude and phase representation of Eq. (2), ff(w) is zero
or 7, depending on the sign of F(w), whereas, in the signed-
magnitude and phase representation of Eq. (3), A¢(w) = F(w)
and ¥(w) =

We also find it convenient to consider a generalized form
of the representatlon in Eq. (3). This generalized represen-
tation is

F(w) = Af“(w)expr“(w)] (5)

where a is a specified constant in the range
0<a<m

and

“Ap(w) = Mp(w)Sr*(w), (6)
with

Sr¥(w) = mgn(Re[exp[ (E - a)]F(w)]) )]

Equivalently,

a—7m<biw)<a
otherwise

i) = {1 ®
— 1,

As*(w) is again referred to as the signed magnitude. For a

= /2, the representation of Eq. (5) reduces to the represen-

tation of Eq. (3).

The bipolar function Sf*(w) incorporates one bit of phase
information at each frequency. Thus the complex plane is
divided into two regions separated by a straight line passing
through the origin and at an angle « with the real axis. The
one-bit phase information corresponds to knowing in which
part of the complex plane F(w) lies for each w.

2. FOURIER SYNTHESIS FROM PARTIAL
INFORMATION

A. Phase-Only and Magnitude-Only Fourier Synthesis

When either the FT phase alone or the FT magnitude alone
is available, one can consider synthesizing the signal by
combining the known information with an average assumption
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about the remainder of the transform. Combining the correct
phase with either a constant or an average magnitude is re-
ferred to as phase-only Fourier synthesis, and the result is
denoted as fp(x). Combining the correct magnitude with zero
phase is referred to as magnitude-only Fourier synthesis, and
the result is denoted as [, (x).

Apparently independently and in a number of different
contexts, it has been recognized that many features of a signal
are retained in a phase-only Fourier synthesis but not in a
magnitude-only Fourier synthesis. This observation about
phase applies to one-dimensional, two-dimensional, and
three-dimensional signals. For example, both phase-only and
magnitude-only acoustical and optical holograms have been
studied.? For phase-only holograms (also referred to as
kinoforms), only the phase of the scattered wave front is re-
corded and the magnitude is assumeéd to be constant, whereas
in the magnitude-only hologram the phase is assumed to be -
zero and only the magnitude of the scattered wave front is
recorded. In general, with reconstruction from magnitude-
only holograms, the reconstructed object is not of much value
in representing the original object, whereas reconstructions
from phase-only holograms have many important features in
common with the original objects.

Closely related to phase-only and magnitude-only holo-
grams are phase-only and magnitude-only images. As with
kinoforms, a phase-only image has a FT phase equal to that
of the original image and a FT magnitude of unity or perhaps
more generally representative of the spectral magnitude of
images, such as the average over an ensemble of unrelated
images. Many of the features of the original image are clearly
identifiable in the phase-only image but not in the magni-
tude-only image. This is illustrated in Fig. 1,10 in which we
show an original image, the phase-only image with unity
magnitude, and the phase-only image with average magnitude.
The magnitude-only image (not shown) has most of its energy
concentrated at the origin because the phase is zero and has
no easily recognizable features in common with the orig-
inal. '

Similar observations have also been made in the context of
speech signals. Specifically, we previously demonstrated that
the intelligibility of speéch is retained if the phase of the FT
of a long segment of speech is combined with unity magnitude,
whereas the intelligibility is not retained if the magnitude of
the FT is combined with zero phase.11:12

B. Fourier Synthesis from A;%(w) or §5*{w)

Closely related to phase-only and magnitude-only synthesis
is the Fourier synthesis from signed magnitude alone. In this
case the synthesized signal, denoted by f,%(x), is obtained as
the inverse FT of Af*(w), corresponding to Yr*=0in Eq. (3).
This then corresponds to a synthesis with the correct Fourier
magnitude and one bit of phase information. In Fig. 2 is
shown!3 the signed-magnitude-only image of the original
image of Fig. 1(a), with & = 7/2. Clearly, much of the original -
intelligibility is preserved in the synthesis from signed mag-
nitude alone.

As was suggested to us by Gassman,'¢ intelligibility of
fa™2(x) is closely related to the intelligibility of f,(x). In
particular, let us restrict f(x) to have a one-sided region of
support, i.e.,

fx) =0 outsidex = 0 9)
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Fig. 1. (a) Original image of 256 X 256 pixels with 8 bits/pixel. (b)
Phase-only image with unity magnitude. (c) Phase-only image with
average magnitude.
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Fig. 2. Signed-magnitude-only image with average magnitude.

and define g(x) as
g(x) = f(x) + f(—x). , (10)
Then G(w) = 2 Re[F(w)], and the phase of G(w) represents

_signfRe[F(w)]}. Consequently, g,(x), the phase-only synthesis

of g(x), and f,™/2(x), the signed-magnitude-only synthesis of
f(x), have identical phase and differ only in FT magnitude.
Based on intelligibility of phase-only synthesis, g, (x) can be
expected to retain much of the intelligibility of g(x), and this
in fact has been verified by a number of experiments. For
example, with f(x) corresponding to an image, g(x) is the
concatenation of the image with itself reflected with respect
to the origin. Experimentally, g, (x) has the same symmetry,
retaining much of the intelligibility of g(x). Figure 3 shows
the first quadrant of g, (x) when f(x) is the original image of
Fig. 1(a). A similar effect has also been observed for speech
signals. :

Since the phase of G(w) represents signfRe[F(w)]}, which is
one bit of phase information of F(w), g,(x) represents the
signal synthesized by combining one bit of phase of F(w) with
a constant magnitude and is therefore referred to as a one-

Fig. 3. One-bit phase-only image with constant magnitude.
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Fig. 4. One-bit phaée-only image with average magnitude.

bit-phase-only signal. The image shown in Fig. 3, then, is the
one-bit-phase-only synthesis of the original image of Fig. 1(a).
In the phase-only synthesis, the correct FT phase has been
combined either with a constant magnitude or with a repre-
sentative average magnitude. Similarly, in the one-bit—
phase-only synthesis, the one bit of phase information can be
combined with an average magnitude. An example of this is
shown in Fig. 4, in which the one-bit phase information ob-
tained from the original image of Fig. 1(a) was combined with
an average magnitude. _

A common piece of information used in both the phase-only
and the signed-magnitude-only synthesis is the one bit of
phase information. This suggests that the high intelligibility
of phase-only and signed-magnitude-only synthesis is perhaps
due primarily to the high intelligibility of the one-bit—
phase-only synthesis. This speculation is supported in part
by the low degree of intelligibility preserved in the magni-
tude-only signal and in part by the low degree of intelligibility
preserved when one bit of phase information is removed from
the phase-only signal. Specifically, when the one bit of phase
information is removed from the correct phase by retaining
the correct phase for half of the phase and by adding 7 to half
of the remaining phase, and then when the signal is recon-
structed by combining the modified phase with a constant or
average magnitude, the resulting signal has been observed to
retain little intelligibility.

3. EXACT RECONSTRUCTION FROM
PARTIAL INFORMATION

A. Exact Reconstruction from Phase

The reasonably high intelligibility of phase-only signals
demonstrates the fact that much of the important information
resides in the phase. Although, in general, a signal is not
uniquely defined by its FT phase, it may be under certain
conditions or constraints. One well-known set of conditions
under which a signal may be uniquely recovered to within a
scale factor from its phase is the minimum-phase or maxi-
mum-phase condition. There are also other, different sets
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of conditions unrelated to the minimum-phase or maxi-
mum-phase condition under which signal recovery to within
a scale factor is possible from the phase.

In the context of our research program, it has been shown
that, if a one-dimensional discrete-time signal is of finite .
length and has a z transform with no zeros on the unit circle
or in conjugate reciprocal pairs, then phase information alone
is sufficient for signal reconstruction.1516 This result has also
been extended in a number of ways to multidimensional
signals!5-17 and to reconstruction when the phase is known
only at a set of sample frequencies.

A variety of algorithms have also been developed for
implementing exact signal reconstruction from phase. One
algorithm consists of solving a set of simultaneous linear
equations. A second, more robust algorithm is an iterative
procedure that imposes alternately the finite-length constraint
in the time domain and the known phase information in the
frequency domain.15:18

B. Reconstruction from Fourier-Transform Magnitude

It is well known that the above conditions for signal recon-
struction from FT phase do not also apply to reconstruction
from FT magnitude. Theoretically, a two- or higher-di-
mensional finite-length signal can be recovered to within a
translation, reflection with respect to the origin, and a sign,
from samples of FT magnitude,® when its z transform is not
factorable, which is satisfied in most cases of practical interest.
The procedure to recover a signal from its FT magnitude,
however, does not appear to be robust, and practical algo-
rithms have not been developed.

Recently, we showed that one context in which F'T magni-
tude is sufficient is when it is the magnitude of the short-time
FT that is available. In many application areas, signal pro-
cessing is carried out on the basis of a short-time Fourier
analysis. In speech processing, in particular, the short-time
FT is used in a wide variety of applications as the basis for
both speech analysis and speech synthesis. Often it is the FT
magnitude that is recorded or processed under the assumption
that the loss of information associated with discarding the
phase is acceptable. The theory that has been developed
demonstrates that, under mild conditions, the short-time FT
magnitude is sufficient for exact representation of the sig-
nal.1%20 In essence, the requirement is that the analysis
window be known and that the short-time FT magnitude be
available at time increments that are less than one half of the
length of the analysis window. Based on these conditions, the
original signal can be exactly recovered to within a multipli-
cation by plus or minus unity. Furthermore, a variety of al-
gorithms implementing this reconstruction have been devel-
oped and implemented.

The importance of this theory relates not only to recon-
struction when the exact short-time F'T magnitude is known
but also to applications in which the FT magnitude has been
purposely or inadvertently modified. This occurs, for ex-
ample, in speed-rate changes of speech for which the time scale
of the short-time FT is purposely altered. Insuch cases, the
resulting function of time and frequency is no longer a valid
short-time FT. Nevertheless, reconstruction using the al-
gorithms based on short-time Fourier magnitude alone pro-
vide a phase consistency in the reconstructed signal, which is
highly desirable.
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C. Reconstruction from Signed Fourier-Transform
Magnitude

As was the case with FT phase, the high intelligibility of
signed-magnitude-only synthesis suggests that, under some
conditions, a signal may be uniquely specified by its signed
FT magnitude. It was recently shown2'-22 that a real, finite-
length, and causal (or anticausal) signal with no zeros on the
unit circle is uniquely specified by its signed FT magnitude.23
In addition, an iterative algorithm that alternately imposes
the real, causal, and finite-length constraints in the time do-
main and the known signed magnitude in the frequency do-
main has been developed to reconstruct a signal from its
signed FT magnitude. Although samples of the signed FT
magnitude at a finite prespecified set of frequencies in general
do not uniquely specify a signal, and the iterative algorithm
uses the signed F'T magnitude of the discrete Fourier trans-
form (DFT), experimental results have shown that the algo-
rithm reconstructs the correct sequence when a sufficiently
large DFT size is chosen.

4. NEW RESULTS ON EXACT SIGNAL
RECONSTRUCTION

In Section 3.C, we summarized previously reported results on
exact reconstruction from signed FT magnitude. In Sections
4 we present some new generalizations and extensions of these
results. Of principal importance is the fact that, as we dem-
onstrate in Section 4.B, the restriction of finite extent previously
imposed can be removed, and we present a somewhat more
intuitive but formally correct justification than in previous
publications. This result is based on the observation devel-
‘oped in Section 4.A that, since a finite-length sequence is
uniquely specified to within a real scale factor by samples of
its FT phase, an all-pass sequence is also. In Section 4.C we
discuss new conditions, not previously reported to our

knowledge, under which a one-dimensional signal can be re-

constructed from only the sign information in Eq. (3) without
the magnitude.

A. Reconstruction of an All-Pass Sequence from Phase
Samples

A result to be used in Section 4.B and interesting in its own
right is the fact that an Nth-order real, causal, stable, all-pass
sequence can be uniquely recovered, to within a scale factor,
from N samples of its phase in the interval 0 < w < 7. To
develop this result, let H,,(z) denote the z transform of an
Nth-order real, stable, all-pass sequence normalized in mag-
nitude so that H,,(z)|,~; = 1. Then H,p(2) can be expressed
in the form

N
11:11 (1—az2)
Hyp(z) = z—NF‘%—, (11)
11 —-a*z1)
=1
where |a;| < 1. Define
N
R@)=2z"NT] (1 - ap) (12)
i=1

and denote by 6,(w) and by 8,,(w) the unwrapped phase as-
sociated with R(z) and H,p,(2) on the unit circ_le. Then, since
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(1 — ajef)* = (1 — a/*e=i%), By, (w) can be expressed as

fop(w) = 20, (w) + Nw

or
6,(w) = % [0ap () — Neo]. (13)

Since R(z) is the z transform of a real, finite-length se-
quence that is zero outside the interval [0, N] and has no zeros
on the unit circle or in'conjugate reciprocal pairs, then, from
the results in Ref. 186, it is uniquely specified by N samples of
6r(w) in the interval 0 < w < 7. Equivalently, then, from Egs.
(11) and (13), H,p(2) is uniquely specified by N samples of
04p{(w) in the interval 0 < w < w. This demonstration can be
extended to include arbitrary all-pass sequences, but the result
given for causal all-pass sequences is sufficient for the devel-
opment that follows.

B. Reconstruction from Signed Fourier-Transform
Magnitude

From the result in Section 4.A it follows that the results on
signal reconstruction from signed FT magnitude discussed
in Section 3.C and originally stated for finite-extent signals21,:22
generalize directly to the case of infinite-duration signals. In
the following, we demonstrate?5 that a real, causal, and stable
one-dimensional sequence (of either finite extent or infinite
extent) with rational z transform and no zeros on the unit
circle is uniquely specified by its signed FT magnitude.

Let o = w/2 in Eq. (5), in which case As*(w) is given by Eq.
(4). From Egs. (8) and (4), at points of discontinuity on the
signed magnitude the phase must be either 7/2 or —(7/2).
Specifically,

g if Are(wg) > 0
Bf(w) = (14)

e
- 5 otherwise

where A¢*(w) is discontinuous at wq. Since the original se-
quence is assumed to be causal and stable, all its poles are
inside the unit circle. If N is the number of zeros outside the
unit circle, from the argument principle,2*

b(2w) - 8(0) = —2xN, (15)

where (w) represents the unwrapped phase. Since B(w) is
continuous, it must take on the values £(w/2) + 2k« for at
least 2N points on the interval (0, 27) or for at least N points
on the interval (0, 7). Thus from the signed magnitude we
can obtain the magnitude and N samples of the phase, where
N is the number of zeros outside the unit circle. The value
of N can also be determined from the samples of the un-
wrapped phase.

Next, we express F(z), the z transform of f(n), in the
form

N M
ITE1=—a) I 1-bz"1)
=1 I=1

Fz)=A . . e
T =cz™Y)
I-1

where |a;|, |b;|, and |¢;| are all <1. Then F(z) can be ex-
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from Partial Information

Summary of Results on Fourier Synthesis

Signal Type Intelligibility®
Magnitude-only signal Not intelligible
Phase-only signal Intelligible
Signed-magnitude-only signal Intelligible
One-bit phase-only signal Intelligible

4 For both one-dimensional and multidimensional signals.
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N M
JA—aF="1) 1] (1 —-5z"1
Frp(z) = A =1 - =1
II A =cz™h
=1
and
N
(z71~ay)

H,,(2) =

and all poles at
infinity

N
pressed as lHl (1 —a*z™1)
F(z) = Frp(@)Hap 2), (0 Here, F,,;(2) denotes the z transform ofthe minimum-phase
where sequence associated with the magnitude |F(w)|, and Hyp(2)
Table 2. Summary of Results on Exact Reconstruction from Partial Information
Unique
Do Specification
Typical by Samples at a Do
Sequences Unique Specification Finite Set of Robust
Constraints . Satisfy within the Following Arbitrary Algorithms
Information on Signal Constraints? Aspects Frequencies? Exist?

- FT magnitude, Real, finite extent, Almost Translation, Yes Mixed
multidimen- nonfactorable always reflection with results
sional 2 transform respect to origin,

sign factor

F'T magnitude, - Same Few Same Yes Yes
one-dimen-
sional

Short-time Real, one-sided, Almost Sign factor Yes Yes
FT Magni- number of consecutive always
tude, one- zeros within sequence
dimen- less than analysis
sional window size

FT Phase, Real, finite extent, Almost Positive scale Yes Yes
multidi- no symmetric factors always factor
mensional

FT phase, Real, finite extent, Almost Positive scale Yes Yes
one-dimen- no zeros in conjugate always factor
sional reciprocal pairs

or on the unit circle

Signed FT Real, finite extent, Most Unique Noe Yes (based
Magnitude, one-sided, no zeros on on limited
multidimen- a small region of the results)
sional unit surface

Signed FT Same as above with no Most Unique No Yes (based
magnitude, zeros on the unit on limited
one-dimen- circle results)
sional

Signed FT Real, stable, one- Most Unique No No
magnitude, sided, rational 2
one-dimen- transform, no zeros
sional on unit circle

One-Bit Real, finite extent, Few Positive scale No No
FT phase, either x(n) or factor
one-dimen- x(—n) with all zeros
sional inside unit circle

¢ Note, however, that the conditions given for unique specification in terms of FT magnitude also apply for signed FT magnitude.
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denotes the z transform of an all-pass sequence. Note that
H,p(2) contains one pole and one zero {at conjugate reciprocal
locations) for every zero of Fy,,(2) that must be reflected, that
is, for every zero of F(z) outside the unit circle. Since the
magnitude of F(w) uniquely specifies Fy,p (2) to within a sign
factor that can be determined from As(w)|,=0, the N phase
samples of F(z) specify N phase samples of H,,(z). Thus,
from Section 4.A, H,p (2) is uniquely specified, and therefore
F(z) is uniquely specified.

The above discussion can be extended to include a more
general definition of signed magnitude as given by Eq. (5).
The only difference is that the signed magnitude now specifies
the points where the phase crosses o or & — 7 instead of the
points where the phase crosses 7/2 or —(7/2). This argument
does not hold for « = 0 since, in this special case, two points
of discontinuity of the amplitude will occurat w =0 and w =
7, leaving only N — 1 points of discontinuity on the interval
0, 7).

The above discussion also applies, with simple modifica-
tions, to the case of a real, anticausal, and stable one-di-
mensional signal with rational z transform and with no zeros
on the unit circle.

C. Reconstruction from One-Bit Fourier-Transform
Phase
Under certain conditions, a one-dimensional signal can be
reconstructed exactly only from Sy#(w), the one-bit FT phase
information defined in Eq. (8) without the magnitude My(w),
as was required in Section 4.B. This is the case if the sequence
is of finite length, is causal, and has all its zeros outside the
unit circle. For such a sequence, Sy*(w) will change sign over
0 <w < 7 at least as many times as the total number of zeros
~of the sequence. Since (w) can be exactly determined from
Eq. (14) at the frequencies at which S, %(w) changes its sign,
the sequence can be uniquely determined within a scale factor
from the one-bit FT phase information. A similar result also
holds for the case in which the one-dimensional sequence is
of finite length, is anticausal, and has all its zeros inside the
unit circle. :

Whereas most signals found in practice would not satisfy
either of these conditions, any signal meeting the appropriate
causality constraints can be made to do so by adding a suffi-
ciently large impulse at the beginning or the end of the signal.
Thus a signal could in theory be reconstructed by first adding
an impulse at the beginning or at the end, advancing or
delaying it to make it anticausal or causal, taking the sign of
the real part of the FT of this new sequence, reconstructing
the new sequence from the sign of the real part, and then re-
moving the impulse. As was discussed in Section 2.B, syn-
thesis from S¢*(w) alone has reasonably high intelligibility.

5. SUMMARY

We have reviewed a number of previous results and presented
some new results on the Fourier synthesis from partial Fou-
rier-domain information and exact reconstruction from partial
Fourier-domain information. Tables 1 and 2 summarize the
results discussed in this paper. Table 1 summarizes results
of the Fourier synthesis from partial information, and Table
2 summarizes results of the exact reconstruction from partial
information.
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The bipolar function S;*(w) is defined in this paper by Eq. (8),

as shown below:
Spr(w) =1 (R1)

=-1

fora—n <fiw) < a.
otherwise

The definition used in Refs. 21 and 22 for Sy*(w) is slightly dif-
ferent from Eq. (R1), as shown below:

Oppenheim et al.

Sp(w) = 1 (R2)

=-1
Since the Sf*8w) in Eq. (R2) can be derived from thatin Eq. (R1),

the results in Refs. 21 and 22 also apply when Sy*(w) is defined
by Eq. (R1).

fora ~ 7 < 6f(w) < a.
otherwise
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The demonstration applies to the definition of Sy*(w) given by
Eq. (8) and does not apply to the definition of S;*(w) used in Refs.
21and 22. For the definition of Sy*(w) in Refs. 21 and 22, see Ref.
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