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Signal  Ana-lysis  by  Homomorphic  Prediction 

Abstract-Two  commonly used  signal  analysis  techniques are linear 
prediction  and  homomorphic filtering. Each  has particular advantages 
and limitations.  This paper considers  several  ways  of  combining these 
methods to capitalize on the advantages of both.  The resulting tech- 
niques,  referred to collectively as homomorphic  prediction,  are  poten- 
tially useful for pole-zero  modeling and inverse  filtering of mixed  phase 
signals. Two of these  techniques are illustrated  by means  of synthetic 
examples. 

INTRODUCTION 

T WO classes of signal  processing techniques which have 
been applied to a variety of problems are homomorphic 
filtering or cepstral analysis [ 11 , [2] and linear predic- 

tion  or predictive deconvolution [ 3 ]  -[SI . Separately, each 
has particular advantages and limitations. It appears possible, 
however, to combine them into new methods of analysis 
which embody  the advantages of both. In this paper we dis- 
cuss  several  ways of doing this. 

Linear prediction is directed primarily at modeling a signal  as 
the response of an all-pole system. Its chief advantage over 
other identification methods is that for signals  well matched to 
the model it provides an accurate representation with  a small 
number  of easily calculated parameters. However, in situa- 
tions where spectral zeros are important linear prediction is 
less satisfactory. Furthermore,  it assumes that  the signal  is 
either minimum phase or maximum phase, but  not mixed 
phase. Thus, for example, linear prediction has been highly 
successful for speech coding [3], [SI ,  [ 6 ]  since  an  all-pole 
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minimum phase representation is often  adequate  for t h s  pur- 
pose. It has also been applied in the analysis of seismic data, 
although limited by  the fact that such data  often involve a 
significant mixed phase component. 

Homomorphic filtering was developed as a general method 
of separating signals which have been nonadditively combined. 
It has been used in speech  analysis to estimate vocal tract 
transfer characteristics [7] -[9] and is currently being evalu- 
ated in seismic data processing as a way  of isolating the impulse 
response of the earth’s crust from the source function [IO] - 
[ 121 . Unlike linear prediction,  homomorphic analysis  is not a 
parametric technique and does not presuppose a specific 
model. Therefore, it is effective on  a wide  class  of  signals, 
including those which are mixed phase and those characterized 
by both poles and zeros. However, the absence of an under- 
lying model also means that  homomorphic analysis does not 
exploit as much  structure in a signal  as does linear prediction. 
Thus, it may be far less efficient than an appropriate para- 
metric technique when  dealing with highly structured  data. 

The  basic strategy for combining linear prediction with 
cepstral analysis is to use homomorphic processing to trans- 
form a general  signal into one or more other signals whose 
structures are consistent with  the assumptions of linear predic- 
tion. In this way the generality of homomorphic analysis  is 
combined with  the efficiency of linear prediction.  In  the  next 
section we briefly review  some of the properties of  homo- 
morphic analysis that suggest this  approach. We then discuss 
several  specific  ways of combining the  two techniques. 

HOMOMORPHIC SIGNAL PROCESSING 
Homomorphic signal  processing is based on  the  trazsforma- 

tion of a signal x ( n )  as depicted in  Fig. 1. Letting X ( z )  and 
X ( z )  denote  the z transforms of x^(n) and x(n) ,  the system 
D* [*I is defined by  the relation 

2 ( z )  = log X(z)  (1) 

where the complex logarithm of X ( z )  is appropriately defined 
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[2]  . The  system L [.] is a linear system  and the system 0;' [.I 
is the inverse  of D, [.] . The  signal X̂(.) is commonly referred 
to as the complex cepstrum. There are a  number of properties 
of the complex  cepstrum that are particularly useful, and  these 
have  been  discussed  elsewhere [ I ]  , [2] . Of particular interest 
for  this paper  are the following. 

1) With x(n) expressed as the  convolution of its minimum 
phase  and  maximum  phase components,  denoted as x,i,(n) 
and xmax(n), respectively, 

x(n) =xmin(n>  +xrnax(tz>* 
A h A 

h Furthermore, x,in(n) is zero for n < 0 and x,,(n) is zero 
for n > 0. Thus, the complex cepstrum provides a means for 
factoring  a signal into  its minimum  phase  and  maximum  phase 
components. Specifically, by  choosing the linear system in 
Fig. 1 such that 

A 

n<O 

$(n) = TX(0) n = 0 
{ l A  
c;;(n) n > 0 

the output y ( n )  will  be  equal to xmin(n). Alternatively, 
choosing the linear system  such that 

p n ,  n < o  

yh(n)= TX(0) n = 0 f A n>O 

will result in an output y (n )  equal to x,,(n). 
2)  A rnixed  phase  signal  can  be  converted to a minimum 

phase  signal with the same spectral magnitude by  choosing the 
linear system  such that 

ro  n<O 

n = O  

+X̂ (-.> n > 0 . 
The resulting output y (n)  will then  be  a minimum  phase  signal 
with  the same spectral magnitude  as x(n). An alternative and 
equivalent  procedure for obtaining y(n)  is to use  as the  input 
to the system of Fig. 1 @xx(n), the  autocorrelation of x(.). In 
that case, (2) can be expressed  as 

n < O  

3) If x ( n )  has a rational z transform,  then &(n) has a  ratio- 
nal z transform whose  poles  correspond to the poles and zeros 
of the z transform  of x(n). This  follows in  a straightforward 
way  from (1) by  noting  that  the z transform of nx^(n) is given 

by -zd?(z)/dz and 

d~ 1 dX(Z) -z - x(z) = . l Z  - - 
dZ X(z )   d z  

With X ( z )  of the  form N(z)/D(z) ,  then 

d~ D(z)N'(z)  - N(z)D'(z)  
- 2 - X ( z ) = - z  

dz   N(z )D(z)  

where the prime denotes  differentiation  with respect to z .  
More specifically, let X ( z )  be  written  in the form 

k= 1 k= 1 
X ( z )  = (4) 

Pi PO n ( 1  - C k Z - ' )  n (1 - dkz) 
k =  1 k= 1 

where lakl, Ibkl, Ickl, and ldkl are  all  less than  unity. The ak)s 
and ck's correspond to zeros  and  poles inside the  unit circle in 
the z plane,  representing the minimum  phase component of 
x(n), and the (l/bk)'S and (l/dk)'S correspond to zeros  and 
poles  outside the  unit circle and thus represent the maximum 
phase component of x(.). In order for the complex  cepstrum 
of x(n) to exist,  the  time origin of x ( n )  is chosen so that r = 0. 
With X ( z )  in  the  form of (4) and with Y = 0, 

Mi MO 
log x ( z )  = log A t log (1 - akz- ')  t log (1 - bkz) 

k= 1 k= 1 

Ni NO 
x ( z )   = A z Y  n (1 - akz-l)"k n (1 - bkz)'" (6) 

k= 1 k= 1 

where lakl and lbkl are all less than  unity. If the ak and fik are 
all integers (positive or negative), then X ( z )  reduces to a  ratio- 
nal z transform as  discussed  in 3) above.  More generally, how- 
ever, we assume  here that the ak and & are not restricted to 
integer values.  Again, in order  for  the  complex  cepstrum of 
x(n> to exist the time origin of x(n)  is  chosen so that Y = 0. 

With X ( z )  of the form  of (6) and with r = 0 
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and 

From (7) we observe that  the linearly weighted cepstrum 
nx^(n) still has a rational z transform,  with first-order poles 
corresponding to each of the irrational factors in (6). 

HOMOMORPHIC  PREDICTION 
Given the above properties of the complex cepstrum, we 

now outline several ways of using homomorphic filtering to 
prepare a signal for analysis by linear prediction. This set of 
techniques we refer to collectively as homomorphic prediction. 

I )  Factorization of Mixed Phase  Signals: As discussed pre- 
viously, one limitation of linear prediction is its restriction to 
minimum or maximum phase  signals.  However, by exploiting 
property I), a mixed phase  signal  can  be factored  into  its min- 
imum and maximum phase components. These  can then be 
analyzed separately using linear prediction. 
2) Cepstral  Prediction: A second limitation of linear predic- 

tion is its inability to locate spectral zeros. From property  3), 
however, we note  that  the poles of nx^(n) correspond to the 
poles and zeros of  the original signal. Thus, an all-pole analysis 
of nx^(n) leads to a pole-zero representation of x@). This 
technique, in which linear prediction is applied to the  cep- 
strum, has been referred to as cepstral prediction [13], [14]. In 
using this procedure, it is necessary to classify each pole of 
nx^(n) as either  a pole or  a zero of the original  signal. This can 
be done in a  number of ways.  One approach is to  do a sepa- 
rate linear prediction analysis of x (n )  to estimate its poles and 
then  identify  the remaining poles of nx^(n) as the zeros of x(n). 
An alternate strategy is  suggested by ( 5 ) .  Let pi  be a pole  of 
A ( n )  inside the unit circle. If it  corresponis to a zero of 
X(z)  (one of the ak) ,  then  the residue of -zdX(z)/dz at pi  is 
-pi. On the  other  hand, if p i  is a pole of X ( z )  (one of the ck), 
then  the residue is +pi. Thus, a pole of nx^(n) inside the  unit 
circle  can  be  classified as either  a pole or zero of x (n )  by com- 
paring the sign of the residue with  the sign of the pole. There 
is a corresponding test to separate the poles and zeros of X ( z )  
outside the  unit circle. A particularly effective method  for 
evaluating these residues has been proposed by Atashroo [ 1.51 . 
If the original data consist of a basic  pulse  convolved with an 
impulse train,  the low-time portion of the complex cepstrum 
corresponds to the complex cepstrum of the basic pulse. 
Thus, because of the properties of the complex cepstrum,  the 
necessary deconvolution is effected automatically, and for all- 
pole modeling of the basic pulse the above method would be 
applied only to the low-time portion of the complex 
cepstrum. 
3) Fractional  Pole-Zero  Modeling: On the basis of prop- 

erty 4) of homomorphic analysis as discussed above, linear 
prediction can also  be combined with  homomorphic analysis 
to model data in terms of an irrational z transform in the form 
of (6).  In this case  we first obtain the linearly weighted com- 
plex cepstrum nx^(n). Pole-zero modeling of nx^(n) is then 
carried out to obtain  the parameters ak ,  ( l k ,  bk,  and p k  as 
indicated in (7). Again, if the original data consist of a basic 
pulse convolved with an impulse train,  the necessary deconvo- 

lution is effected automatically because of the properties of 
the complex cepetrum. 

4 )  Pole-Zero Modeling Using Homomorphic  Deconvolution 
and Inverse  Filtering: A somewhat different approach to pole- 
zero modeling is motivated by the existence of several general- 
izations of linear prediction which explicitly include spectral 
zeros [I61 -[ 181 . Typically, these methods proceed by using 
linear prediction to estimate the poles. An inverse fdter is 
then applied to the  data to obtain a residual signal which is 
subsequently modeled by zeros using one of a variety of pos- 
sible methods. In most of these methods  the  data to be 
analyzed must generally  have the  proper time registration and 
no linear phase component.  Futhermore, if the  data consist of 
a pulse which is to be modeled in terms of  poles and zeros 
convolved with an impulse train an estimate of the basic pulse 
must first be carried out, i.e., the composite signal must first 
be deconvolved. If not,  the analysis  will generate zeros to 
approximate the fine structure in the spectrum introduced by 
the impulse train. 

In order to provide the proper time registration and also 
implement the required deconvolution,  homomorphic filtering 
can first be used. If it is sufficient to determine the minimum 
phase counterparts of the poles and zeros, the  homomorphic 
filtering can first be applied to obtain a minimum phase  signal. 
A minimum phase  signal by definition has no linear phase 
component and hence is properly aligned. Alternatively, the 
signal can first be factored into its minimum and maximum 
phase elements. Because neither of these has a linear phase 
component,  they are synchronized properly. With homomor- 
phic filtering to obtain either a minimum phase or mixed 
phase  signal, the required deconvolution is also implemented. 
Following the homomorphic filtering, one of the above 
methods  for pole-zero modeling can be applied. This system 
is similar to, but represents a generalization of that described 
in [17]. 

EXAMPLES 
In this section we present a  number of synthetic examples 

to illustrate some of the above ideas. These examples are in- 
tended to be illustrative of the  theoretical  concepts  rather  than 
as  an evaluation of the techniques. 

Example  1-Inverse  Filter  Design for Mixed  Phase  Signals: 
The first example is concerned with  the design of two sided 
inverse filters for mixed phase  signals.  The  general block 
diagram of this technique is presented in Fig. 2. 

A mixed phase  signal x(n)  was synthesized and is depicted in 
Fig. 3.  From its complex cepstrum, shown in Fig. 4, the 
minimum phase and maximum phase components x,i,(n) and 
xmax(n) were obtained (Figs. 5 and 6, respectively). From 
these, two predictive filters hmin(n) and h,,(n) were 
designed. 

Filtering the  synthetic  data  through hmi,(n) yields the 
output of Fig. 7. Note how successfully the causal predictive 
filter has removed xmi,(n) leaving only the maximum phase 
component. The output of the inverse filter hmin(n) * hm,(n) 
is depicted in Fig. 8 and it consists basically of a delayed 
impulse. (This delay is known a priori from the linear phase 
component  that was  removed  in the process of cepstral 
computation.) 
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STEPl HOMOMORPHIC FILTERING 

DECOMPOSITION 
BY HOMOMORPHIC FILTERING xrnax(n) 

STEP 2 LINEAR  PREDICTION ANALYSIS 

CAUSAL 
Xmin(n) PREDICTIVE 

hmin ( n  1 
FILTER DESIGN O < n S M , - l  

ANTI -CAUSAL 

FILTER DESIGN 
PREDICTIVE 

- M 2 + l s n r 0  

FILTER SYNTHESIS 

x ( n )  * . b u ( n )  hma,(n) -----L hmln(n) 

Fig. 2. Inverse filter design by homomorphic prediction. 
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Fig. 8. Output of h,in(n) * hmax(n). 
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The technique illustrated in this example is currently being 
evaluated for  the design of inverse filters for seismic data  pro- 
cessing. Our preliminary results indicate considerable improve- 
ment over the  the use of current techniques. 

Example 2-Pole-Zero  Modeling  Using Homomorphic 
Deconvolution and  Inverse  Filtering: As discussed above, one 
way to satisfy the time synchronization requirement for  the 
pole-zero modeling of voiced speech is to use homomorphic 
deconvolution to obtain  a minimum phase estimate of the 
vocal tract impulse response. In this example we demonstrate 
this technique  with  an artificial signal. Fig. 9(a) shows the 
impulse response of a digital fdter  with  the following poles and 
zeros (assuming a 12 kHz sampling rate). 

pole-zero frequency bandwidth 
P 292 79 
P 3500 100 
Z 2000 200 

The corresponding log magnitude spectrum is  given in Fig. 
lO(a). If this system is excited by a periodic pulse train whose 
period is 100 samples (120 Hz), a typical output segment 
would look like that in  Fig. 9(b). Let us call this sequence 

Figs. 9(c) and 1O(c) show the result of applying homomor- 
phic deconvolution to {s(n)} in order to estimate the impulse 
response. This signal {u(n)} was found by retaining the first 
50 points of the minimum phase cepstrum of {s(n)}. A 256- 
point Hamming window was used to smooth {s(n)} before 
computing  its  cepstrum. 

To illustrate the use of  the filtered signal {v(n)] in pole- 
zero analysis, Shanks' method was  used to approximate V(z) 
with four poles and two zeros [18] . Fig. 9(d) shows the 
impulse  response and Fig. 10(d)  the frequency response of the 
resulting model system. Its poles and zeros are  as follows. 

1 s  (n) 1. 

pole-zero frequency bandwidth 
P 29  1 118 
P 3498 128 
Z 2004 242 

(64  samples) 

Fig. 9. Time  signals for Example 2 (pole-zero  modeling)  showing (a) ac- 
tual  impulse  response, (b) impulse train  response, (c )  homomorphic 
estimate of impulse  response,  (d) 4-pole-2-zero model of (c):  Shanks' 
method,  and (e) 6-pole model  of (c ) :  LPC. 



332 IEEE TRANSACTIONS ON ACOUSTICS,  SPEECH,  AND  SIGNAL  PROCESSING,  AUGUST 1976 

Finally, if six-pole linear prediction (autocorrelation method) 
is applied directly to the original signal {s(n)}, the frequency 
response of the resulting all-pole fi ter is tha t  in Fig. lO(e), 
corresponding to the time waveform of Fig. 9 (e). 

At the present time we are evaluating this approach to pole- 
zero modeling in the context of real speech. Preliminary 
results indicate that the technique is considerably more reli- 
able than direct analysis of the speech waveform. 
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Correspondence 

Pseudorandom  Arrays  Generated by Two-Dimensional 
Digital  Filtering 

ANTHONY C. DAVIES AND YING K. MOY 

Abstract-This correspondence  describes  properties  of  multilevel 
pseudorandom  arrays  obtained  by  two-dimensional digital filtering of 
binary  pseudonoise (PN) arrays  derived  from  maximal-length  linear 
binary sequences. 

INTRODUCTION 

The  methods  of  linear  system  theory  may  be  generalized to 
two  dimensions,  with  application to optical  signal  processing 
systems [ 11 and  image  processing [ 21. In  such  systems 
random  and  pseudorandom  arrays  may  be  expected to play  an 
analogous  role  to  the  important  role  that   random  and  pseudo- 
random  sequences  play  in  one-dimensional  systems. 

One-dimensional  periodic  binary  sequences  having  a  two- 
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level  autocorrelation  function  (pseudonoise (PN) sequences) 
are well known  and  have  many  applications [ 3 ] ,  [4 ] .  The 
most useful  are  the  binary  maximal-length  linear  sequences 
(m-sequences)  of  period (2n - 1) digits,  which  exist  for all 
integers, rz. Multilevel  pseudorandom  sequences [ 51,  [6]  and 
signals for  simulating  analog  noise [71 may  be  produced  by 
appropriate  filtering of these  binary  sequences.  This  corre- 
spondence  discusses the analogous  two-dimensional  filtering 
of  pseudorandom  binary  arrays. 

PN ARRAYS 

An  array a(i ,  j )  of  infinite  extent in both  dimensions  is 
doubly  periodic with periods p and q if 

a(i  + p ,  j )  = a(i, j + q )  = a(i, j )  for  all i, j .  

The  array  thus  comprises ( p  X q )  blocks re‘peated along  both 
dimensions. A class  of  two-dimensional  doubly  periodic  arrays 
having  a  two-level  autocorrelation  function (PN arrays)  which 
are  analogous to m-sequences  has  been  described  by  Gordon 
[ 81 and  by  Calabro  and Wolf [ 91 . 

If ( 2 n  - 1)  has  relatively  prime  factors p ,  q ,  a binary PN 
array  of  this  type  having  periods p and q can  be  constructed.’ 

‘There  are  (one-dimensional)  binary PN sequences with periods  other 
than 2n - 1 (e.g., quadratic  residue  sequences,  twin-prime  sequences, 
etc.) [3],  and similarly other  types of binary PN arrays can  be con- 
structed  for which p . q # 2” - 1. 


