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Abstract

In some contexts, DACs fail in such a way that specific samples are dropped. The dropped
samples lead to distortion in the analog reconstruction. We refer to this as the “missing
pixel” problem. Under certain conditions, it may be possible to compensate for the dropped
sample by pre-processing the digital signal, thereby reducing the analog reconstruction error.
We develop three such compensation strategies in this thesis.

The first strategy uses constrained minimization to calculate the optimal finite-length
compensation signal. We develop a closed-form solution using the method of Lagrange
multipliers. Next, we develop an approximation to the optimal solution using discrete
prolate spheroidal sequences. We show that the optimal solution is a linear combination of
the discrete prolates. The last compensation technique we develop is an iterative solution in
class of projection-onto-convex-sets. We develop the algorithm and prove that it converges
to the optimal solution found using constrained minimization. Each of the three strategies
are analyzed and results from numerical simulations are presented.

Thesis Supervisor: Alan V. Oppenheim
Title: Ford Professor of Engineering
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Chapter 1

Introduction

Digital to analog converters are one of the most ubiquitous components in digital systems,

and, like any other component, DACs can fail. In some contexts digital-to-analog converters

(DACs) fail in such a way that specific samples are dropped. There are at least two contexts

in which this fault is common: flat-panel video displays and time-interleaved DACs.

Flat-panel displays, such as those found in modern personal computers, are made by

placing light emitting diodes (LEDs) on a silicon wafer. Each LED corresponds to one

color component of one pixel of the image. One of these LEDs can malfunction and get

permanently set to a particular value. These broken LEDs are manifested as missing pixels

on the screen, thus we refer to this as the “missing pixel” problem, [8].

Time-interleaved DACs are also prone to this fault. Figure 1-1 shows a model for an

N -element array, [2, 15]. Each DAC operates from phase-shifted clocks. These arrays are

important in high-speed communication links, since they can be clocked at lower rates,

while still achieving high throughput, [2]. If one of the DACs fails, every Nth sample is

dropped, leading to distortion in the analog reconstruction.

Under certain conditions, it may be possible to compensate for the dropped sample by

pre-processing the digital signal. The aim of this thesis is to develop such compensation

strategies. Their advent could lead to flat-panel displays that minimize the visual distortion

caused by defective pixel and interleaved DAC arrays that are more robust to failure.
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1.1 Problem Statement

We adhere to the standard mathematical representation for ideal digital-to-analog con-

version shown in Figure 1-2. Digital samples, x[n] = x(nTs), are converted into an im-

pulse train, xp(t) =
∑∞

n=−∞ x[n]δ(t−nTs), through the sample-to-impulses converter (S/I).

xp(t) is then filtered through an ideal low-pass filter (LPF), H(jΩ), resulting in the re-

construction, r(t). Quantization issues are ignored by assuming that the digital samples,

x[n], can be represented with infinite precision. Furthermore, we assume that the original

continuous-time (CT) signal, x(t), is at least slightly oversampled. Specifically, we assume

that 1/Ts = RΩc/π, where x(t) is band-limited to Ωc and R > 1 is the oversampling ratio.

We denote the ratio π/R by γ. The DAC perfectly reconstructs x(t) in the sinc basis,

r(t) =
∞∑

n=−∞
x[n]

sin(π(2Ωct − n))
π(2Ωct − n)

= x(t) (1.1)

In any practical application, H(jΩ) is replaced by a non-ideal filter that approximates

the ideal LPF. The choice of H(jΩ) will affect our pre-compensation solution, but, for

simplicity, we do not consider the effect of non-ideal H(jΩ) in this thesis. We assume H(jΩ)

is always an ideal LPF, with the understanding that in practice it will be approximated

accurately enough to meet design specifications.

The faulty DAC is mathematically represented as in Figure 1-3. The dropped sample

is modeled as multiplication by (1− δ[n]) that sets x[0] = 0. Without loss of generality, we

assume that the dropped sample is at index n = 0 and that the dropped sample is set to

14



�

�

�
�

�

Ts

r(t)

− π
Ts

−Ωc Ωc π
Ts

H(jΩ)

xp(t)S/I

Ideal DAC

x[n]

Figure 1-2: Ideal DAC

�

� �

�

�

� �

�
�

Ts

DAC... -1 0 1 ...

r̂(t)

......

x[n]

− π
Ts

−Ωc Ωc π
Ts

H(jΩ)

xp(t)S/I

Figure 1-3: Faulty DAC

15



zero. Because of the dropped sample, the reconstruction, r̂(t), is a distorted version of the

desired reconstruction, r(t).

It is important to note that this problem is not one of data recovery. The sample that is

dropped is known exactly inside the digital system. The problem is one of data conversion,

the DAC is broken so that a specific sample cannot be used in the reconstruction. The

goal is to represent the data differently in the digital domain, so we can achieve the same

reconstruction. As such, interpolation and other data recovery techniques are useless.

Our goal is to pre-compensate the digital signal x[n], so the distortion caused by dropping

x[0] is reduced. This requires altering samples that are not dropped by the DAC. Figure 1-4

illustrates the compensated DAC. Compensation is portrayed as a signal c[n] that is added

to x[n]. In general, compensation could be some complicated function of the dropped sample

and neighbors. In our development, we restrict compensation to be an affine transformation

of x[n].

We use the squared-L2 energy of the error signal, e(t) = r(t) − r̂(t), as the error metric

ε2 =
∫ ∞

−∞
|r(t) − r̂(t)|2dt (1.2)

The problem can be equivalently cast directly in the discrete-time domain as shown in

Figure 1-5. In Figure 1-4, we can move the DACs to the right of the summing junction

and add a ideal discrete-time LPF, H(ejω), with cutoff γ = Ωc/Ts = π/R before the DAC.

The cascade of H(ejω) and the DAC is equivalent to just a DAC, i.e. H(ejω) does not filter

any additional energy compared to the DAC. Thus we can move H(ejω) left through the

summing junction. Since x[n] is band-limited to γ by definition, H(ejω) is just a identity

transformation on the lower branch, so it can be dropped.

Additionally, there are two places in Figure 1-4 where error enters the system. First

from the dropped sample, x[0], and secondly from the compensation signal, c[n]. Tracking

the effects of two sources of error is difficult, so to simplify we incorporate the dropped

sample into the compensation as a constraint: c[0] = −x[0]. This constraint ensures that

x[0] is zero before entering the DAC, so dropping it does not cause any additional distortion.

Figure 1-5 illustrates our final, simplified representation. We equivalently use the squared-�2

energy of e[n] as the error metric

ε2 =
∞∑
−∞

|e[n]|2 (1.3)
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1.2 Constraints

We impose two constraints on digital pre-compensation of the dropped sample. The first,

oversampling, is a direct result of the formulation. The second, a symmetric c[n], is imposed

for simplification.

1.2.1 Oversampling

In Figure 1-5, the error signal, e[n], can be expressed as

e[n] = x[n] − r̂[n] (1.4)

= x[n] − h[n] ∗ (x[n] + c[n]) (1.5)

In the frequency domain

E(ejω) = X(ejω) − H(ejω)X(ejω) − H(ejω)C(ejω) (1.6)

Since X(ejω) is band-limited inside the passband of H(ejω), (1.6) reduces to

E(ejω) = −H(ejω)C(ejω) (1.7)

Using Parseval’s relation, the error ε2 reduces to

ε2 =
∞∑

n=−∞
|e[n]|2 =

∫
<2π>

|E(ejω)|2dω (1.8)

=
∫

<2π>
|H(ejω)C(ejω)|2dω (1.9)

Minimizing ε2 is equivalent to minimizing the energy of C(ejω) in the band [−γ,γ],

i.e. in the pass-band of the filter H(ejω). This implies that x(t) must be at least slightly

oversampled for compensation.

There are some subtleties involved in this condition. Oversampling is generally defined as

x(t) being sampled at a rate 1/Ts > 2Ωc. This is an open-set, so the limit-point, 1/Ts = 2Ωc,

does not exist in the set. Assuming that x(t) is sampled at exactly 1/Ts = 2Ωc, there is

aliasing at the point ω = π. In this limiting case, the reconstruction filter, H(ejω), can be

18



chosen to be

H(ejω) = 1, ω �= π (1.10)

H(ejω) = 0, ω = π

It eliminates the aliased point at ω = π, and, since a point has measure zero, there is still

perfect reconstruction in the �2 sense. The compensation signal, unless it is an impulse at

ω = π, will be passed unchanged to the output. Unfortunately, as Section 1.3.2 develops,

choosing c[n] as a properly scaled impulse at ω = π, we can have perfect compensation.

So, at least from a formal mathematical viewpoint, we can compensate the limiting case.

For this thesis though, we do not consider such measure zero subtleties as they are non-

physical. In the limiting case, we assume that the reconstruction filter must be the identity

filter defined as

H(ejω) = 1 (1.11)

Thus, compensating with impulses will not work and from (1.8), the energy of c[n] is

the error.

ε2 =
∫

<2π>
|C(ejω)|2dω (1.12)

In this degenerate case, the optimal solution is to meet the constraint, c[0] = −x[0], and

set the other values of c[n] = 0, for n �= 0. This is equivalent to having no compensation

and letting the faulty DAC drop the sample x[0]. There is no gain in compensating. Proper

compensation requires that x(t) be sampled at a rate 1/Ts > 2Ωc+ε, for ε �= 0 but otherwise

arbitrarily small. We use this as our definition of oversampling. As before, π/R = γ where

R > 1 is the oversampling ratio with 1/Ts = RΩc/π.

When oversampled according to this definition, X(ejω) is band-limited to γ < π. As

illustrated in Figure 1-6, the reconstruction filter, H(ejω) can be designed with a high-

frequency stop-band, γ < |ω| < π. c[n] can then be designed such that most of its energy

is in the stop-band of H(ejω), minimizing the final error.

In fact, increasing oversampling reduces error even without compensation. The faulty

DAC with no compensation can be represented in our simplified model as a degenerate

compensation signal

c[n] = −x[0]δ[n] (1.13)
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In the frequency domain, C(ejω) is a constant −x[0]. Figure 1-7 illustrates the resulting

error. Mathematically, the expression for the error is

ε2 = 2γx2[0] (1.14)

As the oversampling rate increases, γ decreases, reducing the error accordingly. Intu-

itively, oversampling introduces redundancy into the system so dropping one sample con-

stitutes a smaller loss of information than if the signal were sampled at the Nyquist rate.

|C(ej )|2 |H(ej )|2

error

Figure 1-7: Error without Compensation

1.2.2 Symmetric Compensation

In general, affine pre-compensation can alter any arbitrary set of samples in x[n]. For

clarity in the exposition, we focus on symmetric compensation, where (N−1)/2 neighboring

samples on either side of the dropped sample are altered, i.e. c[n] is a symmetric signal

centered around n = 0.

In contexts where the location of the dropped sample is known a priori, such as with

missing pixels on a video-display, symmetric compensation is the practical choice. In some
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contexts though, symmetric compensation is not feasible. For example, for a DAC that

drops samples in a streaming system the best we can do is to detect the dropped samples and

compensate causally. The compensation signal will be one-sided and asymmetric. Where

the extension to the more general case is obvious, we note the structure of the asymmetric

solution.

1.3 Previous Work

This thesis is, in part, an extension of the work done by Russell in [8]. In this section, we

review some of the results presented in [8].

1.3.1 Alternative Formulation

The “missing pixel” problem was originally formulated in [8] as a resampling problem.

Resampling is the process of converting between two digital representations of an analog

signal, each of which is on a different sampling grid. Specifically, in the case of one dropped

sample, define an index set I to be the set of integers

I = {0,±1,±2,±3, . . .}

and a set I ′ to be the set of integers with zero removed

I ′ = {±1,±2,±3, . . .}

An analog signal x(t) is digitally represented by its samples {xn} on I. Low-pass filtering

the digital sequence {xn} through a filter, h(t), reconstructs x(t). The goal of compensation

is to find coefficients {x′
n} on I ′ which satisfy

x(t) =
∑
n∈I′

x′
nh(t − n) (1.15)

or equivalently

x(t) =
∞∑

n=−∞
x′

nh(t − n) (1.16)

with the constraint

x′
0 = 0
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By requiring x′
0 = 0 the sum may be taken over all integers. In this thesis, we take a

different viewpoint and pose the problem in the context of DACs. Both formulations are

equivalent when h(t) is restricted to be an ideal LPF. The DAC representation is preferred

in this thesis because of its practical relevance.

1.3.2 Perfect Compensation

If c[n] had no frequency component outside |ω| > π − γ while meeting the constraint

c[0] = −x[0], it would perfectly compensate with zero error. There are an unlimited number

of signals that meet this criteria. For example, we can simply choose

cinf [n] = −x[0](−1)n (1.17)

This signal meets the constraint that cinf [0] = −x[0] and since its spectrum is

C(ejω) =
−x[0]

2
(δ(ω − π) + δ(ω + π)) (1.18)

C(ejω) is completely high-pass, with zero energy in γ < |ω| < π. cinf [n] perfectly

compensates for the dropped sample. This solution only requires in theory that R = 1 + ε,

where ε is non-zero but otherwise arbitrarily small. Russell derives this result in [8] within

a resampling framework.

All other perfect compensation solutions are signals band-limited to |ω| < γ multiplied

by cinf [n]. Of these choices, the minimum energy solution is

csinc[n] = −x[0](−1)n sin(π − γ)n
(π − γ)n

(1.19)

Unfortunately, all of these signals, although resulting in zero error, have infinite length,

making them impractical to implement. Russell in [8] develops an optimal finite-length

compensation strategy using constrained minimization. In that spirit, this thesis focuses

exclusively on finite-length compensation using perfect compensation and optimal finite-

length compensation as a starting point for the more sophisticated algorithms.
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1.3.3 Missing Pixel Compensation

In the case of video-displays, the “missing pixel” problem is of practical interest and some

ad hoc solutions have been proposed, [6, 4]. In these approaches neighboring pixels are

brightened in order to compensate. The idea is based on the fact that the missing pixel

looks dark, so making the surrounding pixels brighter reduces the visual distortion. Though

several weightings are proposed, no theory is developed.

In [8] Russell implements a two-dimensional version of the optimal finite-length solution

and applies it to images with missing pixels, [8]. Since the eye is not an ideal LPF, Russell’s

algorithm does not perfectly compensate for the missing pixels, but there is a noticeable

improvement in perceived image quality. Though such extensions are not considered, the

algorithms presented in this thesis can also be extended to two-dimensions for use in missing

pixel compensation.

1.4 Thesis Outline

Chapter 2 extends Russell’s constrained minimization approach and presents a closed-form

solution, referred to as the Constrained Minimization (CM) algorithm. Results from nu-

merical simulation are presented. Despite giving the optimal solution, CM is shown to have

numerical stability problem for certain parameters.

In Chapter 3, we develop a different approach to the compensation problem by win-

dowing the ideal infinite-length solution, cinf [n]. The solution is related to the discrete

prolate spheroidal sequences (DPSS), a class of optimally band-limited signals. We develop

a DPSS-based compensation algorithm, called the discrete prolate approximation (DPAX).

The DPAX solution is shown to be sub-optimal, a first-order approximation to the opti-

mal CM solution. However, as we show, DPAX is more numerically stable than CM. As

in Chapter 2, results from numerical simulation are presented. In addition, Appendix A

presents an interpretation of the DPSS as a singular value decomposition. Appendix B

proves duality of certain DPSS.

Chapter 4 presents an iterative algorithm in the class of projection-onto-convex-sets

(POCS). The Iterative Minimization (IM) algorithm is proved to converge uniquely to the

optimal CM solution. Results from numerical simulation are used to show that the IM

algorithm has a slow convergence rate, a common problem for many POCS algorithms.
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Chapter 2

Constrained Minimization

In this chapter, we develop constrained minimization as a technique for generating compen-

sation signals. Extending the derivations in [8], we derive a closed-form expression for the

optimal, finite-length solution called the Constrained Minimization (CM) algorithm. We

evaluate the CM algorithm’s performance through numerical simulation. Although optimal,

CM is shown to have problems of numerical stability.

2.1 Derivation

We closely follow the derivation in [8]. However, our treatment formalizes the constrained

minimization using Lagrange multipliers. We assume that the compensation signal, c[n], is

non-zero only for n ∈ N , where N is the finite set of points to be adjusted. For simplicity

in the presentation, we assume a symmetric form for c[n], i.e. N= [−N−1
2 , N−1

2 ], although

the derivation is general for any set N . Also, for notational convenience, the signals c[n]

and x[n] are denoted as the sequences {cn} and {xn}. As shown in Chapter 1,

e[n] =
∑

m∈N
cmh[n − m] (2.1)

The error is

ε2 =
∞∑

n=−∞
|e[n]|2 =

∞∑
n=−∞

(
∑

m∈N
cmh[n − m])2 (2.2)

Our desire is to minimize ε2 subject to the constraint g = c0 + x0 = 0. We do this using

the method of Lagrange multipliers. Defining h = ε2 − λg, we minimize h by setting the
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partial derivatives with respect to ck for k ∈ N equal to zero. For ck �= c0,

∂

∂ck
h =

∞∑
n=−∞

2(
∑

m∈N
cmh[n − m])h[n − k] = 0 (2.3)

= 2
∑

m∈N
cm(

∞∑
n=−∞

h[n − m]h[n − k]) (2.4)

=
∑

m∈N
cmΘγ [k − m] = 0 (2.5)

Θγ [n] is the deterministic autocorrelation function of the filter h[n]. The subscript γ

denotes the cutoff of the LPF h[n]. Simplifying Θγ [n], we obtain

Θγ [n] =
∞∑

m=−∞
h[m]h[n − m] (2.6)

= h[n] ∗ h[−n] (2.7)

=
sin(γn)

πn
∗ − sin(−γn)

πn
(2.8)

=
sin(γn)

πn
= h[n] (2.9)

where ∗ denotes convolution. For clarity, we do not replace Θγ [n] with h[n], despite the

fact that they are equivalent. When ck = c0, the derivative has an extra term with λ, the

Lagrange multiplier.

∂

∂c0
h =

∞∑
m=−∞

( ∑
n∈N

cnh[m − n])2 − λ(c0 + x0)

)
= 0 (2.10)

= 2
∑
n∈N

cnΘγ [−n] − λ = 0 (2.11)

These derivatives produce N equations. Along with the constraint g, this results in N+1

equations for the N unknown sequence values of cn and the one Lagrange multiplier λ. The

system, reproduced below, has a unique solution, copt[n], that is the optimal compensation

signal for the given value of N .

∑
m∈N

cmΘγ [k − m] = 0, k �= 0 (2.12)

2
∑

m∈N
cmΘγ [−m] − λ = 0, k = 0 (2.13)

c0 − x0 = 0 (2.14)
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We chose N= [−N−1
2 , N−1

2 ] to be symmetric, so the system (2.12), (2.13), (2.14) can be

written in block matrix form


 Θγ −1

2δ

δT 0





 cn

λ


 =


 0

−x0


 (2.15)

where δ is a vector with all zero entries except for a 1 as the center element, i.e.

δT =
[

0 0 · · · 0 0 1 0 0 · · · 0 0
]

(2.16)

Θγ is the autocorrelation matrix for h[n]. Because h[n] is a ideal low-pass filter, Θγ is

a symmetric, Toeplitz matrix with entries

Θγ(i, j) = h[i − j] =
sin γ[i − j]

π[i − j]
(2.17)

The symmetric, Toeplitz structure of Θγ is particularly important in Chapters 3 and 4 in

relation to the discrete prolate spheroidal sequences and the iterative-minimization algo-

rithm.

To solve (2.15), the matrix Θγ must be inverted. We leave a proof of invertibility for

Chapter 5. For now, assuming that the inverse exists, (2.15) can be interpreted as two

equations

Θγcn + −1
2
λδ = 0 (2.18)

δTcn + 0λ = −x0 (2.19)

Combining the two equations,

(
1
2
δTΘ−1

γ δ

)
λ = −x0 (2.20)

δTΘ−1
γ δ = Θ−1

γ

(
(N−1)

2 , (N−1)
2

)
is the center element of the inverse matrix. For notational

convenience, we choose θ−1
c = Θ−1

γ

(
(N−1)

2 , (N−1)
2

)
. The Lagrange multiplier is then

λ = −2x0

θ−1
c

(2.21)
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The optimal compensation signal is

copt[n] = − x0

θ−1
c

Θ−1
γ δ (2.22)

We refer to the algorithm represented by (2.22) as Constrained Minimization (CM).

2.2 Performance Analysis

2.2.1 Examples

We implemented the CM algorithm in MATLAB and calculated compensation signals for

examples in which x[0] = −1. Figure 2-1 shows copt[n] and an interpolated DFT, Copt(ejω),

using 2048 linearly-interpolated points, for N = 6, N = 10, and N = 20 for γ = 0.9π.

Figure 2-2 shows the same for γ = 0.7π.

There are several interesting features to note on these examples. The optimal signal

is high-pass as expected. For both cases, the main lobe of the DFT is centered at π with

smaller side-lobes in the interval [−γ, γ]. Furthermore, as N increases, the energy in this

low-pass band decreases, thus decreasing the error. Also, we can see that for the same N ,

the solution for γ = 0.7π does better than that of γ = 0.9π because there is a larger high-

pass band. Intuitively, for smaller γ, the system is more oversampled, so a better solution

can be found using fewer samples.
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2.2.2 Error Performance

Figure 2-3 illustrates ε2 as a function of N for γ = 0.1π, 0.3π, 0.5π, 0.7π, and 0.9π. The

graph shows that ε2 decreases approximately exponentially in N . Since the CM algorithm

generates the optimal solution, the error curves shown in Figure 2-3 serves as a baseline

for performance. There is a limited set of parameters γ and N for which the problem is

well-conditioned. Beyond ε2 = 10−9, the solution becomes numerically unstable beyond the

precision of MATLAB.
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Figure 2-3: ε2 as a function of N

2.2.3 Computational Complexity

With a direct implementation, using Gaussian elimination, the N × N inversion of Θγ

requires O(N3) multiplications, and O(N2) memory, [13]. Exploiting the Toeplitz, sym-

metric structure, we can use a Levinson recursion to find the solution. This does better,

using O(N2) multiplications and O(N) space, [7].
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2.3 Numerical Stability

As N increases and γ decreases, the condition number of Θγ increases until inversion be-

comes unstable. Figure 2-4 plots the condition number of Θγ as a function of N for various

values of γ. The plot shows that the condition number increases approximately exponen-

tially. As γ decreases the condition number also increases approximately exponentially.

Figure 2-5 shows the condition number as a function in the two-dimensional (N, γ) plane.

The black region in the lower right-hand corner is where the condition number is reasonable,

and the solution is numerically stable. The large semi-circular gray region centered at the

upper left-hand corner is where MATLAB returns inaccurate solutions because the problem

is too ill-conditioned. The whitish crescent region defines a meta-stable boundary between

well-conditioned and ill-conditioned solutions. MATLAB can find accurate solutions for

some points in this region, and not for others.

There is only a small region in the plane where the problem is well-conditioned enough

for a floating-point implementation of MATLAB to find a solution. Conditioning problems

would be even more pronounced in fixed-point DSP systems. Fortunately, the inversion can

be done off line on a computer with arbitrarily high precision, since once copt[n] is found

it can be stored and retrieved when the algorithm needs to be implemented. Also, in most

contexts, an error of 10−9 = −180dB, compared to the signal, is more than sufficient.
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Chapter 3

Discrete Prolate Approximation

In this chapter, we formulate an alternate approach to the design of finite-length compensa-

tion signals based on applying a finite-length window to the infinite length solution, cinf [n].

The problem formulation leads us to consider a class of optimally band-limited signals,

called discrete prolate spheroidal sequences (DPSS), as windows. An algorithm, which we

refer to as the Discrete Prolate Approximation (DPAX) is presented. As the name im-

plies, this solution is an approximation to the optimal CM solution using discrete prolate

spheroidal sequences. We explore the relationship between DPAX and the CM solution,

concluding that the DPAX solution is a first-order approximation of CM in its eigenvector

basis. In addition, we evaluate the algorithms performance through numerical simulation.

DPAX is shown to be more numerically stable than CM.

3.1 Derivation

3.1.1 Windowing and Discrete Prolate Spheroidal Sequences

With CM, we construct a finite-length compensation signal directly from the imposed con-

straints. Alternatively, we can start with the infinite-length signal, cinf [n] = −x[0](−1)n,

and truncate it through appropriate windowing. From this perspective, the problem then

becomes one of designing a finite-length window, w[n], such that

c[n] = w[n]cinf [n] (3.1)

has minimum energy in the frequency band |ω| < γ. For the symmetric case, we pose the
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window design as an optimization problem. C(ejω) = W (ejω) ∗ Cinf(ejω), so we design

w[n] ∈ �2(−N−1
2 , N−1

2 ), to maximize the concentration ratio

α(N, W ) =

∫ W=π−γ
−W=−π+γ |W (ejω)|2dω∫ π

−π |W (ejω)|2dω
(3.2)

Slepian, Landau, and Pollak solve this problem in [9, 5, 10] through the development

of discrete prolate spheroidal sequences (DPSS). Using variational methods they show that

the sequence w[n] that maximizes the concentration satisfies the equation

N−1
2∑

m=−N−1
2

sin 2Wπ[n − m]
π[n − m]

w[m] = λw[n] (3.3)

Expressed in matrix form, the solutions to (3.3) are eigenvectors of the N × N symmetric,

positive-definite, Toeplitz matrix, ΘW, with elements

ΘW[n, m] =
sin 2W (m − n)

π(m − n)
(3.4)

m, n = −(N − 1)/2, ... − 1, 0, 1, ....(N − 1)/2

If W = γ, we obtain Θγ , the same matrix as in Section 3. By the spectral theorem, the

eigenvectors, vW
i [n], are real and orthogonal with associated real, positive eigenvalues, λW

i .

In addition, in [10] it is shown that these particular eigenvalues are always distinct and can

be ordered

λ1 > λ2 > ... > λN

These eigenvectors, vW
i [n], are time-limited versions of discrete prolate spheroidal sequences

(DPSS). They form a finite orthonormal basis for �2(−N−1
2 , N−1

2 ), [10].

Note that the DPSS are parametrized by N and W . In cases where there may be

confusion, the DPSS are denoted as v
(N,W )
i [n]. This specifies the i-th DPSS for the interval

|n| < N−1
2 and the band |ω| < W .

The original concentration problem only requires that (3.3) hold for |n| < N−1
2 . By

low-pass filtering the time-limited DPSS v(i)[n], we can extend the range of definition and

34



thus define the full DPSS

ui[n] =
∞∑

m=−∞

sin 2Wπ[m − n]
π[m − n]

vi[m] (3.5)

The ui[n] are defined for all n = (−∞,∞). They are band-limited functions that can

be shown to be orthogonal on (−∞,∞) as well as on [−N−1
2 , N−1

2 ], [10]. They form an

orthonormal basis for the set of band-limited functions �2(−W, W ), [10]. References [10,

9, 5] all comment on this “remarkable” double-orthogonality of the DPSS and its practical

importance in applications. In Appendix A we show that this double-orthogonality, and

many other properties of the DPSS can be interpreted as the result of the DPSS being a

singular value decomposition (SVD) basis.

3.1.2 Extremal Properties of the DPSS

Finally, normalizing the full DPSS to unit energy

∞∑
n=−∞

ui[n]uj [n] = δij (3.6)

It follows that
N/2∑

n=−N/2

ui[n]uj [n] = λiδij (3.7)

So the eigenvalue, λi, is the fraction of energy that lies in the interval [−N−1
2 , N−1

2 ], [10].

Conversely, normalizing the time-limited DPSS to unit energy

N/2∑
n=−N/2

vi[n]vj [n] = δij (3.8)

It follows that ∫ W

−W
Vi(ejω)V ∗

j (ejω)dω = λiδij (3.9)

The eigenvalue, λi, in this case, is the fraction of energy in the band |ω| < W , [10]. We can

now use the DPSS orthonormal basis to find the answer to our concentration problem. The

signal w[n] ∈ �2, so it has some finite energy E. Expressed in the DPSS basis

w[n] = α1v1[n] + α2v2[n] + · · · + αNvN [n] (3.10)
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with the constraint

α2
1 + α2

2 + · · · + α2
N = E (3.11)

Our goal is to choose the αi such that the energy in the band |ω| < π− γ is maximized.

By the orthogonality of {vi[n]}, the energy of w[n] in |ω| < π − γ is

α2
1λ1 + α2

2λ2 + · · · + α2
NλN (3.12)

Since there is a constraint on E, in order to maximize the ratio of energy in-band all

of the energy should be put onto the first eigenvector, i.e. α1 =
√

E and αi = 0 for i �= 1.

Thus the first DPSS, v1[n], solves the concentration problem. The maximum concentration

is the eigenvalue, λ1. Consequently, the optimal window in our formulation is vπ−γ
1 [n].

Modulating vπ−γ
1 [n] up to π and scaling it to meet the constraint, c[0] = −x[0], provides a

potential compensation signal

cdpax[n] = − x[0]
vπ−γ
1 [0]

(−1)nvπ−γ
1 [n] (3.13)

3.1.3 Duality of DPSS

Every DPSS has a dual symmetric partner. In particular,

vW
N+1−i[n] = (−1)nvπ−W

i [n] (3.14)

The eigenvalues are related

λW
N+1−i = λπ−W

i (3.15)

[10] states this property without a detailed proof. We provide a comprehensive proof in

Appendix B. Duality implies that the compensation signal, cdpax[n] in (3.13), can also be

expressed

cdpax[n] = − x[0]
vγ
N [0]

vγ
N [n] (3.16)

Independent of which DPSS is used to express it, we refer to this solution as the Discrete

Prolate Approximation (DPAX). The algorithm above is specific for symmetric compensa-

tion. For asymmetric compensation, the solution is also the first DPSS, scaled relative to

the dropped sample, vγ
N [k], for k �= 0.
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3.2 Relationship to Constrained Minimization Solution

It should be clear that cdpax[n] is not equivalent to the CM solution, copt[n]. In this section,

we illustrate how the window formulation constrains the problem differently, leading to a

sub-optimal solution. We also show that the optimal solution is a linear combination of

the DPSS. In this context, the DPAX solution is a first-order approximation of the optimal

solution.

3.2.1 Different Constraints

The window formulation starts with a finite-energy signal, optimizes for that energy, and

then scales to meet the c[0] = −x[0] constraint. CM does not begin with an energy con-

straint, thus it finds the optimal solution. Specifically, in the CM algorithm, we have a finite

set N on which we design N samples of the signal c[n]. Assume N= {0, 1}. Two sample

values, c[0] and c[1], must be determined. Graphically, as illustrated in Figure 3-1, there

exists the (c[0], c[1]) plane on which the error ε2 is defined. The constraint, c[0] = −x[0],

defines a vertical line in the space. The CM algorithm finds the unique point on this line

that minimizes ε2. This point, copt[n], is the optimal solution given the constraints.

The DPAX solution is fundamentally different. vγ
N [n], is a signal of unit energy that

has minimum error, ε2. As illustrated in Figure 3-2, it is the minimum on a circle of radius

E = 1 in the (c[0], c[1]) plane. The DPAX algorithm scales vγ
N [n] to meet the constraint

c[0] = −x[0]. Graphically, this amounts to scaling the unit circle until the minimum error

point intersects the constraint line c[0] = −x[0]. This point, which is both on the scaled

circle and the line, is cdpax[n]. This point is not the same as copt[n]. The DPAX solution is

thus sub-optimal for the constraints on the problem.

3.2.2 Constrained Mimimization Solution in the DPSS Basis

The exact relationship between cdpax[n] and copt[n] can be found by decomposing copt[n] in

the DPSS basis, {vγ
i [n]}. Since Θγ is real and symmetric, it can be diagonalized into its

real, orthonormal eigenvector basis which are the time-limited DPSS.

Θγ = VΛVT (3.17)

V is a orthogonal matrix with columns that are the DPSS. Λ is a diagonal matrix of
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eigenvalues. The inverse, Θ−1
γ is also symmetric and can be diagonalized in the same basis.

Θ−1
γ = VΛ−1VT (3.18)

As proved in [10], the eigenvalues associated with the DPSS are all real, positive, and

distinct. Thus, Θγ can be diagonalized with non-zero, distinct eigenvalues. The matrix is

thus non-singular and can be inverted. copt[n] exists, and it can be expressed as

copt[n] = − x0

θ−1
c

Θ−1
γ δ = − x0

θ−1
c

VΛ−1VTδ (3.19)

θ−1
c is the middle element of Θ−1

γ , which can be expressed in the DPSS basis as

θ−1
c =

N∑
i=1

λ−1
i (vγ

i [0])2 (3.20)

Without matrices, copt[n] can be expressed as

copt[n] = −x[0]
θ−1
c

(
λ−1

1 β1v
γ
1 [n] + · · · + λ−1

N βNvγ
N [n]

)
(3.21)

where βi = vγ
i [0]. The eigenvalues, λi, are distributed between 0 and 1. The expression for

the optimal solution depends on the reciprocals 1/λi, so the eigenvector with the smallest

eigenvalue, vγ
N [n], will dominate. Since scaling this vector produces cdpax[n], DPAX can be

interpreted as a first-order approximation to copt[n].

3.3 Performance Analysis

3.3.1 Examples

We implemented the DPAX algorithm in MATLAB and calculated compensation signals

in which x[0] = −1. The DPSS were found using the dpss() function in the MATLAB

Signal Processing Toolbox. This function computes the eigenvectors of Θγ using a similar,

tri-diagonal matrix ργ . The next section, describes the particulars of the implementa-

tion. Figure 3-3 shows cdpax[n] and an interpolated DFT, Cdpax(ejω), using 2048 linearly-

interpolated points, for N = 7, N = 11, and N = 21 for γ = 0.9π. Figure 3-4 shows the

same for γ = 0.7π.
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Figure 3-3: DPAX solution c[n] for γ = 0.9π and N=7, 11, 21
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Comparing these plots to Figure 2-1 and Figure 2-2 in Chapter 2, we observe that

cdpax[n] looks similar to copt[n]. Like copt[n], cdpax[n] is harder to band-limit when there

is only a small high-pass band. One noticeable difference is that the zeroth sample is not

discontinuous from the rest of the samples like in copt[n]. All of the samples for cdpax[n] can

be connected by a smooth continuous envelope.

3.3.2 Error performance

Figure 3-5 illustrates ε2 as a function of N for various values of γ. DPAX is not as ill-

conditioned as CM, so by increasing N it can achieve values of ε2 in the range of ε2 = 10−20,

i.e. about ten orders of magnitude smaller than that using CM.

The DPAX solution is suboptimal compared to the CM solution for the same parameters

γ and N . Figure 3.22 plots the gain

Gε =
ε2
dpss

ε2
opt

(3.22)

in error due to DPAX. As the figure illustrates, the gain becomes negligible as N increases

and γ decreases. The near-optimal performance of the DPAX solution is explained by the

eigenvalue distribution of Θγ . As N increases and γ decreases, the reciprocal of the smallest

eigenvalue, 1/λN , increasingly dominates the reciprocals of the other eigenvalues. In (3.21),

vγ
N [n] dominates the other terms, making cdpax[n] a tighter approximation.

Figure 3-7 shows the ratio λN−1/λN as a function of γ for N = 7, N = 11, and N = 21.

It illustrates empirically that λN−1 becomes significantly larger than λN as N increases and

γ decreases. The other eigenvalues λ1, λ2, etc., are even larger in size. For example, when

N = 21, λN−1 is 250 times larger than λN at γ = 0.5π. Thus in (3.21) the v
(N)
γ [n] term is

250 times more significant than the next order term.

3.3.3 Computational Complexity

The DPAX solution can be computed directly as the last eigenvector of Θγ . Due to the

ill-conditioning of Θγ , the DPAX solution is better found as the last eigenvector of a similar

matrix, ργ . In either case, DPAX requires finding the last eigenvector of a N × N matrix.

Many numerical routines exists for the computation of eigenvectors. For small matrices

(N < 45), the standard LAPACK routines, like those used by MATLAB’s eig() function,
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find all the eigenvectors of a matrix in O(N2) time, [14].

The DPAX solution only requires calculation of one eigenvector though. As N increases,

finding all the eigenvectors of a matrix is wasteful in terms of time and computation. For

such cases, the power method for calculating the first eigenvector of a symmetric matrix is

well suited for this problem [14]. In particular, the power method can be applied to Θπ−γ ,

the dual matrix, to find the first eigenvector. By dual symmetry the first DPSS of Θπ−γ

multiplied by (−1)n is equivalent to the last DPSS of Θγ . Using the power method, the

DPAX algorithm can be implemented more efficiently for larger N .

3.4 Numerical Stability

The ill-conditioning of Θγ can be better understood by looking at its eigenstructure. The

eigenvalues of Θγ correspond to the energy ratio of each of DPSS in band, thus they have

values between 0 and 1. Although these eigenvalues can be proved to be distinct, they are

usually so clustered around 0 or 1 that they are effectively degenerate when finite machine

arithmetic is used. Figure 3-8 shows the distribution of the eigenvalues for N = 11 as a

function of γ.
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This degeneracy is the cause of the ill-conditioning of Θγ . This was a problem for the

CM algorithm, and is also a problem for the DPAX algorithm. Fortunately, the time-limited

DPSS are also solutions of the second order difference equation

1
2
n(N−n)vi[n−1]+[(

N − 1
2

−n)2 cos 2πW−χi]vi[n]+
1
2
(n+1)(N−1−n)vi[n+1] = 0 (3.23)

k, n = −N − 1
2

, ...,−1, 0, 1, ...
N − 1

2

In matrix form, the solutions to (3.23) are the normalized eigenvectors of a symmetric,

tridiagonal matrix ργ of the form

ρπ−γ [i, j] =




1
2 i(N − i) j = i − 1(

N−1
2 − i

)2
cos 2(π − γ) j = i

1
2(i + 1)(N − 1 − i) j = i + 1

0 otherwise

(3.24)

i, j = −N − 1
2

, ... − 1, 0, 1, ...
N − 1

2

The χi’s are the eigenvalues. This equation arises in quantum mechanics when trying

to separate the three-dimensional scalar wave equation on a prolate spheroidal coordinate

system. This is where the name “prolate spheroidal sequences” originated, [9, 10].

[10] shows that if the eigenvectors of ργ are sorted according to their respective eigen-

values, then they are the same as the ordered eigenvectors of Θγ . The eigenvalues, χi, are

completely different though. Figure 3-9 shows a plot of the eigenvalues as a function of γ for

N = 11. The eigenvalues of ργ are well spread. In fact, the eigenvalues can be proved to be

differ at least by 1, [14]. Accordingly, the DPSS can be computed without any conditioning

problems. MATLAB’s dpss() function uses this method to find the DPSS.

DPAX is a powerful alternative algorithm to CM. Its performance is nearly optimal, it

is less complex, and it has fewer stability problems. The only drawback of DPAX is that

for smaller N and large γ, there is a performance loss associated with it. Fortunately, this

regime is exactly where the CM algorithm is well-conditioned and feasible to implement.
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Chapter 4

Iterative Minimization

In this chapter, as an alternative to the two closed-form algorithms, we develop an iterative

solution in the class of projection-onto-convex sets (POCS). The algorithm, which we refer

to as Iterative Minimization (IM) is proved to uniquely converge to the optimal solution,

copt[n]. Results from numerical simulation are presented. Empirical evaluation shows that

the IM has a slow convergence rate.

4.1 Derivation

Iterative algorithms are often preferred to direct computation because they are simpler

to implement. One common framework for iterative algorithms is projection onto convex

sets (POCS). In the POCS framework, iterations are continued projections that eventually

converge to a solution that is either a common point in all the sets projected into or, if there

are no such points, then points that are the closest between the sets. Detailed background

on POCS can be found in [12].

We formulate a POCS algorithm, called Iterative Minimization (IM), that converges

to an optimal window, w∗[n], that when multiplied by (−1)n gives copt[n], the optimal

finite-length solution. It is shown in block diagram form as Figure 4-1. There are three

projections in each iteration. Each projection is onto a convex set. A set C is convex if

w = µw1 + (1 − µ)w2 ∈ C (4.1)

for all w1,w2 ∈ C and 0 ≤ µ ≤ 1, i.e. for any two points in a convex set, the line connecting
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the two points is also inside the set, [12].

The first projection, PB, is an ideal low-pass filter. This projects the signal onto the

set of band-limited signals �2(π − γ). As proved in [3], �2(π − γ) is a convex set in �2. The

second projection, PD, is a truncation. This projects the input onto the set of time-limited

signals �2(−N−1
2 , N−1

2 ). [3] proves that �2(−N−1
2 , N−1

2 ) is also a convex set in �2. The last

projection, P0, replaces the zeroth sample with the value x[0]. It projects the signal onto a

set of signals, C0, that have w[0] = x[0]. In �2, C0 is a hyperplane, which is by definition a

convex set.

Proving that each projection is onto a convex set would normally enable us to use the fun-

damental theorem of POCS to prove convergence. In general, for convex sets C1, C2, ..., Cm

and their associated projection operators P1, P2, ..., Pm, we can define a total projection

operation

P = PmPm−1...P1 (4.2)

The fundamental theorem of POCS states that if the intersection of all the convex sets,

C =
⋂m

i=1 Ci is non-empty, then the sequence {Pnx} converges weakly to a point of C. It

converges strongly in the norm if each Ci is also a closed subspace, [12].

Define C = �2(π − γ)
⋂

�2(−N/2, N/2)
⋂

C0. C is empty because the only point in that

is both time-limited and band-limited is the trivial zero-signal. But the zero signal is not

in the set C0.

C = φ (4.3)

Consequently, the fundamental theorem cannot be used to prove convergence. Alterna-

tively, in POCS theory, there is a sequential projection theorem for non-intersecting sets.

It states that the sequence {wn} generated by

w(n+1) = Pm...P2P1wn (4.4)

converges weakly if one of the sets C1, C2, ..., Cm is bounded,[12]. A set C is bounded if

there exists µ < ∞ such that ||w|| < µ for every w in C, [12]. By this definition, �2(π − γ),

�2(−N−1
2 , N−1

2 ), or C0 are not bounded. We cannot use the sequential projection theorem

to prove convergence.
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4.1.1 Convergence

To facilitate proofs, we represent the projections in Figure 4-1 in terms of the affine trans-

formation of Figure 4-2. The two representations are isomorphic; i.e. they give the same

solution after each iteration. In this representation, there are three steps in each iteration.

The first step is B, a band-limiting operator, i.e. an ideal low-pass filter with cut-off π − γ.

The second step is D, a truncation operator. The support of the truncation is [−N−1
2 ,−1]

and [1, N−1
2 ], i.e. D time-limits to N/2 and additionally removes the value at index n = 0.

B and D can be conglomerated together into one linear operator T . The third and last step

is the addition of an impulse v = x[0]δ[n].

Assuming that w(0) ∈ �2, the iteration defines a sequence in �2

w(n+1) = Tw(n) + v (4.5)

Assume the algorithm has fixed-point w∗. Define the error signal after each iteration,

e(n), as the Euclidean distance from the present signal w(n) to the fixed-point

e(n) = w(n) − w∗ (4.6)

Applying T to both sides, adding v, and rearranging the expression,

Te(n) + v = Tw(n) − Tw∗ + v (4.7)

Te(n) = (Tw(n) + v) − (Tw∗ + v) (4.8)

w∗ is a fixed-point, so Tw∗ + v = w∗. In addition, Tw(n) + v = w(n+1) by definition.

Te(n) = w(n+1) − w∗ (4.9)

e(n+1) = Te(n) (4.10)

Convergence implies that ||e(n)|| approaches zero as n → ∞. Thus a sufficient condition

for convergence is that T is a strictly non-expansive operator. This means if w1 and w2

are two-points in �2, the normed distance between them must strictly decrease under T .

Mathematically,

||T (w1 − w2)|| < ||w1 − w2|| (4.11)
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In our case, T has two components: band-limiting and truncation.

T = DB (4.12)

We focus on the band-limiting operation. The input to T , w(n), is a signal time-limited to

[−N/2, N/2] that has w[0] > 0. The only time-limited signal that is also band-limited is

the trivial zero-signal. w(n) is not the zero-signal, so it has energy in the stop-band of the

low-pass filter B. Removing this energy will reduce the energy in the input w(n). Thus,

||Bw(n)|| < ||w(n)|| (4.13)

Band-limiting strictly reduces the energy in w(n). In total, T reduces the energy,

||Tw(n)|| < ||w(n)|| (4.14)

This inequality fails only when w = 0. In other words, ||T (w1−w2)|| < ||(w1−w2) unless

w1 = w2. Thus, T is a strictly-non-expansive operator and IM converges strongly to some

set of fixed points.

4.1.2 Uniqueness

Suppose that there are two fixed-points, w∗
1 and w∗

2, that are linearly independent such

that w∗
2 �= βw∗

1, for any β ∈ 	. Since they are both fixed-points,

Tw∗
1 + v = w∗

1 (4.15)

Tw∗
2 + v = w∗

2 (4.16)

Subtracting the two expressions, and using the linearity of T , implies

T (w∗
1 − w∗

2) = w∗
1 − w∗

2 (4.17)

Since we know T is a strictly non-expansive operator, this implies that w∗
1 = w∗

2, a contra-

diction. Thus, if it exists, the fixed-point w∗ is unique.
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4.1.3 Existence

The unique fixed-point, w∗, of the IM algorithm is (−1)ncopt[n]. We outline a proof using

direct substitution. First, we express w∗ by combining the scaling factor −x0/θ−1
c into a

constant A.

w∗ = (−1)ncopt[n] (4.18)

= − x0

θ−1
c

(−1)nΘ−1
γ δ

= A(−1)nΘ−1
γ δ

The POCS representation is used for this proof, since the substitutions are easier. The

first two projections, PB and PD, can be represented as a Toeplitz matrix, Θπ−γ . Our goal

is to show that w∗, as defined in (4.18), is a fixed-point.

P0PBPDw∗ = w∗ (4.19)

P0Θπ−γA
(
(−1)nΘ−1

γ δ
)

= A(−1)nΘ−1
γ δ (4.20)

As shown in Chapter 3, copt[n] can be expanded into its DPSS basis,

copt[n] = A
(
β1λ

−1
1 vγ

1 [n] + · · · + βNλ−1
N vγ

N [n]
)

(4.21)

The coefficients in the DPSS expansion of copt[n] are denoted βi = vγ
i [0]. Substituting into

(4.20), the next step is to multiply copt[n] by (−1)n and Θπ−γ . By the dual symmetry of the

DPSS, the eigenvectors of Θπ−γ are exactly the eigenvectors of Θγ modulated by (−1)n.

Thus the expression,

AΘπ−γ

(
β1λ

−1
1 ((−1)nvγ

1 [n]) + · · · + βNλ−1
N ((−1)nvγ

N [n])
)

(4.22)

becomes,

A[β1λ
−1
1 (1 − λ1)((−1)nvγ

1 [n]) + · · · + βNλ−1
N (1 − λN )((−1)nvγ

N [n])] (4.23)

We can split this expression into two terms, one that is the fixed point, w∗, and the
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other composed of residual terms without factors of λ.

A
(
β1λ

−1
1 ((−1)nvγ

1 [n]) + · · · + βNλ−1
N ((−1)nvγ

N [n])
)

(4.24)

+A (β1((−1)nvγ
1 [n]) + · · · + βN ((−1)nvγ

N [n]))

= (−1)ncopt[n] + A(−1)n (β1(v
γ
1 [n]) + · · · + βN (vγ

N [n])) (4.25)

To be a fixed point, the second term must be a scaled impulse. Then the projection

operator, P0, will return A(−1)ncopt[n]. Substitute βi = vγ
i [0] in the second expression.

Since the DPSS vγ
i [n] form an orthonormal basis of �2(−N−1

2 , N−1
2 ), equation 4.26 is the

decomposition of δ[n] into the orthonormal basis {vγ
i [n]}.

= vγ
1 [0](vγ

1 [n]) + · · · + vγ
N [0](vγ

N [n]) (4.26)

= 〈vγ
1 [n], δ[n]〉vγ

1 [n] + · · · + 〈vγ
N [n], δ[n]〉vγ

N [n] (4.27)

= δ[n] (4.28)

(4.25) can thus be simplified,

Θπ−γw∗ = (−1)ncopt[n] + A(−1)ndelta[n] (4.29)

Projection with P0 returns the fixed-point.

P0Θπ−γw∗ = P0 ((−1)ncopt[n] + A(−1)nδ[n]) (4.30)

= (−1)ncopt[n] (4.31)

We can thus use IM to compute the optimal, finite-length compensation signal, copt[n], that

was originally found using CM.
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4.2 Performance Analysis

4.2.1 Examples

We implemented IM in MATLAB and calculated compensation signals in which x[0] = −1.

Each iteration was started from an impulse initial condition.

w(0) = δ[n] (4.32)

Figure 4-3 illustrates the solution after 1, 20, 400, and 8000 iterations for N = 21 and

γ = 0.9π. Figure 4-4 illustrates the same for N = 21 and γ = 0.7π. The IM algorithm was

allowed to run for up to N3 = 8000 iterations because, in the worst case, using Gaussian

elimination, this is the computational complexity of the CM algorithm.

For the first N iterations there is a period of rapid convergence where the solution ex-

ponentially converges toward (−1)ncopt[n]. After this initial period, the rate of convergence

slows down considerably. This property is especially clear for the case of N = 21, γ = 0.7π.

After 20 iterations the solution takes its basic form, the next 7980 iterations augment the

solution minimally. As Figure 4-5 illustrates, the solution is far from optimal, even after

8000 iterations.
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Figure 4-3: Converging to Window, N=21, γ = 0.9π
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4.2.2 Convergence Rate

Figures 4-5 and 4-6 are the convergence curves for w(n) as functions of N and γ, respectively.

The long-scale convergence, after 8000 iterations, is shown on the upper plot. The bottom

plot is an inset of the convergence curve for the first 100 iterations. Figure 4-5 illustrates

the convergence rate for a family of solutions with constant γ = 0.7π, indexed by various

values of N . As N increases, the convergence rate decreases. Note the distinctive bend in

the convergence curve. It separates the initial, rapid stage of convergence from the later,

slower stage of convergence. Figure 4-6 illustrates similar curves for a constant N = 21,

indexed by various values of γ. This family of curves illustrates the same properties as

in Figure 4-5. The curves cross because for larger γ there is a larger initial error for our

particular choice of initial conditions, w(0) = δ[n]. Only the long-time convergence rate is

important, so these initial condition effects can be ignored.

The IM algorithm exhibits a historical problem for many POCS algorithms: slow conver-

gence. Although very elegant and theoretically feasible, the slow convergence rate makes IM

impractical. Even after 8, 000 iterations, the algorithm does not converge acceptably close

to the (−1)ncopt[n]. Note that IM is slow to converge precisely where CM is ill-conditioned.

When CM is ill-conditioned, most of the eigenvalues of Θπ−γ are clustered close to 1. Each

iteration scales each DPSS component of w(n) by λi. After N iterations this scaling is

λN
i . When λi are close to 1, there is not much change between each iteration, leading to

slow convergence. Though not studied in this treatment, POCS relaxation techniques could

potentially be used to speed up the convergence rate.
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Appendix A

DPSS and the Singular Value

Decomposition

The discrete prolate spheroidal sequences (DPSS) figure prominently in this thesis. The

many extremal properties of the DPSS, developed in a series of papers [5, 9, 10, 11] by

Slepian, Landau, and Pollak, are of primary importance. Many of these properties, like

“double orthogonality”, hint at a deeper mathematical structure. In this appendix, we

present the singular value decomposition (SVD) as a unifying framework in which the

DPSS can be interpreted.

In particular, we show that the DPSS are an SVD basis for the space of time-limited

and band-limited signals. This result may be known to some, but since it is relevant to

results presented in the thesis, we include a development here for the sake of completeness.

In addition, while mathematical, the development presented below is not rigorous. Where

necessary, we have outlined the proof, but the details of the verification are left to the

reader.

A.1 Singular Value Decomposition

The singular value decomposition (SVD) is a decomposition of a linear map T into elemen-

tary transformations. Generally, the SVD focuses on cases where T = T is a matrix, but in

this development we focus on the case where T is an arbitrary linear map in a coordinate-free

Hilbert space. The development closely follows [1], which offers a more rigorous definition

of the SVD.
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Let T be a linear map from U to V as in Figure A-1. Let the inner product in each of

these spaces be denoted by 〈x, y〉 and the squared-norm as ||x||2 = 〈x, x〉. T ∗ is the adjoint

operator of T . It is a linear map from V to U defined such that given an unique vector

u ∈ U and an unique vector v ∈ V,

〈Tu, v〉 = 〈u, T ∗v〉 (A.1)

T

T*

U V

Figure A-1: Singular Value Decomposition

In matrix representation, the adjoint of a matrix T is its Hermitian TH. While T maps

its row space into its column space, TH maps the column space into the row space, [13]. In

our coordinate-free development, the column-space is analogous to U and the row-space is

analogous to V.

The SVD is a decomposition of T such that for an arbitrary u ∈ U,

Tu =
r∑

i=1

〈ui, u〉vi (A.2)

where r is the rank of the operator and {ui} and {vi} are complete orthonormal bases of

U and V respectively. σi are the singular values of T . T can thus be interpreted at a basis

rotation and scaling, [1]. {ui} and {vi} are the eigenvectors of TT ∗ and T ∗T , respectively.

TT ∗ is a transformation that maps U into U. It is self-adjoint, since for u ∈ U

〈u, TT ∗u〉 = 〈T ∗u, T ∗u〉 (A.3)

= 〈TT ∗u, u〉 (A.4)

In addition, TT ∗ is a positive operator, [1]. By the spectral theorem, its eigenvectors
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can be chosen to form a full orthonormal basis, {ui}, of U. The eigenvalues are σ2
i .

TT ∗ui = λiui = σ2
i ui (A.5)

T ∗T is also a self-adjoint, positive operator and its eigenvectors are {vi} form an or-

thonormal basis for V. The eigenvalues are also σ2
i .

T ∗Tvi = λivi = σ2
i vi (A.6)

Intuitively, the SVD is a diagonalization of T using two bases, {ui} and {vi}. [1, 13]

offer a more detailed development of the SVD.

A.2 Discrete Prolate Spheroidal Sequences

The space of finite-energy signals, �2, is a Hilbert space under the inner-product

〈x, y〉 =
∞∑

n=−∞
x[n]y∗[n] (A.7)

The set of finite-energy signals band-limited to W , �2(W ), forms a subspace of �2, [12].

�2(− (N−1)
2 , (N−1)

2 ), the set of finite-energy signals time-limited to the interval [− (N−1)
2 , (N−1)

2 ],

also forms a subspace of �2. Consequently, both of these subspaces are induced Hilbert

spaces under the inner-product (A.7). For clarity, let U = �2(W ) and V = �2(− (N−1)
2 , (N−1)

2 ).

In this remainder of this section, we make two claims and outline a proof for each of them.

A.2.1 Band-limiting and Time-limiting as Adjoint Operations

We define a transformation, T ∗ : V → U, an ideal low-pass filter that band-limits signals

in �2(− (N−1)
2 , (N−1)

2 ) to W . We will show that the adjoint transformation, T : U → V, is

the truncation of band-limited sequences to [− (N−1)
2 , (N−1)

2 ].

We want to show, given u ∈ U and v ∈ V, that

〈Tu, v〉 = 〈u, T ∗v〉 (A.8)

In the right-hand expression, Tu and v ∈ �2(− (N−1)
2 , (N−1)

2 ). The inner product between
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these two time-limited signals is

〈Tu, v〉 =

N−1
2∑

n=−N−1
2

u[n]v∗[n] (A.9)

In the left-hand expression of (A.8), u and T ∗v ∈ �2(W ). Since they are band-limited,

they are of infinite length in the time-domain. Let T ∗v = vBL[n]. The inner product is

〈u, T ∗v〉 =
∞∑

n=−∞
u[n]v∗BL[n] (A.10)

Using Plancherel’s Theorem which states that for two signals x[n], y[n] ∈ �2,

∞∑
n=−∞

x[n]y∗[n] =
∫ π

−π
X(ejω)Y ∗(ejω)dω (A.11)

we can express (A.10) in the frequency domain. Both u[n] and vBL[n] are band-limited to

W so

〈u, T ∗v〉 =
∫ W

−W
U(ejω)V ∗

BL(ejω)dω (A.12)

By definition, VBL(ejω) = V (ejω) on [−W, W ], so

〈u, T ∗v〉 =
∫ W

−W
U(ejω)V ∗(ejω)dω (A.13)

Our goal is to show that (A.9) and (A.13) are equal. In (A.9), u[n] ∈ �2(− (N−1)
2 , (N−1)

2 ).

So, the product u[n]v∗[n] will be zero outside of the interval [− (N−1)
2 , (N−1)

2 ]. The summa-

tion can be re-indexed from −∞ to ∞.

N/2∑
n=−N/2

u[n]v∗[n] =
∞∑

n=−∞
u[n]v∗[n] (A.14)

Analogously, in (A.13), V ∗(ejω) is band-limited to γ, so the limits can be extended to −π

and π without changing the value of the integral.

∫ W

−W
U(ejω)V ∗(ejω)dω =

∫ π

−π
U(ejω)V ∗(ejω)dω (A.15)
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By Plancherel’s Theorem

∞∑
n=−∞

u[n]v∗[n] =
∫ π

−π
U(ejω)V ∗(ejω)dω (A.16)

Therefore, T and T ∗ are adjoint transformations for U = �2(W ) and V = �2(− (N−1)
2 , (N−1)

2 ).

A.2.2 DPSS as an SVD Basis

We show in this section that the DPSS construct the orthonormal SVD basis for T ∗, an ideal

low-pass filter. The SVD basis vectors {ui} for U are the eigenvectors of TT ∗. Figure A-2

shows the operation TT ∗ in block diagram form. The eigenvectors are band-limited signals

that after truncation and low-pass filtering are just scaled versions of themselves.

Mathematically, the transformation TT ∗ can be expressed as an eigenvalue equation

N−1
2∑

m=−N−1
2

sin 2πW [n − m]
π[n − m]

ui[m] = λiui[n] (A.17)

where the sequence ui[n] is band-limited to W , i.e. ui[n] ∈ �2(W ). (A.17) is identical

to (3.3), the eigenvector equation that generates the DPSS. The eigenvectors, {ui}, are

precisely the DPSS.

Analogously, the basis vectors {vi} of V can be found as the eigenvectors of T ∗T . Figure

A-3 shows T ∗T in block diagram form. The eigenvectors are time-limited signals that are

scaled versions of themselves after low-pass filtering and truncation. Mathematically, the

cascade simplifies to an eigenvalue equation

N−1
2∑

m=−N−1
2

sin 2πW [n − m]
π[n − m]

vi[m] = λivi[n] (A.18)

where the sequence vi[n] is time-limited to [− (N−1)
2 , (N−1)

2 ], i.e. vi[n] ∈ �2(− (N−1)
2 , (N−1)

2 ).

Again, (A.18) is identical to equation (3.3). The {vi} are precisely the time-limited DPSS.
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Figure A-2: TT ∗ Block Diagram
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Figure A-3: T ∗T Block Diagram
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A.3 Historical Results in the SVD Framework

With the SVD the “double-orthogonality” of the DPSS that was historically considered a

curious property, follows directly. Truncating a DPSS, ui[n], results in a scaled, time-limited

DPSS, vi[n].

Tui[n] = σivi[n] (A.19)

The energy preserved under truncation is

||Tui[n]||2 = ||σivi[n]||2 (A.20)

= σ2
i

∞∑
n=−∞

|vi[n]|2

= σ2
i = λi

Since λi < 1, this implies σi < 1. Low-pass filtering a time-limited DPSS, vi[n], gives a

scaled DPSS, ui[n].

T ∗vi[n] = σiui[n] (A.21)

The energy preserved under band-limiting is

||T ∗vi[n]||2 = ||σiui[n]||2 (A.22)

= σ2
i

N/2∑
n=−N/2

|ui[n]|2

= σ2
i = λi

Other extremal properties of the DPSS can also be developed within the SVD framework.

For example, in Chapter 3, our desire is to design a window in �2(− (N−1)
2 , (N−1)

2 ) that

maximizes the concentration ratio

α =

∫ π−γ
−π+γ |W (ejω)|2dω∫ π
−π |W (ejω)|2dω

(A.23)

Define U = �2(π − γ) and V = �2(− (N−1)
2 , (N−1)

2 ). The SVD orthonormal bases for U

and V are the DPSS. We can pose the concentration problem in terms of the DPSS basis.
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w[n] ∈ �2, so it has some finite energy E. Our goal is to choose the proper coefficients βi in

w[n] = β1v1[n] + β2v2[n] + · · · + βNvN [n] (A.24)

given the constraint

β2
1 + β2

2 + · · · + β2
N = E (A.25)

such that the energy preserved under T ∗, a low-pass filter with cut-off π − γ, is maximized.

We can write T ∗w[n] in terms of vi[n] and apply the SVD relation

T ∗w[n] = β1(T ∗v1[n]) + β2(T ∗v2[n]) + · · · + βN (T ∗vN [n]) (A.26)

= β1(σ1u1[n]) + β2(σ1u2[n]) + · · · + βN (σ1uN [n])

The energy preserved under the transformation is

||T ∗w[n]||2 = β2
1σ2

1 + β2
2σ2

2 + · · · + β2
Nσ2

N (A.27)

This is a canonical problem in principal component analysis. Since there is a constraint

on the energy E, to maximize ||T ∗w[n]||2, all of the energy should be put onto the first

eigenvector, i.e. a1 =
√

E and ai = 0 for i �= 1. Any energy put on the other vi[n]

would be wasted because it could have been put on v1[n] and more of it would have been

preserved. The signal with maximum concentration is thus the first eigenvector, vπ−γ
1 [n],

the time-limited DPSS with the largest singular value, [10].
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Appendix B

Dual Symmetry of DPSS

We rely on the dual symmetry of the DPSS for many of the results in this thesis. This

symmetry property is presented in [10], but the proof is left to the reader. For the sake of

completeness, we outline a basic proof of dual symmetry in this appendix.

As mentioned in Chapter 3, every DPSS has a dual symmetric partner. In particular,

vW
N+1−i[n] = (−1)nvπ−W

i [n] (B.1)

The eigenvalues are related

λW
N+1−i = λπ−W

i (B.2)

Figure B-1 represents a filter-bank that operates on a time-limited DPSS, vγ [n]. For

notational simplicity we denote vγ [n] = v[n]. The upper-branch filter, h[n], is an ideal LPF

with cut-off γ. The lower-branch filter, g[n]ejπn, is an ideal high-pass filter with cut-off γ.

We denote the output of the upper branch as vh[n] and the output of the lower branch as

vg[n]. The sum of these two signals is v[n] because the two filters h[n] and g[n]ejπn are

mutually exclusive and together pass V (ejω) unchanged.

vh[n] + vg[n] = v[n] (B.3)

Multiplying v[n] by a rectangular window, w[n], leaves v[n] unchanged because v[n] is

time-limited to [− (N−1)
2 , (N−1)

2 ]. Multiplication is distributive,

w[n]v[n] = w[n](vh[n] + vg[n]) (B.4)
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Figure B-1: Identity Filter-bank
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Figure B-2: Identity Filter-bank with multiplication distributed into the branches
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= w[n]vh[n] + w[n]vg[n] (B.5)

Thus, we can shift the multiplication by w[n] to the left of the summation node, into the

branches of the filter-bank. Figure B-2 represents the resulting filter-bank. The upper-

branch is a system for which the eigenfunctions are the DPSS, v[n]. Consequently, the

output of the upper-branch is λv[n]. This implies that the output of the lower-branch must

be (1 − λ)x[n].

Thus, v[n], is also an eigenfunction of the lower branch with eigenvalue (1−λ). We can

convert the high-pass system of the lower branch into low-pass form by modulating vg[n]

by e−jπn = (−1)n. As illustrated in Figure B-3,

e−jπnvg[n] =
(∑

v[m]g[n − m]ejπ[n−m]
)

e−jπn (B.6)

=
∑

(v[m]ejπm)g[n − m] (B.7)

The output vg[n](−1)n can be represented as the convolution of v[n](−1)n with the low-

pass filter g[n]. Since truncating vg[n] gives (1 − λ)v[n], truncating vg[n](−1)n gives (1 −
λ)v[n](−1)n. Thus, v[n](−1)n is an eigenvector of the low-pass system, Q, illustrated in the

lower part of Figure B-3. Consequently, v[n](−1)n = vγ [n](−1)n is a DPSS, vπ−γ [n], with

eigenvalue (1 − λ). Since the eigenvalues of the DPSS are unique and can be ordered, [10]

λ1 > λ2 > · · · > λN (B.8)

the DPSS for h[n], parametrized by γ, fully determine the DPSS for g[n], parametrized by

π − γ. Matching the equivalent eigenfunctions proves the dual symmetry of the DPSS.
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Figure B-3: Equivalence between high-pass system of lower branch and low-pass system
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