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Abstract—This paper investigates the sampling of continuous-
time signals according to time-varying or local bandwidth. A
general framework is established for sampling based on local
bandwidth. Two specific representations of local bandwidth are
subsequently presented. In the first approach, the time-invariant
anti-aliasing filter that typically precedes uniform sampling is
generalized to a time-varying lowpass filter. A corresponding
sampling and re-synthesis method is developed that achieves
perfect reconstruction for a class of self-similar input signals;
in most cases, however, perfect reconstruction does not result.
In the second approach, local bandwidth is represented in terms
of time-warping applied to globally bandlimited signals. The use
of time-warping is proposed as a pre-conditioning technique to
transform the input signal into one that is as close as possible to
being globally bandlimited.

I. INTRODUCTION

Discrete-time representations of continuous-time signals are
traditionally obtained by means of uniform sampling based
on the Nyquist sampling theorem. More generally, extensions
of the Nyquist sampling theorem, such as bandpass sampling
and the non-uniform sampling theorem, give rise to alternative
sampling methods (see [1] for a general survey). These theo-
rems make reference to the bandwidth of the Fourier transform
of the signal, which we refer to as the global bandwidth.
Many signals of interest, however, have frequency content
that is often interpreted, at least informally, as being time-
varying. For example, a high frequency carrier modulated in
frequency by a low frequency signal is often described in
terms of instantaneous frequency. Speech and music are other
examples that are perceived and referred to as having time-
varying frequency content, while the same is true in the spatial
domain for natural images.

Signals with time-varying frequency content are commonly
characterized using the short-time Fourier transform or other
time-frequency distributions. However, time-frequency analy-
sis techniques are typically not directed at the representation of
signals by their samples. In this paper, we seek representations
for time-varying bandwidth (which we refer to as local band-
width) in the specific context of sampling and reconstructing
signals.

Given the association between globally bandlimited signals
and time-invariant lowpass filters, it is natural to consider mod-
elling local bandwidth in terms of time-varying lowpass filters.
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Accordingly, we develop a representation for local bandwidth
and a corresponding structure for sampling and reconstruction
based on a class of time-varying lowpass filters, drawing upon
work by Horiuchi [2] on signals with bandlimited time-varying
spectra.

An alternative approach proposed in [3], [4] represents
local bandwidth as the result of local time-scaling or time-
warping applied to globally bandlimited signals. In this spirit,
[4] developed pre-conditioning filters tailored to pre-specified
non-uniform sampling grids. For the more general problem
of adapting the sampling grid to the signal at hand, a pre-
conditioning technique is suggested in which a time-warping
is used to transform the signal into an approximately globally
bandlimited signal. To determine an appropriate time-warping,
a heuristic iterative algorithm based on time-frequency dis-
tributions was developed in [5]. In this paper, we introduce
an alternative method based on minimizing the energy of the
signal above a specified maximum frequency.

The remainder of the paper is organized as follows: Section
II establishes a general framework for sampling and recon-
struction based on local bandwidth together with desirable
properties of such systems. Two specific realizations of the
general structure are then discussed. In Section III, we present
a model for local bandwidth based on an appropriate class
of time-varying lowpass filters and develop a corresponding
method for sampling and reconstructing signals. In Section IV,
we turn our attention to the representation of local bandwidth
based on time-warping. We present a structure for sampling
and reconstruction that incorporates time-warping in the pre-
conditioning stage with the goal of minimizing the signal
energy above a given maximum frequency.

II. GENERAL FRAMEWORK

In this section, we establish a basic structure for sampling
and reconstruction based on local bandwidth. Figure 1 illus-
trates the familiar structure typically used in uniform Nyquist
sampling. The input signal f(t) is pre-conditioned using an
anti-aliasing lowpass filter, limiting its maximum frequency to
the cut-off frequency ωc, before being sampled at or above the
Nyquist rate. The signal s(t) is reconstructed from its samples
using bandlimited interpolation.

We generalize the structure in Figure 1 to the case of time-
varying bandwidth as shown in Figure 2. The sampling grid is
now permitted to be non-uniform, while the pre-conditioning
and reconstruction filters become potentially time-varying. The
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Fig. 1. Structure for uniform Nyquist sampling.
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Fig. 2. General structure for sampling based on local bandwidth.

sampling grid and corresponding pre-conditioning are chosen
according to the time-varying frequency content of the input
signal f(t). Intuitively, we would expect the sampling rate to
be higher where f(t) varies more rapidly, and vice versa. As in
uniform sampling, the reconstruction filter is ideally designed
to re-synthesize the conditioned signal s(t).

Systems designed for sampling according to local band-
width should ideally possess certain desirable properties. Most
importantly, given any input signal, the pre-conditioning filter
should yield an output that can be perfectly reconstructed from
its samples, i.e., ŝ(t) = s(t). We refer to pre-conditioned sig-
nals satisfying the perfect reconstruction condition as locally
bandlimited signals, as they play a role analogous to globally
bandlimited signals in the Nyquist sampling theorem.

Even if perfect reconstruction cannot always be achieved,
a requirement often proposed in sampling theory (e.g. [6]) is
that of consistent resampling, i.e., ŝ(tk) = s(tk) ∀ k ∈ Z.
Furthermore, in the limit of constant local bandwidth, the
system should reduce to the uniform sampling structure of Fig-
ure 1, which does satisfy the perfect reconstruction property.
Accordingly, as the local bandwidth approaches a constant,
the sampling grid should approach a uniform grid, and the
reconstruction error should gradually decrease.

In the next section, we examine a specific realization of
the structure in Figure 2 in which the pre-conditioning filter
is chosen to be a time-varying lowpass filter. In Section IV,
we discuss a system incorporating time-warping in the pre-
conditioning stage.

III. REPRESENTATION BASED ON TIME-VARYING LOWPASS

FILTERS

In this section, we consider a natural extension of the uni-
form sampling structure in Figure 1 to the case of time-varying
bandwidth. As shown in Figure 3, the time-invariant lowpass
filter in the pre-conditioning stage is replaced by a time-
varying lowpass filter parameterized by a cut-off frequency
ωc(t). The function ωc(t) is restricted to be continuous and
positive with finite minimum and maximum values ωmin and
ωmax, i.e., 0 < ωmin ≤ ωc(t) ≤ ωmax < ∞ ∀ t. The
sampling grid and reconstruction filter are then specified in
terms of ωc(t).
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Fig. 3. Structure employing a time-varying lowpass filter in the pre-
conditioning stage.

We first consider the definition of the time-varying lowpass
filter. There are a variety of ways in which a time-invariant
lowpass filter can be generalized to the time-varying case.
Our definition is based on the concept of the time-varying
frequency response H(t, ω) for linear time-varying systems,
defined as follows: When the input to the system is of the
form f(t) = ejωt, the output is given by

s(t) = H(t, ω)ejωt. (1)

The time-varying frequency response completely characterizes
a linear time-varying system in terms of its responses to
complex exponential inputs (a more detailed discussion can be
found in [7]). For a time-varying lowpass filter, an intuitively
satisfying choice of frequency response is given by

H(t, ω) =

{
1, |ω| < ωc(t),
0, |ω| > ωc(t).

(2)

With f(t) = ejω0t and applying (1) and (2),

s(t) =

{
ejω0t, ωc(t) > |ω0|,
0, ωc(t) < |ω0|,

i.e., the filter exactly reproduces a complex exponential input
when the input frequency is below the cut-off frequency,
and produces an output of zero otherwise. The corresponding
input-output relation in the time domain is as follows:

s(t) =
∫ ∞

−∞
f(τ)

sin[ωc(t)(t− τ)]
π(t− τ)

dτ. (3)

In general, the output of a lowpass filter defined according
to (1) and (2) is not globally bandlimited. However, if ωc(t)
is constant, equations (2) and (3) reduce to the input-output
relations of an ideal time-invariant lowpass filter, and hence
in this case the output is globally bandlimited. It can be
shown that as the range of ωc(t) decreases to zero, the output
gradually approaches a globally bandlimited signal [8].

The time-varying spectrum S̃(t, ω) of the output s(t) is
defined as S̃(t, ω) = H(t, ω)F (ω), where F (ω) denotes the
Fourier transform of the input f(t). Since (2) implies that
S̃(t, ω) is non-zero only on the finite interval −ωc(t) <
ω < ωc(t) for each value of t, we refer to s(t) as having
a bandlimited time-varying spectrum. Consequently, s(t) may
be expressed in terms of the following series expansion derived
in [2]:

s(t) =
∞∑

k=−∞
s̃

(
t,

kπ

ωc(t)

)
ϕk(t), (4)



where

ϕk(t) =
sin [ωc(t)t− kπ]
ωc(t)t− kπ

. (5)

The 2-D signal s̃(t, τ) is the inverse Fourier transform of
S̃(t, ω) with respect to ω, i.e.,

s̃(t, τ) =
1
2π

∫ ∞

−∞
S̃(t, ω)ejωτdω, (6)

and is related to the 1-D signal s(t) by the equation s(t) =
s̃(t, t).

Based on (4), the reconstruction filter in Figure 3 is chosen
so as to yield

ŝ(t) =
∞∑

k=−∞
s(tk)ϕk(t), (7)

where the sampling times tk are the solutions to

ωc(tk)tk − kπ = 0, k ∈ Z. (8)

With this choice of sampling times, the value s(tk) of the kth
sample and the kth coefficient in (4) are equal at t = tk.

Equations (5), (7) and (8) together imply the consistent
resampling property since

ϕk(tm) =

{
1, k = m,

0, k 	= m.
(9)

In addtion, the sampling rate implied by (8) depends on
the cut-off frequency ωc(t) as intuition would suggest, being
higher where ωc(t) is large, and vice versa. In the limit as
ωc(t) approaches a constant, both the sampling times in (8)
and the reconstruction in (7) reduce to the uniform sampling
and reconstruction of Figure 1.

We note that (8) always has at least one solution for every
value of k, since ωc(t) is continuous and has a strictly positive
lower bound. For those values of k for which there exist
multiple solutions to (8), only one of the solutions is chosen
to be the kth sampling time.

While the sampling and reconstruction system specified
by (7) and (8) ensures consistent resampling, it does not
necessarily guarantee perfect reconstruction. The condition for
perfect reconstruction can be expressed as follows:

∞∑
k=−∞

[
s̃

(
t,

kπ

ωc(t)

)
− s(tk)

]
ϕk(t) = 0. (10)

A notable case in which perfect reconstruction does result is
for a class of self-similar input signals (defined e.g. in [9]).
Specifically, if F (ω) is of the form

F (ω) =
C

|ω|γ , (11)

with γ = 1, then the quantity in square brackets in (10)
vanishes and we have ŝ(t) = s(t). More generally, perfect
reconstruction can be achieved for any value of γ in (11) by
modifying the reconstruction formula in (7) as follows:

s(t) = (ωc(t))
1−γ

∞∑
k=−∞

(ωc(tk))γ−1
s(tk)ϕk(t). (12)

In general, however, (10) is not satisfied by many potential
inputs to the system of Figure 3, and perfect reconstruction
does not result.

The sampling and reconstruction system defined by (7)
and (8) does have the property that the reconstruction error
decreases as the variation in the cut-off frequency ωc(t)
becomes more gradual. We define the coefficients ek(t) of
the error signal e(t) = ŝ(t) − s(t) by means of an expansion
similar to (4):

e(t) =
∞∑

k=−∞
ek(t)ϕk(t). (13)

The consistent resampling property ensures that ek(tk) = 0
for all k. For t 	= tk, the following bound applies [8]:

|ek(t)| ≤ 1
π

{∫ ωc(tk)

ωc(t)

|F (ω)|dω

+λk(t)
√

2ωc(t)

(∫ ωc(t)

0

|F (ω)|2dω
)1/2

 , (14)

where

λk(t) =
(

1 − sin[ωc(t)tk − kπ]
ωc(t)tk − kπ

)1/2

.

As the range over which ωc(t) varies converges to zero, so
too does the upper bound in (14).

IV. REPRESENTATION BASED ON TIME-WARPING

In this section, we focus on an alternative representation
of local bandwidth based on the time-warping of globally
bandlimited signals. We first review the definition of a locally
bandlimited signal due to [3], [4] before presenting a structure
for sampling and reconstruction.

Consider a signal f(t) for which there exists a continuous,
invertible function α(t) such that the signal

g(t) = f(α(t)) (15)

is bandlimited to ω0, i.e., ω0 is the lowest frequency such that
G(ω) = 0 for all |ω| > ω0. We refer to the transformation t→
α(t) as a time-warping, and to α(t) as the warping function.
Equivalently, f(t) may be viewed as the result of applying the
inverse time-warping to a globally bandlimited signal g(t), i.e,

f(t) = g(γ(t)), (16)

where γ(t) denotes the inverse of α(t). We refer to signals
of the form in (16) as locally bandlimited signals since they
can be sampled according to local bandwidth (implied in this
case by the warping function) and perfectly reconstructed from
those samples. The sampling times and reconstruction are
given by

tk = α(kT ), (17)

and

f(t) =
∞∑

k=−∞
f(tk)

sin(ω0γ(t) − kπ)
ω0γ(t) − kπ

. (18)
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In order for the maximum frequency ω0 to be uniquely
specified, the warping functions α(t) and γ(t) are normalized
to exclude any global time scaling by the following constraint:

|α(t) − t| ≤ B ∀ t, (19)

for some positive constant B. Equation (19) and the require-
ment of invertibility constrain α(t) and γ(t) to be monoton-
ically increasing functions of t. Thus, we may interpret the
time-warping as a local time-scaling that gives rise to time-
varying bandwidth.

Based on the preceding definition of a locally bandlim-
ited signal, we now consider the system for sampling and
reconstruction depicted in Figure 4. The first step in the pre-
conditioning consists of a time-warping, chosen such that the
result g(t) is as close as possible in some sense to being
globally bandlimited. As a consequence, the loss through the
anti-aliasing lowpass filter is minimized. Intuitively, the time-
warping serves to counteract the time-varying bandwidth of
f(t), yielding an output with nearly constant bandwidth.

Conceptually, the output ĝ(t) of the lowpass filter should
be subjected to the inverse of the initial time-warping, i.e.,
that specified by the inverse warping function γ(t), to yield
a locally bandlimited signal s(t) as the final output of the
pre-conditioning. The signal s(t) could then be sampled and
perfectly reconstructed according to (17) and (18). The struc-
ture in Figure 4 can be simplified practically, however, by
combining the operations of time-warping and sampling, and
by decomposing the reconstruction filter into a time-invariant
lowpass filter followed by a time-warping. Figure 5 shows the
resulting structure, the middle part of which now corresponds
to the uniform sampling structure of Figure 1.

To determine an appropriate time-warping α(t), Brueller
et al. [5] have proposed a heuristic algorithm based on the
thresholding of time-frequency distributions. We focus instead
on an alternative strategy in which the objective is to minimize
the ratio of the energy of g(t) above ωc to the total energy of

g(t). Specifically,

α∗(t) = arg min
α(t)

r = arg min
α(t)

∫ ∞

|ω|=ωc

|G(ω)|2dω∫ ∞

−∞
|G(ω)|2dω

, (20)

where α(t) ranges over all continuous invertible functions
satisfying (19). The maximum frequency ωc is determined by
the sampling period T permitted by the system. We note that,
under the assumption that f(t) contains an infinite number of
zeroes, minimizing the energy above ωc without normalizing
by the total energy leads to a degenerate solution in which the
total energy is driven to zero.

As a preliminary approach to the optimization problem in
(20), we consider a simplification in which f(t) is assumed to
be non-zero only on the finite interval [0, L], and is represented
by uniform samples over this interval at a sufficiently high rate
for the error due to aliasing to be negligible. Furthermore,
we restrict attention to approximations of the optimal warping
function in the following class of piecewise linear functions:

α(t) =
P−1∑
p=0

∆pB

(
t

δ
− p

)
, 0 ≤ t ≤ L, (21)

where

B(t) =


0, t < 0,
t, 0 ≤ t ≤ 1,
1, t > 1,

(22)

δ is the horizontal length of every linear segment, and Pδ = L.
The parameters ∆p represent the increases in α(t) over each
segment, and satisfy ∆p > ε > 0 to ensure invertibility, and∑

p ∆p = L, the finite-length analogue to (19). The operation
of time-warping is approximated by interpolating between the
samples of f(t) to yield uniform samples of g(t). Under these
assumptions, the ratio r in (20) can be approximated in terms
of the discrete Fourier transform of samples of g(t), and the
minimization of r with respect to the parameters ∆p can be
performed using a gradient-descent algorithm.

The gradient-descent algorithm was evaluated using time-
warped sinusoidal signals, which fall into the class of locally



bandlimited signals under this representation. Thus, the al-
gorithm is expected to yield the inverse of the time-warping
applied to the underlying sinusoid. However, simulation results
show that the gradient-descent algorithm suffers from sensitiv-
ity to the initial values for the parameters ∆p. The algorithm
converges to a local minimum of r near the initial conditions,
which typically does not correspond to the desired inverse
time-warping. Future work will consider more sophisticated
initialization and/or optimization procedures for the problem
in (20).

V. CONCLUSION

We have presented in this paper a framework for sampling
and reconstructing signals on the basis of local bandwidth.
Two specific representations for local bandwidth were ex-
amined in detail. The first approach based on time-varying
lowpass filters led to a sampling and reconstruction system
that does not satisfy the property of perfect reconstruction for
most input signals. In contrast, the second approach based on
time-warping addresses the desire for perfect reconstruction,
while leaving the determination of the optimal time-warping
as an area for further investigation.
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