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Abstract— This paper addresses two issues related to the
simultaneous calibration of a network of imaging sensors and the
recovery of the trajectory of a single target moving among them.
The non-overlapping fields of view for the cameras do not cover
the entire scene, resulting in times for which no measurements are
available. A Bayesian framework is imposed on the problem in
order to compute the MAP (maximum a posteriori) estimate for
both the trajectory of the target and the translation and rotation
of each camera within the global scene. First, three model order
reduction techniques that decrease the dimension of the search
space and the number of terms in the objective function are
presented, thereby reducing the computational requirements of
the search algorithm used to solve the optimization problem.
Next, the problem of finding a solution that is consistent with
the set of observation times is addressed, so that the target’s
estimated state does not fall within the field of view of the sensor
network at a time for which no measurement is available. Three
techniques that treat the missing measurements as additional
inequality or equality constraints within the MAP optimization
framework are presented.

I. I NTRODUCTION

In many situations it is not possible to calibrate a network
of sensors prior to the start of data collection. It may be
undesirable to throw away good data while the sensors undergo
automatic calibration using training data or external training
sources embedded in the environment. In many practical
scenarios, such as inside buildings or in urban environments,
it may not be possible to use GPS or other RF techniques for
self-localization [1][2]. There are many drawbacks to these
various calibration techniques, including functional, memory,
power, and processing requirements for each node. There are
many scenarios in which the camera network must remain pas-
sive and undetectable by outside observers, thereby prohibiting
the use of active training sources or active radio links. In these
scenarios, a passive joint calibration and path recovery scheme
is desired.

It has been previously demonstrated that it is possible to
perform calibration and path recovery at the same time, using
only the raw data collected locally by each camera [3]. The
non-overlapping fields of view for the cameras do not cover
the entire global scene, as depicted in Fig. 1, and therefore
there are times for which no measurements are available.
One approach to recover the calibration parameters and the
target trajectory is to impose a Bayesian framework on the
problem and to compute the maximum a posteriori (MAP)

estimate. A Gaussian prior probability is imposed on the
camera calibration parameters, and the target’s trajectory is
assumed to evolve according to linear, Gauss-Markov dynam-
ics. The measurement likelihood function is nonlinear due to
the fact that the cameras may be arbitrarily rotated within
the global map, and subsequently the objective function is
also nonlinear and nonconvex. However, the objective function
is well approximated by a quadratic form, and therefore a
Newton-Raphson search method is adopted. While this tech-
nique solves the problem at hand, this batch algorithm quickly
becomes computationally intractable as more data becomes
available.

First, three model order reduction techniques to reduce the
dimensionality of the search space and the number of terms
in the objective function are presented. The first technique
removes states from the augmented path corresponding to
times for which no measurements are available. Once the
solution to the primary MAP optimization problem has been
obtained, the path corresponding to missing measurements can
be computed using the a priori target motion model and the es-
timates of the target’s state upon exit and return to the camera
network. The second technique uses position measurements
and derived local velocity estimates at the entry and exit points
to compute the optimal sensor configuration. The last model
order reduction technique exploits the small measurement
noise to treat the observations as equality constraints in the
optimization problem.

At times, the target’s estimated trajectory passes within
the field of view of a particular camera even though no
corresponding measurements are available, thus violating the
assumption that the probability of detection is unity every-
where within the sensor network. Most estimation schemes
rely only on the target’s a priori motion model to impute
its overall trajectory, without taking into consideration the
additional information provided about where the target is
prohibited from being when no observations are available. For
instance, in a Kalman filter, if a measurement is missing at
time k, the optimal action in the mean-squared error sense is
to replace the update step,x̂k|k, with the optimal predictor,
x̂k|k−1 [4]. This action may place the target within the field
of view of the sensor network at timek, contradicting the fact
that no measurement is available.

Three distinct methods to ensure that the final solution is
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Fig. 1. Sample camera configuration (aerial view).

feasible with respect to the probability of detection assumption
are presented. The first approach recasts the problem within
a nonlinear, mixed-integer programming framework, resulting
in a disjunctive constraint set. Though optimal, this solution
quickly becomes computationally intractable as the number
of missing measurements increases. The second method, de-
signed to approximately solve the mixed-integer program, is an
adaptive Newton-Raphson search algorithm that systematically
explores only the feasible subsets of the search space, adding
and removing equality constraints as needed. In the search
process, the algorithm pushes path segments with no measure-
ments around the corners of the sensors, rather than through
the field of view of the network. Finally, another approxima-
tion is discussed involving the use of circular constraints to
approximate the actual square sensor boundaries, which results
in a single, although highly constrained, optimization problem
to solve.

II. M OTION AND MEASUREMENTMODELS

The target’s state consists of four variables representing
position and velocity in the global coordinate system. The
horizontal direction is denoted byu and the vertical asv,
so that the target’s state at each time step is given by

xt =
[

ut u̇t vt v̇t

]T
.

In the a priori model, the state evolves according to linear,
Gaussian, Markovian dynamics, as:

xt+1 = Axt + νt (1)

where νt is a zero mean Gaussian random variable with
covarianceΣν . From the above characterization, it is well
known that the transition density is also Gaussian:

p (xt|xt−1) = N (xt;Axt−1,Σν) (2)

Let the variablex denote the stacked position and velocity
trajectory across all time. Denote the target’s initial location as
x0, wherex0 is often modelled as a Gaussian random variable.
The prior probabilityp(x) over the entire stacked trajectory is

given by:

p(x) = p(x0)
T∏

t=1

p (xt|xt−1) (3)

The observations are supplied by a network of non-
overlapping cameras, each of which reports to a central
processor the position of the target in its own local coordinate
system when the target appears in its field of view, along with
a time stamp and unique camera ID. There are three unknown
parameters associated with each camera, corresponding to hor-
izontal and vertical translation and rotation about a reference
direction (e.g. north), denoted asµi =

[
pi

u pi
v θi

]T
, as

shown in Fig. 2. For simplicity, letpi =
[

pi
u pi

v

]T
and

let µ =
[

µ1 µ2 · · · µN
]T

be the collection of stacked
sensor parameters for allN cameras. The rotation matrix for
sensori is:

R(θi) =
[

cos(θi) sin(θi)
− sin(θi) cos(θi)

]
Denotep(µ) as the prior distribution on the entire set of sensor
calibration parameters, which is Gaussian with meanµ0 and
covarianceΣµ. In p(µ), the location of one sensor is fixed,
due to the fact that any configuration ofx andµ is equivalent
to the same configuration arbitrarily translated and rotated,
due to what is known as gauge freedom [3]. The relationship
between the measured local positions in theith sensor and the
true state is nonlinear and can be expressed as:

zi
t = πi(xt) + ωt = R(θi)

(
Cxt − pi

)
+ ωt (4)

where

C =
[

1 0 0 0
0 0 1 0

]
extracts the position information from the state vector andωt

is zero mean, Gaussian measurement noise with covariance
Σω = σ2

z I . The likelihood of the measurements is given by:

p
(
zi
t|xt, µ

i
)

= N
(
zi
t;π

i(xt),Σω

)
(5)

Using the fact that all of the measurement noises are indepen-
dent, the measurements are independent when conditioned on
the trajectory and sensor parameters. Therefore, the likelihood
function for the entire collection of measurements given the
full target trajectory and entire collection of sensor calibration
parameters is given by:

p(z|x, µ) =
∏

t∈M
p
(
zi
t|xt, µ

i
)

(6)

whereM is the set of times for which measurements are
available.

III. I NITIAL SOLUTION

The solution proposed in [3] consists of computing the
most probable a posteriori trajectory and sensor calibration
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Fig. 2. Sensor geometry.

parameters given the measurement set according to:

(x∗, µ∗) = arg max
x,µ

p(x, µ|z)

∝ arg max
x,µ

p(z|x, µ)p(x)p(µ) (7)

Equivalently, one can maximize thelog, which is equal to min-
imizing the arguments of the exponentials for each Gaussian
term:

(x∗, µ∗) = arg min
x,µ

∑
t∈Z

1
σ2

z

∣∣∣∣zi
t − πi(xt)

∣∣∣∣2
+ xT Σ−1

x x + (µ− µ0)T Σ−1
µ (µ− µ0) (8)

A Newton-Raphson search algorithm is used to find the
optimal x andµ. A vector r can be determined so that Eq. 8
can be rewritten as:

(x∗, µ∗) = arg min
x,µ

rT r

Newton-Raphson is an iterative algorithm of the form:

Xk+1 = Xk − (JT J)−1JT r

where J is the Jacobian ofr with respect to the unknown
parameters. The complexity of the Newton-Raphson algorithm
is quadratic with respect to the number of rows inJ , as it
requires a QR decomposition using Householder reflections to
solve the least squares problem.

IV. M ODEL ORDER REDUCTION

Due to the fact that the MAP solution processes all of the
data in batch form, it is extremely important to optimize the
performance of the algorithm. The following three techniques
seek to reduce the dimension of the search space and to reduce
the number of terms in the objective function.

A. Separation Into Multiple Optimization Problems

The first technique removes from the augmented state
vector x those entries in the path corresponding to times for
which no measurements are available. It can be shown that

the estimates of the sensor parameters and remaining path
entries produced by this method are exactly the same as those
produced by the original technique, as no information is lost
by this reformulation [5]. The paths corresponding to missing
measurements are computed in parallel to one another after the
primary optimization has been solved, using the knowledge of
the target’s dynamics and the newly formed estimates for the
sensor locations and positions of the target as it leaves and
returns to the network’s field of view.

When the target leaves the range of the sensor network, the
target’s last known state is propagated through a new motion
model that accounts fork-step transitions, and the skipped
times are computed separately. The general relationship be-
tween the state at timet and the state at timet + k is derived
by recursively applying Eq. 1, resulting in:

xt+k = Akxt +
k−1∑
i=0

Aiνt+i

Since all of theν’s are i.i.d. Gaussian random variables with
zero mean and covarianceΣν , P (xt+k|xt) is also Gaussian,
with meanAkxt and covariance equal to:

cov [xt+k|xt] =
k−1∑
i=0

cov
[
Aiνt+i

]
=

k−1∑
i=0

AiΣν

(
Ai
)T

where the last equality follows due to the fact that theνt’s are
i.i.d. Thus the transition density for the target’s state at time
t given its state at timet− k is:

p (xt|xt−k) = N

(
xt; Akxt−k,

k−1∑
i=0

AiΣν

(
Ai
)T)

(9)

This multi-step transition density replaces the corresponding
k−1 single step densities in Eq. 3. Again, a Newton-Raphson
search algorithm is used to find the optimalx andµ.

The task of recovering the most probable path traversed by
the target while outside the field of view of the sensor network
is solved by formulating a new linear least squares problem
each time the target exits and returns to the network. The
objective is to maximize the probability of this unobserved
trajectory between sensors given estimates for the initial and
final positions and velocities. The sensor parameters and target
trajectory inside the sensors are assumed to be given from the
solution to the primary optimization problem. A new vector
x is formed by stacking the target’s state vectors for all
missing measurements between a single exit and return to the
network. LetN denote the number of missing measurements
corresponding to one segment for which the target is outside
the field of view of the sensor network. The new optimization
problem becomes:

x∗ = arg max
x

k+N∏
t=k+1

p (xt|xt−1)

wherexk and xk+N are treated as fixed quantities. Equiva-



lently, one can maximize the log of the above expression:

x∗ = arg max
x

k+N∑
t=k+1

log (p (xt|xt−1)) (10)

Due to the quadratic objective function, the solution can be
computed directly or after a single iteration of a Newton-
Raphson search algorithm. It can also be shown that the
solution to the above optimization problem gives exactly the
same estimates as a Kalman smoother [5]. The forward pass
corresponds to propagating the target’s state as it leaves the
sensor network through the target’s motion model, while the
backward pass incorporates knowledge of where the target
returns to form the smoothed estimates.

B. Using Only Entry and Exit Measurements

Further model reduction is possible by applying the mul-
tistep transition density concept within the sensors. Suppose
on a given pass though a sensor, six or seven time steps are
recorded, as in Fig. 3(a). Each of the measurements contributes
information to the position and velocity estimates for the
entire target trajectory. However, it is possible to use the
position measurements within a single pass through a sensor
to get a good local estimate for the velocity at the entry
and exit points. Those velocity estimates are then treated like
velocity measurements, while all of the interior measurements
are discarded. The resulting solution is not equal to the
solution using all of the measurements across the entire path,
including visits to other sensors; however, in most cases it is
a good approximation. The number of measurements within
a particular pass through a sensor directly impacts the error
of these local velocity estimates. Fig. 3(b) shows the result
of the joint calibration and tracking using only the entry and
exit velocities. The velocities for a given pass are determined
using a Kalman smoother over the set of local measurements.

C. Treating Measurements as Constraints

In most cases, the measurement noise from an imaging
sensor is extremely low relative to other sources of error
in the problem. In these cases, it is possible to treat the
measurements as nonrandom quantities. The answer reached
by this method is not exactly equal to the original solution;
however, the difference between the two methods disappears
asσz approaches zero.

For each measurement in the data set, use Eq. 4 to solve
for the corresponding position variables of the path. The new
optimization problem becomes:

(x∗, µ∗) = arg min
x,µ

xT Σ−1
x x + µT Σ−1

µ µ (11)

subject to:

C xk =
[

uk

vk

]
= R−1

(
θi
)
zk + pi ∀ k ∈M

whereM is the set of all times for which measurements are
available. These equality constraints can then be incorporated
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Fig. 3. Example of camera calibration using only entry and exit measure-
ments. The yellow (lighter) squares represent the true sensor locations, while
the blue (darker) squares represent the estimated locations. The true path is
shown in blue and the estimated path is shown in red. (a) MAP solution using
all of the steps. (b) MAP solution using only entry/exit information with local
velocity estimate.

into the objective function directly by making the appropriate
substitutions within the minimization expression.

V. M ISSING MEASUREMENTS

This section addresses the issue of how to fully utilize
measurement times to find a sensor configuration and target
trajectory that is consistent with this information. The MAP
solution may place the target inside the field of view of a
sensor at a time for which no measurement is available, as
illustrated by the example in Fig. 4. If the target were actually
inside the range of that camera at that time, there would
have been a corresponding measurement in the data set, thus
resulting in a contradiction. Knowledge of the times for which
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Fig. 4. Motivating Example for Missing Measurement Algorithms. (a) True
sensor locations and true path traversed by the target. (b) MAP solution.
The path segment containing times{6, 7, 8, 9, 10, 11, 12} is infeasible, as no
measurements occur during these times.

no measurements are available provide additional constraints
to impose on the optimization problem in order to find a
feasible solution.

A. Derivation of the Constraint Equations

In order to find a solution consistent with the measurement
times, it is necessary to limit the regions in the global
map where the target is permitted to be in the absence of
measurements. If no measurement is available at timet, the
target must be restricted to lie outside the field of view ofeach
and everysensor at that time. The target must be either below,
above, to the left of, or to the right of each of the sensors, as
depicted in Fig. 5. These additional restrictions introduce a set
of disjunctive (either-or) constraints into the problem.

It is necessary to derive the equations that define the sensor’s
boundaries in terms of the sensor’s internal parameters of
translation from the origin, rotation about a reference direction,
and size of the field of view in each direction. Note that while
these constraints form linear boundaries in the global map,
the constraints are nonlinear (and nonconvex) functions of the
unknown variables in the overall optimization problem. Figure
2 depicts the geometry of a typical sensor, with all of the
quantities labeled that are needed to derive each of the four
lines representing the sensor boundaries. The four equations
for the lines defining the sensor’s walls are given by:

yb = tan θ xb + p1
v − p1

u tan θ

yt = tan θ xt + (p1
v + α cos θ)− tan θ(p1

u − α sin θ)
yl = − cot θ xl + p1

v + p1
u cot θ

yr = − cot θ xr + (p1
v + α sin θ) + cot θ(p1

u + α cos θ)

When the sensor’s rotation angle isθ = k π
2 , k ∈ Z, the

above equations yield slopes of0 and∞. In this case, simpler
equations arise.
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Fig. 5. Feasible regions for the target when no measurement is available.

B. Mixed-Integer Nonlinear Programming Formulation

It is possible to determine the solution with lowest cost
that is consistent with the missing measurement information
by reformulating the problem using a combination of real
valued and binary variables. For each missing measurement
and each sensor, augment the set of unknowns with a set of
four variablesλi ∈ {0, 1}, such that:

vt ≤ mbut + bb + βλ1

mtut + bt ≤ vt + βλ2

vt ≤ mlut + bl + βλ3

mrut + br ≤ vt + βλ4

4∑
i=1

λi = 3

whereβ is avery largenumber. The last constraint guarantees
that exactly one of the four previous equations holds, while the
others are effectively eliminated, since they are automatically
satisfied. A set of constraints of the form shown above would
need to be added for each missing measurement, for every
sensor. If there areM missing measurements andS sensors,
this results inMS sets of equations, each with four inequality
constraints and one equality constraint.

The task of solving a mixed-integer nonlinear programming
problem has been shown to be NP-hard. This is an active
research area, and many algorithms have been developed, in-
cluding the Outer Approximation method [6] and the Branch-
and-Bound method [7]. Due to the extremely large number
of disjunctive constraints introduced to eliminate the missing
measurement infeasibility problem, an approach based on
mixed-integer programming is computationally intractable.

C. Adaptive Newton-Raphson Search

This section presents a computationally tractable algorithm
to find a feasible solution with respect to missing measure-
ments by adaptively modifying the original Newton-Raphson
search. Starting from an initial feasible solution, the largest
step possible in the direction of the current gradient is
taken, while still remaining feasible with respect to missing
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measurements. When a boundary between the feasible and
infeasible regions is reached, the new set of active constraints
is computed according to a simple set of rules, and the new
search direction is computed from this point. In this manner
the algorithm explores only the feasible regions of the search
space. While the active constraint set changes over time, the
overall optimization is computationally tractable, unlike the
full blown mixed integer programming problem described in
the previous section.

The algorithm behaves according to the flow diagram given
in Fig. 6. TheMake Feasibleblock moves all of the times
for each infeasible segment to a point outside the field of
view of all of the sensors, but close to the point of entry
for that segment. In the example given by Fig. 4, there is a
single infeasible segment consisting of times6 through12, and
the algorithm would initially move all of these estimates to a
feasible location between the top of sensor1 and the bottom
of sensor3, as shown in Fig. 7(a).

Recall that each Newton-Raphson step is taken as:

yk+1 = yk − (JT J)−1JT r

where y =
[

x µ
]T

. The two pointsyk+1 and yk in
parameter space define a line segment given by their convex

combination:
(1− λ)yk + λyk+1

whereλ ∈ [0, 1] andλ = 1 corresponds to taking a full step.
Supposeyk is a feasible solution, butyk+1 is not. Then it
must be true that for at least one value ofλ, the line crosses
the boundary between the feasible and infeasible regions of
parameter space. Starting from the initial feasible solution, the
Take Largest Newton Stepblock computes the largest value of
λ so that the next solution remains feasible, as demonstrated
in Fig. 7(b).

Since a full step is not possible, the algorithm must deter-
mine which constraints to add. The algorithm detects that the
target at time 12 is attempting to cross into the field of view
of sensor 3. Since there were no previous active constraints,
the algorithm simply constrains time12 to lie on the bottom
of sensor3, and then takes a new step, the result of which
is shown in Fig. 7(c). Careful inspection of the plot shows
that this newest solution places time13 on the boundary of
sensor3. The naive choice is to constrain time13 to be on
the top wall of sensor3. However, the algorithm operates
under the guiding principle that if goingthrough the sensor
is infeasible, then the segment must goaround the corner.
Hence, the algorithm pushes time12 around the southeast
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Fig. 7. Modified Newton-Raphson Search: Step-by-Step Example. (a) Initial Feasible Solution. (b) Solution after largest first step taken. (c) Solution after
position 12 is constrained to the bottom of sensor 3. (d) Position 12 is pushed around the corner, and 11 is constrained to the bottom of sensor 3. (e) Position
6 approaches the bottom of sensor 3. (f) Final feasible solution. Position 6 is constrained to the bottom of sensor 3, and 7 is constrained to the right side.

corner of the sensor, releasing the constraint on the bottom
wall, and adding a constraint to the right wall. The result
of this operation is given by Fig. 7(d). At this point time
11 approaches the bottom boundary of sensor3. The same
principle of pushing the path around the corner is applied,
and time11 is constrained to the right wall of sensor3, while
the constraint for time12 is released. The process is repeated
until the last time in the segment attempts to enter the sensor,
as shown in Fig. 7(e). The last time is not pushed around
the corner, but rather it is constrained to the bottom wall,
without releasing the constraint for time7. The final result is
shown in Fig. 7(f). This adaptive Newton search algorithm is
not guaranteed to find the constrained solution with minimum

cost over the set of all possible constrained solutions. However,
it successfully finds a feasible solution, and it does this in a
automatic and systematic manner.

D. Circular Constraints

The constraints derived in section V-A exactly define the
square sensor boundaries within the global map. In order to
fully describe the region outside the field of view of each
and every sensor, it is necessary to use disjunctive constraints.
This requires the computation of many parallel optimization
problems, resulting in a procedure that is computationally
intractable. Another approach to the problem is to use circular
constraints to approximate the sensor boundaries, as shown in
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Fig. 9. Example using circular constraints. (a) Circles inscribed within the
square sensors. (b) Circles circumscribed around the square sensors.

Fig. 8. This results in a single, although highly constrained,
optimization problem to solve.

The region outside the field of view of the sensor can be
described in a single equation through the use of circular
constraints. The center coordinate for each sensor is given by:

(uc, vc)
T =

(
0.5 (2pu + α cos(θ)− α sin(θ))
0.5 (2pv + α cos(θ) + α sin(θ))

)
and thus each circle can be expressed as:

r2 ≤ (ut − uc)
2 + (vt − vc)

2

wherer is the radius of the circle. A constraint of this form
is required for each sensor and for each time during which
no measurement is available. LetS denote the number of
sensors and letU denote the number of missing measurements.
Thus there areSU simultaneous inequality constraints, rather
than the set ofeither-or constraints that arise from the use of
square sensor boundaries. This technique trades off the ability
to exactly describe the regions of the global map where the
target is permitted to be when no measurements are available
with the ability to pose the problem as a single nonlinear
optimization problem. As a result, the solution found using
this method may not be the solution with lowest overall cost.

The question arises how to pick the radiusr of the circle that
best approximates the sensor boundary. The circle inscribed in
the square may result in a solution that places the target within
the corners of the field of view of the actual sensor, as shown
in Fig. 9(a). The circle circumscribing the square may push the
target further away from the sensor than necessary, resulting
in a solution with larger cost that the true globally optimal
solution, as shown in Fig. 9(b). One possible approach is to
systematically vary the radius to find the smallestr needed in
order to push the entire infeasible path segment just beyond
the field of view of each sensor.

VI. CONCLUSION

Previous work has shown that it is possible to perform
simultaneous target path estimation and calibration using MAP
estimation. MAP estimation is not thought to be computable
in real time, as it processes all of the data in batch form.
Recursive algorithms such as the Kalman or particle filter
require smoothing to correct the previous track estimates
given new data that is available later. The MAP estimator
presented here is an inherent smoother, however, the algorithm
quickly becomes computationally intractable as the number of
measurements increases. This paper demonstrated three im-
provements to reduce that computational complexity, making
real time MAP estimation possible.

This paper also presented three methods to improve the
accuracy of the MAP solution by making use of the missing
measurement information. Additional inequality constraints
were placed within the optimization framework in order to
prevent the target from entering the field of view of the sensor
network at times for which no measurements were available.
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