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Abstract—This paper addresses two issues related to the estimate. A Gaussian prior probability is imposed on the
simultaneous calibration of a network of imaging sensors and the camera calibration parameters, and the target’s trajectory is
recovery of the trajectory of a single target moving among them. a55;med to evolve according to linear, Gauss-Markov dynam-
The non-overlapping fields of view for the cameras do not cover . S LT .
the entire scene, resulting in times for which no measurements are ics. The measurement likelihood functlo.n Is'nonllnear du_e ,to
available. A Bayesian framework is imposed on the problem in the fact that the cameras may be arbitrarily rotated within
order to compute the MAP (maximum a posteriori) estimate for the global map, and subsequently the objective function is
both the trajectory of the target and the translation and rotation  also nonlinear and nonconvex. However, the objective function
of each camera within the global scene. First, three model order is well approximated by a quadratic form, and therefore a

reduction techniques that decrease the dimension of the search . . .
space and the number of terms in the objective function are Newton-Raphson search method is adopted. While this tech-

presented, thereby reducing the computational requirements of Nhique solves the problem at hand, this batch algorithm quickly

the search algorithm used to solve the optimization problem. becomes computationally intractable as more data becomes
Next, the problem of finding a solution that is consistent with gyailable.

the set of observation times is addressed, so that the target's gt three model order reduction techniques to reduce the

estimated state does not fall within the field of view of the sensor di . lity of th h d th b ft
network at a time for which no measurement is available. Three dIMensionality o € Search space an € number of terms

techniques that treat the missing measurements as additional in the objective function are presented. The first technique
inequality or equality constraints within the MAP optimization =~ removes states from the augmented path corresponding to

framework are presented. times for which no measurements are available. Once the
solution to the primary MAP optimization problem has been
obtained, the path corresponding to missing measurements can
In many situations it is not possible to calibrate a networie computed using the a priori target motion model and the es-
of sensors prior to the start of data collection. It may bémates of the target’s state upon exit and return to the camera
undesirable to throw away good data while the sensors underggwork. The second technique uses position measurements
automatic calibration using training data or external trainingnd derived local velocity estimates at the entry and exit points
sources embedded in the environment. In many practical compute the optimal sensor configuration. The last model
scenarios, such as inside buildings or in urban environmentsger reduction technique exploits the small measurement
it may not be possible to use GPS or other RF techniques fmise to treat the observations as equality constraints in the
self-localization [1][2]. There are many drawbacks to thesgptimization problem.
various calibration techniques, including functional, memory, At times, the target's estimated trajectory passes within
power, and processing requirements for each node. There te field of view of a particular camera even though no
many scenarios in which the camera network must remain pasfresponding measurements are available, thus violating the
sive and undetectable by outside observers, thereby prohibitagsumption that the probability of detection is unity every-
the use of active training sources or active radio links. In theadere within the sensor network. Most estimation schemes
scenarios, a passive joint calibration and path recovery schemaly only on the target's a priori motion model to impute
is desired. its overall trajectory, without taking into consideration the
It has been previously demonstrated that it is possible aolditional information provided about where the target is
perform calibration and path recovery at the same time, usipgphibited from being when no observations are available. For
only the raw data collected locally by each camera [3]. Thastance, in a Kalman filter, if a measurement is missing at
non-overlapping fields of view for the cameras do not covéime k, the optimal action in the mean-squared error sense is
the entire global scene, as depicted in Fig. 1, and therefadoereplace the update step; ., with the optimal predictor,
there are times for which no measurements are availabig,_; [4]. This action may place the target within the field
One approach to recover the calibration parameters and tiesiew of the sensor network at timie contradicting the fact
target trajectory is to impose a Bayesian framework on tlteat no measurement is available.
problem and to compute the maximum a posteriori (MAP) Three distinct methods to ensure that the final solution is

I. INTRODUCTION



given by:

e p(@) = plxo) [T p (welwe—s) (3)

Foy t=1

cmg\‘“ The observations are supplied by a network of non-
roV overlapping cameras, each of which reports to a central
processor the position of the target in its own local coordinate
Sty system when the target appears in its field of view, along with
Al g X :
o a time stamp and unique camera ID. There are three unknown
parameters associated with each camera, corresponding to hor-
izontal and vertical translation and rotation about a reference
[DOOR]  — direction (e.g. north), denoted a8 = [ p! pi 6’ T as
shown in Fig. 2. For simplicity, lep’ = [ pi, p. |* and
letp=[ p' u? uN ]T be the collection of stacked
sensor parameters for al cameras. The rotation matrix for
nsor; is:

Fig. 1. Sample camera configuration (aerial view).

feasible with respect to the probability of detection assumptié; ‘ ‘
are presented. The first approach recasts the problem within R(") = cos(¢')  sin(6°) ]
a nonlinear, mixed-integer programming framework, resulting —sin(6") cos(6")

in a disjunctive constraint set. Though optimal, this SOIUt'OBenotep(u) as the prior distribution on the entire set of sensor

quickly becomes computationally intractable as the n“mbgélibration parameters, which is Gaussian with megrand

of missing measurements increases. The second methOd'é&Q/érianceEH. In p(), the location of one sensor is fixed,

signed to approximately solve the mixed-integer program, is @i} g the fact that any configuration efand ;: is equivalent

adaptive Newton-Raphson search algorithm that systematicglly e same configuration arbitrarily translated and rotated,
explores only the feasible subsets of the search space, adqd o what is known as gauge freedom [3]. The relationship

and removing equality constraints as needed. In the seayely\een the measured local positions in#fesensor and the
process, the algorithm pushes path segments with no Measyres <iate is nonlinear and can be expressed as:
ments around the corners of the sensors, rather than through

the field of view of the network. Finally, another approxima- zi = 7' (2) + we = R(6") (Cxy — p') + wy (4)
tion is discussed involving the use of circular constraints to
. . : Wpere
approximate the actual square sensor boundaries, which results 1 0 0 0
in a single, although highly constrained, optimization problem C= 001 0
to solve.

extracts the position information from the state vector apd
is zero mean, Gaussian measurement noise with covariance
[I. MOTION AND MEASUREMENTMODELS ¥, = o2l. The likelihood of the measurements is given by:

The target's state consists of four variables representing p(zlee 1) = N (7 (1), 2 ®)
position and velocity in the global coordinate system. Thgsing the fact that all of the measurement noises are indepen-
horizontal direction is denoted by and the vertical as), dent, the measurements are independent when conditioned on
so that the target's state at each time step is given by the trajectory and sensor parameters. Therefore, the likelihood
function for the entire collection of measurements given the
full target trajectory and entire collection of sensor calibration
In the a priori model, the state evolves according to linegrarameters is given by:

Gaussian, Markovian dynamics, as: (2o, ) = H p (e, ) ©)

Ti41 = Al‘t + v (1) teM

where 1, is a zero mean Gaussian random variable Wit\p{here/\/l is the set of times for which measurements are

covariancey.,. From the above characterization, it is welpvailable.
known that the transition density is also Gaussian:

p(ze|lzi—1) =N (245 Axy—1, %)) (2

Let the variablex denote the stacked position and velocity
trajectory across all time. Denote the target’s initial location as
xo, Wherex, is often modelled as a Gaussian random variable. The solution proposed in [3] consists of computing the
The prior probabilityp(x) over the entire stacked trajectory ismost probable a posteriori trajectory and sensor calibration

Ty = [ Ut {Lt V¢ Q.Jt ]T

IIl. I NITIAL SOLUTION



4 the estimates of the sensor parameters and remaining path
entries produced by this method are exactly the same as those
produced by the original technique, as no information is lost
by this reformulation [5]. The paths corresponding to missing
measurements are computed in parallel to one another after the
primary optimization has been solved, using the knowledge of
the target’s dynamics and the newly formed estimates for the
sensor locations and positions of the target as it leaves and
returns to the network’s field of view.

Pl —asiné,
pl+acosd

acos(0)

When the target leaves the range of the sensor network, the
target’s last known state is propagated through a new motion
model that accounts fok-step transitions, and the skipped

(Php))
> times are computed separately. The general relationship be-
tween the state at timeand the state at time+ k is derived
Fig. 2. Sensor geometry. by recursively applying Eq. 1, resulting in:
k—1
. _ = AF Al
parameters given the measurement set according to: Titk et ; Ve
(x*,p*) = argmax p(z,p|z) Since all of thev’s are i.i.d. Gaussian random variables with
TH zero mean and covarianég,, P(xz:yx|x:) is also Gaussian,
o< argmax p(z|z, p)p(z)p(p) () with meanA*z, and covariance equal to:

T,

. - I . k—1 k—1
Equivalently, one can maximize thez, which is equal to min- i i T
imizing the arguments of the exponentials for each Gaussian Y [zerklze] = ZCOU (A = Z A'S, (A7)

term: i=0 i=0

where the last equality follows due to the fact that th's are

(z*,p") = argmin Z 52 Hzt -m (CL‘t)H i.i.d. Thus the transition density for the target’s state at time
TH ez U t given its state at time — k is:
+ TS e+ (1= p0) TS, (= o) (8) ko1 .,
. k i %
A Newton-Raphson search algorithm is used to find the p(zilwir) =N <:vt, Atz g, ZA Z (A7) ) ©)
=0

optimal x and i. A vectorr can be determined so that Eq. 8
can be rewritten as: This multi-step transition density replaces the corresponding
k —1 single step densities in Eqg. 3. Again, a Newton-Raphson

ko kY : T
(", p*) = argmin 777 search algorithm is used to find the optimahand ..

T,p

Newton-Raphson is an iterative algorithm of the form: The task of recovering the most probable path traversed by

Xkl — xk _ (Jr "ty the target while outside the field of view of the sensor network

. . _ is solved by formulating a new linear least squares problem

where J is the Jacobian of with respect to the unknown gach time the target exits and returns to the network. The

parameters. The complexity of the Newton-Raphson algorithggjective is to maximize the probability of this unobserved
is quadratic with respect to the number of rows.dnas it rajectory between sensors given estimates for the initial and
requires a QR decomposition using Householder reflectionstfios| positions and velocities. The sensor parameters and target
solve the least squares problem. trajectory inside the sensors are assumed to be given from the

solution to the primary optimization problem. A new vector

) x is formed by stacking the target's state vectors for all
Due to the fact that the MAP solution processes all of thgissing measurements between a single exit and return to the
data in batch form, it is extremely important to optimize th@eqyork. Let V' denote the number of missing measurements
performance of the algorithm. The following three teChniqu%rresponding to one segment for which the target is outside

seek to reduce the dimension of the search space and to reqyg8ie|q of view of the sensor network. The new optimization
the number of terms in the objective function. problem becomes:

IV. MODEL ORDER REDUCTION

A. Separation Into Multiple Optimization Problems E+N
The first technique removes from the augmented state * :Mg;nax H p(@e|zi-1)
vector x those entries in the path corresponding to times for t=k+1

which no measurements are available. It can be shown thdtere z;, and z;,y are treated as fixed quantities. Equiva-



lently, one can maximize the log of the above expression:

k+N
z* = argmax Y log(p(zlr,1))  (10)

* t=k+1
Due to the quadratic objective function, the solution can be
computed directly or after a single iteration of a Newton-
Raphson search algorithm. It can also be shown that the
solution to the above optimization problem gives exactly the
same estimates as a Kalman smoother [5]. The forward pass
corresponds to propagating the target's state as it leaves the
sensor network through the target's motion model, while the
backward pass incorporates knowledge of where the target
returns to form the smoothed estimates.

B. Using Only Entry and Exit Measurements

Further model reduction is possible by applying the mul-
tistep transition density concept within the sensors. Suppose
on a given pass though a sensor, six or seven time steps are
recorded, as in Fig. 3(a). Each of the measurements contributes
information to the position and velocity estimates for the
entire target trajectory. However, it is possible to use the
position measurements within a single pass through a sensor
to get a good local estimate for the velocity at the entry
and exit points. Those velocity estimates are then treated like
velocity measurements, while all of the interior measurements
are discarded. The resulting solution is not equal to the
solution using all of the measurements across the entire path,
including visits to other sensors; however, in most cases it is
a good approximation. The number of measurements within P
a particular pass through a sensor directly impacts the error 1 .37
of these local velocity estimates. Fig. 3(b) shows the result
of the joint calibration and tracking using only the entry and
exit velocities. The velocities for a given pass are determined
using a Kalman smoother over the set of local measurements. (b)

H

C. Treating Measurements as Constraints Fig. 3. Example of camera calibration using only entry and exit measure-
ments. The yellow (lighter) squares represent the true sensor locations, while

In most cases, the measurement noise from an imag'mg blue (darker) squares represent the estimated locations. The true path is

; ; own in blue and the estimated path is shown in red. (a) MAP solution using
Sensor 1S eXtremer low relative to other sources of erréﬁ of the steps. (b) MAP solution using only entry/exit information with local

in the problem. In these cases, it is possible to treat th&ocity estimate.

measurements as nonrandom quantities. The answer reached

by this method is not exactly equal to the original solution;

however, the difference between the two methods disappe@mt® the objective function directly by making the appropriate

aso, approaches zero. substitutions within the minimization expression.
For each measurement in the data set, use Eq. 4 to solve
for the corresponding position variables of the path. The new V. MISSING MEASUREMENTS
optimization problem becomes: This section addresses the issue of how to fully utilize
(z*, u*) = arg min ITz;lx + MTE;UL (11) measurement times to find a sensor configuration and target
T trajectory that is consistent with this information. The MAP
subject to: solution may place the target inside the field of view of a
sensor at a time for which no measurement is available, as
C xj = [ Uk } =R (0") 2z, +p" VkeM illustrated by the example in Fig. 4. If the target were actually
Uk inside the range of that camera at that time, there would

where M is the set of all times for which measurements argave been a corresponding measurement in the data set, thus
available. These equality constraints can then be incorporatedulting in a contradiction. Knowledge of the times for which
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(a) (b) Fig. 5. Feasible regions for the target when no measurement is available.

Fig. 4. Motivating Example for Missing Measurement Algorithms. (a) True

sensor locations and true path traversed by the target. (b) MAP soluti@®. Mixed-Integer Nonlinear Programming Formulation
The path segment containing timés, 7, 8,9, 10, 11, 12} is infeasible, as no . . . . .
measurements occur during these times. It is possible to determine the solution with lowest cost

that is consistent with the missing measurement information
by reformulating the problem using a combination of real

no measurements are available provide additional constraif@dued and binary variables. For each missing measurement
to impose on the optimization problem in order to find and each sensor, augment the set of unknowns with a set of

feasible solution. four variables); € {0,1}, such that:
vy < omgug + by + B

A. Derivation of the Constraint Equations myug +b < v+ BAg

In order to find a solution consistent with the measurement v < omyug + b+ BA3
times, it is necessary to limit the regions in the global meus + b, < v+ B
map where the target is permitted to be in the absence of 4
measurements. If no measurement is available at tinke Z/\i = 3
target must be restricted to lie outside the field of vieveath i=1

and everysensor at that time. The target must be either belowhere is avery largenumber. The last constraint guarantees
above, to the left of, or to the right of each of the sensors, @fat exactly one of the four previous equations holds, while the
depicted in Fig. 5. These additional restrictions introduce a sghers are effectively eliminated, since they are automatically
of disjunctive gither-or) constraints into the problem. satisfied. A set of constraints of the form shown above would
Itis necessary to derive the equations that define the sens@égd to be added for each missing measurement, for every
boundaries in terms of the sensor’s internal parameters sefnsor. If there ard/ missing measurements adsensors,
translation from the origin, rotation about a reference directiothis results inM S sets of equations, each with four inequality
and size of the field of view in each direction. Note that whileonstraints and one equality constraint.
these constraints form linear boundaries in the global map,The task of solving a mixed-integer nonlinear programming
the constraints are nonlinear (and nonconvex) functions of theoblem has been shown to be NP-hard. This is an active
unknown variables in the overall optimization problem. Figureesearch area, and many algorithms have been developed, in-
2 depicts the geometry of a typical sensor, with all of theluding the Outer Approximation method [6] and the Branch-
guantities labeled that are needed to derive each of the feud-Bound method [7]. Due to the extremely large number
lines representing the sensor boundaries. The four equatiofglisjunctive constraints introduced to eliminate the missing
for the lines defining the sensor’s walls are given by: measurement infeasibility problem, an approach based on
mixed-integer programming is computationally intractable.

vy = tanf x4 p. — pltand

ye = tan® x; + (pl + acosf) — tanO(pl — asinf) C. Adaptive Newton-Raphson Search

Yy = —cotfz +pl+plcoth This section presents a computationally tractable algorithm
yr = —cotfa, + (pl + asind) + cot H(pl + acos6) to find a feasible solution with respect to missing measure-

ments by adaptively modifying the original Newton-Raphson
When the sensor’s rotation angle is= k3, k € Z, the search. Starting from an initial feasible solution, the largest
above equations yield slopes ®@findoo. In this case, simpler step possible in the direction of the current gradient is

equations arise. taken, while still remaining feasible with respect to missing
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Fig. 6. Modified Newton-Raphson Search: Algorithm

measurements. When a boundary between the feasible aothbination:

infeasible regions is reached, the new set of active constraints (1= Ny* + Ayrtt
is computed according to a simple set of rules, and the ne
search direction is computed from this point. In this mann

the algorithm explores only the feasible regions of the sear

space. While the active constraint set changes over time, bound betw the feasibl 4 infeasibl ) f
overall optimization is computationally tractable, unlike tha'® boundary between the feasible and infeasible regions o

full blown mixed integer programming problem described iEiarameter space. Starting from the initial feasible solution, the
the previous section ake Largest Newton Stégbock computes the largest value of

A so that the next solution remains feasible, as demonstrated
The algorithm behaves according to the flow diagram givén Fig. 7(b).

in Fig. 6. TheMake Feasibleblock moves all of the times ] ) ) .

for each infeasible segment to a point outside the field of Since a full step is not possible, the algorithm must deter-

view of all of the sensors, but close to the point of entrjin€ which constraints to add. The algorithm detects that the

for that segment. In the example given by Fig. 4, there ist@get at time 12 is attempting to cross into the field of view

single infeasible segment consisting of tinGetirough12, and ©f sensor 3. Since there were no previous active constraints,

the algorithm would initially move all of these estimates to '€ algorithm simply constrains time2 to lie on the bottom

feasible location between the top of senscand the bottom ©f sensor3, and then takes a new step, the result of which
of sensor3, as shown in Fig. 7(a). is shown in Fig. 7(c). Careful inspection of the plot shows

that this newest solution places timi8 on the boundary of

v¥1ere)\ € [0,1] and A = 1 corresponds to taking a full step.
pposey* is a feasible solution, bug**! is not. Then it
st be true that for at least one value)gfthe line crosses

Recall that each Newton-Raphson step is taken as: sensor3. The naive choice is to constrain tin& to be on
k+1 _ k(7T 7\—1 7T the top wall of sensoB. However, the algorithm operates
yr =yt =) e o it
. under the guiding principle that if gointhrough the sensor
wherey = [z p | . The two pointsy*™' and y* in is infeasible, then the segment must gmund the corner

parameter space define a line segment given by their conddsnce, the algorithm pushes tini®@ around the southeast
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Fig. 7. Modified Newton-Raphson Search: Step-by-Step Example. (a) Initial Feasible Solution. (b) Solution after largest first step taken. (c) Solution after
position 12 is constrained to the bottom of sensor 3. (d) Position 12 is pushed around the corner, and 11 is constrained to the bottom of sensor 3. (e) Position
6 approaches the bottom of sensor 3. (f) Final feasible solution. Position 6 is constrained to the bottom of sensor 3, and 7 is constrained to the right side.

corner of the sensor, releasing the constraint on the bott@wst over the set of all possible constrained solutions. However,
wall, and adding a constraint to the right wall. The resuit successfully finds a feasible solution, and it does this in a
of this operation is given by Fig. 7(d). At this point timeautomatic and systematic manner.

11 approaches the bottom boundary of sen3oiThe same

principle of pushing the path around the corner is applieB, Circular Constraints

and timel1 is constrained to the right wall of senstrwhile  The constraints derived in section V-A exactly define the
the constraint for time 2 is released. The process is repeatesbuare sensor boundaries within the global map. In order to
until the last time in the segment attempts to enter the send@lly describe the region outside the field of view of each
as shown in Fig. 7(e). The last time is not pushed aroumgd every sensor, it is necessary to use disjunctive constraints.
the corner, but rather it is constrained to the bottom walthis requires the computation of many parallel optimization
without releasing the constraint for tinfe The final result is problems, resulting in a procedure that is computationally
shown in Fig. 7(f). This adaptive Newton search algorithm iatractable. Another approach to the problem is to use circular
not guaranteed to find the constrained solution with minimu%nstraints to approximate the sensor boundaries, as shown in



The question arises how to pick the radiusf the circle that
best approximates the sensor boundary. The circle inscribed in
the square may result in a solution that places the target within
the corners of the field of view of the actual sensor, as shown
in Fig. 9(a). The circle circumscribing the square may push the
target further away from the sensor than necessary, resulting
in a solution with larger cost that the true globally optimal
solution, as shown in Fig. 9(b). One possible approach is to
systematically vary the radius to find the smallesteeded in

order to push the entire infeasible path segment just beyond
Fig. 8. Use of circular constraints to approximate square sensor boundar{ﬁse field of view of each sensor

VI. CONCLUSION

Previous work has shown that it is possible to perform
simultaneous target path estimation and calibration using MAP
estimation. MAP estimation is not thought to be computable
in real time, as it processes all of the data in batch form.
Recursive algorithms such as the Kalman or particle filter
require smoothing to correct the previous track estimates
given new data that is available later. The MAP estimator
presented here is an inherent smoother, however, the algorithm
quickly becomes computationally intractable as the number of
measurements increases. This paper demonstrated three im-
provements to reduce that computational complexity, making
real time MAP estimation possible.

This paper also presented three methods to improve the
accuracy of the MAP solution by making use of the missing
measurement information. Additional inequality constraints
@) () were placed within the optimization framework in order to
hprevent the target from entering the field of view of the sensor
etwork at times for which no measurements were available.

HE
H

Fig. 9. Example using circular constraints. (a) Circles inscribed within t
square sensors. (b) Circles circumscribed around the square sensors.
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Fig. 8. This results in a single, although highly constraineﬂﬁ
optimization problem to solve.

The region outside the field of view of the sensor can
described in a single equation through the use of circul
constraints. The center coordinate for each sensor is given
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