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In this paper the theory of the unilateral inverse Fourier transform and the unilateral Hankel transform is
developed. The consistency between each transform and its bilateral version leads to an approximate real-part
sufficiency condition for complex-valued one-dimensional even signals and two-dimensional circularly symmetric

signals.
experimental underwater acoustic fields.

1. INTRODUCTION

A well-known property in Fourier-transform theory is that
causality in one domain implies real-part sufficiency in the
alternate domain. This property is the basis for the fact
that the real and imaginary components of a signal are relat-
ed by the Hilbert transform, if the spectrum of the signal is
causal. In wave propagation problems, it is the circularly
symmetric two-dimensional Fourier transform or, equiva-
lently, the Hankel transform that is of central importance.
Because of the symmetry in such problems, the condition of
causality is not applicable. In one dimension, the counter-
part of the circularly symmetric signal is the even signal.
The one-dimensional Fourier transform of an even signal is
also even, and thus, again, the condition of causality is not
applicable.

In our work we have shown that under some conditions it
is possible to relate approximately the real and imaginary
components of a one-dimensional even signal or a two-di-
mensional circularly symmetric signal. The approximation
is based on the validity of the unilateral inverse Fourier
transform in one dimension and that of the unilateral Han-
kel transform, referred to as the Hilbert—Hankel transform,
in two dimensions. In this paper we develop the approxi-
mate real-part sufficiency condition in one and two dimen-
sions by using these transforms. The two-dimensional re-
sult forms the basis for a reconstruction algorithm in which
the real (or imaginary) component of a complex-valued
propagating wave field is obtained from the imaginary (or
real) component. The algorithm is illustrated with synthet-
ic and experimental underwater acoustic fields.

In Section 2 first a review of one-dimensional exact ana-
lytic signals is provided, and then the theory of one-dimen-
sional approximate analytic signals is presented. A number
of statements involving the unilateral Fourier transform, the
unilateral inverse Fourier transform, causality, and approxi-
mate real-part-imaginary-part sufficiency are made. In
Section 3 the theory is extended to two-dimensional circu-
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The two-dimensional result is used in a reconstruction algorithm that is applied to synthetic and

larly symmetric signals. These signals, which can be equiv-
alently described in terms of the Hankel transform, are di-
rectly related to two-dimensional fields propagating in hori-
zontally stratified media. We will show that, under some
conditions, it is possible to relate approximately the real and
imaginary components of these fields. To do this, a unilat-
eral version of the Hankel transform, referred to as the
Hilbert—-Hankel transform, is described. The transform can
be used to synthesize approximately an outgoing wave field,
and its consistency with the Hankel transform will be shown

to imply an approximate relationship between the real and

imaginary components of the field. The properties of the
Hilbert-Hankel transform and the relationship of this
transform to several other transforms will be discussed. In
Section 4 an asymptotic version of the Hilbert—Hankel
transform is developed. This transform leads to an efficient
algorithm for reconstructing a complex-valued acoustic field
from its real or imaginary part. The algorithm is applied to
both synthetic and experimental underwater acoustic fields.

2. ONE-DIMENSIONAL THEORY: THE
UNILATERAL INVERSE FOURIER TRANSFORM

From the theory of analytic functions, a complex-valued
function of a complex-valued variable is analytic at a point if
it is both single valued and uniquely differentiable at that
point. A necessary condition for a unique derivative is that
the real and imaginary components of the function satisfy
the Cauchy-Riemann conditions,! which involve the partial
derivatives of the function. If these partial derivatives are
also continuous, the Cauchy-Riemann conditions form a
necessary and sufficient condition for analyticity at a given
point.

The Cauchy-Riemann conditions imply that the real and
imaginary components of a function cannot be chosen inde-
pendently, if the function is to be analytic. These condi-
tions imply that if the real (or imaginary) component is
specified within the region of analyticity, the imaginary (or
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real) component can be determined. In some cases, knowl-
edge of one of the components along only the boundary of
the analytic region is sufficient to determine the alternate
component.2® For example, for the region of analyticity
defined by a circle centered at the origin of the complex
plane, integral relationships between the real and imaginary
components of the function referred to as Poisson integrals
have been developed. Similarly, for the region of analyticity
defined by a half-plane that includes the real or imaginary
axis, integral relationships between the real and imaginary
components of the function along the axis, referred to as
Hilbert transform integrals, have been developed.

In a signal processing context, there is a related concept
that states that a one-sided, or causal, condition in one
domain implies a real-part-imaginary-part sufficiency con-
dition in the alternate domain; that is, a complex-valued
signal has a real-part-imaginary-part sufficiency condition
if its Fourier transform is causal and vice versa. A signal
that can be exactly synthesized in terms of a one-sided Fou-
rier transform is often referred to as an analytic signal.

To summarize the relationships, let us consider a com-
plex-valued signal f(¢) with a Fourier transform consisting of
only positive components, i.e.,

) = 517; L " Flw)ede. e,

It can be shown that the one-sided integral in Eq. (1) implies
that f(¢) is an analytic function in the upper half of the
complex ¢ plane.%® This one-sided condition connects the
theory of the analytic signal with the theory of the analytic
function.

Let us express f(f) in terms of its real and imaginary
components, for ¢ real, as

f@©) = g(t) + jg(@), 2

with G(w) and G(w) denoting the Fourier transforms of g(t)
and g(t), respectively. The relationships between the real
and imaginary components of f(¢) and their Fourier trans-
forms can then be summarized as follows:

Flw) = 2G(w)u(w),
G(w) = —j sgn(@)G(w), 3)

where u(-) is the unit step function. The signals g(¢) and
g(t) form a Hilbert transform pair.

Although the Hilbert transform relationship between g(t)
and g(t) is conveniently summarized in the frequency do-
main, it is also possible to use the convolution property of
Fourier transforms to develop the relationship in the time
domain. Specifically, using the inverse Fourier transform of
—J sgn{w), it can be shown that

) == w g(t) @)
7t
and similarly that
at) = — L % 50, ®)
i

where the integrals are interpreted as Cauchy principal val-
ued.

It is possible to extend some of the properties of analytic
signals to signals that do not possess a one-sided Fourier
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transform. Our primary interest has been in two-dimen-
sional circularly symmetric signals, which are related to the
two-dimensional circularly symmetric Fourier transform or,
equivalently, to the Hankel transform. However, the exten-
sion of the theory of analytic functions can best be presented
by first considering the one-dimensional case. In the re-
mainder of this section the theory of one-dimensional signals
that are approximately analytic is developed.

We now consider a complex-valued signal f(t) for which
the Fourier transform exists and which has the Laplace
transform Fy(s) given by

Fyls) = ] " e, ©)

In general, the Fourier transform F(w) is a two-sided func-
tion of w, and thus the signal f(t) is represented in terms of
the inverse Fourier transform as

e = - j Flo)e“do, @
2T o
We also define the related signal f,(¢) in terms of the unilat-
eral inverse Fourier transform as

f6) == f Flo)edo. ®
27 0 .
Note that f,(t) is an analytic signal, since its Fourier trans-
form is causal.
One way of extending the theory of analytic signals to the
signal f(t), which has a two-sided Fourier transform, is to
require that

@) ~ (). C)

Thus a signal f(¢) that can be approximated by a unilateral
version of its inverse Fourier transform can be considered
approximately analytic.

The condition that a signal can be accurately synthesized
in terms of its unilateral inverse Fourier transform is rather
restrictive, and it certainly does not apply to any arbitrary
signal. For example, consider a signal, composed of a sum of
complex exponentials, that has a rational Laplace trans-
form. In Fig. 1 we have indicated the positions of several
poles in the s plane, corresponding to the arbitrarily chosen
signal, as well as the region of convergence for the Laplace
transform. The condition that f(¢) ~ f,(¢) is equivalent to
the statement that the inverse Laplace transform contour C
+ C, can be approximately replaced by the contour C;. The
approximation will be poor if a pole, such as Py, is located in
quadrant ITI or IV of the s plane. Essentially, the effects of
this pole, quite important in determining the character of
the corresponding signal f(t), are only negligibly included by
integrating along the positive imaginary axis only. That is,
if f(t) is exactly synthesized as

fe) = -1 ] Fy(s)eds, (10)
27j Joy+c,

sv that

= L St __1__ st
0 =5 Ll Fifs)eds + 5 ch Fys)etds, (11)

the pole at position P3 contributes primarily to the second of
these integrals. Thus the approximation
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P, s plane

Psx

Fig. 1. Complex s plane, indicating positions of poles, the inverse
Laplace transform integration contour, and the Laplace transform
region of convergence.

£6) ~ =1 j Fyls)eds = rm)efwtdw (12)
27 c, 27 Jo

is not accurate because of the position of pole P in the s
plane. However, if there are no poles in quadrant III or IV
of the s plane, the unilateral inverse transform can yield an
accurate version of f(¢). This can be argued on the basis of
the fact that poles such as P; and P; contribute primarily to
the contour integral C; and only negligibly to the contour
integral Cs.

This concept of approximate analyticity. is intuitive—if
the signal f(¢) can be approximated by the analytic signal
fu(t), f(t) is approximately analytic. Although it is possible
to develop an approximate relationship between the real and
imaginary components of f(t), there are no further conse-
quences of the relationship f(t) ~ f,.(t). However, as will be
discussed in the remainder of this section, some interesting
relationships result if additional restrictions are placed on
the signal f(t) and the definition of approximate analyticity
is slightly modified. For example, there are interesting con-
sequences that arise if f(t) is restricted to be a causal signal
or an even signal. Essentially, by considering f(t) to be an
even signal, the case of the causal signal can be treated as
well, since an even (or causal) signal can always be invertibly
constructed from a causal (or even) signal.

To develop the theory, let us now consider the complex-
valued signal f(t) to be even. We denote the Laplace trans-
form by Fo(s) and again assume that the Fourier transform
Flw) = F()(s)ls:jw exists. Since the signal is even, it follows
that its Fourier transform and Laplace transform must also
be even. We will find it convenient to define not only the
Fourier transform and the inverse Fourier transform but
their unilateral counterparts as well. Thus

t) = FF(w)} = % j " Flw)ede, (13)

—o0

fut) = F, YF (@)} = % L " Plo)ed, (14)

Flw) = 9if(0)) = f " feye i, (15)

F (@) = F,4f(0)} = ] " fye s, (16)
0
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where f,(t) represents the unilateral inverse Fourier trans-
form of F(w), and F,(w) represents the unilateral Fourier
transform of f(¢). Symbolically, ¥ and F~! represent the
Fourier transform and the inverse Fourier transform opera-
tions and ¥, and ¥, ! represent the unilateral Fourier trans-
form and the unilateral inverse Fourier transform opera-
tions.

Note that, although ¥ and F~! are inverse operations, ¥,
and ¥, ! are not necessarily inverse operations. Addition-
ally, it is recognized that both f,(t) and F,(w) are analytic
signals, since their Fourier transforms are causal. There-
fore the real and imaginary components of f,(t) are exactly
related by the Hilbert transform, and the real and imaginary
components of F,(w) are exactly related by the Hilbert
transform. Also note that, since f(¢) and thus F(w) are even
signals, they can be synthesized in terms of the cosine trans-
form as

f) =L ] " Pw)cos wtdo, (17)
™ Jo

Flw) =2 f " f(t)eos wtdt. (18)
0

To extend the theory of analytic signals to the signal f(¢),
we will require that f(¢) satisfy the condition

W ~f0), t>0 (19)

that is, only those functions f(t) that can be approximated by
the unilateral inverse Fourier transform for positive values
of t will be considered. Note that this condition differs from
the condition in relation (9). Specifically, the unilateral
inverse Fourier transform is required to synthesize the even
signal f(¢) only for positive values of t. The even function
f(¢) will be defined as approximately analytic if the condition
in relation (19) is satisfied. To the extent that the approxi-
mation in relation (19) is valid, there will also exist an ap-
proximate relationship between the real and imaginary com-
ponents of f(t), for ¢ > 0. This result is the basis for a
number of statements that will now be made.

- Iff(t) ~ fu(t) for t > 0, then:

Statement 2.1 The real and imaginary components of
f(t) must be approximately related by the Hilbert trans-
form for t > 0.

Statement 2.2 The unilateral inverse Fourier transform
fu(t) is approximately causal.

Statement 2.3 The unilateral Fourier transform and
unilateral inverse Fourier transform are related by the ap-
proximation

F AT THF (@) ~ Flo)u(w). (20)

Statement 2.4 The real and imaginary components of
F(w) must be approximately related by the Hilbert trans-
form for w > 0.

Statement 2.1 follows as a consequence of the fact that the
real and imaginary components of f,,(¢) are related exactly by
the Hilbert transform.

To justify statement 2.2, we note that f(t) ~ f,(¢), t > 0
implies that

1

0 R
L j Flw)edw~0, t>0, (21)
2

—
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so that

1 [ Flw)e™do~0, t>0. 22)
27I’ 0

The latter step follows from the fact that F(w) is even in w.
From relation (22) and the definition of the unilateral in-
verse Fourier transform, it can be seen that

fu{~t) ~0, t>0, (23)
and thus
fu(t) ~0, t <O0. (24)

Therefore, under the condition that f{t) ~ f,(¢) for t > 0, the
unilateral inverse Fourier transform must be approximately
causal.

Let us next consider statement 2.3. As pointed out earli-
er, the unilateral Fourier transform and the unilateral in-
verse Fourier transform are generally not inverse operations.
However, from the definition of f,(¢),

FAF TN = Fi, 04 (25)
Since f,,(t) is approximately causal, it follows that
Flf 0~ FfL ) (26)

Additionally, from the definition of f,(t), it is also apparent
‘that

Fif, @)} = Flo)u(w). 27

When the three relations are combined, statement 2.3 fol-
lows.

To justify statement 2.4, we use statement 2.3 to establish
that

FAF, HF ()} ~ Flw)u(w), (28)
so that
F ML) ~ Fo)u(w). (29)

The signal F(w)u(w) is approximately analytic, since it is
related to the one-sided Fourier transform on the left-hand
side of relation (29). Thus, since F(w)u(w) is approximately
analytic, its real and imaginary parts must be related by the
Hilbert transform.

Although the specific statements made involve the rela-
tionships among the Fourier transform, the inverse Fourier
transform, and their unilateral counterparts, it is also possi-
ble to derive a number of interesting relationships between
the cosine and sine transforms that compose these. Several
of these relationships are derived in Appendix A.

To summarize briefly, in this section we have reviewed the
one-dimensional theory of exact and approximate analytic
signals. The theory of an exact analytic signal was present-
ed in terms of the properties of the Fourier transform. This
theory was then extended to develop the notion of a signal
that is approximately analytic. Although such a signal does
not have a causal Fourier transform, its real and imaginary
parts can be approximately related by the Hilbert trans-
form. The necessary condition for an even signal to possess
this property is that its causal portion must be accurately
synthesized by the unilateral inverse Fourier transform.
This condition implies a number of other interesting conse-
quences, including an approximate real-part-imaginary-
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part sufficiency for both the causal part of the signal and the
causal part of its Fourier transform and an inverse relation-
ship between the unilateral Fourier transform and the uni-
lateral inverse Fourier transform.

3. TWO-DIMENSIONAL THEORY: THE
HILBERT-HANKEL TRANSFORM

In the previous section, we considered conditions under
which a one-dimensional complex-valued signal is either
exactly or approximately analytic. In this section, the the-
ory of approximate analyticity will be extended to two-di-
mensional circularly-symmetric signals. Although the the-
ory can be developed for the more general multidimensional
case by considering the multidimensional version of the uni-
lateral inverse Fourier transform, we will focus primarily on
the special case of a two-dimensional circularly symmetric
signal because of its practical relevance to a wave field prop-
agating in a horizontally stratified medium.

Consider a two-dimensional signal p(x, y) and its two-
dimensional Fourier transform g(k,, k), which are related
by

plx,y) = j i f i g(k,, k,)explj(k.x + k,y)|dk, dk,.

1
(27)? —w

—o0

(30)

If p(x, y) is circularly symmetric, then g(&,, k,) is also circu-
larly symmetric, and the relationship in Eq. (30) can be
written as

p(r) = f " gk )y dly, (31)
0

wherer = (x2+ y2)V2, k, = (k, + k,)V2, g (k,) = g(k,)/(27), and
Jo(+) is the zero-order Bessel function.

The relationship described in Eq. (31) is a Hankel trans-
form. Note that p(r) may be a complex-valued signal, but,
because of the circular symmetry involved, the condition of
causality is not applicable, and the real and imaginary com-

'ponents of p(r) are generally unrelated. The Hankel trans-

form is self-inverse, so that
g(k,) = j Pk prdr. (32)
0

The two-dimensional circularly symmetric signal p(r) is
analogous to the one-dimensional even signal f(t) considered
in the previous section.

To develop the property of approximate analyticity for
two-dimensional circularly symmetric signals, we must de-
velop a unilateral version of the Hankel transform. That is,
with analogy to the one-dimensional bilateral inverse Fouri-
er transform and one-dimensional unilateral inverse Fourier
transform, we wish to develop the Hankel transform and its
unilateral version. In examining Eq. (31) we see that in one
sense the Hankel transform is already unilateral, since the
limits of integration are from zero to infinity. However, this
version of the Hankel transform is actually analogous to the
one-sided cosine transform for one-dimensional signals.
Here, we want to develop the transform analogous to the
Fourier transform and then consider its unilateral counter-
part.

To this end, the zero-order Bessel function of the first
kind is written in terms of Hankel functions® as
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Jolk,r) = Yo[HoM (k) + Hy®(k,1)], (33)
so that Eq. (31) becomes

p(r) =1, ] " g H Ok, Ak, + j " gk H D (e )l b,
0 0

(34)

which is valid for both positive and negative values of . The
expression can be simplified by using the property” that

H @ (ze™imy = —H,D(2) (35)
to yield

p) =Y f i gk HMV (kr)k,dk,, r>0. (36)

The signal p(r) can be determined for negative values of r by
utilizing this equation and the fact that p(r) = p(—r). How-
ever, it is important to recognize that the bilateral transform
in Eq. (36) correctly synthesizes the signal p(r) for positive
values of r only. Specifically, although p(r) is an even func-
tion of r, the Hankel function HyY)(k,r) is not an even func-
tion of r, nor is g(k,) an odd function of k,, and thus the
expression in Eq. (36) is not correct for r < 0. The correct
expression for r < 0 can be obtained, by using properties of
HyVU(k,r) and Hy®(k,r), as

p(r) =" f i g(k)H, P (k)b dk,, r<0. ~ (37)

Alternatively, a bilateral expression that describes p(r) cor-
rectly for both positive and negative values of r can be writ-
ten as

p(r) = H gk )} =Y, ] i gk H V(& Irhk,dk,.  (38)

The transform in Eq. (38) will be referred to as the bilateral
inverse Hankel transform.

The unilateral version of the transform in Eq. (38) is
defined as

pu(r) = 7%, gk} = Y, ]0 " (k) H, Ok Ik dk,.  (39)

The operator #, ! is appropriately thought of as the unilat-
eral inverse Hankel transform. However, because the Han-
kel transform in Eq. (81) is already unilateral, the name
unilateral Hankel transform is ambiguous. Instead, the
transform defined in Eq. (39) will be referred to as the
Hilbert-Hankel transform because of its close relationship
to the Hankel transform and because, as will be discussed
shortly, the transform implies an approximate relationship
between the real and imaginary components of p(r).

The bilateral inverse Hankel transform and the Hilbert—
Hankel transform can be written in alternate forms by utiliz-
ing the relationship

H Wk, r) = Jylk,r) + jY k1), (40)

where Yy(%,r) is the zero-order Bessel function of the second
kind, also referred to as the Neumann function.?® We note
that both Jy(k,r) and Yy(k.r) are real-valued functions for
real-valued arguments. By using this relationship, the bi-
lateral inverse Hankel transform can be written as

H gk =Y, ] " 8ok + Yok kR, (41)
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and the Hilbert-Hankel transform can be written as
H#,7 =Y [ B O)UTo) + ¥olh R (42
o

It is also possible to develop a bilateral transform for the
inverse relationship between p(r) and g(k,). From Egq. (32)
and the relationship in Eq. (35), it follows that

gk) = #p(r)) =Y, j pMHO(kIr)r dr.  (43)

This expression will be referred to as the bilateral Hankel
transform. Note that the bilateral Hankel transform and
the bilateral inverse Hankel transform are identical opera-
tors, although they apply to different domains.

The most obvious definition for the unilateral version of
this tranform is obtained by replacing the lower limit in Eq.
(43) by zero. However, we will find it convenient to define
the transform differently. In particular, the unilateral ver-
sion of the transform will be defined as

g,(k) = H o =Y, jo " pOole,r) = SH(k)r dr. (44)

The function Hy(z) is the zero-order Struve function.”8
The zero-order Struve function and the zero-order Bessel
function of the first kind, Jy(z), form a Hilbert transform
pair.’> To demonstrate this, Jo(2) is expressed in terms of a
Fourier synthesis integral as

Jo(z)=ij1 2

o la—ae W

To compute the Hilbert transform Jy(z), the integrand in
this expression is multiplied by —j sgn(w) to yield

= 1 1 7 jwz
Jo@) =5 | i sen(o) o o
2 sinwz
-2 fo o de (46)

The last integral is also the integral representation for the
zero-order Struve function.”

The transform defined in Eq. (44) has also been consid-
ered by Papoulis®® and has been referred to as the complex
Hankel transform. Itisnoted that g,(k,) must be an analyt-
ic signal, since its real and imaginary components are related
by the Hilbert transform. From preceding discussions, this
implies that the one-dimensional Fourier transform of g, (k)
must be causal. This fact and the use of the projection slice
theorem for two-dimensional Fourier transforms!%!! pro-
vide the basis for expressing the complex Hankel transform
in terms of the Abel transform, which is the projection of the
two-dimensional circularly symmetric function and the one-
dimensional Fourier transform. Specifically, the complex
Hankel transform of p(r) can be determined by computing
the Abel transform of p(r), retaining the causal portion, and
computing the one-dimensional Fourier transform. The re-
lationships among the Abel, Fourier, Hankel, and complex
Hankel transforms are summarized in Fig. 2. In this figure,
the operator A refers to the Abel transform, defined as

©

Pax) = Alp()} = = ] p(r)dy, 47)

—co
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p(r) p(r)u(z)

P
A 4 Hy

——> g(k)

gulk,
F F (k)

Fig. 2. Relationships among the Abel, Fourier, Hankel, and com-
plex Hankel transforms.

where r = (x2 + y2)1/2, We note that

Alp()u()) = - [_ p(Iu()dy = pa(xulx). (48)

The definitions for the bilateral and unilateral transforms
are now summarized:

p() = # gk =1, [ " k) ykr) + Yo DR, R,
(49)

pu(r) = #, g(k)) = Y, ]0 " )k r) + Yok P dR,,
' (50)

g(k,) = Hp( =Y, ] " POk + Yk IPIr dr, (51)

g, (k) = H () =Y, L " pOykr) = Sk dr, (52

where p,(r) represents the Hilbert-Hankel transform of
g(k,) and g,(k,) represents the complex Hankel transform of
p(r). These equations are analogous to Eqs. (13)-(16),
which were developed in the one-dimensional context in the
preceding section. It is also convenient to define the follow-
ing transforms and symbolic notation:

Tole k)= | k)t (53)
0

Yle k1= [ £00) Yolhr ks, (54)
0

H,lg(k )} = f " g(h)H, (k)R dE,. (55)
0

To develop the theory of two-dimensional circularly sym-
metric signals that are approximately analytic, we will re-
quire that

p(ry~p,r), r>0; (56)

that is, only circularly symmetric signals p(r) that can be
approximated by the Hilbert—Hankel transform for r > 0
will be considered approximately analytic. This condition
is analogous to the condition stated in the previous section,
that f(t) ~f,(t), £ > 0. Tothe extent that the approximation
in relation (56) is valid, there will also exist an approximate
relationship between the real and imaginary components of
p(r), for r > 0. This result is the basis for the first of several
statements that will now be discussed. The statements will
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closely parallel the one-dimensional versions in the preced-
ing section.
If p(r) ~ pu(r) for r > 0, then:

Statement 3.1 The real and imaginary components of
p(r) must be approximately related for r > 0 by

Re[p(r)] ~ = YolJo{Im[p()]}},
Im[p(r)] ~ YolJo{Re[p(r)]}. (67

Statement 3.2 The Hilberi—-Hankel transform p,(r) is
approximately causal.

Statement 3.8 The Hilbert—Hankel transform and the
complex Hankel transform are related by the approxima-
tion

S, Mgk} ~ gk Ju(k,). (58)

Statement 3.4 The real and imaginary components of
g(k,) must be approximately related by the Hilbert trans-
form for k. > 0.

Statement 3.1 can be justified as follows. The condition
that p(r) ~ p,(r), r > 0 can be equivalently written as

Jolg(B )}~ H, Mgk )},  r>0, (59)
so that

Jolg(k )} ~ hdolgk )} + R Yolg(R)),  r>0.  (60)

By using the facts that Jy and Y, are real operators and that
Re[p(r)] = Jo{Re[g(k,)]}, Im[p(r)] = JofIm[g(k,)]}, the state-
ment is established by equating real and imaginary parts on
both sides of relation (60).

Statement 3.2 will now be justified. Note that, from Eq.
(50), the Hilbert-Hankel transform is defined for all values
of r. Thus the causality condition in statement 3.2 is not a
consequence of the definition of the Hilbert—Hankel trans-
form but rather is a consequence of the condition that p(r) ~
pu(r), r > 0. We note that p(r) ~ p,(r), r > 0 implies that

0
Vz] g(k) H\V(k )k, dk, ~0, >0, (61)

so that

- ] " gk )H, O~k kR, ~0, r>0.  (62)
0

The latter step follows from the fact that g(k,) is even in k..
From this equation and the definition of the Hilbert—Hankel
transform, it can be seen that

p,(=r)~0, r>0, (63)
and thus
p,(r) ~0, r <0. (64)
Therefore, under the condition that p(r) ~ p,(r), r > 0, the
Hilbert-Hankel transform must be approximately causal.
Let us next consider statement 3.3. The complex Hankel

transform can be written in terms of the operators Jp, Yy,
and Hy as

Hfp, ()} = 1/4g (k) + 1/4Ho{ Yolg(k )}
+ Yl Yolg (R} — Hylolg (RN, (65)
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Fig. 3. Complex k, plane, indicating positions of poles and the
bilateral inverse Hankel-transform contour.

which is valid for all k.. From the approximation p(r) ~
pulr), r > 0, it then follows that

Jolgk N ~ Yo olg(k )} + Ui Yolg (R},
so that

r>0, (66)

Jolg(k)} ~ jYolg(k,)},
Substituting this expression into Eq. (65), we find that

FH Ao, ~ gk, + Y H Yol (RN
+ Yil=idoldolg (B} = JH{ Yolg (R, . (68)
which is valid for all &,.

r>0. 67)

Substituting the orthogonality

. relationships!213
Jololg (k)N = g(%,) (69)
and
H{Yilg(®)}} = sgn(k,)g(k,) (70)
into relation (68) justifies the statement that
F P ()}~ g(RJu(k,). (1)

Statement 3.4 summarizes the real-part-imaginary-part
sufficiency condition that occurs in the k2, domain. The fact
that g(k,) has an approximate real-part-imaginary-part suf-
ficiency condition is not completely unexpected, since, as
previously discussed, there exists an approximate causality
condition in the alternate r domain. To justify statement
3.4, statement 3.3 is used to obtain the expression

HAp ("}~ gk, Yulk,). (72)

Writing the operator #,, in terms of the operators J; and Y,
yields

Jo{Relp,(M]} + Ho{Im[p, ("]} + j(—Hy{Re[p, (M)}
+ Joflm[p,(N]}) ~ Relg(k,)] + j Im[g(k,)],
k. >0. (73)

It is noted that the real and imaginary components on the
left-hand side of this expression form a Hilbert transform
pair, so that the real and imaginary components on the right-
hand side are also related approximately by the Hilbert
transform.

Although the specific statements made involve the rela-
tionships between the Hilbert—-Hankel transform and the
complex Hankel transform, it is also possible to derive a
number of interesting relationships among the Jy, Yy, and Hy
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transforms that compose these. Several of the relationships
are derived in Appendix B.

The condition that p(r) ~ p,(r), r > 0 is restrictive in the
context of the general class of circularly symmetric signals
p(r). For example, in Fig. 3, the positions of several poles in
the k, plane, corresponding to a rational function g(k,), are
indicated. The poles labeled P/, Py, and Py’ are in symmet-
rically located positions with respect to poles Py, Py, and P3
because g(k,) is even. The condition that p(r) ~ p,(r),r >0
is equivalent to the statement that the bilateral inverse Han-
kel transform integration contour C; + C; can be approxi-
mately replaced by the contour C;. Clearly, the approxima-
tion will be poor if a pole, such as P, is located in quadrant II
of the k, plane. Essentially, the effects of this pole, quite
important in determining the character of the corresponding
signal p(r) for r > 0, are only negligibly included by integrat-
ing along the positive real axis only. Note that the pole at
Py determines the behavior of the signal p(r) primarily for
values of r < 0. Thus, if p(r) for r > 0 is exactly synthesized
as

p(r) =Y, fC S )H Gk, (74)
1+C,
so that
p(r) =" f gk ) Hy M (e, r)ke,dk, + ] gk )H, D (k, )k, dE,,
[oR C,
(75)

the pole at position P contributes primarily to the second of
these two integrals for values of r > 0. The approximation

p(r) ~ Y, L gk )H, Ok )k Ak, = %, Yg(k )] (76)

is not accurate for r > 0 because of the position of pole P3 in-

the &, plane. .

Although the condition that p(r) ~ p,(r), r > 0 is a restric-
tive condition for the general class of two-dimensional circu-
larly symmetric functions p(r), the condition is much less
restrictive in the context of wave propagation. Essentially,
the condition p(r) ~ p,(r), r > 0, when written in the form

p(r) ~Y ] i gR)HO kIR, r>0, (T7)
0

can be interpreted as the statement that p(r) is accurately
approximated by a superposition of positive, or outgoing,
wave-number components only. This is consistent with the
fact that in wave propagation problems physically meaning-
ful poles do not arise in quadrant II or IV of the &, plane.
The term outgoing has been associated with the function
HyW(k,r), as can be justified by asymptotically expanding
HyW(k,r), for r > 0. For example, a propagating wave field
that is due to a harmonic point source can be written for
r>0as

(. £) ~ 1 r g(k,Jexp(—jx/4)

(27‘_)1/2 o (k,r)m eXp[i(k,r—wt)]krdkr,

(78)

The field is seen to be composed of the superposition of
outgoing cylindrical waves of the form exp[j(kr — wt)]/
(k,7)2. Tt is also possible to write the error in the Hilbert—
Hankel transform approximation as
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e(r)=p(r) —p,r) =1, j i gk H P (k,r)k,dk,, r>0.
0

(79)

The error can be interpreted as a synthesis over the incom-
ing wave-number components of p(r). Here, the term in-
coming has been associated with the function Hy®@(%,r).
This association can be justified by asymptotically expand-
ing Hy®(k,r), for r > 0. The error, with temporal variation
included, can thus be written as

e(r,t)y ~

® g(k j
1 j g(k,)exp(jn/4) exp[—j(kr + wt)|k,dk,.

(27!')1/2 o (krr)l/Q
(80)

The error is seen to be composed of the superposition of
incoming cylindrical waves of the form exp[—j(k.r + wt)]/
(k,r)112,

The unilateral synthesis implied by the condition p(r) ~
pulr), r > 0is widely used in the area of underwater acous-
tics. For example, the unilateral synthesis implied by the
Hilbert-Hankel transform is an important component in a
number of synthetic data generation methods for acoustic
fields, such as the fast-field program (FFP).1415 The impli-
cation is that the two-dimensional theory of approximately
analytic signals, based on the condition p(r) ~ p,(r),r > 0, is
applicable to the wide class of outwardly propagating wave

fields.
~ To summarize briefly, in this section the property of ap-
proximate analyticity was extended to two-dimensional cir-
cularly symmetric signals. To do this, we developed a bilat-
eral version of the inverse Hankel transform and its unilater-
al counterpart, referred to as the Hilbert—Hankel transform.
Under the condition that the two-dimensional circularly
symmetric signal is approximated by the Hilbert-Hankel
transform for r > 0, it was shown that the real and imaginary
parts of such a signal are approximately related. The Hil-
bert-Hankel transform was also related to another unilater-
al transform, referred to as the complex Hankel transform.
A number of consequences based on the validity of the Hil-
bert-Hankel transform were developed. The theory is of
particular importance because of its application to outgoing
wave fields.

4. APPLICATION OF THE HILBERT-HANKEL
TRANSFORM TO THE RECONSTRUCTION OF
UNDERWATER ACOUSTIC FIELDS

In the previous section, the Hilbert—-Hankel transform was
defined and a number of its properties were developed. It
was shown that if the causal portion of a circularly symmet-
ric signal, described by the bilateral inverse Hankel trans-
form, can be approximated by the Hilbert—-Hankel trans-
form, there are some important consequences that include
an approximate real-part-imaginary-part sufficiency condi-
tion. As one application of the Hilbert-Hankel transform,
we develop in this section an efficient reconstruction algo-
rithm for obtaining a complex-valued underwater acoustic
field from its real or imaginary part. Several examples of
the reconstruction algorithm are provided in this section,
and additional examples can be found in Ref. 16.

In underwater acoustics, the spatial part of the acoustic
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pressure field due to a point time-harmonic source located at
1y satisfies the Helmholtz equation

[v2 + E2(x)]p(x, ) = —4xd(r — 1), (81)

where k(r) = w/c(r), w is the frequency of the source and c(r)
is the speed of sound. If horizontal stratification is as-
sumed, with the source located at (0, 2¢), the solution to Eq.
(81) can be written as

p(r, 23 29) = j "ok, 2ok dR,.  (82)
0

The function g(k,, z; o), referred to as the depth-dependent
Green’s function, satisfies the equation
2
(2%5 +R) — k,2> gk, 75 29) = =20z — 2).  (83)

In a number of applications, measurements of the com-
plex-valued field p(r, z; zo) are required. For example, in
the inverse problem of determining the ocean bottom reflec-
tion coefficient, the Hankel transform of the complex-val-
ued field, for fixed values of z and 2z, is determined to yield
the depth-dependent Green’s function, and the reflection
coefficient is then extracted.1”!8 We will show that both the
magnitude and the phase of the acoustic field p(r) can be
approximated from measurements of a single quadrature
component only.

In Section 3, a real-part-imaginary-part sufficiency con-
dition was obtained by requiring that p(r) ~ p,(r) forr > 0,
where

p(r) = fo " gk kR, (84)

and
pu(r) =" L i g(k)H,V(k,r)k,dE,. (85)
It was also shown that under the condition that p(r) ~ p,(r)

for r > 0, the function p,(r) is approximately a causal func-
tion of r, so that

p(Mu(r) ~, L i gk H,W(kr)k,dk,. (86)

We will find it convenient to substitute the asymptotic ex-
pansion for the Hankel function,

4
A
)

Z, . { X
I

Fig.4. Geoacoustic model for the Lloyd mirror field corresponding
to the sum of a direct field plus a field that has interacted with a
pressure-release bottom. Parameters: Rp=—1,z9=100m,z = 50
m, f = 220 Hz, ¢ = 1500 m/sec, kg = 0.9215 rad/m.
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Fig. 5. (a) Magnitude and (b) residual phase of the Lloyd mirror field.

Kt

2 \2 .
H,W(k,r) ~ (T,r) explikr — w/4)], 87)

into relation (86) to yield

L j(Ror — x
5 1)1/2L o) explj(k,r — w/4)] b dk.

( k rr)1/2 rer
Multiplying both sides of this equation by ri/2 and defining
g(k,) as

p(ru(r) ~ (88)

g(k,) = (27k,)%g(k, Jexp(—jn/4), (89)
we find that

PP 2u(r) ~ zi J "Gk )expGkrdk, 3 0. (90)
7 Jo

This expression is the basis of the FFP commonly used in
underwater acoustics for synthetic data generation.l1519
Relation (90) also implies that p(r)rl/2u(r) is approximately
analytic, since it is approximately synthesized in terms of
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the unilateral inverse Fourier transform. Thus, by incorpo-
rating the additional asymptotic expansion for HyD(k,r),
the signals Re[p(r)r'2u(r)] and Im[p(r)ri2u(r)] are seen to
be approximately related by the Hilbert transform for r >> 0.

When sampled versions of these signals are involved, there
exist several methods for determining the Hilbert trans-
form.2021 In the method that we chose, a sampled version of
Re[p(r)u(r)r?] + j Im[p(r)u(r)rl/2] is obtained by comput-
ing the fast Fourier transform (FFT) of Re[p(r)u(r)r12] (or j
Im[p(r)u(r)r*/?]), multiplying by 2u(k,), and computing the
inverse FFT. A discrete Hilbert transform based on an
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optimal finite impulse response filter design may also have
application to this problem.2223

We will now present three examples of this reconstruction
method. The first example consists of a simple acoustic
field that was synthetically generated by using a closed-form
expression. The second example consists of a realistic deep-
water acoustic that was synthetically generated by comput-
ing the Hankel transform of the associated Green’s function.
The third example consists of an acoustic field collected in
an actual ocean experiment.

As the first example, consider the Lloyd mirror acoustic

(@ 1
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0.01/VM¥VVVN( |
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1e-06 : .
0 500 1000 1500
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i \ \5
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Fig. 6.
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(a) Magnitude and (b) residual phase of the reconstructed Lloyd mirror field.
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Fig. 7. Error in the reconstruction of the real component (bottom curve) and true field magnitude (top curve) of the Lloyd mirror field.

field,2* which can be written as the sum of a direct field plusa
reflected field that has interacted with a pressure release
boundary. The total field can be written in closed form as

p(r) = exp(jhoRy)/Ry — exp(jkoR;)/R;, 91)

where By = (r2 + (z — 20)2)V2, Ry = (r2 + (z + 29) Y2, and kg =
w/ecg is the water wave number. The geoacoustic model for
this example is summarized in Fig. 4.

In Fig. 5(a) is shown the magnitude of the Lloyd mirror
field. The peaks and nulls in the magnitude are characteris-
tic of the interference between the direct field and the re-
flected field. Rather than displaying the rapidly varying
phase of the field, we have chosen to display in Fig. 5(b) the
related quantity ¢(r), referred to as the residual phase,16:25
which is defined as

&(r) = Plarg{p(r)} — kyrl, (92)

where P} } denotes principal value. The residual phase is
more slowly varying than the total phase because the linear
contribution to the total phase is removed.

To perform the reconstruction, the acoustic field was sam-
pled every 1.7 m, corresponding to a rate of approximately
four samples per water wavelength. The real part of this
field was set to zero, and 1024 samples of the imaginary part
were retained. The real part was then reconstructed, and
the magnitude and the residual phase of the reconstructed
field are shown in Fig. 6. The reconstruction is excellent, as
can be seen by comparing Figs. 5 and 6. As further evidence
of the high quality of the reconstruction, the magnitude of
the difference between the original real component and the
reconstructed real component is plotted in Fig. 7 along with
the original field magnitude. From this figure it can be seen
that the error in the reconstruction occurs primarily in the
near field.

The degradation in the reconstructed near field can be
attributed to two effects. First, the assumption that the
acoustic field can be synthesized by using the Hilbert-Han-
kel transform, i.e., using positive wave numbers only, is not
strictly valid at very short ranges. Second, the asymptotic
expressions, obtained from the asymptotic Hilbert—-Hankel
transform, that are used in the reconstruction method are
not valid at short ranges. In the following two examples, we
will see that the reconstruction method also yields some
degradation in the near field. In many coherent processing
applications this error may not be significant, but we point
out that it is a limitation of the theory and method for
reconstruction that we have proposed.

VELOCITY (m/sec)

1450 1500 1550 .. 2200
=20 T T ST
Co p=1g/cm?
a=0 d_B_/T at 220 Hz
0 -—C—; TWATER—BOTTOM INTERFACE |
1
E 20 - p= 1.6 g/cm3 -
- a= ,0039 dB8/m
E 40 - o Cs
qu ———————— "/ 2 3\ _
ok SUBBOTTOM b= 1.6 g/cmd T
a= .0039 dB/m
= 2200 m/sec
80 | {

Fig. 8. Deep-water geoacoustic model. Additional parameters:
20=1249m,z =1.2m, f = 220 Hz. :
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Fig.9. (a) Magnitude and (b) residual phase of realistic deep-water field.

As the second example, we consider a synthetic deep-
water acoustic field, which consists of a direct field plus a
reflected field that has interacted with a horizontally strati-
fied ocean bottom with a realistic sound velocity profile.
The geoacoustic model for this example is summarized in
Fig.8. The synthetic field was generated by first computing
the depth-dependent Green’s function!® and then comput-
ing its numerical Hankel transform. The resulting reflected
field was then added to the closed-form expression for the
direct field to obtain the total field. The magnitude and the
residual phase of this field are shown in Fig. 9.

To perform the reconstruction, the real part of the field
was set to zero, and 1024 samples of the imaginary part,
which was sampled every 3.14 m, were retained. The real
part was reconstructed, and the corresponding magnitude
and residual phase are shown in Fig. 10. Comparing Figs. 9
and 10, we see that the reconstructed field is very similar to
the original field. As further evidence of this, the error in
the reconstructed real component is plotted in Fig. 11, along
with the magnitude of the original field. The error signal is
substantially smaller than the original field magnitude for
ranges greater than about 25 m. The error in the recon-
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struction in the near field can again be attributed to the fact
that the Hilbert-Hankel transform does not correctly syn-
thesize the field at short ranges and also to the fact that the
asymptotic expansion of the Hankel function is not valid at
short ranges.

As the final example, we will consider the reconstruction
of an acoustic field collected in a shallow-water ocean experi-
ment, conducted in Nantucket Sound in May 1984 by the
Woods Hole Oceanographic Institution.26 The experimen-
tal configuration is shown in Fig. 12. The procedure for
acquiring the acoustic data consisted of towing a harmonic
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source at a fixed depth away from the moored hydrophone
receivers over an aperture of approximately 1320 m. The
hydrophone receivers demodulated the harmonic pressure
signal and digitally recorded both the real and the imaginary
components of the spatial part of the field.

The magnitude and the unwrapped residual phase of the
acoustic field recorded at the upper hydrophone are shown
in Fig. 13. The interference pattern in the magnitude is due
to the constructive and destructive interference of several
trapped and partially trapped modes in the shallow-water
waveguide.?® The original acoustic field was sampled non-
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Fig. 10. (a) Magnitude and (b) residual phase of reconstructed realistic deep-water field.
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field.
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Fig. 12. Configuration of the ocean experiment.

uniformly in range because of the difficulty in maintaining a
fixed spatial sampling interval in the ocean experiment.
First the field was interpolated to a uniformly sampled grid
before the reconstruction experiment.

of the reconstructed field are shown in Fig. 14. The similar-
ity of the reconstructed field with the original and resampled
fields is evident. In particular, the behavior of the un-
wrapped residual phase is preserved, as are the peaks and

To demonstrate the reconstruction algorithm, the real
part of this experimental field was set to zero, and 1024
samples of the imaginary part were retained. The real part
was then reconstructed from the imaginary part, and the
corresponding magnitude and the unwrapped residual phase

nulls in the magnitude of the field. If the curves are exam-
ined in further detail, it can be seen that some of the finer
details differ. These slight differences occur not only at
near ranges, as was the case for the previous two examples,
but at far ranges as well. These differences are also evident



Wengrovitz et al.

from examination of the error signal for this example, shown
in Fig. 15.

There are several factors that may explain the reconstruc-
tion error, which is present not only at small values of range
but at large values of range as well. Theoretically, the re-
construction algorithm is based on the real-part-imaginary-
part sufficiency condition that applies to outgoing fields. In
an ocean environment, the effects of velocity changes within
the water column, as well as violations of both the horizontal
stratification and radial symmetry, may yield acoustic fields
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that are not completely outgoing. Additionally, in shallow
water, the effects of a nonperfect surface may yield scattered
acoustic components that are not outgoing.

Nevertheless, the reconstructed experimental field is
quite similar to the original field. In fact, the agreement
between the curves suggests that this method might also be
used as a measure of the quality of the experimental data
collected. In this approach, both components are recorded
and resampled to a uniform grid. One component is then set
to zero and reconstructed from the alternate component. A
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Fig. 13. (a) Magnitude and (b) unwrapped residual phase of the interpolated 140-Hz experimental shallow-water field.
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Fig. 14. (a) Magnitude and (b) unwrapped residual phase of the reconstructed 140-Hz experimental shallow-water field.

similar procedure can be performed with the alternate com-
ponent. Presumably, if the reconstructed and original
fields differ substantially, there is an implication that effects
such as errors in range registration, surface scattering, and
medium inhomogeneity cannot be treated as negligible.
Such a procedure may also provide important information
about the scattering properties of the medium as a function
of position. Innumerical experiments, we have seen a corre-
lation in the quality of the reconstruction with the accuracy
of the ranging method established independently. Thus we
see that, in addition to providing a means for eliminating

hardware in the data acquisition system, the reconstruction
method can provide an important consistency check on the
quality of the sampled field.

5. SUMMARY

In this paper we developed the theory for one- and two-
dimensional unilateral transforms. Inone dimension, it was
shown that if the causal portion of an even signal can be
approximately synthesized by the unilateral inverse Fourier
transform, there are important consequences. Specifically,
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such a signal possesses an approximate real-part-imaginary-
part sufficiency condition, as does its Fourier transform.
Additionally, the approximation was shown to imply an in-
verse relationship between the unilateral inverse Fourier
transform and the unilateral Fourier transform as well as
other relationships between the cosine and sine transforms
of the real and imaginary components of the signal and its
Fourier transform.

In extending the theory to two dimensions, we developed a
bilateral version of the Hankel transform and a unilateral
version, referred to as the Hilbert-Hankel transform. It
was shown that if the causal portion of a circularly symmet-
ric signal can be approximately synthesized by the Hilbert—
Hankel transform, there are important consequences. Spe-
cifically, such a signal possesses an approximate real-part—
imaginary-part sufficiency condition, as does its Hankel
transform. Additionally, the approximation implies an in-
verse relationship between the Hilbert—-Hankel transform
and the complex Hankel transform as well as other relation-
ships among the Jy, Yy, and Hy transforms of the real and
imaginary components of the signal and its Hankel trans-
form. As was pointed out, the unilateral synthesis in two
dimensions is particularly applicable to circularly symmet-
ric fields that are outwardly propagating. The two-dimen-
sional result led to the development of a reconstruction
algorithm for obtaining the real (or imaginary) component
from the imaginary (or real) component of a circularly sym-
metric field. This algorithm was applied to three examples
of underwater acoustic pressure fields.

Although our interest has been primarily in the applica-
tion of the two-dimensional theory to the underwater acous-
tics problem, the general nature of the theory suggests that it
may be applicable to other problems as well. For example,
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one application of the one-dimensional theory might be to
the propagation of a wide-band acoustic pulse in a seismic
borehole in which the upgoing field is approximately synthe-
sized by the unilateral inverse Fourier transform.27

Also, the development of the general multidimensional
theory incorporating different symmetry conditions is sug-
gested. This includes, for example, two-dimensional even
signals that can be approximated by the unilateral inverse
two-dimensional Fourier transform. Although we have de-
veloped the theory for an approximate real-part-imaginary-
part sufficiency condition, it is also possible to develop the
analogous theory for.an approximate magnitude-phase suf-
ficiency condition by applying the complex logarithm to the
Fourier transform.?! Essentially, in one dimension there
exists duality between the even signal and the even cepstrum
and between the approximate real-part-imaginary-part suf-
ficiency condition and the approximate magnitude-phase
sufficiency condition. The duality suggests that there exists
an approximate Hilbert transform relationship between the
magnitude and the phase for a special class of mixed-phase
signals. The relationship between the unilateral transform
and cepstrum may have some important consequences in
applications that include reconstruction of a signal from its
magnitude only, phase unwrapping, and general homomor-
phic signal processing.

APPENDIX A
To develop additional relationships between the cosine and

sine transforms, we introduce the following notation:

ClF(w)} = % L " F(w)cos wtdw, (A1)
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Fig. 15. Error in the reconstruction of the real component (bottom curve) and true field magnitude (top curve) for the experimental 140-Hz

shallow-water field.
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S{F(w)} = % L " Flw)sin wtde. (A2)

Note that since the signal f(¢) is even, and thus its Fourier
transform F(w) is also even, Egs. (13) and (15) in the text can
be written in terms of cosine transforms as

ft) = F7H{F(w)} = ClF(w)}, (A3)
F(w) = Ff(t)} = 2xCif(t)}. (A4)

Additionally, the unilateral inverse Fourier transform and
the unilateral Fourier transform, in Eqs. (14) and (16) of the
text, can be written in terms of cosine and sine transforms as

fu(t) = F, YF ()} = %LOWF(w)} + j%SIF(w)]  (AB)
and
F (0) = F{f(t)} = «Cif ()} — ij{f(t)}- (A6)

Two statements involving the relationships between the var-
ious cosine and sine transforms are now made.

Statement A1 If f(t) ~ f.(t) for t > 0, then the cosine and
sine transforms of the real and imaginary components of
F(w) are related, for t > 0, by

C{Re[F(w)]} ~ —S{Im[F(w)]}, (AT

ClIm[F(w)]} ~ S{Re[F(w)]}- (A8).

Additionally, the cosine and sine transforms of the real and
imaginary components of f(t) are related, for v > 0, by

C{Re[f(t)]} ~ SIm[f(2)]}, (A9)
CIm[f(£)]} ~ —S{Re[f()]}. (A10)

To derive the first pair of equations, the fact that f(¢) ~
fu(®), t > 0 implies that

FUF(w)} ~ F, HF(w)}, t>0 (A11)

isused. Substituting Eq. (A3) into the left-hand portion of
the expression and Eq. (A5) into the right-hand portion of
the expression and equating real and imaginary parts on
both sides yields the first pair of equations. To derive the
second pair of equations, we utilize statement 2.3, which
relates the unilateral inverse Fourier transform and the uni-
lateral Fourier transform, to derive that

F@) ~ F @,

Substituting Eq. (A4) into the left-hand portion of the ex-
pression and Eq. (6) into the right-hand portion of the ex-
pression and equating real and imaginary parts on both sides
yields the second pair of equations in the statement.

Another interesting consequence of the validity of the
unilateral synthesis of f(t) for ¢ > 0 is presented in the
following statement.

Statement A2 If f(t) ~ fu(t) for t > 0, then f(t) can be
approximately synthesized, for t > 0, in terms of either the
real or the imaginary components of F(w), as

(&) ~ 25, HRe[F(w)]}, (A13)

w>0. (A12)

ft) ~ 2jF, HIm[F(w)]}. (Al4)

Additionally, F(w) can be approximately analyzed, for o >
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0,in terms of either the real or the imaginary components of

f(t), as
F(w) ~ 27 fRe[f(®)]}, (A15)

F(w) ~ 2jF {Im[f(t)]}. (A16)

These relationships may be of importance if only one
component of the signal (or Fourier transform) is available
and it is desirable to determine the Fourier transform (or
signal). To obtain expressions (A13) and (A14), the fact
that f(t) ~ f.(t), t > 0 implies that

f) ~ F, HF(w)}, t>0 (A17)

is used. The right-hand side of this relation is expressed in
terms of cosine and sine transforms, as in Eq. (A5). The
relationships stated in the first part of statement Al-are then
substituted to derive expressions (A13) and (A14). To ob-
tain the second pair of equations, we utilize statement 2.3,
which relates the unilateral inverse Fourier transform and
the unilateral Fourier transform, to derive that

Flw) ~FJf@E),  @>0. (A18)

The right-hand side of this relation is then expressed in
terms of cosine and sine transforms, using Eq. (A6). The
relationships stated in the second part of statement Al are
then substituted to derive expressions (A15) and (A16).

APPENDIX B

To develop additional relationships among the Jy, Yy, and
H, transforms, we write the Hilbert—-Hankel transform and
the complex Hankel transform as

pu(r) = 7, ek} = ol (R )} + %Y lg(k,)}  (B1)
and
gu(k,) = ?fu{p(r)} = l/zJo{P(r)} - jl/zﬂo{P(r)}- (B2)

Two statements involving the relationships among the Jo,
Y, and H, transforms are now made.

StatementB1 If p(r) ~ pu(r) forr > 0,thenthe Jpand Y,
transforms of the real and imaginary components of g(k;)
are related forr > 0 by

JofRelg(k,)]} ~ —Yo{Im[g(%)]}, (B3)
JofIm[g ()]} ~ Yo{Re[g(%,)]}. (B4)

Additionally, the Jy and H, transforms of the real and
imaginary components of p(r) are related, for k. > 0, by

Jo{Re[p(r)]} ~ Hy{Im[p(")]}, (B5)
JfIm[p()]} ~ —HyRe[p(]}. (B6)

To justify the first part of this statement, the condition
p(r) ~ pu(r), r > 0 is written as

Jolg(k N} ~ Yo ola (R} + 7hYolgk ),  r>0, (B7)
so that
Jolgtk N}~ jYole(R),  r>0. (B8)

If the real and imaginary parts on both sides of this expres-
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sion are equated, the first pair of expressions in the state-
ment are obtained. To derive the second pair of expres-
sions, we use statement 3.3, which relates the Hilbert-Han-
kel transform and the complex Hankel transform, to derive
that

Jolp(r)} ~ 7#,{p(r)},
Using Eq. (B2), this expression becomes

Jolg(k)} ~ Yod oo (")} — jYHolp ()},
so that

k, > 0. (B9)

k>0, (B10)

Jo{P(r)} ~ _jHO{P(T)},

Equating the real and imaginary parts on both sides of this
expression yields the second pair of expressions.

An additional consequence of the validity of the unilateral
synthesis of p(r) for r > 0 is summarized in the following
statement.

k. > 0. (B11)

Statement B2 If p(r) ~ p,(r) for r > 0, then p(r) can be
approximately synthesized, for r > 0, in terms of either the
real or the imaginary components of g(k,), as

p(r) ~ 27, {Relg(k,)]}, (B12)
p(r) ~ 2j7£, {Im[g(%,)]}. (B13)

Additionally, g(k.) can be approximately analyzed, for k, >
0,interms of either the real or the imaginary components of
p(n),as

g(k) ~ 27 fRe[p ()]}, (B14)
g(k)) ~ 2j3¢,Im[p()]} (B15)

To develop the first pair of expressions, we use the fact
that

p(r) ~ 1/2J(){g(kr)} + jl/ZYO{g(kr)}r r>0. (B16)

If expressions (B3) and (B4) are substituted into the right-
hand side of this expression, the first pair of expressions is
obtained. To derive the second pair, we use statement 3.3,
which relates the Hilbert-Hankel transform and the com-
plex Hankel transform, to derive that

-gk) ~H ip("}, k>0 (17)

If expressions (B5) and (B6) are substituted into the right-
hand side of this expression, the second pair of expressions is
obtained.
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