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Reconstruction of Nonperiodic Two-Dimensional 
Signals from Zero Crossings 

SUSAN R. CURTIS,  SHLOMO  SHITZ, AND 

ALAN V. OPPENHEIM 

Abstract-In this  correspondence, we present new results  on  the  re- 
construction of two-dimensional  signals  from  zero  crossing or thresh- 
old crossing  information. Specifically, we develop new theoretical  re- 
sults which state  conditions  under which two-dimensional  bandlimited 
signals are uniquely specified to  within  a  scale  factor  with  this  infor- 
mation. Unlike previous  results  in  this area,  our new results do not 
constrain  the  signals  to be periodic or bandpass. 

I. INTRODUCTION 
A significant  amount  of  research  has  been  devoted  to  the  prob- 

lem of  reconstruction  of  signals  from  zero  crossings [I] .  Although 
historically  most  of  this  work  has  been  in  the  field  of  communica- 
tion  theory  and  has  concentrated  on  one-dimensional  signals,  more 
recently,  results  have  been  developed  on  the  reconstruction  of  mul- 
tidimensional  periodic  signals  from  zero  crossings [2], [3].  Alter- 
native  multidimensional  results  have  been  derived by directly  ex- 
tending  one-dimensional  results  [4]-[6],  but  these  results  fail  to 
take  advantage of the  fundamental  differences  between  one-  and 
two-dimensional  signals,  and  thus  require  one-dimensional  signals 
derived  from  the  two-dimensional  signal  to  be  bandpass  or  to  have 
zeros  in  particular  locations. In  this  correspondence,  we  present 
new  results  on  the  reconstruction of arbitrary  bandlimited  two-di- 
mensional  signals  from  zero  crossings. 

In  the  next  section,  we  shall  define  terminology  and  review  the 
mathematics  necessary  for  the  remainder of this  work.  In  Section 
111, we  present  our  basic  result  on  the  unique  representation  of  ar- 
bitrary  bandlimited  two-dimensional  signals  with  zero  crossings  and 
a  number  of  extensions  to  it. 

11. BACKGROUND 
In this  section,  we  define  the  notation  and  terminology  to  be  used 

in  the  remainder  of  the  correspondence.  We  also  review  some  prop- 
erties of functions  and  their  zeros  which  will  be  of  importance  in 
the  following  section. 

A two-dimensional  complex-valued  function [ denotedf (s, w ) ]  
is said  to  be  holomorphic if it is holomorphic  (or  analytic)  in  each 
variable  separately. A function  holomorphic  for  all finite values  of 
s and w is  called  entire. In this  work,  we  shall  be  primarily  con- 
cerned  with  entire  functions  of  exponential  type  (EFET)  (see [ l ]  
for  a  review  of  the  properties of EFET's in one  variable,  and  [7] 
and  [8]  for  EFET's  in  several  variables).  These  functions  are  con- 
strained  to  have  at  most  an  exponential  growth  rate  in  any  direction 
in complex  space. As is  well  known  [9], [ lo],  any  bandlimited 
function  of real variables  can  be  uniquely  extended  to  complex 
space  as  an  EFET.  (We  will  use  the  notation f (x, y )  to  denote  a 
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function  of  real  variables  and f (s, w)  to  denote  its  extension  to 
complex  variables.)  This  statement  applies  for  a  wide  variety  of 
common  definitions of bandlimited  functions. For finite-energy 
signals,  the  Fourier  transform  will  exist  and  any  bandlimited  signal 
will  have  a  Fourier  transform  with  a  compact  region of support. 
For  bounded  signals  (with  possibly  infinite  energy),  alternate  def- 
initions  of  band  limitation  are  possible by  using  the  Fourier- 
Stieltjes  transform or  the  so-called  2-transform  (see [l] for  defini- 
tions  and  for  other  possible  definitions of  band  limitation).  It  is  also 
possible  to  use  a  more  general  definition  of  band  limitation  derived 
from  the  theory of generalized  functions or distributions.  This  def- 
inition  requires  the  spectral  distribution  as  defined in  [9]  to  have 
compact  support.  Unless  otherwise  noted,  the  results  presented in 
this  correspondence  apply  to  this  more  general  type  of  bandlimit- 
edness,  although  in  most  practical  applications  the  usual  Fourier  or 
Fourier-Stieltjes  definition  will  apply. 

Entire  functions  can  be  characterized  in  terms  of  their  complex 
zeros  much  like  polynomials  (see [8] or [ 111 for  a  precise  charac- 
terization).  For  either  polynomials  or  entire  functions,  the  repre- 
sentation  of  a  function  in  terms  of  zeros  requires  both  the  real  and 
complex  zeros,  not  just  the  real  zeros  (zero  crossings).  However, 
there  are  some  important  differences  between  polynomials  and  en- 
tire  functions  since  it  is  possible  to  have  entire  functions  which  are 
not  constant,  yet  still  have  no  real or  complex  zeros  (for  example, 
the  function ew is  nonzero  for  all  real  or  complex  values  of w). 
Thus, if the  set of complex  zeros  of  an  entire  function is known, 
then  the  entire  function  may  not be  known,  even  to  within  a  con- 
stant  due  to  the  possibility  of  positive  factors.  However,  it is known 
that  the  only  positive EFET's  are  exponentials,  and  these  can  be 
eliminated by placing  restrictions  on  the  growth  rate  of  the  func- 
tion.  Such  restrictions  are  often  implicit  in  the  definition  of  a  band- 
limited  function.  For  example, if the  Fourier  transform  definition 
of  a  bandlimited  signal  is  used,  then  the  signals  are  assumed  to 
have  finite  energy.  A  more  general  class  of  one-dimensional  band- 
limited  functions  is  characterized  precisely  in [ l ]  by developing  a 
subset  of  EFET's  referred  to  as B functions.  The  class  of B func- 
tions  includes  the  set  of  bandlimited  signals  under  a  number  of 
common  definitions  of  band  limitation  (e.g.,  Fourier  or  Fourier- 
Stieltjes),  as  well  as  including  a  class of other  signals  with  similar 
properties  but  which do  not  possess  a  Fourier  (or  similar)  trans- 
form. B functions  are  known  to  satisfy  a  number  of  different  growth 
restrictions  on  the  real  axis  which  are  given  in [ 11 and  can be  used 
to  eliminate the possibility  of  exponential  factors. For functions  of 
several  variables,  the  Paley-Wiener-Schwartz  theorem [lo], which 
states  that  a  function  with  a  spectral  distribution  with  compact  sup- 
port  has  at  most  polynomial  growth  in  any  direction  in  the  real 
plane  (or  space),  can  be  used  to  eliminate  the  possibility of expo- 
nential  factors. 

Because  of  the  possibility  of  nonconstant  positive  factors  in  en- 
tire  functions,  it  is  common  to  exclude  such  factors  when  consid- 
ering  the  factorization  of  entire  functions  into  irreducible  factors in 
the  same  way  constants  are  excluded  when  considering  the  facto- 
rization  of  polynomials.  Specifically,  let Vf and V, denote  the  set 
of  real or  complex  zeros  off (s ,  w )  and g (s, w), respectively, i.e., 
Vf = { ( s ,  w ) : f ( s ,  w )  = 0 )  and V, = {(s,  w): g(s, w)  = 0 ) .  
The  function f (s, w) will  then  be  referred  to  as  irreducible' if it 
cannot  be  expressed asf (s, w) = g(s,  w )  h ( s ,  w )  where g(s, w )  
and h (s,  w )  are  entire  functions  and Vg and Vh are  both  nonempty 
sets.  (This  definition  is  also  used  in  [14].)  Note  that if h is  an  entire 
function  which  never  vanishes (such  as e"),  thenfcan still be ir- 
reducible  in  the  sense  defined  above,  although f = g X h. 

We  shall  also  use  the  term  analytic  set,  defined  as  the  intersec- 
tion  of  the  zero  sets of one  or  more  holomorphic  functions  [7], [8]. 
For  example, V' and Vg as  defined  above  are  analytic  sets,  as  is Vf 
n VG. An irreducible  analytic  set  is  an  analytic  set  which  cannot 

'Globally  irreducible, in the  terminology  of  [11]-[13]  and  others. 
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be  expressed  as  the  union  of  two  distinct  sets.  For  example,  iff (s, 
w) is  irreducible  (as  defined  above),  then V, is  an  irreducible  ana- 
lytic  set.  Iff (s, w) is  reducible,  it  can  be  expressed  asf (s, w )  = 
g (  s, w )  h ( s ,  w )  and V, can  be  expressed  as V’ = V, U V,. An 
irreducible  analytic  set  is  also  referred  to  as  an  analytic  surface [7]. 

111. UNIQUE  SPECIFICATION WITH ZERO CROSSINGS 
In  this  section,  we  develop  our  new  results  on  reconstruction  of 

two-dimensional  signals  from  zero  crossings by applying  known 
results  on  analytic  sets.  The  main  result  is  developed  in  Section 
111-A and  a  number  of  extensions  are  presented  in  Section 111-B. 

A .  Basic  Result 
The  problem  of  establishing  conditions  under  which  a  signal  is 

uniquely  specified  with  zero  crossings  can be solved  with  results 
from  the  theory  of  intersection  of  analytic  sets.  Since OUT result 
depends  primarily  on  a  result  in  this  area  which  is  readily  available 
in  the  mathematics  literature,  we  shall first state  this  result  and  then 
show  how  it  applies  to  the  problem  of  unique  specification  with 
zero  crossings: 

Theorem 1 [7]: Two  surfaces  analytic  over  a  closed  bounded 
region D intersect  in  at  most  a  finite  number  of  points  in D .  Two 
surfaces  analytic  over  all  of C2 coincide if they  have  in  common 
some  sequence  of  points  along  with  their  limit  point. 

This  theorem  allows us to  develop  our  result  on  reconstruction 
from  zero  crossings  in  a  straightforward  way.  Note  that if two  ir- 
reducible  signalsf (x,  y )  and  g(x,  y )  have  identical  zero  crossing 
contours,  then  the  sets Vf and Vg must  intersect  in  curves (at the 
zero  crossing  contours),  Since  these curies  contain  an  uncountably 
infinite  number  of  points  in  a  finite  region, by applying  Theorem 1 
we  can  show  that  the  sets Vf and V, must  be  identical.  Then  we 
know  that f and g must  be  equal  to  within  multiplication by an 
EFET  which  never  vanishes,  that  is, by an  exponential  factor.  This 
possibility  can be  eliminated by placing  restrictions  on  the  rate  of 
growth  of  the  function,  as  mentioned  earlier.  Specifically,  let us 
state  (see  the  Appendix  for  proof)  the  following. 

Theorem 2: Letf  (x, y )  and  g(x,  y )  be  real,  two-dimensional, 
bandlimited  signals  whose  complex  extensions  are  irreducible  as 
entire  functions  in  the  sense  defined  in  the  previous  section.  Iff (x,  
y )  takes  on  positive  and  negative  values  in  a  closed  bounded  region 
D C R2 and s i g n f f x ,  y )  = sign g ( x ,  y )  for  all  values of (x,  y )  
in D ,  thenf  (x, y )  = cg(x ,  y )  for  some  real  positive  constant  c. 

Note  that  in  this  theorem,  it  is  not  necessary  for  the  zero  cross- 
ings  off  (x, y )  and g ( x ,  y )  to  be  identical  for  all  values  of  (x, y ) ;  
it is sufficient for  the  signals  to  have  one  zero  crossing  contour  in 
common.  This  fact  allows us to  apply  this  theorem  to  signals  which 
have  finite  length  and  are  thus  not  strictly  bandlimited. If the  finite- 
length  signal  represents  a  finite  segment  of  some  bandlimited  func- 
tion,  then  we  can  apply  Theorem  2 by considering  the  .region D to 
be  the  region  of  support  of  the  function.  Specifically, i f f  (x, y )  
and g (x ,  y )  are  finite-length  segments  of  the  bandlimited  signals 

contains  sign  changes,  thenf  (x, y )  = cg(x ,  y ) .  This  is  similar  to 
a  result  presented  in [2] which  allows  finite-length  signals  to be 
uniquely  specified  by  zero  crossings  if  their  periodic  replications 
satisfy  appropriate  constraints.  The  result  presented  here  is  less  re- 
strictive  since  it  does  not  require  the  underlying  bandlimited  func- 
tion  to  be  periodic. 

At this  point,  it  is  worthwhile  to  consider  the  likelihood  that  a 
two-dimensional  bandlimited  function  will  satisfy  the  irreducibility 
constraints  of  Theorem 2. Although  the  only  one-dimensional 
EFET’s  which  are  irreducible  are of the  formf (w) = eawfb(  w - 
c ) ,  this  is  not  the  case  in  two  dimensions.  Although  we  cannot 
precisely  characterize  the  likelihood  that  a  two-dimensional  EFET 
is  irreducible,  it  is  commonly  assumed  that  a  large  nontrivial  class 
of  two-dimensional  EFET’s  are  irreducible [13]-[16]. We can  pre- 
cisely  characterize  this  likelihood  for  polynomials,  a  special  class 
of  EFET’s.  Specifically,  it  has  been  shown  that  the  set  of  reducible 
m-dimensional  polynomials  forms  a  set  of  measure  zero  in  the  set 

f ( x ,  y )  and g (x ,  Y ) ,  s i g n f ( x ,  Y )  = sign g ( x ,  Y ) ,  a n d f ( x ,  Y )  

of  all  m-dimensional  polynomials (for m > 1 ) [ 171, and  that  this 
set  is  an  algebraic  set [18]. However,  even if it  could  be  shown 
that  in  some  statistical  sense,  “almost  all”  EFET’s  are  irreducible, 
there  are  some  important  examples  of  functions  which  are  reduci- 
ble.  One  example  occurs if the  two-dimensional  bandlimited  func- 
tion  can  be  expressed  as  a  bandlimited  function  of  only  one  vari- 
able,  as  is  the  case  for  circularly  symmetric  functions.  These  func- 
tions  will,  in  general,  contain  an  infinite  number  of  factors.  An- 
other  example  occurs if the  function  is  separable  and  can  thus  be 
expressed  as  a  product  of  two  bandlimited  functions,  one  in  each 
variable.  In  the  next  section,  we  shall  extend  Theorem 2 to  include 
factorable  signals. 

B. Extensions 
Although  Theorem 2 stated  a  number  of  conditions  under  which 

a  signal  is  uniquely  specified  with  its  zero  crossings,  it  is  also  pos- 
sible  to  develop  a  number  of  variations  or  extensions  of  this  result. 
These  extensions  are  conceptually  similar  to  those  presented  in [2] 
for  the  case  of  periodic  signals,  although  the  mathematics  and  some 
of  the  conclusions  are  different. 

One  problem  with  Theorem 2 is  that  it  requires  two  separate 
functions  to  be  irreducible.  If  in  some  application,  it  is  known  that 
a  particular  signal  is  irreducible  and  satisfies  the  constraints  of 
Theorem  2, then  this  information  alone  is  not sufficient to  guar- 
antee  that  the  signal  is  uniquely  specified by its  zero  crossings.  In 
particular,  this  theorem  only  guarantees  that  no  other  irreducible 
function  can  have  the  same  zero  crossings;  it  does  not  guarantee 
that  there  are  no  other  reducible  functions  with  those  zero  cross- 
ings.  In  the  case  of  periodic  signals  represented  as  a  Fourier  series 
polynomial  [2],  [3],  it  was  possible  to  eliminate  this  possibility 
when  the  exact  bandwidth  of  the  signal  was  known,  since  multi- 
plying by an  additional  factor  raises  the  degree  of  the  Fourier  series 
polynomial  and  thus  increases  the  bandwidth  of  the  signal.  With 
the  representation  we  are  using  for  arbitrary  signals,  a  similar  ex- 
tension is not  necessarily  valid  since  multiplication  of an  arbitrary 
signal by a  polynomial  will  not  necessarily  increase  its  bandwidth. 
(A  similar  problem  is  encountered by Sanz [19]  in discussing  the 
reconstruction  of  multidimensional  signals  from  algebraic  sam- 
pling  contours.) We  can,  however,  establish  the  following  result 
(see  the  Appendix  for  proof). 

Theorem 3: Let f (x,  y )  and g (x ,  y )  be  real,  two-dimensional 
signals  and  bandlimited  to  a  region  B,  but  no  smaller  region.  Let 
f (s, w )  be  irreducible  in  the  sense  defined  in  the  previous  section. 
Iff  (x, y )  takes  on  positive  and  negative  values  in  a  closed  bounded 
region D C R2 and signf  (x, y )  = sign  g(x,  y )  for  all  values of 

polynomial  with  no  real  zeros  in  the  region D,  except  possibly 
wheref (x ,  y )  = g(x ,  y )  = 0. 

While  this  result  does  not  guarantee  uniqueness  in  the  case  where 
only  one  signal  is  guaranteed  to be irreducible,  it  is  possible  that 
this  theorem  could  be  used  in  conjunction  with  the  constraints  of  a 
particular  application  to  guarantee  uniqueness  in  that  particular 
case. 

It is also  possible  to  generalize  the  results  presented  above  to  a 
broader  definition  of  zero  crossings. In  particular,  it is possible  to 
develop  a  similar  result  which  allows  the  signals  to  be  specified by 
crossings  of  an  arbitrary  threshold  rather  than  simply  zero  cross- 
ings.  This  is  important  in  applications  such  as  image  processing 
where  signals  represent  energy  or  intensity  and  thus  are  constrained 
to  be  positive.  These  signals  contain  no  zero  crossings,  but may 
contain  points  (contours)  where  the  signal  crosses  a  particular 
threshold.  More  generally,  it  is  possible  to  allow  crossings of an 
arbitrary  bandlimited  function.  In  particular,  let us state  (see  the 
Appendix for  proof)  the  following. 

Theorem 4: Let f ( x ,  y ) ,  g ( x ,  y ) ,  and h ( x ,  y )  be  real,  two- 
dimensional  bandlimited  signals  where f (s, w )  - h (s, w )  and 
g (s ,  w )  - h (s, w )  are  irreducible  in  the  sense  defined  in  the  pre- 
vious  section.  Iff  (x, y )  - h (x, y )  takes  on  positive  and  negative 
values  in  a  closed  bounded  region D C R2 and  sign 1 f (x,  y )  - 

(x, y )  in D ,  then g (x ,  Y )  = P(X,  ~ ) f ( x ,  Y )  wherep(x ,  Y )  is  a 
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h(x, y ) l  = sign I g ( x ,  y )  - h(x, y ) I  for  all  values  of (x, y )  in 
D,  thenf (x. Y )  - h(x, Y )  = c ( g ( x ,  y )  - h(x, Y ) )  for Some 
positive  real  constant c. 

Another  extension  to  Theorem 2 which we will  develop  here  is 
to  allow  reducible  signals.  This  extension  is  important  since,  as 
mentioned  earlier,  we  cannot  precisely  state  the  likelihood  that  a 
signal  is  irreducible.  The  reasoning  used  to  develop  this  result  is 
similar  to  the  reasoning  used  in [2] to  develop  a  similar  result  for 
periodic  signals.  Let f (s, w )  denote  the  complex  extension  of  a 
signal f ( x ,  y )  and  consider  the  factorization o f f  (s,  w )  into  real 
factors fi (s, w )  (factors  which  are  real  for  real  values  of s, w )  
which  are  irreducible  over  the  set  of  real  factors.  We  will  only 
consider  the  case  where  the  number  of  such  factors  is  finite.  Ob- 
serve  that  iffi (s, w )  = 0 for  any i ,  then f (s, w )  = 0; similarly, 
iff  (s, w )  = 0, then  at  least  one  of  the  factors fi (s, w )  must be 
zero.  Thus, if each  factor  contributes  a  set  of  zero  crossing  con- 
tours,  each  factor  will  be  uniquely  specified by its  own  zero  cross- 
ing  contours,  and  thus  we  can  develop  a  set  of  conditions  under 
which f (x, y )  will  be  uniquely  specified by its  complete  set of zero 
crossing  contours.  These  conditions  can  be  stated  as  follows  (see 
the  Appendix  for  proof). 

Theorem 5: Let f (x, y )  and g(x, y )  be  real,  two-dimensional, 
bandlimited  signals. Iff  (s, w )  and g (s, w )  can  be  factored  into  a 
finite number  of  real  irreducible  factors  (as  described  above),  and 
if  each  factor  off (s, w )  and g (s ,  w )  has  multiplicity  one  and  takes 
on  positive  and  negative  values  in  a  closed  bounded  region D C 
R2 and  sign f (x, y )  = sign g(x, y )  for  all  values of ( x ,  y )  in D ,  
then f ,(x, y )  = cg(x ,  y )  for  some  positive  real  constant c. 

At this  point,  we  should  also  point  out  that  although  the  results 
presented  here  apply  to  periodic  signals  as  well  as  nonperiodic  sig- 
nals,  the  results  presented  in [2] are not  a  special  case  of  the  results 
presented  here.  This  is  because  the  results  presented  in  [2]  consider 
the  possible  factorization  of  a  signal  in  terms  of  as  a  polynomial  in 
eiS and e j w ,  whereas  the  results  presented in  this  correspondence 
consider  the  possible  factorization  of  a  signal  in  terms  of  an  entire 
function  in s and w. It  is  possible  for  a  signal  to  be  irreducible  as 
a  polynomial  in e j s ,  e i w ,  but  reducible  as  an  entire  function  in s, 
w? as in  the  case,  for  example,  with  the  function f (s ,  w) = 1 - 

problem  is  mentioned by Sanz  and  Huang  [14]  when  comparing 
their  work  on  the  reconstruction  of  signals  from  magnitude or phase 
to  the  work of Hayes 1201. In  this  case,  it  was  found  that  the  dis- 
crete-time  problem  considered by 1201 is not  a  special  case  of  the 
continuous-time  problem  considered by 1141. As is discussed  in 
[ 141, this  problem  can  also be  viewed  in  terms of  different  methods 
of  extending  the  real  signal  to  complex  variables.  In  the  case of 
periodic  signals,  the  approach  taken  in  [2], 131, and  [20]  was  ef- 
fectively  to  map  the  periodic  signal  onto  the  unit  surface  in  the 
complex  space,  as  opposed  to  mapping  the  original  signal  onto  the 
real  plane  in  complex  space  as is done  in  this  work  and in [14]. 
The  interested  reader  should  consult  [I41  for  further  details. 

e J S e J W  = ( 1  - e i ( s / 2 ) e j ( w / z )  ) ( I  + e j ( s / 2 ) e j ( w ’ 2 ) ) .  A similar 

IV.  CONCLUSIONS 

In  this  correspondence,  we  have  presented new  results  on  the 
unique  specification  of  arbitrary  (nonperiodic)  two-dimensional 
signals  with  zero  crossing  or  threshold  crossing  information.  Our 
primary  result  established  that  two-dimensional  bandlimited  sig- 
nals  which  are  irreducible  as  entire  functions  are  uniquely  specified 
to  within  a  scale  factor by their  zero  crossing  contours. We also 
extended  this  result  to  permit  crossings  of  an  arbitrary  threshold 
and  to  permit  factorable  signals  with  sign  changes  in  each  factor. 
Since  previous  results  on  unique  specification  of  two-dimensional 
signals  with  zero  crossings  have  required  that  the  signal be band- 
pass  or  periodic or that  a  sine  wave  be  added  to  the  original  signal, 
the  results  in  this  work  represent  an  important  generalization  and 
extension  of  previous  results.  These  results  suggest  practical  ap- 
plications  in  multidimensional  signal  processing,  image  process- 
ing,  and  vision,  as  well  as  the  possibility  for  use  as  an  analytical 
tool  in  areas  such  as  communications  and  sampling  theory. 

APPENDIX 
PROOFS 

Proof of Theorem 2 
As was  mentioned  earlier,  iff (x, y )  and g (x, y )  are  real,  band- 

limited  (in  the  broad  sense)  functions,  then  it  is  well  known [9], 
[ 101 that  these  functions  can be extended  to C2 as  entire  functions 
of an  exponential  type  (EFET)  denoted  as f (s, w )  and g(s, w), 
which  are  also  EFET’s in each  variable  separately,  and  have  at 
most  polynomial  growth  in  the  real  plane. I f f  (x, y )  and g ( x ,  y)  
have finite energy  (in  the  real  plane),  then  their  Fourier  transforms 
exist  and  this  result  is  known  as  the  Polya-Planckerel  theorem  [8]. 

I f f  (x, y )  takes  on  positive,  and  negative  values  in  the  closed, 
bounded  region D ,  then  since f (x, y )  is  continuous  (since  it  is 
entire),  there  must  exist  a  contour  (an  uncountable  number of 
points)  where f ( x ,  y )  = 0 1121. The  same is true  for g ( x ,  y ) .  If 
there  exists  at  least  an  infinite  number  of  points (x, y )  E D where 
f ( x ,  y )  = 0 and g ( x ,  y )  = 0, then  there  exists  a  limit  point  (see 
17,  proof  of  Theorem  4.11,  p.  721)  which  is  contained  in D. The 
set Vf is  an  analytic  set 18, p. 2171 and  is  also  an  analytic  surface 
[7,  p. 711 over  a  (complex)  closed,  bounded  domain E :  D C E C 
C2 since  the  analytic  set  is  irreducible  (because  the  related  EFET 
is  irreducible [l I]),  In  any  bounded  and  closed  set E C C2,  if two 
distinct  analytic  surfaces  have  a  sequence of  points  in  common 
along  with  their  limit  point,  then by Theorem  1,  the  sets  coincide 
not  only  in E ,  but in C2 so Vf = Vg in  all  of C2. Then  we  can  make 
use of  a theorem  stated  precisely by Sanz  and  Huang  [14]. 

Theorem AI :  Let f, g :  C“ --f C be  entire  functions  such  that V’ 
= V,. If g is irreducible,  then  there  exists  an  entire  function h : C” - C that  satisfies f = g X h. 

Thus,  we  now  have 

f (s, w) = h ( s ,  w )  g(s,  w) ( A I )  

where h (s, w )  is  entire  and  nonzero  everywhere  in C2. Using 
growth  arguments  as  in  [14,  p. 14481 or by applying [21, Theorem 
121 to  any  one-dimensional  slice  off, g ,  and h, we  can  also  show 
that h ( s ,  w )  is  an  EFET.  It is well  known  that  the  only  EFET 
which  is  nonzero  in  all  of C2 is eas+pw+r  . Sincef (s, w )  and g (s, 
w) must  be  real  for  all  real  values  of s and w, then a ,  p, y must 
all  be  real.  We  can  also  show  that a and  must  be  zero,  since 
otherwise f (s, w )  or g(s,  w )  would  have  exponential  growth  in 
the  real  plane,  and  thus  would not be  bandlimited [lo]. Thus, h (s, 

Note  that  in  this  proof,  we  have  only  used  the  fact  that  there  are 
an  infinite  number  of  points  wheref (x, y )  = 0 and g ( x ,  y )  = 0. 
Thus, it is  only  necessary  to  know  a  countably  infinite  set  of  points 
on  a  zero  crossing  contour  (e.g.,  a  discrete  sequence of points);  it 
is  not  necessary  to  know  the  complete  zero  crossing  contours. 

Proof of Theorern 3 

w) = e? = c and f ( x ,  y )  = cg(x ,  y ) .  

Proceeding  as  in  the  proof of Theorem  2,  we  have 

d s ,  w) = f (s, w) k ( s ,  w) (A21 

where k ( s ,  w )  is  an  EFET in C2. We  cannot  assume  that k ( s ,  w )  
is  nonzero  since  we  have  not  assumed  that g(s, w )  is  irreducible. 
Instead, we can  establish  a  relationship  among  the  bandwidths  of 
f, g, k b y  applying  known  properties  of  the  so-called P indicators. 

Theorem A2 18, Theorem 3.4.41: Let f ( z )  and k (  z )  be  EFET’s 
such  that  for  almost  all x = RN, the  function f (x + Xw), h E RN 
has  completely  regular  growth  in  the  variable w E C I .  Then  the P 
indicator  of  the  function g ( z )  = f ( z )  k (  z )  is  the  sum  of  the P 
indicators off ( z )  and k ( z ) : h , (  X) = hf ( X )  + hk(  X). 

The  requirement  that f,  g (and  therefore k )  be strictly  bandlim- 
ited  (and thus any one-dimensional  slice off  or g is  bandlimited) 
guarantees  that  they  have  completely  regular  growth  along  any  slice 
[ 11. The P indicator  corresponds  to  the  smallest  convex  domain 
completely  containing  the  region  of  support  of  the  spectrum  (see 
[8] for  precise  definitions).  Roughly  speaking,  Theorem A2 states 
that  the  bandwidth of g is  the  sum  of  the  bandwidths o f f  and k .  
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However,  in  Theorem 3,  we  have  constrained g and f to  have  the 
same  known  bandwidth,  and  thus k must  have  “zero  bandwidth,” 
i.e., h k (  X) = 0, in  the  notation of [SI. Thus, k must be a  poly- 
nomial  of  finite  degree  [19].  This  polynomial  cannot  have  real  ze- 
ros  in  the  region D, except  possibly  where f (x, y )  = g ( x ,  y)  = 
0, and  the  theorem  is  proven. 

Proof of Theorem 4 
The  proof  is  straightforward  due  to  Theorem  2.  The  functions 

satisfy  the  constraints  of  Theorem 2. Note  that if the  functions f, 
g, h are  bandlimited  in  the  general  sense,  then so are f, and g,. 

Proof of ?%eorem 5 
The  proof  of  this  theorem  is  similar  to  the  proof  of  Theorem 2 

applied  to  each  factor  separately.  According to Osgood’s  product 
[12],  [13], [ 111, any  EFET  in n dimensions  can  be  represented 
uniquely  by  the  product  of  either  a  finite  or  an  infinite  set  of  glob- 
ally  irreducible  entire  functions  and  various  exponential  factors.  In 
Theorem 5, we  assume  that f (s, w )  and g (s, w )  can  be  factored 
into  a  finite  set  of  irreducible  EFET’s. We will  consider  the  fac- 
torization o f f  (s, w )  and g ( s ,  w) into  a  finite  set  of  real  factors, 
irreducible  over  the  set  of  real  factors,  as  described  earlier.  For 
eachpoint  where f (s, w) = 0 and g ( s ,  w )  = 0, at  least  one of the 
factors (s, w )  must be  zero  and  at  least  one  of  the  factors gi  (s, 
w )  must  be  zero. For  each  zero  contour o f f  (s, w )  and g ( s ,  w )  
corresponding to the irreducible  factorsh (s, w) and g,. (s, MI), we 
can  use  Theorem  2  to  show  that fi (s, w )  = cgi (s, w). Let  us 
assume  that f (x, y )  # c g ( x ,  y)  and  attempt to reach  a  contradic- 
tion.  For  convenience,  let us assume  that  there  is  some  irreducible 
factor  off (s, w )  which  is  not  a  factor of g( s, w). First  of  all,  note 
that if this  factor,  denotedfi (s, w), is  complex,  then f *(  s, w )  will 
also  be  a  factor o f f  (s, w )  and  thus f (s, w) will  contain  a  real 
factorfi (s, y )  (s, w )  which  is  nonnegativ’e  everywhere,  violat- 
ing  the  constraints  of  the  theorem.  Thus,  the  factorfi (s, w )  must 
be  real,  and  since  according  to  the  theorem  hypothesis,  it  has  both 
positive  and  negative  values  and  has  multiplicity  one,  then  we  must 
have  sign f ( x ,  y )  # sign g ( x ,  y )  for  some  values  of ( x ,  y) ,  and 
we  have  reached  a  contradiction.  Thus,  there  cannot  be  any  factor 
of f  (s, w )  which  is  not  a  factor  of g(s, w )  and  thus,  f(x,  y) = 

A ( ~ , Y )  = f ( x , y )   - h ( x , y ) a n d g , ( x , y )  = g ( x , y )  - h ( x , y )  

cg(x, Y). 
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Radar  Detection  in  Coherent  Weibull  Clutter 

A.  FARINA, A. RUSSO, AND F. SCANNAPIECO 

Abstract-In this correspondence, a  new  model for the  Weibull clut- 
ter is presented.  Then attention is turned to the  design  of  the  optimum 
radar  processor to detect an a priori known  target  signal  embedded  in 
coherent  Weibull clutter. An original  detection  scheme is presented 
and  the corresponding  performance is assessed. 

INTRODUCTION 
The  radar  detection  of  targets  embedded  in  clutter  having  a  Wei- 

bull  probability  density  function (pdf)  for  the  amplitude  is  a  rele- 
vant  problem  from  the  theoretical  and  application  points  of  view. 
Previous  research [l, pp.  431-4541  does  not  account for  the  co- 
herent  nature  of  the  Weibull  clutter  either  in  the  modeling  phase or 
in  the  design  of  a  suitable  radar  detector.  The  purpose  of  this  cor- 
respondence  is  to  overcome  these  limitations.  The  ensuing  material 
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