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ABSTRACT 

In this  paper,  an approximate real-part sufficiency 
condition is developed for  complex-valued one-dimensional 
even signals and two-dimensional circularly symmetric sig- 
nals. The two-dimensional result is  used  in a reconstruc- 
tion algorithm which is applied to synthetic and experi- 
mental underwater acoustic fields. 

INTRODUCTION 

A well-known property in Fourier transform theory is 
that causality in one domain implies real-part sufficiency 
in the alternate domain. This  property is the basis for 
the fact that  the real and imaginary components of a sig- 
nal are related via the Hilbert transform, if the  spectrum 
of the signal is causal. In wave propagation problems, it 
is often the circularly symmetric two-dimensional Fourier 
transform, or equivalently, the Hankel transform which is 
of central importance. Because of the symmetry in such 
problems, the condition of causality is not applicable. In 
one dimension, the  counterpart of the circularly symmet- 
ric signal is the even  signal. The one-dimensional Fourier 
transform of an even signal is also  even,  and thus  the con- 
dition of causality is not applicable in this case as well. 

In our work, we have shown that under some conditions 
it is possible to approximately relate the real aud imagi- 
nary components of a one-dimensional even signal, or a 
two-dimensional circularly symmetric signal. The approx- 
imation is  based on the validity of the unilateral inverse 
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Fourier transform in one dimension, and a unilateral ver- 
sion of the Hankel transform in two  dimensions. In this 
paper, we develop the approximate real-part sufficiency 
condition in one and two  dimensions  using these trans- 
forms. The two-dimensional result forms the basis for a 
reconstruction algorithm in which the  real (or imaginary) 
component of an underwater acoustic field is obtained from 
the imaginary (or real) component. 

ONE-DIMENSIONAL  THEORY 

Consider an even signal f ( t )  which has  the Fourier 
transform F(w) ,  where 

f ( t )  G 7- ' {F(w) }  = - /m F(w)ei%iw (1) 
2n --co 

The unilateral inverse Fourier transform is defined as 

fu(t) = 7; ' {F(w) }  = - /"F(w)e"dw (2) 
2 r  0 

There exists an approximate relationship between the  real 
and imaginary components of f ( t )  if the condition 

f(t)  - f u N  t > 0 (3) 

is  satisfied. To develop the relationship, the signals fu(t) 
and f(t) are  written in terms of cosine and sine transforms 

f(t) = 1 1" F ( w )  cos wtdw (4) 

as 

r o  
and 

The condition in equation (3) therefore implies that 

- / F(w)  coswtdw - - P m  ' /" F ( w )  sinwtdw (6) 
27r 0 27r 0 

By equating real and imaginary parts on both sides of this 
expression, it can be shown that for t > 0 
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To the extent that the approximation in equation (3) is 
valid, it can also  be  shown (11 that there is an inverse rela- 
tionship between the unilateral inverse Fourier transform 
and the unilateral Fourier transform. 

The condition f ( t )  - fu(t),t > 0 is quite restrictive 
and does not apply to an arbitrary even signal f(t)- It 
implies, for example, that there can be no poles located in 
Quadrant I or of the Laplace transform s-plane. How- 
ever, the corresponding theory in the circularly symmetric 
two-dimensional case  is  less restrictive. In particular, as 
will be shown in the following section, the condition ap- 
plies to  the general class of circularly symmetric signals 
which are related to outwardly propagating wave  fields. 

Consider a two-dimensional circularly symmetric sig- 
nal p(z, y) which has a circularly symmetric Fourier trans- 
form.  Using the relationship r = (z2 + y2)1/2, the signal 
can be expressed in terms of the two-dimensional inverse 
Fourier transform, or equivalently, in terms of the Hankel 
transform as 

p(r) = J," g(kr)Jo(krr)krdkr (9) 

where Jo(-) is the zeroth-order Bessei function. Since the 
Hankel transform is its own inverse, it follows that 

m 
g(kr) = J, p ( r ) ~ o ( ~ r ) r d r  ( 10) 

These equations imply that p(r) is an even function of r 
and that g(kr) is an even function of k,. 

Using the relationship between  Bessel functions and 
Hankel functions, it is also  possible to write a two-sided 
version of the Hankel transform in equation (9) as 

~ ( f )  E u-'{g(kr)) 

The unilateral version of this transform can be written as 

and is analogous to the unilateral inverse Fourier transform 
in equation (2). 

In some  wave propagation problems, p(r) is approxi- 
mated by retaining Only the first integral in equation (ll), 
and thus 

d.1 - P"(.) > 0 (13) 

This approximation can be informally argued based on the 
outgoing nature of the propagating field, and can be more 
formal!y justified using a contour deformation argument. 
The approximation is an important component in a num- 
ber of wave propagation synthetic data-generation rneth- 
ods, such as the Fast-Field-Program (FFP)[%]. Eowever, 
it  has not previously  been  recognized that equations (12) 

and (13) also imply an approximate real-part sufficiency 
condition for p(r). Because of its  important properties, 
and its relationship to  the Hilbert and Hankel transforms, 
we refer to equation (12) as the Hilbert-Hankel tramf~r~n. 
To the  extent that  the approximation in equation (13) is 
valid, it can be  shown [I] that there is an inverse relation- 
ship between the Hilbert-Hankel transform and the com- 
plex Hankel transform[3]. 

To derive the real-part sufficiency condition, we use the 
fact that Hil)(krr) = Jo(k,r)  +jYo(k,r), where Yo(.) is a 
zeroth-order Bessel function of the second  kind. Substi- 
tuting  this expression in equation (X), the condition in 
equation (13) implies that 

It is also possible to use an additional approxima- 
tion as a means for developing an efficient algorithm to 
reconstruct Re[p(r)] from Im[P(r)], or vise versa. To do 
this, we substitute an asymptotic expansion for @(krr) 
in equation (12) yielding 
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so that 

l m  
p(r).'/'u(r) - - ij(kr)eikvrdkr (18) 

where G(kr) = g(kr)kr1/2e-j8/4. From this, it can be seen 
that p(r)r1I2u(r) is approximately analytic, and thus  its 
real and imaginary parts  are related via the Hilbert trans- 
form. In the reconstruction algorithm, a single component 
of p(r) is multiplied by r1i2, the Fourier transform is  com- 
puted,  the  spectrum is multiplied by 2u(kr), an inverse 
Fourier transform is computed, and  the result is divided 
by r1l2 [4). The resultant  signal is complex-valued,  and 
consists of the original and the reconstructed quadrature 
components. EXAMPLES 

(2n)'/' J ,  

We have applied the reconstruction algorithm to a 
220 Hz deep water acoustic field, generated synthetically 
to represent a realistic ocean environment, and to a 140 Hz 
shallow water acoustic field,  collected experimentally[S] in 
Nantucket Sound in June 1984. The magnitude of the orig- 
inal deep water field, computed using the Hankel transform 
of a realistic Green's function[l], is shown  in Figure la. 
The real compcnent of the field  was set to zero and then 
reconstructed. The magnitude of the reconstructed field is 
shown in Figure lb  and is  seen to compare compare closely 
with the original magnitude. The magnitude of the exper- 
imental shallow water acoustic field is  shown  in Figure 2a. 

The real component of the field  was set to zero and then 
reconstructed. The magnitude of the reconstructed field 
is shown in Figure 2b and its agreement with the original 
field magnitude is again quite good. Similar agreement be- 
tween the phase of the original field and  the reconstructed 
field was observed for these two examples. 

SUMMARY 

It  has been shown that under the condition that the 
causal portion of an even signal is approximated by the 
unilateral inverse Fourier transform, there exists an ap- 
proximate real-part sufficiency condition for the signal. 
Additionally, if the causal portion of a circularly symmet- 
ric two-dimensional signal is approximated by the Hilbert- 
Hankel transform, there exists an approximate real-part 
sufficiency condition. An additional asymptotic expansion 
was used to develop a two-dimensional reconstruction al- 
gorithm which  was applied to synthetic  and experimental 
acoustic fields. 
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Figure 1: Synthetic  deep  water acoustic field  magnitude 
as a function of range (m). 
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Figure 2: Experimental shallow water acoustic field magnitude 
as a function of range (m). 
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