RECONSTRUCTION OF TWO-DIMENSIONAL SIGNALS
FROM THRESHOLD CROSSINGS *

Susan R. Curtis, Alan V. Oppenheim, and Jae S. Lim

Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge, Mass. 02139

ABSTRACT

In this paper, we present new results on the recon-
struction of two-dimensional signals from zero crossing
or threshold crossing information. These results follow
from our previous work on the reconstruction of two-
dimensional signals from one bit of Fourier transform
phase. Experimental results jllustrating image recon-
struction from threshold crossings are included.

L. INTRODUCTION

The importance of the zero crossings {(or more
generally, threshold crossings) of a signal has long been
recognized in a number of different applications and
types of problems. Experiments in speech processing
have shown that speech with only the zero crossing
information preserved (hard-clipped speech) retains
much of the intelligibility of the original speech [1]. A
wide variety of papers in image processing and vision
stress the importance of the information contained in
the edges of objects in classifying and identifying
images [2]. There are also a variety of other types of
applications in which the threshold crossings of a signal
are available and it is necessary or desirable to recover
the original signal. One such application occurs when a
signal is clipped or otherwise distorted in such a way as
to preserve the zero crossing or level crossing informa-
tion, and it is desired to recover the original signal.
Another application occurs in some design problems
where one might want to specify a filter response [3] or
antenna pattern [4] in terms of zero crossing or null
points (such as for interpolation) and derive the
remainder of the response from these.

Although a considerable amount of research has
been devoted to the problem of reconstruction of one-
dimensional signals from zero crossings (see [5] for a
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survey and references), very little work has been
reported on the corresponding two-dimensional prob-
lem. Logan’s results [6] on the unique specification of
one-dimensional bandpass signals with zero crossings
have been extended to two dimensions in [2} and [7).
These extensions essentially require a one-dimensional
signal derived from the original two-dimensional signal
to satisfy the constraints of Logan’s theorem.

In this paper, we present a more general set of
conditions stated directly on the original signal which
permit a bandlimited (but not necessarily bandpass) sig-
nal to be uniquely specified with zero crossings or with
crossings of an arbitrary threshold. The result is much
less restrictive and appears to be more broadly applica-
ble than two-dimensional extensions of Logan’s
theorem. We shall develop this result for periodic sig-
nals in a style similar to that used to develop previous
results [8, 9] on the unique specification of two-
dimensional discrete-time sequences with the sign of
the real part of the Fourier transform (also referred to
as one bit of Fourier transform phase). The extension
of the result presented in this paper to nonperiodic sig-
nals is developed in [10].

In the next section, we present the new theoretical
results mentioned above on the reconstruction of two-
dimensional signals from zero crossings or threshold
crossings. Experimental results illustrating example
images reconstructed from threshold crossings are given
in section 3.

I1. THEORETICAL RESULTS

Loosely speaking, the representation of a signal in
terms of zero crossings can be thought of as a form of
nonuniform sampling, with each zero crossing
representing one sample.  Most one-dimensional
bandlimited signals are not uniquely determined by
zero crossings since the average rate of zero crossings is
not guaranteed to be sufficiently high. Logan’s condi-
tion [6] requires signals to be bandpass with a
bandwidth of less than one octave so that the number
of zero crossings {or the rate of zero crossings) is in
some sense consistent with the amount of information
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or bandwidth in the signal. In two dimensions, in con-
trast to one dimension, the "zero crossings” (sign
changes) of a signal are contours and thus each zero
crossing contour corresponds to an infinite number of
samples of the signal. Thus it is reasonable to suggest
that a two-dimensional signal may be specified with
zero crossings under more general conditions than those
required for a one-dimensional signal.

This is in fact true, and in this section, we shall
present a new result on the unique specification of
band-limited, periodic, two-dimensional signals from
zero crossings. This result can be obtained in a
straight-forward way by interchanging the roles of the
signal and transform domains in the results on recon-
struction from one bit of Fourier transform phase.
Specifically, if a continuous-time signal corresponds to
the Fourier transform of a finite-length discrete-time
sequence, and if this finite-length sequence satisfies the
conditions of any of the results in [8] or [9], then the
signal is uniquely specified to within a scale factor by its
zero crossings. This approach is developed in detail in
[9]. An alternate approach is to develop this result
directly by expressing the signal as a polynomial in a
Fourier series representation and applying the same
well-known results in algebraic geometry used in [8]
and [9]. This latter approach shall be followed here.
We shall present a brief sketch of the argument to give
the basic idea behind the proof but omit the details.

Since the argument depends primarily upon a
resuft from afgebraic geometry, we will first state this
result without proof:

Theorem 1 [11,12]. If X (z,, z,) and Y(zy, z5)
are two-dimensional polynomials of degrees r
and s with no common factors of degree > 0,
then there are at most rs distinct pairs (z,, z,)
where:

X(z, 29 =0 1)
Y(z;,29) =0

and

In this theorem, the degree of a polynomial in two
variables is defined in terms of the sum of the degrees
in each variable (for each term), that is, the degree of
a two-dimensional polynomial p(x,y) is equivalent to
the degree of the one-dimensional polynomial p(x, x).
The rs distinct pairs (z4, z;) described in this theorem
consist of rs points anywhere in the complex (z,, z,)-
plane. Essentially, Theorem 1 places an upper bound
on the number of points where two two-dimensional
polynomials can both be zero if they do not have a
common factor.

To see how this result applies to the problem of
unique specification of two-dimensional signals with
zero crossings, consider a real, band-limited,
continuous-time, periodic signal f (x,y) with periods T,

and T, in the x- and y- directions, respectively. We can
express f (x,y) as a polynomial using the Fourier series
representation:
fraisd friod

fxy) =TS Fynd e ") ") (2
where the sums are finite since f(x,y) is bandlimited.
Then if another signal g(x,y) has the same zero cross-
ings as f (x,y) and these zero crossings are contours con-
sisting of an infinite number of points, f(x,y) and
g(x,y) must have a common factor. If furthermore we
know that f¢x,») and g(x,y) are irreducible when
expressed as polynomials as in equation (2), then they
must be equal to within a scale factor. Our result can
be stated as follows:

Theorem 2. Let f {x,y) and g (x,y) be real,
two-dimensional, doubly-periodic, continuous,
band-limited functions with sign f{x,y) =
sign g{x,y}, where f(x,y) takes on both posi-
tive and negative values. If f (x,y) and g(x,y)
are nonfactorable when expressed as polynomials
in the Fourier series representation (2), then

F(xy)=cg(x.y).

Although we have stated a specific set of condi-
tions under which signals are uniquely determined by
zero crossings, it is possible to extend this result in a
variety of different ways. Since many two-dimensional
signals encountered in practice are not periodic but
have finite support, we will first modify Theorem 2 so
that it applies to these signals. Consider the case where
f(x,y) is a finite segment of a periodic signal satisfying
the constraints of Theorem 2. For example, if f(x,y)
represents one period of a band-limited periodic func-
tion £ (x,y):

fe) =TS+ mTyy + nT) 3
then it is possible to recover f (x,y) from its zero cross-
ings provided that f(x,y) satisfies the constraints of
Theorem 2, even though f(x,y) itself is not bamd-
limited. More generally, it is not necessary for the
duration of f(x,y) to be equal to one period of the
corresponding periodic function. Thus, f(x,y) can
represent a finite segment of a variety of different
periodic functions. In order for f(x,y) to be uniquely
specified by its zero crossings, we only need one
periodic function containing f (x,y) to be band-limited.

It is also possible to generalize these theorems to
allow crossings of an arbitrary threshold rather than just
zero  crossings. Specifically, if the signal
fAx,y) = f(x,y)—a satisfies the constraints of Theorem
2 or its extensions, then f(x,y) is uniquely specified by
the set of points where it crosses the threshold a. This
result is important in applications such as image pro-
cessing where signals are positive everywhere and thus
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have no zero crossings. It is also worthwhile to note
that any threshold can be used as long as the signal
takes on values both above and below the threshold so
that at least one "threshold crossing” contour will exist.
Some examples are included in the next section to illus-
trate this point.

It is also worthwhile to note that all of the results
presented above require the signals to be irreducible.
It has been shown [13] that almost all two-dimensional
polynomials are irreducible, and thus any signal
encountered in practice is quite likely to satisfy the
irreducibility constaint if it is bandlimited and can be
expressed by a finite-order Fourier series. The irredu-
cibility constraint can also be replaced with a constraint
on each factor. The details of this and other extensions
can be found in [9].

III. EXPERIMENTAL RESULTS

Having established theoretical resuits on recon-
struction from zero crossings, it is now worthwhile to

examine the problem of recovering an actual signal
from zero crossing information alone. The method we

will use here is to solve a set of linear equations for the
Fourier series coefficients of the signal. Our primary
purpose in this section is to demonstrate the feasibility
of recovering signals from zero crossings and not to sug-
gest that the linear equation method is the best or the
only approach. A number of different algorithms are
possible and the further investigation and evaluation of
these is a subject for future research.

A set of linear equations can be written by consid-
ering each zero crossing point to be one linear con-
straint on the Fourier series coefficients, i.e.,

. 2"“-’"1 ) 2myn,

J
SSFhymle " & =0 (4

nomy

where each equation uses a different pair of points
(x;.y;) for which the equality is known to hold. (We
substitute £[0,0] = 1 in order to obtain a non-zero solu-
-tion.) Although this method is very sensitive to numeri-
cal errors in the values of (x,,y;), if the values of x and
y are known exactly (to within the limits of double pre-
cision) and if the number of equations used is greater
than the number of unknowns and a least-squares solu-
tion is obtained, results indistinguishatle from the origi-
nal signal have been achieved. ‘
An example of the results obtained with this
method is shown in Figure 1, where (2) shows the ori-
ginal image, (b) shows the threshold crossings, that is,
the original image quantized to one bit, and (c) shows
the recovered image. This image was recovered by first
determining the zero crossing locations to 16 digits cf
accuracy, then finding the least squares sclution to the
set of equations described above, and then using an
inverse FFT to obtain the signal from its Fourier series
coefficients. In this figure, 574 equations (in 454 unk-

nowns) were used and the resulting image has a nor-
malized rms error (rms error/rms signal) of 0.000067.

In this example, the threshold was arbitrasily
chosen to be somewhere near the mean value of inten-
sity of the original. Other cheices of thicshold are pos-
sible since theoretically, it is possible to use any thres-
hold as long as the signal crosses the chosen threshold
at some pcint. However, the choice of threshold does
effect the numerical sensitivity of the procedure and
the number of equations which must be used in prac-
tice. For example, Figure 2 shows another example
where a different intensity lavel was chosen as the
threshold. In this figure, (2) shows the threshcld cross-
ings of Figure 1(a) using this new threshold, and (b)
shows the recovered image. In Figure 2, 1012 equa-
tions were required and the resulting image Las a nor-
malized error of 0.0021.

REFERENCES

[1] I. C. R. Licklider and I. Pollack, "Effects of dif-
ferentiation, integration and infinite peak clipping
upon the intelligibility of speech”, J. Acoust. Soc.
Amer., vol. 20, pp. 42-51, Jan. 1948.

[2] D. Marr, S. Ullman, T. Poggio, "Bandpass Chan-
nels, Zero Crossings, and Early Visual Information
Processing”, J. Opt. Soc. Am., vol. 69, no. 6, pp.
914-916, June 1979,

[3] A. A. G. Requicha and H. B. Voelcker, "Design
of Nonrecursive Filters by Specification of Fre-
quency Domain Zeros”, IEEE Trans. Elec-
troacoust., vol. AU-18, pp. 464-470, Dec. 1970.

[4] J. Clarke, "Steering of zeros in the directional pat-
tern of a linear array”, JEEE Trans. Antennas Pro-
pagat., vol. AP-16, pp. 267-268, March 1968.

[5S}] A. A. G. Requicha, "Zeros of Entire Functions:
Theory and Engineering Applications”, Proc.
IEEE, vol. 68, no. 3, pp. 308-328, March 1980.

[6] B. F. Logan, Jr. "Information in the Zero Cross-
ings of Bandpass Signals”, Bell System Technical

Journal, vol. 56, pp. 487-510, April 1977.

[71 Y. Y. Zeevi and D. Rotem, "Information in the
zero crossings of images”, Technion-E.E. Vision
Res. Lab. Internal Report, 1984.

[8] S. R. Curtis, J. S. Lim, and A. V. Oppenheim,
"Signal Reconstruction from One Bit of Phase”,
Proc. Int’l Conf. Acoust., Speech, Signal Proc.,,
San Diego, Calif., March 1984.

[9] S. R. Curtis, A. V. Oppenheim, and J. S. Lim,
"Signal Reconstruction from Fourier Transform
Sign Information”, MIT Research Laboratory of
Electronics Technical Report no. 500, Cambridge,
MA, May 1984, accepted for publication in IEEE
Trans. Acoust., Speech, Signal Proc..

28.2.3

1059



[10} S. R. Curtis, S. Shitz, A. V. Oppenheim, "Recon-
struction of Nonperiodic Two-Dimensional Signals
from Zero Crossings” (tentative title), to be sub-
mitted to IEEE Trans. Acoust., Speech, Signal
FProc..

[11] A. Mostowski and M. Stark, Introduction to Higher
Algebra. New York: MacMillan Co., 1964.

[12] R. J. Walker, Algebraic Curves. New York:
Springer-Verlag, 1978.

[13] M. H. Hayes, J. H. McClellan, "Reducible Polyno-
mials in More than One Variable", Proc. IEEE,
vol. 70, no. 2, pp. 197-198, Feb. 1982.

(a) original image

F

(b) image showing threshold crossings of (a) (c) image recovered from (b)

Figure 1. Reconstruction from Threshold Crossittgs

(a) image showing a different threshold (b) image recovered from (a)

Figure 2. Reconstruction with Different Threshold
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