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Quantization Errors i on of the 
Discrete 

AVIDEN  ZAKHOR AND ALAN 

Abstract-The principal objective of this paper is the study of the 
arithmetic roundoff error characteristics of several discrete Hartley 
transform (DHT) algorithms. We first summarize a variety of efficient 
DHT algorithms including Bracewell's original decimation-in-time ra- 
dix-2 algorithm. Statistical models for fixed- and floating-point arith- 
metic roundoff errors are then used as the basis for  a theoretical study 
of roundoff noise characteristics of  a number of the DHT algorithms. 
The results of a detailed experimental study of roundoff noise are com- 
pared to the theoretical predictions. In fixed-point implementation of 
the decimation-in-time and frequency radix-2 algorithms, it is found 
that the noise-to-signal ratio increases approximately 1.1 bits per stage. 
For the floating-point implementation, the number of bits of rms noise- 
to-signal ratio for all the algorithms increase as d1og2N, so that dou- 
bling the number of points produced a mild increase in the output noise. 

7 

I. INTRODUCTION 

T HE continuous-time  Hartley  transform, originally 
proposed by Hartley [2] in  1942, has many properties 

similar  to  those of the Fourier  transform. An important 
distinction is that the Hartley transform of a real-valued 
function is also real valued,  and  furthermore,  its evalua- 
tion does not involve complex  functions.  This  is a poten- 
tial advantage if the  transform is to  be explicitly com- 
puted. 

As  defined  by Bracewell, the discrete Hartley transform 
(DHT) of a finite length  sequence  and  its  inverse are: 

O s k s N - 1  (1.1a) 

O s n s N - 1  (1. lb)  
where 

cas 01 E cos 01 + sin a. 

The  DHT and  the DFT  are closely related.  Specifically, 
the even and odd  parts of the DHT correspond to the real 
and negative of the imaginary parts of the DFT. Conse- 
quently,  the DHT can  be  used  to obtain the DFT, and  vice 
versa.  In  addition,  as  Bracewell points out, a variety of 
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algorithms which traditionally utilize  the DFT,  such as 
convolution and correlation, and spectral analysis, can just 
as effectively be carried out with the DHT, which for real 
sequences requires only real-valued computation. 

The DHT has fast algorithms similar in style to  the FFT, 
the first  of these proposed by Bracewell [4]. The principal 
objective of this paper  is the study of the arithmetic 
roundoff error  characteristics of several DHT algorithms. 
In Section I1 we  summarize a variety of efficient DHT 
algorithms including Bracewell's  original  decimation-in- 
time radix-2 algorithm.  In Sections I11 and IV, statistical 
models for fixed- and floating-point arithmetic roundoff 
errors and linear system noise theory are used as the basis 
for a theoretical study of the roundoff noise characteristics 
of a number of the DHT algorithms.  The results of a de- 
tailed experimental study of roundoff noise are compared 
to the  theoretical  predictions. 

11. DHT ALGORITHMS 
Bracewell proposed a decimation-in-time radix-2 algo- 

rithm for performing the  discrete  Hartley  transform of a 
data sequence of N real elements in a time proportional to 
N log2 N [4]. In  the  remainder of this paper  we shall refer 
to this algorithm as DT1, where DT stands for decima- 
tion-in-time. In this section,  we will review Bracewell's 
decomposition, propose a minor modification to  the  DT1 
algorithm,  and  discuss the decimation-in-frequency ver- 
sion of the  DT 1 algorithm [6]. 

The  DT1 algorithm  can  be  derived by separating x ( n )  
into two (N/2)-point sequences  consisting of even  and 
odd points in x (  n ) .  Thus,  we obtain 

H ( k )  = H d k )  + f f 2 (k )  (2.1) 

where H , ( k )  is the (N/2)-point  DHT of the even part of 
x ( n  ) and H2( k )  which is  given by 

and can be written in terms of H , ( k ) ,  the (N/2)-point 
DMT of the odd part of x ( n ) .  

The butterfly for  the  last stage of an N-point DHT using 
the  above decomposition is shown  in Fig. 1. It should be 
clear that computing any four points H (  k ) ,  H( ( N / 2 )  - 
k ) ,  H ( ( N / 2 )  + k ) ,  and H ( N  - k )  in  Fig.  1 with 0 5 k 
< (N/4)  requires the  computation of the  two interme- 

0096-351818711100-1592$01.00 0 1987 IEEE 



ZAKHOR  AND  OPPENHEIM:  QUANTIZATION ERRORS IN COMPUTATION OF DHT 1593 

H&-k) L - H(N-k) 

Fig. 1. Flow  graph of the kth buttefly of the last stage of  an  N-point DHT 
computation  using  the DTl algorithm. 

diate  quantities: 

Yl(k) = H3(k) COS - 
(2;k) 

+H3 ((; - k)) 

( 2;k) 

N/2 

RNj2(k) sin (7) (2.3a) 

Y2( k )  = H3(k) sin - 

' - 4  ((; - k)) N/2 

&/2(k) COS (y). (2.3b) 

Instead of  using  4 multiplies and  2  adds, Yl( k) and Y2( k) 
can  be  computed  with  three of each in the  following  man- 
ner: 

(2.4a) 

'Throughout  the  paper,  sequences  and  the  associated DHT are consid- 
ered  implicitly to  be  finite length.  Following  the  notation in [l] ( (  . ) ) N  is 
used to  denote  the  argument  modulo N so that,  for  example, H( (k)),,( is 
H ( k  mod N )  and, in particular,  is H (   k )  periodically  repeated  with  period 
N. The function R N (  k )  is the  rectangular  gating  function  given by 

(2.4b) 

The  above  implementation will be referred to as  the 
MDTl algorithm  where MDT stands for modified  deci- 
mation-in-time. Although  the total operation count for the 
original algorithm  (DT1)  and  the  modified  algorithm  are 
the  same,  the  error properties of the  MDTl  are  different 
from  the DT1  algorithm. 

An alternative radix-2 algorithm  with  fewer multiplies 
can be  obtained by using  the identity 

2 cos ( 6 )  cas (a) 

= cas (a + 0) + cas (a - p ) .  (2.5) 

Specifically, letting a '= 2n(2n  + l ) k / N  and /3 = 
2nk/N and multiplying both sides of (2.2) by cos 
(-2nk/N),  H2(k) of (2.2) can be written as: 

N/2 - 1 c [ 4 2 n  + 1) 

(2.6a) 

and 

H2(k) = -H2 (k - ;) - I k < N 
N 
2 

(2.6b) 

where 

X(-1) E x(N - 1) .  

Equation  (2.6a)  shows that Hz(  k) can  also  be  computed 
via an  (N/2)-point  DHT. By repeating the  above  process 
we  can  decompose  the DHT  further.  Although  this algo- 
rithm would potentially be  faster  than  Bracewell's algo- 
rithm,  as  shown in [ 181, its error  characteristics  are less 
favorable due  to  the  factor 

1 

R N ( k )  = 
1 O S k s N - 1  

0 otherwise. in (2.6a).  This  is  because  for values of k close to (N/4) ,  

2 cos (2nk/N) 
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the above  factor  becomes very large resulting in magni- 
fication of error at the corresponding output frequency 
point. 

As is the case with FFT,  the idea behind the DT1  al- 
gorithm  can be extended to the  decimation-in-frequency 
algorithm  which we will refer to as the DF1 algorithm [6]. 

111. ROUNDOFF  ERROR  ANALYSIS OF FIXED-POINT 
IMPLEMENTATION OF DT1 AND DF1 ALGORITHMS 

In this section,  the effects of fixed-point roundoff errors 
in computing the  DHT  algorithms of Section I1 will be 
explored. Our  approach is to model  the  error sources sta- 
tistically,  with  experiments  used  to test their validity. 

In fixed-point arithmetic,  rounding  errors  occur  only 
when multiplications are  performed.  Fixed-point addi- 
tions are  free  of  errors  provided no overflows  occur.  With 
no loss of generality,  we  consider fixed-point numbers to 
be represented as (b  + 1)-bit binary fractions,  with the 
binary point just to the right of  the highest order  bit.  We 
will also assume that two’s  complement representation of 
negative numbers is used,  and that the roundofl’ error in 
multiplying two fixed-point b-bit numbers has a  uniform 
probability density function in the interval ( -; 2-b, 1 2-b) 
with variance of 0: = 2-2b. Furthermore,  the roundoff 
errors  due to multiplications are  assumed to be uncorre- 
lated with each  other  and  with  the  input.  Based  on  these 
assumptions, we model roundoff noise by inserting addi- 
tive signal independent  white noise source generators at 
every multiplier that appears  in  the flow graph of a spe- 
cific algorithm and then analyze  the effects of the noise 
sources on the output. 

In Section 111-A and  B  we will derive  the statistical er- 
ror properties of fixed-point implementation of the  DT1 
and  DF1  algorithms.  Roundoff noise characteristics of the 
MDTl algorithm  using fixed-point arithmetic is almost 
identical to that of the DTl algorithm  and is described in 
[18] in detail. In Section 111-C, the  experimental results 
are  compared to the theoretical predictions of Section III- 
A  and B. 

A. Roundof Noise Analysis of the DT1 Algorithm for 
Fixed-point Arithmetic 

The simplified roundoff noise analysis of the  DT1 al- 
gorithm  with fixed-point arithmetic  resembles  that of the 
FFT. Taking  into  account  the fact that the first two stages 
of the  DT1  algorithm are  error  free, we can  show that 
r121, [I81 

Y 

0 2 ( N ,  k )  = c 2 Y - n + 1  G: = (2’-l - 2)  G: ( 3 . 1 )  
n = 3  

where 0’ ( N ,  k )  denotes the variance of error at the kth 
point of  an  N-point DHT and N = 2”. 

In order to simplify the analysis leading to (3. l ) ,  the 
fact that multiplications by unity and zero can  be per- 
formed noiselessly is neglected. In order to take into ac- 
count this special case,  an  alternative way of finding the 
output noise variance is suggested.  Fig.  2  shows  the  DT1 

1 

Fig.  2. Statistical  model for fixed-point roundoff noise in a flow graph of 
the  decimation-in-time  decomposition of an  N-point DHT computation 
into  two  N/2-point  DHT  computations using  the DT1  algorithm. 

decomposition of an  N-point  sequence x (  n )  into two 
(N/2)-point sequences x l ( n )  and x 2 ( n )  with X , ( k )  and 
X 2 ( k )  denoting  their DHT’s, respectively. Let de- 
note the  error in X i (  k ) .  Then by inspection of Fig.  2 we 
have 

(3.2a) 

2 a  k 
E X ( k + ( N / ’ ) )  = E X l ( k )  - EX2(k)  cos (N) 

(3.2b) 

where ei denotes  the roundoff error  due to multiplications 
by sine and  cosine. If  we  know the output noise variance 
distribution for  (N/2)-point  sequences, using  (3.2)  we 
can find  it for  N-point  sequences.  More specifically, we 
get 

I 

G2 (;, k )  + cos2 (y)  o2 ($ k )  

N N 
O < k < - ,  k # -  

2 4 
u’(N, k )  = 

N N  
2 ’  2 

( 2 n 2  (g, k )  k = 0,  N - 4 

(3.3a) 
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02(N, k)  = (T N, k - - - 5 k C N .  
2 (  3 ; 

(3.3b) 

Note that fork = 0, N/4,   N/2,   (3N)/4,  the coefficients 
of the butterflies of Fig.  2  become 0 or  1. By taking care 
of these special cases,  we  have incorporated the noise- 
lessness of these multipliers in  our theoretical predic- 
tions.2  Fig. 3(a) shows  the distribution of variance of er- 
ror  for  256-point  sequences  using (3.3). 

To  obtain  a  formula  for  output,noise-to-signal  ratio, we 
next consider  the  dynamic  range  constraint.  It  can easily 
be  shown  that the magnitude of the output of the Hartley 
transform is less than 1 provided  the  magnitude  of  all  the 
input points are  less  than  1  /N. Using  this  fact  for  both 
the half-length and full-length transform,  one  can  show 
that no  overflow  can occur internally either.3  Thus, as- 
suming that the input is white  and  uniformly distributed 
in the interval ( - 1 /N, 1 /N ), the output signal variance 
is given  by 

' 1  
3N' 

o;"t = - 

In  Fig.  4,  the  average  output noise-to-signal ratio using 
(3.3)  as  a function of  transform 'size is  plotted. In Section 
111-C, the  experimental results confirming the theoretical 
predictions of Figs.  2  and 3(a) will be presented. 

B. Roundoff  Noise  Analysis of the DFl Algorithm Using 
Fixed-point  Arithmetic 

The simplified theoretical analysis for  the  DF1 algo- 
rithm is very  similar  to  that of the  DT1  algorithm  and  the 
FFT [ 121, [ 181. Taking  into  account  the fact that the last 
two stages of the  DF1 algorithm are  error  free,  we can 
show that [12], [18] 

v - 2  

a 2 ( N ,  k )  = 2Y-m+1  o; = (2"f' - 8)  of. (3.4) 

The  analyses  which  led  to  (3.4)  and  (3.1)  suggest that 
the output noise variance for  an N-point  sequence is pro- 
portional to N/2  for  the  decimation-in-time  algorithm, 
and 2 N  for the decimation-in-frequency algorithm. This 
difference in the  two  algorithms  can be explained intui- 
tively by noting that the butterflies with  zero  and unity 
coefficients form the first two stages in  the decimation-in- 

m =  1 

'In deriving (3.3) from  (3.2),  we used the  fact that e X z ( k )  and 
E ~ ~ ( ( ~ / ~ , - ~ ,  are  uncorrelated. In general,  we  can  use  induction  to  show  that 
if at  the ith stage 

Var [ E ~ , ( ( N / ~ ~ ) - ~ ) I  = Var [ ~ X , ( k ) l  

and 

E [ e x , ( ( N / Z f ) - k )  ex,(k)l = 0, 
then the  above  equations  also hold at  the ( i + 1 ) st  stage. 

3Note  that the  input  is not  usually scaled by the  full  amount N ,  but  the 
variables are scaled  by 2 at  each  stage in order  to  get a better dynamic 
range. 

J '-1 
d I 

FREOUENCY POINTS 

(a) 
Fig. 3.  Distribution  of  the  output  noise  variance  for 256-point  sequences 

for fixed-point realization of the  DT1  algorithm: (a) theoretical; (b) ex- 
perimental. 

v=log2N 

Fig. 4.  Output  noise-to-signal ratio  for fixed-point realization  of  DT1, 
MDT1,  and  DF1  algorithms. 

time  implementation,  and f o m  the  last  two stages in the 
decimation-in-frequency  implementation.  Therefore, in 
the decimation-in-time  algorithm, the  presence  or  absence 
of these stages  does not affect the  output noise variance 
at all.  -However, in the  decimation-in-frequency  imple- 
mentation,  the variance of error  due  to the first ( v - 2)  
stages of the algorithm  double as they propagate  through 
each of these last  two  stages, resulting in a  factor of four 
difference in the  output  noise  variance  for  the  DF1  algo- 
rithm as compared to  the  DT1  algorithm. 

In order  to simplify the  analysis leading to  (3.4), the 
fact that multiplications by unity and zero can be per- 
formed noiselessly is neglected. To improve  the  accuracy 
of our  analysis,  an  alternative way  of finding the output 
noise variance is suggested. Fig. 5 shows  the  decompo- 
sition of an  N-point  sequence x( n )  into  two.(N/2)-point 
sequences x,(n)  andx2(n) using  the DF1  decomposition. 
Let  denote  the  error  in x i ( n ) .  By inspection of Fig. 
5 we have 

E x l ( n )  = 0 ( 3   S a )  
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1 
Fig. 5 .  Statistical model for fixed-point  roundoff  noise in a flow graph of 

the decimation-in-frequency  decomposition of an  N-point DFT  compu- 
tation  into  two  N/2-point  DHT  computations  using  the DFl algorithm. 

(3.5b) 

where eni denotes  the roundoff error  due to multiplications 
in fixed-point arithmetic.  Its  variance  is  denoted by a: and 
was defined earlier.  The variance of error at the input 
x2( n ) is given by 

r N N 
2 

n f -  
4 1 2az O 

-' 

Var [Exz(n)l = { 
N 

n = 0, -. 
4 

If E ~ ~ ( ~ )  was the only  source of error in X2(k) (i.e.,  the 
(N/2)-point  DHT was  done  with infinite precision),  the 
output noise variance at X,( k) due  to  the  error in the input 
would  have  been  given by 

N / 2  - 1 

Var' [EXZ(k)l = Var [En?(n)I 
n=O 

- cas' (z) = (N - 4) a:. (3.6) 

The  error in X,( k )  can  be  considered to be  due  to  error in 
x2( n )  and due to the errors introduced in the (N/2)-point 
DHT  computation of .x2( n ) .  The variance of error  due to 
the noise in x2( n )  is given in (3.6), and  the variance of 
error  due to computations in the  (N/2)-point  DHT is 
a'( (N/2),  k ) .  Since  these  two  errors  are  independent of 
each other, in order to find the variance of E ~ ~ ( ~ )  we  add 
these  two variances to obtain 

Var [ E ~ ~ ( ~ ) ]  = (N - 4) 0: + a2 (t, k). (3.7a) 

Since no error has been  introduced in computing x , (  n ) ,  
the variance of ~ i ~ ( ~ )  is only  due to the  (N/2)-point  DHT 
computation and,  therefore, 

(3.7b) 

At the output of  the  algorithm we have 

E X ( 2 k )  = fX,(k) (3.8a) 

E X ( 2 k + l )  = EXZ(k). (3.8b) 
Combining (3.7) and (3 .S) we get 

k even 

(3.9) 

Fig. 6(a) shows  the distribution of the variance of error 
for  256-point  sequences  using  (3.9). 

If we  average a2(N,  k) of (3.9) over  the  frequency 
points,  we  can obtain a difference equation for  the  average 
output noise variance. Specifically, 

( ~ ' ( 2 " ~  k)) = ( CT'(~"-*,  k ) )  + 4 (2" - 4)  0: 

(3.10) 

where ( - ) is used to show  averaging  over  frequency 
points. Since 2- and 4-point DHT's  are essentially error 
free, 

( a2(2,  k ) )  = ( o'(4, k)) = 0. 

Solving  (3.10)  for v > 2, we obtain the following closed- 
form  expression  for  the  mean noise variance: 

( a2(2", k)) = (2" - 2v) 0 2 .  (3.11) 

Equation (3.11) suggests that  the output noise variance of 
an  N-point  sequence is approximately proportional to N 
as opposed to 2 N  which  was  derived in our simplified 
analysis of (3.4).  For  large values of N,  the output noise 
variance for the decimation-in-frequency  algorithm is 
double  the  corresponding quantity for  the decimation-in- 
time algorithm. 

To obtain a  formula for  the output noise-to-signal ratio, 
we next consider the dynamic  range  constraint. Similar to 
the  DT1  algorithm, we can  show that by keeping the mag- 
nitude of the input signal below 1/N, we can  avoid 
overflow. Assuming  the input is white  with  uniform prob- 
ability distribution function in the interval ( - 1 /N, 1 /N ), 
the output signal variance is ( 1 / 3  N ). Fig. 4 shows the 
average noise-to-signal ratio for  the  decimation-in-time 
and  frequency algorithms using (3.3) and  (3.11). As an- 
ticipated,  the DTl algorithm  has  more  favorable  error 
properties than the DF1  algorithm.  These results will be 
verified experimentally in Section 111-C. 
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FREOUENCY POINTS 

(a) 
Fig. 6. Distribution of the  output  noise  variance  for  256-point  sequences 

for fixed-point  realization of the  DF1  algorithm:  (a)  theoretical; (b) ex- 
perimental. 

C. Experimental  Verification of Fixed-point  Error 
Properties of the  DTI  and DFI Algorithms 

The  experiments for roundoff noise analysis consisted 
of two  parts. In the first part,  zero  mean  white input se- 
quences  were  generated  using  a  random  number  generator 
routine. The probability density function (pdf) for  each 
point of these  sequences  was  uniformly distributed around 
zero.  The  width  was  chosen in such  a way as to guarantee 
no overflows in the output or in intermediate computa- 
tions. 

In the  second  part, the  generated test sequences  were 
transformed  twice;  once  using  rounded fixed-point arith- 
metic  with  a  word length of  15 bits (excluding the sign 
bit);  the  second  time  using  double precision floating-point 
arithmetic with 55 bits of mantissa (excluding the sign 
and the hidden  bit). The double precision computation was 
assumed to be exact in comparison to  the fixed-point com- 
putation. 

The above  procedure  was repeated with 1000 indepen- 
dent input sequences in order to obtain  a  stable  estimate 
of the  variance  of  error  for  each  frequency point of an N- 
point transform. The estimator used is the sample  mean 
A, ( N ,  k )  and  sample  variance t?2 ( N ,  k )  at each  fre- 
quency.  In  order  to  obtain  an  estimate of the  mean output 
noise variance, we average a 2 ( N ,  k )  over  the frequency 
points k .  That  is, 

- N-1 

crjf  = - c P ( N ,  k )  6 2  1 

N k = O  
(3.12) 

Since  the input signal is  zero  mean  and  white,  and its 
probability distribution function is uniformly  distributed, 
we  can easily find the  output signal variance.  Thus,  we 
can obtain an  experimental  estimate of the  mean noise-to- 
signal ratio for various algorithms  using (3.12). 

Fig.  4  shows  the  experimental  and  the theoretical noise- 
to-signal ratio for  the fixed-point realization of the  DT1, 
MDT1, and DF1  algorithms.  Clearly,  there is excellent 
agreement  between  the predicted and actual values of 

noise-to-signal ratio. We  can fit the following equations 
to the data shown in Fig.  4. 

,/x = 0.15N1.I0  DT1  (3.13a) ,/= = 0.28N1.08 DEl.  (3.13b) 

Although the multiplication count for  the  MDTl  algo- 
rithm is two-thirds that  of  the  DT1  algorithm,  as  shown 
in Fig.4,  the noise-to-signal ratios for the two  algorithms 
are almost  identical. 

Figs. 3(b) and 6(b) show  experimental verification of 
(3.3) and (3.9)  for 256-point  sequences  using the  DT1 
and DFl algorithms, respectively. The  more  accurate 
analysis of the  MDTl algorithm  and  its  corresponding 
theoretical and  experimental  distribution of output noise 
variance are  included in. [ 181. 

2- (Tout 

2- uout 

IV.  ROUNDOFF  ERROR  ANALYSIS OF FLOATING-POINT 
IMPLEMENTATION OF DT1 AND DF1 AND MDT1 

ALGORITHMS 
In this section,  the  error properties of  a floating-point 

implementation  of  the DTl , MDT1,  and  DF1  algorithms 
are  discussed.  We  shall  consider floating-point numbers 
with  mantissas represented as ( b  + 1)-bit binary frac- 
tions.  With x denoting  the  exact result of an addition or 
multiplication, the  rounded  value ‘of x is x ( 1 +. E ), where 
E is the relative error.  For  the  case  of  two’s  complement 
rounding, E is assumed to be in the interval ( -2-’,  2-’) 
with  variance 

.f = a2-2b (4.1 1 
where,  for  a  given  algorithm, a is a constant which  de- 
pends  on the,number of multiplies and  additions  and  the 
order in which they are performed  in  that  algorithm [ 11. 
The  factor a can be determined by matching  the theoret- 
ical and  experimental noise-to-signal ratio curves. 

In Section IV-A  and B, we will derive  the statistical 
error properties of floating-point implementations  of  the 
DT1,  MDT1,  and  DF1  algorithms. Unlike  the fixed-point 
case,  the  error characteristics of  the floating-point imple- 
mentation of the MDTl algorithm are different from those 
of the  DT1  algorithm.  In Section IV-C,  the  experimental 
results are compared to  the theoretical predictions of Sec- 
tion IV-A  and B. 

A. Roundoff Noise  Analysis of the  DTI  Algorithm  Using 
Floating-Point  Arithmetic 

The simplified roundoff noise analysis of the  DT1 al- 
gorithm  using floating-point arithmetic  is  similar to that 
of the  FFT. Using the simplified analysis, it can be shown 
that the  variance  of  error  at  the ouptut of an  N-point DHT 
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is given by 2 ~ N o ; o ; ~ ,  where v = log, N  and  the input is 
assumed to be  white  with  variance af [ 111 , [ 1 8 1 .  

In order  to  derive  the  above  result,  some  details  have 
been neglected. Equal variance noise sources have  been 
associated with all multipliers, including when  the  coef- 
ficients are  zero  or  one. In order  to  take  care of the special 
cases mentioned  above,  an  alternative way  of finding the 
output noise variance is  suggested. Recall that an  N-point 
DHT can  be  decomposed  into  two (N/2)-point  DHT's, 
as shown in Fig. 7. By inspection of Fig. 7, the output 
noise for the kth point of  an  N-point  transform  denoted by 

can  be written in terms  of E ~ ~ ( ~ ) ,  and 
E ~ ~ ( ( ~ / ~ )  -k). Since X,( k) and X,( k)  are  N/2-point  DHT's 
of  white  sequences, the variance of  and E ~ ~ ( ~ )  is given 
by a2(  (N/2) ,   k) ,  and  the  variance  of c X 2 ( ( N / 2 ) - k )  is given 
by a2(  (N/2) ,   (N/2)  - k). Using  this,  and by inspection 
of Fig. 7 ,  we get 

/ 

0 2 ( N ,  k )  = { 

a2 (f, k) + cos2 (T) a2 (:, k) 

N N 
O < k < - ,  k + -  

2 4 

+ sin2 (7) 2 a  k a2 (2'2 N N  - k) 

+2 Na: 0;" 

2 a 2  (t, k )  + Na:oi?, k = 0, - 
N 
4 

Fig. 7. Statistical model for floating-point roundoff noise  in  a flow graph 
of the decimation-in-time  decomposition of an N-point DHT  computa- 
tion into  two  N/2-point  DHT  computations  using  the DTl algorithm. 

0 Experimental DTI,   DFI nonrandomized 

A Expermental NDTI ,  nonrandomlzdd 
rounding 

rounding 
0 Expenmental DTI ,  DF1 randomized 

1 2 -  

rounding 

1 9  
1-Theoreticol DT\, DFl I 1 I 

" 2  4 6 8 IO 12 
V' log2 N 

(4'2a) Fig. 8. Output  noise-to-signal  ratio for floating-point  realization of DT1, 
MDT1,  and  DF1  algorithms. 

a2(N, k )  = a2 (N, k - 5) N 
- I k < N. (4.2b) 

Note that fork = 0, N/4,  N/2,  (3  N) /4 ,  the coefficients 
of the butterflies of Fig. 7 become 0 or 1 .  By taking care 
of these special cases,  we  have incorporated the noise- 
lessness of these multipliers in our theoretical predictions. 
Fig. 8 shows  the  average output noise-to-signal ratio using 
the analysis shown  in (4.2);  and  Fig. 9(a) shows  the  dis- 
tribution of variance of error  among the frequency points 
of a  white  256-point  sequence. ga:p '1 

B. Roundoff Noise Analysis of the MDTl Algorithm 
Using Floating-point Arithmetic 0 64 I28 192 255 

~~ . 

(b) 
4~ 

J 

gz 
= b  I 

01 

Fig. 10 shows  the  decomposition  used  for  an  N-point FREQUENCY POINTS 
/"\ 

sequence x ( n  ) with the noise- sources injected for  the  mul- 

expressions for wl( k) and w2( k) can  be  obtained: oretical; (b) experimental. 
and the adders. to Fig* lo, the following quences for floating-point  implementation of the DT1  algorithm: (a) the- 

Fig. 9.  Distribution of the  output  noise  variance of 256-point  white  se- 
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Fig. 10. Statistical  model for floating-point  roundoff  noise in a flow graph 
of the  decimation-in-time  decomposition of an  N-point  DHT  computa- 
tion  into  two  N/2-point  DHT  computations  using  the  MDTl  algorithm. 

- ( X 2 ( k )  E X z ( k ) ) ] ] .  

The  computed  output  points  are  given by 

X(k) = [ X l ( k )  + E X l ( k )  + w l ( k ) ]  ( l  + € 7 )  

(4.4a) 

+ m] ( 1  + E * )  (4.4b) 

(4.4c) 

X ( N  - k )  = (: - k )  + E X l ( ( N / Z ) - k j  

- w m ]  (1 + € 1 0 ) .  (4.4d) 

Since X l ( k )  and X d k )  are  N/2-point DHT’s of white  se- 
quences,  the  variance of and E ~ ~ ( ~ )  is  simply 
02((N/2) ,   k) .  Using (4.3) and (4.4),  the variance of er- 
ror  for an N-point  sequence  is  given by 

a2(N, k )  = 

[2N + N sin (y) (cos (y) 
+ 2 sin (y ))] o:ofn 

N 
O < k < -  

4 

+ (1 + cos2 (g) a2 (g, k )  

+ sin’ (x) O’ (- N N  - - k )  

+ sin (7) cov, (4, k )  

20’ (t, k )  + N o ~ o ~ ~  k = 0 

2a’ (g, k )  + 2.5N a?afn k = N - 
4 

2 ’  2 

(4.5a) 

O‘ (N,  N 5 - k )  = 

[2N + N sin (%) (2 sin (y) 
- cos (?))I a$O;n 

+ (1 +cos’ (y)) 02 (1. - k )  
N N  

N  N 
O < k < - ,  k f g  

4 

* sin’ (y) O’ (g, k )  

- sin ( 7)  cove (f , k) 

1.50’ (2, 5 - k )  + 
a’ (F, k )  

N N  1 

+ 1.5N0;qf~ - COV, 

N 
8 

k = -  (4.5b) 
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where cov, ( N ,  k) denotes  the  covariance of the error be- 
tween the kth and ( N  - k )  th point of the  DHT of an N- 
point white  sequence.  Note that the special cases of k = 
0, N/4,  N/8 in (4.5)  take account of noiseless multipli- 
cations by  unity or zero. Equation  (4.5) states that o2 (N, 
k) can  be  obtained  from o2 (N/2,  k) and cov, (N/2,  k). 
In  order to complete  the  recursion,  we  have to be  able to 
obtain cov, ( N ,  k) from o2 (N/2,  k) and cov, (N/2,  k ) .  
This  can  be  done by finding the  error in X (  k)  and X ( N  - 
k ) ,  and  by evaluating the expected  value of their prod- 
ucts.  The final result is 

[ cos ( y) sin (T) 

N N 
O < k < - ,  k f -  

4 8 
cov, ( N ,  k)  = \ +2 cos2 (y) cov, (r, k) 

2 a  k + 2N sin2 (7) IJ;C& 

2 cov, (:, k) - No;o?" 

COV, ( N ,  k) = COV, N ,  - - k ( : )  
= cov, (N, 5 + k )  

N 

= COV,(N,  N - k)  

N 
O < k < - .  

4 

/ 

N 
4 

(4.6a) 

k = -  

(4.6b) 

In the above  equation, cov, ( N ,  k )  is nonzero as a result 
of the fact that the error sources c2 and e3 of Fig.  10 both 
contribute to the error at the kth and ( N  - k )  th output 
points. This is clearly not the case in the DT1 algorithm. 
In  fact, ignoring the cov,(N/2,  k) term,  (4.5) and (4.2) 
look  somewhat  similar. 

Fig. l l (a)  shows  the distribution of output noise vari- 
ance  for  256-point  white  sequences  using  the MDTl al- 
gorithm.  Fig.  8  shows the noise-to-signal ratio of the 
DHT's of white  sequences  using  the MDTl and the  DT1 
algorithms. Although  DT1 requries more multiplications 
than MDT1, its noise-to-signal ratio is lower than for the 
MDTl algorithm. The  experimental results supporting the 
theoretical predictions in Fig. 8 and 1 l(a)  are presented 
in Section IV-C. 

I 
64 128 192 255 

FREOUENCY POINTS 

(a) 
Fig. 11. Distribution of the  output  noise  variance of 256-point  white se- 

quences for floating-point  implementation of the MDTl algorithm: (a) 
theoretical; (b)  experimental. 

The roundoff noise analysis of the DFl algorithm using 
floating-point arithmetic is  similar to that of the DTl al- 
gorithm. Using  the  same  approach as Section 111-B, the 
output noise-to-signal ratio for  an  N = 2 "point white in- 
put sequence  can  be  shown to be  2va; [18]. The more 
detailed analysis of the  DF1 algorithm is also included in 
U81. 

C. The Experimental Verijication of Roundoff Noise for 
the Floating-Point Implementation of the DTI ,  MDTl,  
and DF1 Algorithms 

The  experiments  for  roundoff analysis using floating- 
point arithmetic paralleled those of fixed-point arithmetic. 
Specifically, zero mean  white input test  sequences  were 
generated  and  transformed  twice;  once  using floating- 
point arithmetic  with  23 bits of mantissa (excluding the 
hidden bit and  the sign bit),  and  the  second  time  using 
double precision floating-point arithmetic with 55 bits of 
mantissa (excluding the sign bit and  the  hidden bit). The 
double precision computation  was  assumed to be exact in 
comparison to  the  former  one.  This  procedure was  re- 
peated  1000  times in order to obtain a  stable estimate of 
the sample mean and  sample variance at each frequency. 

The  convention  used to round  the results of  floating- 
point additions and multiplications was as follows. The 
results were  rounded to  the closest binary number (for a 
b-bit mantissa). If a result of an addition or  a multiplica- 
tion was  midway  between  two binary numbers,  a situation 
which  can  occur  frequently,  randomized  rounding  was 
used, i.e., a  random  choice  was  made as  to whether to 
round  up or down.  Always  rounding  up  (or down), rather 
than randomly  up or  down, in this situation introduces a 
correlation between roundoff error  and signal sign. This 
contradicts the assumption that roundoff errors  are signal 
independent. 

Fig.  8 shows the experimental and theoretical noise-to- 
signal ratio for  the floating-point implementation of the 
DT1,  MDT1, and DF1  algorithms, including randomized 
rounding  and  nonrandomized  rounding. As expected,  the 
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theoretical curves  match  the  experimental results only if 
randomized  rounding is used. 

We  can fit the following equations to the data shown in 
Fig. 8: 

2 
___- 2 Q , - 2 b  - 0.40 V - 0.53  DT1  (4.7a) 
0 O ” t  

-- 2‘i-2h - 0.59 Y - 1.09 MDT1. ( 4 . 7 ~ )  
@out 

Unlike  the fixed-point case,  the noise-to-signal ratio for 
the MDTl algorithm  shown in Fig.  8 is higher  than that 
of the DT1  algorithm. As explained earlier,  this  is due to 
the correlations between the  error  at  the inputs of the but- 
terflies. As is shown in Fig. 8, the results for  the  DF1 
algorithm are  almost identical to  that  of  the  DT1 algo- 
rithm; unlike  the fixed-point case,  the  dynamic range  is- 
sues do not exist in floating-point implementations. 

Figs.  9 and 11 show the theoretical and  experimental 
distribution of variance of error  for  the  DT1 and MDTl 
algorithms, respectively. A careful analysis  demonstrates 
a  nonuniform distribution of variance of error  among  the 
output frequency points of the DFl  algorithm.  The  distri- 
bution of variance of error  for this algorithm is derived 
analytically and verified experimentally  in [ 181. 

V. SUMMARY AND CONCLUSIONS 
Statistical models  were  used to predict the output noise- 

to-signal ratio in fixed- and floating-point computation of 
various DHT  algorithms. In fixed-point implementation 
of the  DT1,  MDTl , and  DF1,  it was  found  that the output 
noise-to-signal ratio increases by approximately 1.1 bits 
per  stage.  The output noise variance  for the decimation- 
in-frequency algorithm  was  twice  that o f  the  decimation- 
in-time algorithm. 

For  the floating-point implementation, the number of 
bits of rms noise-to-signal ratio for  DT1  and DFl  in- 
creased as w, so that doubling  the  number  of points 
produced  a  mild increase in the output noise. For exam- 
ple,  a  1-bit increase corresponds to quadrupling  the trans- 
form  size.  The rate of increase of the noise-to-signal ratio 
was slightly higher for  the  MDTl algorithm  than the DTl 
and DF1  algorithms.  This  was  due to the special structure 
of the butterflies of the  MDTl algorithm. 

Furthermore,  for the floating-point implementations, 
the theoretical predictions checked closely with -the  ex- 
periments  only  when  randomized  rounding  was used. 
Nonrandomized  rounding  seemed to introduce  enough 
correlation between roundoff noise and signal to make  the 
experimental results deviate  from  the  predictions of our 
model  which  assumed signal and noise to be  uncorrelated. 

Finally,  it  is  worthwhile to compare the  error properties 
of the DTl algorithm to the decimation-in-time version of 
the  FFT. Comparing Fig.  4 to Fig.  12  of [ 131, and Fig. 
8 to Fig. 13(a) of [12], we reach  the  conclusion that fixed- 

and floating-point error  characteristics  of the two  algo- 
rithms are very similar. The similar butterfly structure that 
these two  algorithms  share is  the  main  reason  behind the 
above result. 
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