
NON-CONVEX OPTIMIZATION FOR THE DESIGN OF SPARSE FIR FILTERS

Dennis Wei

Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
77 Massachusetts Avenue, Cambridge, MA 02139, USA

ABSTRACT

This paper presents a method for designing sparse FIR filters by
means of a sequence ofp-norm minimization problems withp grad-
ually decreasing from1 toward0. The lack of convexity forp < 1
is partially overcome by appropriately initializing each subproblem.
A necessary condition of optimality is derived for the subproblem of
p-norm minimization, forming the basis for an efficient local search
algorithm. Examples demonstrate that the method is capable of pro-
ducing filters approaching the optimal level of sparsity for a given
set of specifications.

Index Terms— Sparse filters, non-convex optimization, FIR dig-
ital filters.

1. INTRODUCTION

Reducing the computational complexity of discrete-time filters has
inspired a wide variety of approaches, e.g. [1–4]. This paper focuses
on the design of sparse FIR filters, i.e., filters with relatively few
non-zero coefficients. Sparse designs allow for the elimination of
arithmetic operations corresponding to zero-valued coefficients, and
may be incorporated in cascade structures such as those in [1–3] to
yield even more efficient implementations. Sparsity is also of inter-
est in the closely related problem of designing linear sensor arrays.

Designing a filter with maximal sparsity subject to a set of spec-
ifications is computationally difficult. While the problem can be
solved using integer programming methods (e.g. [5]), the associ-
ated complexity can be prohibitive for problems with many coeffi-
cients. This has motivated research in efficient approximate methods
directed at obtaining reasonably sparse but not necessarily optimal
designs [6–8]. Of particular relevance to this work is [8], in which
the1-norm of the filter coefficients is minimized as part of the design
algorithm. In the current paper, the approach of [8] is extended to
the family of functions defined by

‖b‖p =

 

M
X

n=1

|bn|
p

!1/p

(1)

for 0 < p < 1. It is convenient to refer to‖b‖p as ap-norm for all
p > 0 even though (1) defines a valid norm only forp ≥ 1.

The p-norms have the desirable property of being an asymp-
totically exact measure of sparsity asp approaches zero. They do
however pose their own difficulties for optimization as they are non-
convex forp < 1. To mitigate the lack of convexity, a sequential
optimization procedure is proposed in whichp is slowly decreased
from1 toward0. We present a simplex-like algorithm for solving the
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individual p-norm minimization problems, based on a vertex condi-
tion of optimality to be derived.

The approaches taken in [8] and in this work have parallels in the
literature on sparse solutions of underdetermined systems of linear
equations. For example, in compressive sensing both the1-norm [9]
and thep-norm forp < 1 [10] have been successfully applied, while
the ideas of parameterized approximation and sequential optimiza-
tion in [11] are similar to those in this work. However, as discussed
in Section 2, the filter design problem differs significantly from the
solution of underdetermined linear equations.

In Section 2, the problem of sparse filter design is formulated.
Section 3 discusses a method for designing sparse filters involving
a sequence ofp-norm minimizations. The problem ofp-norm mini-
mization is analyzed in Section 4 and a necessary condition of opti-
mality is given. Section 5 summarizes both our algorithm forp-norm
minimization and the overall design algorithm. The performance of
the algorithm is demonstrated through examples in Section 6.

2. PROBLEM FORMULATION

We focus on the design of causal, linear-phase FIR filters of length
N + 1, for which the frequency response takes the form

H(ejω) = e−jωN/2
M
X

n=1

bnT (n, ω),

whereM = ⌈(N + 1)/2⌉, T (n, ω) is an appropriate trigonometric
function, and the coefficientsbn are simply related to the impulse
response (see [12] for details). We regardN as a fixed parameter
representing the maximum allowable number of delays, with the un-
derstanding that the final design may require fewer thanN delays if
coefficients at the ends of the impulse response are zero.

We assume that the amplitude ofH(ejω) is chosen such that the
maximum weighted error relative to the ideal frequency response
Hd(ejω) is no greater than a desired toleranceδd, i.e.,
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≤ δd ∀ ω ∈ F , (2)

whereW (ω) is a strictly positive weighting function andF is a
closed subset of[0, π]. We approximate the infinite set of constraints
in (2) by a finite subset corresponding to closely spaced frequencies
ω1, ω2, . . . , ωK .1 As a result, (2) can be rewritten as a set of2K
linear inequalities in the coefficientsbn, and consequently the set of
feasible coefficients is a polyhedron, to be denoted byP .

1In our experience, it is sufficient to setK ∼ 10M and to distribute
the frequenciesω1, . . . , ωK uniformly overF to ensure that (2) is satisfied.
This is consistent with guidelines reported in [6,7].



We use as a measure of complexity the number of non-zero co-
efficients, which corresponds exactly to

‖b‖0 ≡ lim
p→0

‖b‖p
p (3)

with b = (b1, b2, . . . , bM ). The function‖b‖0 is often referred to
as the0-norm for convenience despite not being a true norm. The
problem of sparse filter design can be stated as

min
b∈P

‖b‖0. (4)

Problem (4) differs from the problem of obtaining a sparse so-
lution to an underdetermined system of linear equations. The latter
has the form

min
x

‖x‖0

s.t. Φx = y,
(5)

with dim(y) < dim(x), i.e., fewer constraints than variables. This
contrasts with (4) in which the number of constraints2K must be
much larger than the number of variablesM in order to yield a good
approximation to (2). Moreover, the constraints in (5) are linear
equalities as opposed to inequalities.

3. DESIGN USING P -NORM MINIMIZATION

In this section, we outline an approach to designing sparse filters that
involves a sequence ofp-norm minimizations with0 < p ≤ 1. Our
approach is based on the ability of thep-norms to approximate the
0-norm arbitrarily closely as seen in (3). We are thus led to consider
problems of the form

min
b∈P

‖b‖p
p (6)

for values ofp approaching zero. We refer to a solution of (6) as a
minimump-norm solution, noting that the minimizer is not affected
by replacing‖b‖p

p with ‖b‖p.
To further motivate the use of thep-norms, we discuss the two-

dimensional example in Fig. 1. Consider first the casep = 1 in (6),
as was done in [8]. The solution can be determined graphically by
constructing the smallestℓ1 ball, which has a diamond shape, that
intersects the feasible region, in this case at a vertex that does not
correspond to a sparse solution. Now consider the same minimiza-
tion for p < 1. As p decreases from1, the boundaries of theℓp ball
curve inward and extend farther along the coordinate axes than they
do elsewhere. Consequently, the solutions tend toward the axes and
eventually converge to the true sparsest solution.

The behaviour seen in the preceding example is formalized in
the following proposition.

Proposition 1. Let {p(i), i = 0, 1, . . .} be a sequence of positive
numbers converging to zero, and {b(i)} be a sequence of optimal
solutions to the corresponding p(i)-norm minimization problems (6).
Then every limit point of {b(i)} is a global minimum of the 0-norm
problem (4).

The proof is by contradiction and is omitted.
The problem ofp-norm minimization (6) can be difficult when

p < 1 since the objective function is non-convex. To mitigate the
lack of convexity, we propose solving a sequence ofp-norm mini-
mizations as opposed to a single minimization, beginning with the
casep = 1 and decreasingp gradually thereafter toward zero, e.g.
according to

p(i) = αi, i = 0, 1, . . . , (7)

b1

b2

feasible
region

ℓ1 ball

ℓp ball, p < 1

ℓq ball, q < p

Fig. 1. Graphical representation of the minimization of variousp-
norms. The circles and arrows indicate the path traced by the optimal
solutions.

wherei is an index for thep-norm subproblems andα is slightly
less than1. Forp(0) = 1, (6) is a convex problem and can be solved
efficiently to yield a global minimum. Forp(1) = α, one might ex-
pect that anα-norm minimizer should be close in some sense to a
1-norm minimizer, and therefore the latter could be a promising ini-
tialization for obtaining the former. Generalizing this idea, a solution
to subproblemi can be used to initialize subproblemi + 1. We note
that a similar process of sequential optimization appears in [11]. It
is conjectured that ifα is close enough to1, the sequence of solu-
tions obtained using this initialization strategy will remain globally
optimal for a significant range ofp values.

4. ANALYSIS OF P -NORM MINIMIZATION

In this section, we present a more detailed analysis of the optimiza-
tion problem in (6) withp ∈ (0, 1], which is a recurring subproblem
in the method outlined in Section 3. We first recast problem (6) into
an equivalent form by expressing each coefficientbn as the differ-
ence between two non-negative variablesx2n−1 andx2n,

bn = x2n−1 − x2n, x2n−1 ≥ 0, x2n ≥ 0, n = 1, . . . , M.
(8)

Under the condition thatx2n−1x2n = 0 for all n, the representation
in (8) is unique and we also have

|bn| = x2n−1 + x2n, n = 1, . . . , M. (9)

Using (8), (9) and (1), problem (6) can be transformed into

min
x
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≤ δd,

k = 1, . . . , K,

x2n−1 ≥ 0, x2n ≥ 0, n = 1, . . . , M,

(10)



where

F (x) =
M
X

n=1

(x2n−1 + x2n)p . (11)

Problems (6) and (10) are equivalent in the sense that there is a one-
to-one correspondence between their respective optimal solutions.
The nonlinear constraintsx2n−1x2n = 0, n = 1, . . . , M , are not
needed because it can be shown that they are automatically satisfied
by all optimal solutions of (10). Hence the feasible set for problem
(10) is also a polyhedron, which we denote byP̃ for convenience.

Whenp = 1, (10) is a linear programming problem and can
be solved using standard techniques [13]. Whenp < 1, it can be
verified thatF (x) in (11) is a concave function, and thereforeF (x)

attains a minimum at a vertex of̃P (see Prop. B.20 in [14]). The
vertex condition can be strengthened somewhat as stated in Theorem
1. Theorem 1 also generalizes the usual condition that holds at a
local minimumx∗ (see [14]),

∇F (x∗)′(x − x
∗) ≥ 0 ∀ x ∈ P̃ , (12)

which may not apply in the case of problem (10) because the gradient
∇F (x) is not defined everywhere. The generalization of (12) can be
stated in terms of the following definitions: Given a local minimum
x∗ of problem (10), defineN andZ to be the sets of indicesn for
which x∗

2n−1 + x∗
2n > 0 andx∗

2n−1 + x∗
2n = 0 respectively. For

an arbitrary vectorx, denote byxN the 2|N |-dimensional vector
obtained by extracting fromx the componentsx2n−1, x2n for all
n ∈ N . Let

FN (xN ) =
X

n∈N

(x2n−1 + x2n)p .

Also defineP̃N to be the restriction of̃P to the hyperplane defined
by x2n−1 = x2n = 0, n ∈ Z, i.e.,

P̃N =
n

xN |x ∈ P̃ ; x2n−1 = x2n = 0, n ∈ Z
o

.

Theorem 1 can now be stated as follows:

Theorem 1. Let x∗ be a local minimum of the problem in (10) with
0 < p < 1. Then the following conditions hold:

(a)

∇FN (x∗
N )

′
(xN − x

∗
N ) > 0 ∀ xN ∈ P̃N , xN 6= x

∗
N .

(b) x∗ is a vertex of P̃ .

The proof is omitted.
The vertex condition of optimality forms the basis for a simplex-

like algorithm, described in the next section, that is directed at solv-
ing the problem ofp-norm minimization in the casep < 1. We
remark that Theorem 1 has the potential to be applied more broadly:
statement (a) holds as long as the feasible set is convex, and both
statements hold for any polyhedral feasible set. These results could
be of use, for instance, in compressive sensing problems in which
the measurement uncertainties are represented by linear inequalities.

5. DESCRIPTION OF ALGORITHM

Our overall algorithm for designing sparse FIR filters combines the
sequential procedure of Section 3 with an algorithm forp-norm min-
imization to be described. For concreteness, we assume thatp de-
creases according to (7). The sequential process terminates whenp

has decreased to an acceptably small valuepmin, or when the solu-
tion is deemed to have converged.

The casep = p0 = 1 corresponds to a linear programming
problem and hence any standard solver may be used.2 For p < 1,
we propose a local search algorithm in which the search is restricted
to the vertices of the feasible polyhedroñP , based on the optimality
condition in Theorem 1. In each iteration, all vertices adjacent to the
current vertex solution are searched for lower values of the objective
functionF (x) in (11). If some of the adjacent vertices have lower
objective values, the algorithm moves to the vertex with the lowest
value and the search continues. Otherwise the algorithm terminates.

The local search algorithm is similar to the simplex method for
linear programming in that it searches for lower function values by
moving from one vertex to another along edges of the feasible poly-
hedron. As a consequence, the algebraic characterization of ver-
tices and the procedure for moving between them are the same as in
the simplex method, and are omitted for this reason. The interested
reader is referred to linear programming texts (e.g. [13]).

In our experience with the sequential algorithm, the number of
non-zero coefficients decreases more rapidly forp near1 and less
rapidly asp decreases. Aroundp = 0.1, the algorithm often con-
verges to a solution that appears to be locally minimal for all smaller
values ofp. To determine if additional coefficients can be set to zero
after convergence, we employ a re-optimization strategy loosely sim-
ilar to the one in [8].

Denote byZ the set of indicesn such thatbn = 0 in the final
solution given by the sequential algorithm. The first step in the re-
optimization is to minimize the maximum weighted error relative
to Hd(ejω) while constraining all coefficients with indices inZ to
zero. This constrained minimax optimization can be formulated as

min
δ,b

δ

s.t. W (ωk)
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˛
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X
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bnT (n, ωk) − Hd(ejωk)

˛

˛

˛

˛

˛

≤ δ, k = 1, . . . , K,

bn = 0, n ∈ Z.

(13)

Once an optimal solution(δ∗,b∗) is obtained, the indexm corre-
sponding to the coefficientb∗m with the smallest magnitude is added
to Z, thus decreasing the number of non-zero coefficients, and (13)
is re-solved. The process of zeroing the smallest coefficient and re-
solving (13) continues until the maximum error exceedsδd, at which
point the last feasible solution is taken to be the final design.

The re-optimization is occasionally able to generate one or two
additional zero-valued coefficients after thep-norm algorithm con-
verges. In addition, the re-optimized design almost always meets
the frequency response constraints with a non-zero margin, i.e., the
maximum error is strictly less thanδd. Thus the final design usually
satisfies the constraints in (2) at all frequencies and not just at the
constrained frequenciesω1, . . . , ωK .

The complexity of the overall algorithm is equivalent to a small
number ofM -dimensional linear programs. The equivalent number
of linear programs depends on the number of subproblems (e.g.5–
10 with α = 0.98 andpmin = 0.01), but does not grow withM .
The efficiency can be improved by exploiting the structure of the
constraints in (2) in performing the required matrix inversions.

2To facilitate the initialization of the next subproblem, thesolver should
return a vertex solution, which is guaranteed to exist.



6. DESIGN EXAMPLES

In this section, we present a number of examples to illustrate the
potential of our algorithm. For all examples, we useα = 0.98
and pmin = 0.01. The parameterN ranges from the number of
delays required by the minimum-length Parks-McClellan design to
1.25 times that number.

In Example 1, we compare the algorithm in this work to the
1-norm algorithm using the example presented in [8]. The specifi-
cations are as follows: passband edge of0.20π, stopband edge of
0.25π, passband ripple of0.01 (linear) and stopband ripple of0.1
(linear). The minimum-length Parks-McClellan design has52 non-
zero coefficients in its impulse response and requires51 delays. The
sparse design in [8] requires41 non-zeros and64 delays. Using our
p-norm algorithm, the number of non-zeros is further reduced to32,
with 63 delays. Fig. 2 compares the impulse responses correspond-
ing to the Parks-McClellan design and the design produced by our
algorithm. The zero-valued coefficients in the sparse design tend to
occur at locations corresponding to small coefficients in the Parks-
McClellan design.

0

0.1

0.2

0

0.1

0.2

Fig. 2. Impulse responses corresponding to the Parks-McClellan de-
sign (top) and thep-norm design (bottom) for Example 1. Zero-
valued coefficients are marked by x’s.

We also compare our algorithm to an integer programming method,
which is guaranteed to produce maximally sparse designs, using two
of the examples in [5]. Table 1 lists the specifications for both filters.
Table 2 summarizes the number of non-zero impulse response val-

example 2 example 3
passband edge 0.4π 0.1616π
stopband edge 0.5π 0.2224π
passband ripple 0.2 dB 0.1612 dB
stopband attenuation 60 dB 34.548 dB

Table 1. Specifications for Examples 2 and 3.

ues and the number of delays resulting from the Parks-McClellan
algorithm, the integer programming algorithm of [5], and ourp-
norm algorithm. The results indicate that our algorithm is capable
of yielding reasonably sparse designs with significantly less com-
plexity compared to integer programming. Note also that our design
in Example 3 does not require any extra delays relative to the Parks-
McClellan design.

example algorithm non-zeros delays
2 Parks-McClellan 48 47

integer programming 40 49
p-norm 43 50

3 Parks-McClellan 56 55
integer programming 44 57

p-norm 46 55

Table 2. Results for Examples 2 and 3.
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