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Abstract 
An approach to some  nonlinear  filtering  problems  through a  gen- 
eralized  notion of superposition  has  proven  useful. In this paper  this 
approach is investigated  for  the  nonlinear  filtering  of  signals  which  can 
be  expressed as products or as convolutions  of  components. The  appli- 
cations of this  approach in audio  dynamic  range  compression  and ex- 
pansion,  image  enhancement  with  applications  to  bandwidth  reduction, 
echo  removal,  and  speech  waveform  processing are presented. 

Manusc:ipt received April 5, 1968; revised June 5, 1968. 

This paper, which  appeared in the PROCEEDINGS OF THE IEEE, vol. 56, pp. 1264- 

issue. 
1291, August  1968, is reprinted  here at the  request of the  Editors of this  special 

R. W. Schafer is now with Bell Telephone  Laboratories, Inc., Murray Hill, N. J 
A part of the work reported  here  was  submitted to  the Department of Electrical 

for the Ph.D. degree. 
Engineering, M.I.T., Cambridge, Mass., in partial  fulfillment of the  requirements 

T. G. Stockham, Jr., is  now with  the  Department of Computer  Sciences,  University 
of Utah, Salt Lake City, Utah. 

DA 28-043-AMC-O2536(E). 
1 Supported  in part by the  Joint  Services  Electronics  Program  under  Contract 

Project  Agency. 
2 Operated with support from the U. S. Air Force and U. S. Advanced  Research 

1. Introduction 

In  this  paper,  a class of nonlinear filters is discussed. 
This class is based on  an  approach to the  problem of 
synthesizing nonlinear systems from  the same point of 
view as that used for  linear system design and analysis. 
Specifically, there  are many classes of nonlinear systems 
which  obey a principle of superposition.  This  property can 
be exploited in much the same way as  it is in  characterizing 
linear systems. 

The general theoretical  structure  for  characterizing  non- 
linear systems in  this way has been formulated  and  studied 
in  detail by Oppenheim [1]-[3].  While the framework 
which this  structure provides is quite  broad,  it has so far 
been pursued in  depth  for two specific cases: the synthesis 
of nonlinear filters for signals  which can be expressed as a 
product of components  and  the synthesis of nonlinear 
filters for signals which can be expressed  as a  convolution 
of components. 

The first part of the  paper is directed toward  a brief  ex- 
planation of the  notion of superposition  as  it applies to 
problems in nonlinear filtering. This  explanation is fol- 
lowed  by a detailed discussion of the analytical framework 
for  the specific  cases of the filtering of multiplied signals 
and  the filtering of convolved signals. Following this  analy- 
sis, the discussion is directed toward  the  applications of the 
theory which have thus  far been pursued. 

Four applications are presented, two involving multi- 
plicative filtering and two involving convolutional filtering 
or deconvolution. The multiplicative applications,  as de- 
veloped  by Stockham, involve audio  dynamic range com- 
pression and expansion and image enhancement with ap- 
plications to bandwidth  reduction.  The  deconvolution 
examples  involve echo removal and speech analysis as 
pursued by  Schafer and Oppenheim, respectively. All four 
applications have progressed to the  point where working 
models have been  realized through  computer  simulation, 
and  one to the  point where  specially  designed hardware 
has been installed as  part of an  unrelated system. 

The work was originally inspired to a  large extent by the 
ideas  and  attitudes of Dr. M. V. Cerillo, and many readers 
will undoubtedly recognize the flavor of his  thinking  in 
some of the  applications presented in  the following. 

II. Generalized linear Filtering 

When considering the  problem of  filtering signals that 
have been added, we often focus our  attention  on  the use 
of a  linear system. While this  constraint does not always 
lead to a  “best” choice for  the filter, it  has  the  advantage 
of analytical convenience. This analytical convenience is 
almost a  direct result of the principle of superposition that 
linear systems satisfy. In contrast, when determining a 
filtering procedure to separate signals that have been non- 
additively combined, such  as  through multiplication or 
convolution,  it  is usually more difficult, and in many cases 
less meaningful, to use a  linear system. However, we can 
imagine generalizing the  notion of linear filtering in such 
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a way that  it encompasses this broader class of problems. 
Specifically, let us consider two signals sl(t) and sz(t) that 
have  been  combined  according to some rule which we 
denote by 0, so that  the resulting signal s(t) to be  pro- 
cessed can be  expressed as 

s ( t )  = Sl( t j  0 S&). 

Let rp represent the  transformation for the filter.  Then  in 
generalizing the  notion of linear filtering, we require that 
#I have the property that 

41[Sl(t) 0 S d O l  = 41Cs1(t)I 0 41[sa(tjl. (1) 

The formalism for representing systems  having this  prop- 
erty lies in interpreting the system inputs  as vectors in a 
vector space  with the rule 0 corresponding to vector addi- 
tion,  and  the system transformation 41 as an algebraically 
linear transformation  on  that space [ 11. We  must therefore 
restrict the operation 0 so that  it satisfies the algebraic 
postulates of vector addition  and associate with the set of 
inputs  a rule for  combininginputs with scalars, which we 
will  call scalar multiplication and  denote by: To generalize 
the  notion of linear filtering, then, we require that  the class 
of  systems, in addition to satisfying (l), also have the 
property that 

+[c:s(t)J = c : + [ s ( ~ ) ] .  (2) 

When the rule 0 corresponds to addition of the functions 
and  the rule : corresponds to  the product of the  input with 
the scalar, then (1) and (2) reduce to  the principle of super- 
position as it applies to linear systems. Systems in the class 
satisfying (1) and (2) have  been referred to  as homomor- 
phic  systems,  emphasizing their interpretation as alge- 
braically linear transformations between vector spaces. 

The primary  advantage in  the restriction of the class of 
filters through (1) and (2) lies in  the canonic representation 
for systems  having this  property. It has been  shown [ l ]  
that if the system inputs constitute a vector space  with the 
operations 0 and : corresponding to vector addition and 
scalar multiplication, then 41 is representable as  a cascade 
of three systems as shown in Fig.  1. The first system, A,  
in this representation, has  the property that 

A o [ s ~ ( t )  0 sz ( t ) ]  = A,[sl(t)] + A,[~z(t)] (3) 

and 

R o [ c : s ( t ) ]  = cA.[s(t)]. (4) 

Furthermore, A,  is characteristic of the class in  the sense 
that  it depends  only on the operations 0 and : and  not  on 
the details of the system 4, and consequently is conve- 
niently referred to as the characteristic system The system 
,5 is a linear system and the system A0-l is the inverse of 
the system A,, i.e., 

A ~ ~ { A . [ s ( t ) l }  = 40. (5) 

On  the basis of this  canonic representation we observe 
that generalized linear filtering corresponds to transform- 
ing  the original problem to one in which the  components 

I 

L 

Fig. 1. The   canon ic   r ep resen ta t ion  for a homomorphic 
filter. 

are added, and after linear filtering, transforming the result 
back to  the original space of inputs. Thus, once the  char- 
acteristic system for  the class has been  determined, the 
problem reduces to a linear filtering problem. 

111. Homomorphic Filtering of Multiplied Signals 

One of the simplest examples of a rule of superposition 
satisfying the conditions above  is that of ordinary multi- 
plication. Of further interest is the fact that there exist 
several practical situations  in which it is especially  con- 
venient to consider  waveforms as  products  rather than  as 
sums.  Examples include problems involving fading chan- 
nels,  amplitude modulation,  automatic gain control,  audio 
dynamic range compression or expansion, and image pro- 
cessing. In these situations it is common to find  two  sig- 
nals, one  varying  slowly and  the  other rapidly, combined 
as  a  product. In addition,  it is frequently desirable to 
modif31 one signal and not  the other or  to process each 
according to separate objectives. 

The  product  rule satisfies the algebraic postulates of 
vector addition.  The companion rule for scalar multiplica- 
tion is that of taking  a signal to a scalar power. In terms of 
the symbols  used earlier we have3 

Sl ( t j  0 S d t )  = Sl(l) .sz(lj 

c : s ( t )  = [ S ( t ) ] " .  

and 

Equations (1) and (2) then become 

+[s l ( t> .Sz( t ) l  = 41[sl( t j l .41[sz(~j l  (6) 

411 [s(t)lc) = I41[s(t>I)". (7) 

and 

Following the  pattern of Fig. 1 we may construct Fig. 2 
and, in analogy  with (3), (4), and ( 3 ,  we require that P 
have the  property  that 

P ' [S l ( t ) .S2 ( t j ]  = P [ S l ( t ) ]  + P[sz(t)l (8) 

P [ { s ( t )  )GI = cP[s(t)I (9) 

3 In these arguments we  will assume that the signals involved are 
functions of time t. However, it is important for the reader to realize 
that there is nothing in the arguments to be presented which pre- 
vents the consideration of signals which axe functions of space, fre- 
quency, or any other parameter. Neither is there  any restriction to 
the consideration of one-dimensional signals. 
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P 

Fig. 2. The canonic representation  for a multiplicative 
filter. 

m 

Fig. 3. The filter  of Fig. 2 with P and P-' specified as the 
logarithm and  exponential transformations, respectively. 

and 

P-'{P[s(L)]} = s ( t ) .  (10) 

If  we limit our  consideration to include only positive real 
signals s(t), and  therefore real scalars c, the  characteristic 
system P may be chosen as  the  ordinary  logarithm func- 
tion. It follows that P1 is the corresponding exponential 
function.  With  this  information  this class of homomorphic 
systems can be represented more explicitly as in  Fig. 3. An 
example  in  which we encounter only positive real signals is 
to be found in image processing in which the signals are 
formed of incoherent  light.  The physics of the  situation 
guarantees  the absence of negative or nonreal  light  in- 
tensities, while practical  considerations almost certainly 
preclude zero intensity. 

In the event that  the signals to be  processed cannot be 
restricted as above we may consider complex  signals s(t) 
and  either real or complex scalars c. If we attempt to em- 
ploy the complex logarithm  function  as  the  characteristic 
system  in this  situation, we encounter  the immediate di- 
lemma that  the  output 9( t )  of that system  is not unique. 
The  standard artifice of invoking the  principal value of the 
complex logarithm  cannot be  used in  this case,  because the 
principal value of the  logarithm of a  product of complex 
signals is not always the  sum of the principal values cor- 
responding to the individual complex signals, violating (8). 

There  are restrictions which can be placed upon com- 
plex input signals such that  a satisfactory characteristic 
system P closely related to the complex logarithm  can be 
found. These restrictions require that complex inputs be 
continuous  nonzero  functions which attain  a positive real 
value s(to) at some prescribed instant of time to. In the case 
that complex scalars c are to be considered, s(to) must be 
unity,  The  operation P is then  taken to be 

where the  path of integration  from  the  point f =  1 to the 
point ,$=s(t) is constrained to be a straight line on  the 
positive real axis from  the  point f =  + 1 to the  point f =  s(to) 
followed thence to the  point f = s(t) via the  continuous 

+ ~ m [ t ]  = Y 
s ( t )  I 

Fig. 4. A typical  path  of integration  for defining the 
complex  logarithm. 

Fig. 5. The system P of Fig. 2 
represented  for  complex signals. . + A  

'r sr 

curve traced by s(t) in the  interval between to and t .  A 
typical path is shown in Fig. 4. The uniqueness of this 
transformation is assured by the  fact  that  the  path of inte- 
gration is specified completely by the  constraint placed 
upon  it. While (1 1) is often used to define the complex 
logarithm  function, only the end points of the  contour  are 
specified in  that definition and  thus multiples of j 2 ~  may 
be added or subtracted by introducing  arbitrary encircle- 
ments of the pole of unit residue at the origin of the 
f-plane. With our  interpretation of the complex logarithm 
we  may write S ( t )  = log s(t). The inverse  system P-I is the 
complex exponential function. 

Equation (1 1) serves as  a  formal definition for  the  trans- 
formation P, but requires further  practical  interpretation. 
Typically S ( t )  and s(t) are realized  as pairs of real signals: 

s( t )  = 8 4 )  +is&)  (12) 

b(t) = S , ( t )  + j S i ( t ) .  (13) 

These relationships are shown diagrammatically in  Fig. 5. 
We  now  wish to establish an explicit relationship between 
the  input and output signal pairs. Let us consider %(t) first. 
There is  never any ambiguity about  the real part of a COM- 

plex logarithm. It is always the real logarithm of the mag- 
nitude of the complex argument.  Thus we have 

_____._ 

&(t)  = log I s ( t )  j = log ds,"t) + szZ(t) 

= (l/2) log [sr"t) + S i W l .  
(14) 

Next we consider &(t). Except for  an ambiguity of multi- 
ples of 2n the imaginary part of the complex logarithm of 
a complex number is proportional to the angle of the  com- 
plex number.  The  provisions we have made  for resolving 
the ambiguity require more  than  a knowledge of s,(t) and 
si(t) at a single instant. A complete history in the  interval 
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a4 p-' 4 
Fig. 6. The system P-' of Fig. 2 
represented  for  complex signals. 

Fig. 7. The canonic representation  for  a  multiplicative  filter  employing 
complex signals. ;i and sr denote the time derivatives of sz and s?. 

A 

sr 1 g = egr cos ;. 
* 

to  to t must be  employed in  the  determination. We  may 
accomplish this by  noting that,  from (1 l), 

(13 

so that 

and 

3&") = 0. 

Thus we can construct  an expression 
form  as 

for si(t) in integral 

which  becomes 

The inverse characteristic system P-' is diagramed in 
Fig. 6. Explicit expressions for its input-output relations 
are 

g,(t) = e G r ( t )  cos &(t )  (19) 
g z ( t )  = e G r ( t )  sin ti(!). (20) 

The canonic form  for  a multiplicative homomorphic sys- 
tem employing  complex signals is depicted in Fig. 7. There 
is a residual question  concerning the form of the linear 
system L. If  we restrict ourselves to real scalars c, then we 
place a different set of restrictions upon L than if  we allow 
complex scalars. A completely general topology for  the 
system L is presented in  Fig. 8 in which the small internal 
systems are linear with real signals. In the case of real 
scalars c, the system L must obey superposition only  when 

Fig. 8. The general  topology  for the system L of Fig. 7. 

Fig. 9.  The multiplicative  filter of Fig. 7 specialized to employ 
real  bipolar signals. 

s.= r .s ign(s)  
A A  

I I  
g. = ms. 

the  input s(l) is multiplied by a real scalar. Under these 
circumstances there  are no restrictions on  the  four real 
linear systems. However, in  the case of complex scalars the 
system L must  obey superposition when the  input s(t) is 
multiplied by a complex scalar. This requires that 

LT? = L i i  (21) 

and 

L,i  = - L i ,  (22) 

which restricts the systems L that may  be  employed. 
One of the  important practical applications of the  above 

ideas involves signals which are real and bipolar, that is, 
are sometimes positive and sometimes negative. Formally 
such signals do  not fit within the above  framework since 
the condition that  the signals be  nonzero and  continuous 
simultaneously cannot be  met.  Consequently, if  we want to 
apply the notion of homomorphic filtering to this case we 
must modify the  bipolar signals so that they are complex. 
For example, we may treat  the signals as real until they 
become smaller than some  very small value at which  time 
they  assume  complex values of  fixed  magnitude 6 and vary- 
ing angle. Another possible method involves adding  a very 
small constant imaginary value to the signal, thus forcing it 
to be nonzero. All such  methods are basically similar in 
nature  and  require  that complex signals be considered. 
Formalizing this idea is  difficult and seems to offer no real 
advantage. For  the particular application to be discussed, 
where  only  one of the  two multiplied signals is  bipolar, no 
difficulties arise if  we require that Lir= L,i= 0 and Lii = m 
(an integer). In this case, the system of Fig. 7 is reduced to 
that of Fig. 9. 
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IV. Homomorphic  Filtering  of  Convolved  Signals 

There  are many  waveforms of interest which can be con- 
sidered as  a  convolution of component signals which we 
wish to separate. Often, for example, a waveform is cor- 
rupted  through  reverberation, that is, the  introduction of 
echos, which we would like to remove. In speech process- 
ing, it is often of interest to isolate  the effects of vocal tract 
impulse response and excitation, which at least on a  short- 
time basis can be considered to have been  convolved to 
form  the speech  waveform [4]. Another example lies in the 
separation of probability density functions which have 
been  convolved  by the  addition of independent random 
processes. 

A common approach to deconvolution is the  technique 
of inverse filtering. In this case the unwanted components 
of the signal to be processed are removed by filtering with a 
linear system  whose  system function is the reciprocal of the 
Fourier  transform of these components. Clearly this 
method is reasonable only for  those  situations in  which  we 
have a detailed model or description of the  components to 
be removed. This  approach  has been  successful, for ex- 
ample, in  recovering the excitation function  from  the 
speech  waveform  since accurate models of the vocal tract 
have  been  developed [5] .  Inverse filtering  is analogous to 
removing the effect of noise in  the  additive case (i.e., signal 
plus noise) by subtraction. If the noise  is known exactly 
except for  a few parameters  then we might reasonably 
expect to recover the signal by subtracting  the noise from 
the sum. In many cases,  however, we do  not have available 
detailed information  about  the  unwanted  components of 
the signal, and consequently this method of subtraction  in 
the additive case or inverse  filtering  in the  convolutional 
case is no longer feasible. 

In applying the  notion of generalized linear filtering to 
the  separation of convolved signals, we must first deter- 
mine the  characteristic system for  this class of filters. While 
we may formulate  the results either in terms of continuous 
or discrete (sampled) inputs,  the processing to be  described 
is most easily  realized on  a digital computer. Conse- 
quently, the discussion will be phrased in terms of discrete 
time series. Thus, we consider a sequence s(n) consisting of 
the discrete convolution of two sequences sl(n)  and sz(n) so 
that 

+= 
s(n) = sl(k)s,(n - k )  

or 

s(n) = Sl(1Z) c?J sz(n) (23) 

where c?J denotes  a discrete convolution.  The  canonic  form 
for  the class of filters is represented symbolically in Fig. 10 
where D is the  characteristic system for  the class and  has 
the  property that 

D[s1(n> @ s2(n)3 = &(n) + &(n) (24) 

where Sl(n) and &(n) are  the responses of D for  inputs sl(n) 
and sz(n), respectively. 

e + +  + +  e 
A 

s(n)  
A 

s(n) 
- 0  + L -  - 6 '  g (n) g(n)  

Fig. 10. The cononic  representation for a deconvolution filter. 

Let S(z) and  3(z)  denote  the two-side z-transforms  of 
s(n) and $n), respectively, so that 

+m 

#(x) = s(n)x-n (254  
n--m 

and 

+m 

S ( 2 )  = 3(n)z-n (25b) 

(25d) 

with c1 and cz closed counterclockwise contours of inte- 
gration  in  the z-plane. It will be assumed for  notational 
convenience that c1 and c2 are always taken to be the  unit 
circle z=  eiu. While this  is somewhat restrictive the results 
obtained  are easily  modified to incorporate  the general 
case. 

It follows from (23) and the  properties of the  z-transform 
that 

X(Z)  = X,(z)S,(x> (26) 

where Sl(z) and Sz(z)  are  the  z-transforms of sl(n) and sz(n), 
respectively. Hence, from  the  results of the previous sec- 
tion, applied here to functions of frequency, we may relate 
S(z) and S(z) through  a  suitably defined logarithmic  trans- 
formation. 

Let us require that  both S(z) and  3(z) be analytic  func- 
tions with no singularities on  the  unit circle. Letting 

X(eju) = X R ( e j m )  + j X I ( e j m )  (274  

and 

S(eju) = SE(e jo )  + jSr(eju) ,  @7b) 

we then  require that SR, SR, SI, and 31 be continuous  func- 
tions of W .  Since the  z-transform  is  a  periodic  function  of o 
with period 2a we require in addition  that 3, and 31 be 
periodic functions of W .  Furthermore, we may impose the 
constraint that s(n) and i(n) be real  functions so that SR 
and sE are even functions of w and SI and 31 are  odd  func- 
tions of W .  Then  from (14) and (16) we define 

s, = log 1 s 1 (28) 

and 
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with 

I Sr(ejw) / w = o  = 0. 

Thus  the imaginary part of 3 is interpreted to be the angle 
of S considered as a  continuous, odd, periodic function of 
w. The response of the system D then corresponds to  the 
inverse transform of the complex logarithm of the  trans- 
form. 

A similar transformation was introduced by  Bogest, 
Healy, and Tukey  in  which the power  spectrum of the  loga- 
rithm of the power spectrum was  proposed as  a means for 
detecting echoes [ 6 ] .  The result of this set of operations 
was  termed the cepstrum. It is clear that $(n) bears a  strong 
relationship to the cepstrum  with the primary  differences 
being  embodied in  the use  of the complex Fourier  trans- 
form and co~nplex logarithm [7]. To emphasize the rela- 
tionship while  maintaining the distinction, it  has been 
convenient to refer to ~ ( n )  as  the complex cepstrum. 

Properties of the  Complex  Cepstrum 

Equation (31) can be rewritten in a somewhat different 
form by noting that,  from (15), 

d$x) 1 a(%) 
-=-- 

dx X(z) dx 

or 

dj.(z) dX(x )  
X ( 2 )  __ = 

dx dx 
(33) 

Using the fact that d3(z)/dz is the z-transform of -n$(n), 
and dS(z)/dz is the z-transform of -ns(rz), the inverse 
z-transform of (33) is 

Insz(n)] 63 s(n)  = ns(n) 

or 

While (28) and (29) define the complex  cepstrum, it is In general, this is an implicit relation between s(n) and S(n) 
possible to reformulate the relationship between s(n) and and cannot be computed. However, if it is assumed that 
z(n) in several ways  which place more in evidence the  prop- s(n) and $72) are zero for n negative and  that s(O)#O, then 
erties of the complex  cepstrum. From (28) and (29) (34) becomes 

Since the  contour of integration is the  unit circle and we n = 0. 
have  defined log [S(z)] so that it is a single-valued function, 
we may rewrite (30) as For this case, the inverse of the characteristic system can 

be  easily  obtained  by solving (35) for $(a) in terms  of s(n) 
with the result that 1 ,  

$(n) = - log [~(e jw) ]e iw"dw.  
2T S-, f 1 n-I 

Integrating by parts  and using the fact that SI(ejw) is re- s(n) = I is(O)$(n) + - 
stricted to be a continuous, odd, periodic function of w, 

we obtain  the result that 

k $ ( k ) s ( n  - IC) n f 0 
12 I k O  (Xi) 

I ,.̂CO, n = 0. 

An example of a class of functions S(z) satisfying the 
requirement that  both S(z) and s ( z )  be analytic is the class 
of the  form 

I o  'fl 

11: (I.  - W )  11 (1. - biz) 
1 K I __ _ _ _ _ _ _ _ . ~ _  

IT (1 - c,s--') 11 (1 - d i z )  

i=l i- 1 
(32) 

I-' 0 f)l 

;;-I I~ 1 

where the ai and ci are  the zeros and poles inside the unit 
circle and ( l / b i )  and (l,/dJ are  the zeros and poles outside 
the  unit circle. For this class of examples, we note that  the 
poles of the integrand in (31) occur at the poles and zeros 
of S(z).  Consequently, S(n) will be  composed of a sum of 
exponentials divided by n. 

The Complex  Cepstrum of Minimum Phase Sequences 

For a  functionf(t) which is zero for t<O,  the real and 
imaginary parts of its  Fourier  transform  are related 
through  the  Hilbert  transform. This relationship is derived 
by  noting thatf(t) is uniquely  expressible in  terms of its 
even part [8]. 

For certain classes  of functions, the magnitude and 
phase of the  Fourier  transform  are also related through  the 
Hilbert transform  and  such functions are generally referred 
to  as minimum  phase functions. The relationship between 
magnitude and phase is derived by treating the log magni- 
tude  and phase of the Fourier  transform  as  the real part 
and  imaginary part, respectively, of a new Fourier  trans- 
form. If the time function associated  with this new Fourier 
transform is zero for t < 0, then  its real and imaginary parts 
are related. An entirely parallel set of statements can  be 
nude for discrete sequences, with the  Fourier  transform 
replaced by the z-transform  evaluated on the unit circle. 

From  the above discussion we note that a minimum 
phase  sequence  is  one for which the complex  cepstrum 3(n) 
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is zero for n < 0, which is the same condition imposed in 
deriving (35). Thus we may conclude that for  input se- 
quences which are minimum phase, the  input  and  output 
of the system D are related by the recursion relation of (35) 
and  the  input  and  output of the system D-l are related by 
the recursion relation of  (36). These recursion relations do 
not necessarily  offer a  computational advantage. How- 
ever, they  are conceptually important. In particular, they 
bring to light  the  fact  that  for minimum phase inputs,  the 
transformation D is a realizable transformation, i.e., the 
response S(n) for n = no is dependent only on samples of the 
input  for n<no. Similarly, the inverse transformation D-l 

is realizable for  input sequences ~ ( n )  which are zero for 
n<O. From this we may conclude that for minimum phase 
input sequences the class of homomorphic filters defined 
by the  canonic  form of Fig. 10 is realizable in  the sense that 
the  output  depends only on previous values of the  input if 
the  linear filter is also realizable. 

An analogous discussion can be carried out  for se- 
quences whose complex cepstrum is zero for n>O. Such 
sequences,  which have no minimum phase components, 
could appropriately be  called maximum phase sequences. 
For these cases a  relation similar to (35) can be derived, in 
which values of the complex cepstrum depend only on 
future  rather  than  past values of the  input. It should be 
remarked that any sequence can always be expressed as  the 
convolution of a minimum phase sequence and  a maxi- 
mum phase sequence, i.e., 

4%) = sl(n) @ sdn). 

The  portion of S(n) for n> 0 represents the  contribution 
from  the minimum phase  component,  and  the  portion  for 
II < O  represents the  contribution  from  the maximum phase 
component. 

As a result of these considerations  an  interesting and 
perhaps useful result emerges. Consider a time-limited 
sequence s(n) which contains (N+1) samples. Let us 
choose the origin and  polarity of the waveform so that 
S(z) can be expressed in the  form of  (32). Now s(n) can be 
expressed as  the  convolution of a minimum phase sequence 
sl(n) and  a maximum phase sequence sz(n) where sl(n) and 
sz(n) are time-limited so that 

s l (n )  f 0 0 I n I N1 
= 0 otherwise 

and 

sz(n) # 0 -Ne 5 n < 0 
= 0 otherwise 

where 

N1+ Nz = N .  

The complex cepstrum of sl(n) is, in general, not time- 
limited. However, Sl(n) is zero  for n<O and sz(n) is zero for 
n 2 0 .  Thus, from (34), 

and 

r n = O  

Consequently, (Nl+ 1)  values of Sl(n) are needed to recover 
sl(n) and Nz values of &(n) are needed to recover s&), so 
that (N1+N2+1) values of the complex cepstrum  are 
needed to obtain  the (Nl+Nz+ 1) values of s(n). 

Sequences  with Rational  z-Transforms 

Thus far, we have restricted the  input sequences to be 
such that S(z) and S(z) are  analytic  and,  for these cases, the 
logarithm of the  z-transform  on  the  unit circle  was  defined 
such that  the imaginary part of the  logarithm was a  con- 
tinuous,  odd, periodic function of w .  It was remarked that 
this included all sequences with z-transforms of the  form 
of  (32). It is  reasonable to assume that most  input se- 
quences of interest  can be represented at least  approxi- 
mately by z-transforms which are  rational, of the  form 

i- 1 i= 1 

Equation (37)  differs from (32) in the inclusion of a  term z' 
representing a delay or advance of the sequence and re- 
moval of the  absolute value on the multiplying constant so 
that S(z) is no longer required to be positive for z= 1 

While it is possible to generate a  formal  structure which 
would include this  more general case, it offers no real ad- 
vantage. Specifically,  if  we consider the  problem at hand, 
namely, carrying out  a  separation of convolved  signals, we 
would not expect to be able to determine, and most likely 
would not be interested in determining, how much of the 
constant X, including its sign, was contributed by each. 
Similarly we could not expect to be able to determine how 
much of the  net advance or delay r was contributed by 
each. In summary, we can expect to be  generally interested 
in  the  shape of the  components  and  not  their  amplitudes or 
time origin. 

If we are willing to permit this flexibility, then we can 
measure the algebraic sign of K and  the value of Y sepa- 
rately and  then  alter  the  input  (or  its  transform) so that  the 
z-transform is in the  form of  (32). 

(w = 0). 

Computation of the  Complex Cepstrum 

On the basis of the previous discussion, for general input 
sequences the  computation of the complex cepstrum re- 
quires  a  computation of the  Fourier  transform of the in- 
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put.  Thus practical considerations require that the  input 
s(n) contain only a finite number of points, that is, be time- 
limited, and that  the transform  be computed  only at dis- 
crete frequencies. Thus,  in an implementation of the  trans- 
formation D, we replace the  z-transform  and its inverse by 
the discrete Fourier  transform  pair  (DFT) defined as 

'v- 1 

n=O 

and 

Thus,  the complex  cepstrum  computed  by  use of the DFT 
is  given  by 

1 N-1 

with 
A- 1 

n=O 

It is straightforward to verify that &(n) is an aliased version 
of j(n), i.e., 

+W 

&(n) = 3(aN + n). 
a=-- 

The effect  of the aliasing depends on  the value chosen for 
the  rate  at which the  spectrum is  sampled, or equivalently 
the value of N .  In many cases this is not  a severe problem 
since relatively fast  and efficient  means for computing the 
discrete Fourier  transform  for large N have recently been 
developed [9]. 

The phase  curve O(k) can be  computed by first comput- 
ing  the phase modulo 2~ and  then "unwrapping" it to 
satisfy the requirement that it be  continuous  and  odd. 
Simple  algorithms for doing this are easily generated, pro- 
vided that  the frequency  spacing of adjacent points is 
sufficiently small. 

As an alternative to computing the complex cepstrum by 
means of  (38),  we may obtain $(a) by forming the  ratio of 
the derivative of the spectrum and  the spectrum, as sug- 
gested  by  (31). In  particular, since  samples of the deriva- 
tive of the spectrum,  denoted by S(k), can be obtained by 

we obtain &(n) as 

444 

The complex  cepstrum  computed on  the basis of  (39) dif- 
fers somewhat from that computed  from (38). The  differ- 
ence can be  expressed  by  observing that n&(n) as repre- 
sented by  (39)  is an aliased replica of ni(n), i.e., 

+m 

n%(n) = (ai! + n)s(aiv + n) 
a=-a 

or 

1 +m 

n a=-- 
&(n) = - (aN + n)s(aN + ?2). (40) 

We note that in general the effect  of the aliasing introduced 
by the use of  (39) is more severe than  that introduced  by 
(38). On  the  other  hand, use  of  (38) requires the explicit 
computation of the unwrapped  phase  curve,  whereas  use 
of  (39)  does not. 

V. Applications of Homomorphic Filtering 

In the preceding paragraphs we have  discussed the 
analytical aspects of homomorphic filtering, in general, and 
multiplicative and convolutional filtering, in particular. 
We  now  wish to deemphasize the theory  and  concern our- 
selves  with  specific practical applications. The following 
discussions serve two distinct purposes. The first is to 
disclose a specific  technology  which has emerged as a 
direct result of the theory. The second is to lend to the 
theory a set of examples  which hopefully will  serve to 
clarify  concepts and to foster further investigation. 

The Multiplicative  Processing of Audio  Signals 

The first application of multiplicative filtering to be 
discussed  involves the processing of audio signals [lo]. We 
are all familiar with the idea of analyzing audio waveforms 
as  sums of harmonic oscillations. However, for  the  pur- 
poses of this discussion we conceive  of analyzing audio 
waveforms as  a  product instead of a sum.  Specifically, we 
are motivated by the obvious fact that  audio signals bear 
a resemblance to amplitude-modulated  waves.  They are 
similar because  each  grows larger and smaller at a rela- 
tively  slow rate while  dancing around at some other rela- 
tively fast  rate.  In  the case of audio  the fast motion is irreg- 
ular  and varied. In  the case of AM it is neither. In  this 
respect, they are  not similar. There are factors in  the manu- 
facture of audible signals which are certainly multiplica- 
tive in nature. A person  modulates his voice both con- 
sciously and unconsciously. Musicians  play loud  and soft 
passages.  Sounds form and die away as their energy is 
absorbed. 

With this motivation let us analyze an  audio signal as  a 
product of two  components.  Let the first  be an envelope 
e(t) which  is  slowly  varying but always positive. Let the 
second  be a carrier or vibration u(t) which  is rapidly vary- 
ing and bipolar. If  we call our  audio signal s(t), we obtain 

s( t )  = e ( t ) .  u ( t ) .  (41) 
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Fig. 1 1. A multiplicative filter  for  audio processing. 

Furthermore, let us process this signal  with a multiplica- 
tive homomorphic filter such that the response s'(t) will  be 
given by 

s'(t)  = e'(t) .v '( t)  (42) 

where e'(t) and u'(t) are  the responses for e(t) and v(t) act- 
ing separately. Fig. 11  shows this situation in accordance 
with our previous discussions concerning real bipolar 
signals and multiplicative  filters. We have  set m= 1 since 
we  wish to preserve the sign information embodied in v(t). 
Notice that since e(t)  is always  positive 

~ , ( t >  = log I e ( t )  I = log e ( t )  (43) 

and 

&(t) = 0 (44) 

such that 

s&) = q t ) .  (45) 

Furthermore, since 

si'@) = &(t) (46) 

it follows that 

e,'@) = 0 (47) 

which  implies that e'(t) is  always  positive as well. More 
explicitly 

&'(t) = v^i'(t) (48) 

and 

zT'(t) = log I e'(t) I = log e'( t ) .  (49) 

With these equations in mind, we can reconstruct Fig. 11 
as in Fig. 12. 

If log e(t)  and log I v(t)l were to possess  frequency com- 
ponents occupying separate frequency bands, linear sys- 

I 
0 t f  

16Hz 

Fig. 13. A typical spectrum of log / s ( f )  I for  audio signals. 

Fig. 14. A multiplicative  filter which processes t ( f )  and v(f) separately 

HPF - :p -, 
s(t)  

LPF exp  log - s ' ( t )  - 
2 c 

A "  
- 

si (1) = ii ( t )  

tems  could  be designed to perform different  processing 
tasks upon each. While it is almost certainly true  that  any 
preconceived  definition of e( t )  and n(t) would not result in 
this condition, an extremely  interesting situation is re- 
vealed through the examination of the spectra of log I s(t)l 
for typical audio signals. An example  of such a spectrum is 
shown in Fig. 13. This curve  is  derived from  a  computer 
calculation of the periodogram of the log magnitude of 
seven  seconds of speech  waveform.  We  see that above  a 
certain critical frequency near 16 Hz the spectrum is nomi- 
nally constant, but below that frequency it grows rapidly 
with  decreasing  frequency. This behavior  suggests that this 
spectrum  can be broken into two  components,  one  more 
or less constant at all frequencies and the other large at low 
frequencies but decreasing rapidly with increasing fre- 
quency. Although these components overlap each other 
it is clear that the character of their spectral behavior is 
sufficiently  different to permit effective partial separation 
by the methods of linear filtering. 

For the sake of simplicity,  however, let us assume that 
d ( f )  can  be  broken  into  two  parts occupying distinct fre- 
quency bands.  Let  the first part, called @f), be constituted 
from all components of dcf) below  16 Hz. Let the second 
part, called P(f), be constituted from all components of 
&(f) above 16 Hz. For any specific audio signal  we  will 
associate & f )  with the envelope signal and P ( f )  with the 
vibration signal. 

A multiplicative filter  which  processes each of these 
components  independently is shown in Fig. 14. The high- 
pass and low-pass filters serve to isolate the component 
signals of $,( t ) and  the separate different linear filters Hr;(f) 
and &( f )  operate upon each independently. 

An extremely interesting subclass of filters is generated 
by considering Hr;(f) = 1. This class  leaves v(t) entirely un- 
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Fig. 15. The system of Fig. 14 with /iv(f) = 1 and Hdfl = K .  

TIME - 
Fig. 16. A typical s(f) and log \ s ( f )  as measured in the  labora- 
tory. 

affected  while operating only on  the envelope e(t). A sim- 
ple specific  example  is formed by  choosing H E ( f )  = K. For 
this choice we can reconstitute the filter as shown in Fig. 15 
where we find  a  single  frequency  response specification for 
the  linear system. Since this system has a  gain  of unity for 
vibration signals, they are unaffected  by the filter. How- 
ever, for envelope signals the gain is K, and so for  them  the 
system  is a power  law  device  with  exponent K. This  ar- 
rangement results in a response s’(t) as given  by 

s’(t) = e’(t)v’(t) = e“(t)-v( t ) .  (50) 

If K< 1, the envelope function is subject to rooting action, 
thus reducing the dynamic  range  of the composite signal 
s ( t ) .  If K> 1, this dynamic  range is increased. In this way 
this multiplicative filter acts as a  volume  compressor or 
expander. 

If K= 0 the envelope signal response e’(t) is  reduced to 
unity and s’(t)= ~ ( t ) .  This  situation  is similar to  that ob- 
tained with automatic gain control circuits, because the 
amplitude of response is not dependent upon  the ampli- 
tude of excitation. 

A  system  based upon  the  diagram of Fig. I5  for effecting 
the modification of dynamic  range has been  simulated on 
the TX-2 computer at the  M.I.T. Lincoln Laboratory  and 
has  been  constructed for audio signals and  employed in 
practice with  remarkable  success.  Some interesting practi- 
cal considerations arise in this respect which are  worth 
mentioning here. 

The first has to  do with the realization of the system 
function H ( f )  described in Fig. 15. The ideal filter H(f) can 
be approximated in practice by a lumped parameter system 
L( f ) .  Whether  employing  few or  many degrees of freedom, 
if 1 L(0) I = Kand 1 L( rn ) 1 = 1 the basic operating  character- 
istics discussed above  can  be realized. This is so because 
the need for a sharp  transition characteristic is not implied 
by Fig. 13. The reader  may  ask  about  the effect  of the 
phase characteristics of Lcf)  upon  this  situation. Phase  will 
have  negligible  effect upon system  performance as long as 
it approaches zero as frequency  becomes infinite. This 
condition assures that there is no delay for the high- 
frequency components of log I u ( t ) l ,  which is sufficient for 
a proper reconstruction of the axis crossing behavior of 
the  component v(t). 

Another  important practical consideration is that  the 
bandwidth required for  transmitting  and processing 
log 1 s(t)\ is considerably  wider than  that required for s(t) 
itself. This fact is best appreciated by reference to Fig. 16 
which  shows  a typical s(t) and  log [ s(t)l . Notice that  as 
s(t) passes through zero, log 1 s(t)l attempts to become 
negatively infinite. In mathematical terms, when s(t) pos- 
sesses a zero, log 1 s(t)l possesses  a  logarithmic pole. These 
logarithmic poles must be  reproduced fairly well  if the zero 
crossing behavior of d( t )  is to resemble that of s(t). In 
practice the bandwidth required for  audio is a few kilo- 
hertz. One  hundred  or  one  thousand times this bandwidth 
might be required to process log is( t ) l  satisfactorily de- 
pending upon  the degree  of precision required. This per- 
formance is easily  achieved  with present technology. 

An unusual  situation arises if K is made negative. A 
form of supercompression results in which the role of loud 
and soft  are reversed. For K= - I  very loud  sounds be- 
come barely audible while barely audible sounds  become 
very loud.  Fig. 17 shows  some typical signals. 

It ispossibleto  construct a simplefilter Lcf) which  causes 
compression and which also has a  simple inverse filter 
L-l(f) which  causes exactly complementary  expansion. In 
this way  a  new type of compression-expansion  system can 
be constructed. Fig. 18 shows  such a system in which a 
noisy  channel is to be upgraded for  audio use by  pre-com- 
pression and post-expansion [ 111. If the channel is as- 
sumed perfect, which of course it is not,  then  the com- 
pressor and expander,  being exactly inverse systems, oper- 
ate as an exactly compensating pair  and the received signal 
s”‘(f)=s(t). For only  mildly  degraded  channels this  situa- 
tion is closely approximated.  This  statement has  been 
demonstrated empirically in  the  laboratory  in applications 
involving data recording channels. In these situations it was 
discovered that  the channel  imperfection  which most seri- 
ously affects performance is phase shift at low  audio fre- 
quencies. For dc coupled  channels this is never a problem, 
however. The level of degradation  is mild in typical ac 
coupled situations but provides an occasional serious 
problem in applications requiring maximum quality. The 
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s ( t )  

s ’ ( t )  

Fig. 17. 

Fig. 18. 

A typical s(t) and its supercompressed counterpart. 

log ) S ” ( t ) l  

A compression-expansion system employing a pair  of 
complementary  multiplicative filters. 

I 1 I I 

mechanism of the difficulty  is  easily  described in terms of 
a hypothetical s(t) composed  of two  harmonically related 
sine  waves, the  amplitude  and  phase of  which are adjusted 
to yield a waveform  which  is small for  a large percentage 
of time. The log of this signal  will  have a relatively small 
average value as a result of this property. If the  two sine 
waves are shifted  in  relative phase by 30” or so, s(t) would 
no longer be small for such  a large percentage of time  and 
thus log 1 s(t)/ would have a larger average  value. In this 
way channel  phase shift at low  frequencies can  cause mild 
envelope distortion in terms of the operation of a multipli- 
cative compressor. See Fig. 19.4 

The Multiplicative Processing of Images 

The second application of multiplicative  filtering to be 
discussed  involves the processing of images. This applica- 
tion is motivated very  directly,  because  image formation is 
predominantly a multiplicative  process. This statement 
applies equally to natural  and  photographic images [ 131. 
In a natural scene, the illumination and reflectance of ob- 
jects are  combined by multiplication to form observable 
brightness. The illumination and reflectance  in a scene  vary 
independently from object to object and  from point to 
point, thus  forming a brightness image. In terms of its pro- 
jection onto the retina this image forms a two-dimen- 
sional spatial signal as expressed  by 

A channel imperfection which might at first seem troublesome 
is additive channel noise. It has been verified both theoretically 
[ E ]  and experimentally that additive noise at moderate levels does 
not have a major effect on the performance of the type of systems 
which we are discussing. 
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Fig. 19. s(t) and log l s ( t )  1 before  and  after envelope distor- 
tion due to an  ac  coupled channel. 

IZ,V = &,zl.rx,v > 0 (51) 

where  is the image, iz,y is its illumination component, 
and rz,g is its reflectance  component.5 

The first step in the  production of a  photographic scene 
is usually the manufacture of a negative transparency. The 
name  negative  is correct only in a multiplicative sense be- 
cause it is  really an inoerse image as expressed  by 

1 NZ,v = -- = IZ,?/-l = iZ,v-l.rr,zl-l (52) 

where Nx,zl is the negative  image.  If two  such negatives are 
superimposed by placing the transparencies one  on  top of 
the other,6 a third negative  image  is formed.  That  com- 
bined  image is theproduct of the  two  components as  given 

1% ,zl 

by 

Thus if  we  wish to process  images  using a homomorphic 
system that combines  its signals according to the law of 
image formation, that system must obey superposition 
multiplicatively. 

The image processor thus  formulated is depicted  in Fig. 
20 in accordance with our previous multiplicative discus- 
sions concerning real  positive  signals. It  has a response 
image 

I - ’  I Ix,v - z , , ~  .rz,zl’ > 0 (54) 

which  is the product of the separately processed illumina- 

We preclude zero image values on practical grounds. 
Such superpositions are a prevalent practice in professional 

photography, especially color lithography. 
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- log i x , y  + log lag i',,y+ log r i , y  U 

Fig. 20. A multiplicative filter for image processing. 

tion  and reflectance components.  This  formulation places 
in evidence three important properties of multiplicative 
image processors. Regardless of the specific  process in- 
voked by the system, the response I z , i  is always a physi- 
cally  meaningful  image in  the sense that  it cannot  contain 
points of negative brightness. The effect that  the process 
has upon  the appearance of objects in a scene is indepen- 
dent of the light falling upon  those objects, whether bright, 
dim, or variable. Similarly, the effect that  the process has 
upon  the  apparent light falling upon objects is independent 
of the  nature of those objects. 

If log iz,y and log Y ~ , ~  were to possess  frequency compo- 
nents  occupying separate frequency areas,' the image 
processor  could be designed to perform different process- 
ing  tasks  upon  the illumination and reflectance compo- 
nents of an image. In practice the illumination and reflec- 
tance  components of typical images  behave in a  manner 
similar to  the envelope and vibration functions of the 
audio application. Illumination generally varies slowly, 
while  reflection is sometimes static and  sometimes  dy- 
namic,  because objects vary in texture and size and almost 
always  have  well-defined edges. Thus only partially inde- 
pendent processing is possible. 

A quantitative measure of the  actual  spectral  content of 
typical logged  images  was obtained  through  computer 
analysis of the  four scenes  presented in Fig. 21. The two- 
dimensional  periodograms for  the various log I.c,, were 
computed. They are shown in Fig. 22 where relative bright- 
ness represents the magnitude of the periodograms on a 
decibel scale. In all cases the lowest  frequency components 
are very dominant.  To produce a  broader view  of spectral 
content the  log images  were  processed by a whitening filter 
and  the periodograms reevaluated. The results of this  alter- 
native process are presented in Fig. 23. The two-dimen- 
sional frequency characteristics of the whitening filter are 
shown  in Fig. 24.  Although the whitening process was  only 
approximate  the corresponding periodograms clearly show 
the high-frequency components of the log images. 

The  logarithms of all four tested scenes  were character- 
ized  by an extreme  peak in low-frequency  energy content 
and, with  minor exceptions, had similar whitened spectra. 
This two-dimensional data is reminiscent of the one- 
dimensional  spectrum  computed for typical log  audio  and 

7 Recall that for images the frequency domain is two-dimen- 
sional. 

shown in Fig. 13.  Again there is  an implicit suggestion of 
two spectral components, one  a low-frequency  peak, the 
other  a middle- and high-frequency plateau. While it is 
probably incorrect to associate the peak solely with physi- 
cal illumination and  the  plateau entirely with object re- 
flectance, an approximate association of this type has 
proved most useful in effecting  designs  involving partially 
independent processing of the corresponding  image  com- 
ponents. Before  discussing  such  designs let us explore some 
of the simpler aspects and uses  of the image processor. 

If the linear component of the image  processor is chosen 
as a simple amplifier or  attenuator with gain y, the image 
processor  becomes a power  law  device. The  output is  given 
in terms of the  input by 

Iz,lll = I X , ? , Y .  (55) 

The  parameter gamma  is well known to photographers 
who, by  selecting from  a variety of photographic materials 
and using shorter or longer  development times for them, 
control its numerical  value. For negative photographic 
materials y < 0 and so they can be thought of as multiplica- 
tive inverters. 

The general situation calls for the linear component of 
the image  processor to possess a gain  which is a  function 
of frequency in two  dimensions.  Using script letters to 
represent two-dimensional Fourier  transforms,  and X and 
Y to represent the frequency variables corresponding to x 
and y, we can  then write 

. k Y '  = & i , Y . Y X , Y .  

Under these circumstances the image  processor can  be 
thought of as having a frequency-sensitive gamma in the 
sense that  it exhibits a different power  law  behavior for 
each sinusoidal component of the  logarithm of the  input 
image. If we write the  input image as a  product of compo- 
nents having sinusoidal logarithms, we obtain the follow- 
ingdoubleproduct: 

12.a = r]II II PX,Y;s ,y .  (56) 
X Y  

The  output image is then given by a  double  product in 
which each of these components is raised to  the appropri- 
ate power: 

I z , y '  = IT TI ( P X , Y ; x , g )  (57) 
x Y 

A problem common to all forms of image  technology is 
that of  excessive  dynamic range. Scenes  with  excessive 
light-to-dark  ratios  are usually handled by cramming them 
to fit the available medium  with the result that highlights 
lose their bright luster and lowlights are  without detail. The 
four scenes  of Fig. 21 have  been treated in  this manner. In 
an alternate  approach gamma  may  be  selected as less than 
unity so that  the image has  a reduced ratio  and may be 
reproduced without exceeding the limited dynamic  range 
of practical media. If carried to extremes, this gives the 



Fig. 21. Four original images. 

OPPENHEIM et al.: NONLINEAR FILTERING OF MULTIPLIED AND CONVOLVED SIGNALS 449 



Fig. 22. Log periodograms  for  the lag images  corresponding to Fig. 21. 
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Fig. 23. Log periodograms for the  whitened log images corresponding to Fig. 21. 
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Fig. 24. The whitening filter  frequency response, one  quadrant 
shown. 

image a muddy  or washed-out  appearance. Fig. 25(A) 
shows the original scene of Fig. 21(A) after it  has been 
processed  by an image  prosessor  with a gamma of one- 
half. For some applications, gammas greater than one  are 
used in  an attempt to give  scenes  more  sharpness about 
the edges  of objects. For example, Fig. 25(B) shows the 
scene  of Fig. 21(A)  processed  by a gamma of two. A com- 
mon consequence is that dynamic  range capacities are 
exceeded  even  more than before. 

While the reduction of dynamic  range and the enhance- 
ment of  edge  sharpness  seem to be conflicting objectives, it 
is possible to achieve both simultaneously by employing a 
multiplicative image  processor  having a linear component 
with a frequency-dependent gain. To explain this we must 
return to our previous discussions concerning the partially 
independent  processing of illumination and reflectance 
components. 

The  large dynamic range encountered in natural images 
is contributed to mostly by large variations in illumination 
&, which we recall contains primarily low frequencies in 
its  logarithm. The edges of objects, on  the  other  hand,  con- 
tribute only to the reflectance component Y ~ , ~  of a scene, 
indeed, primarily to the high frequencies of its  logarithm. 
It follows that if one desires to maintain normal  contrast 
for  the details of an image, but  demands  a reduction in 
dynamic range, the gain of the linear component should  be 
unity for high frequencies and less than unity at low fre- 
quencies. This situation is identical to  that considered for 
the  audio compressor. 

Fig. 25(C) presents the image of Fig. 21(A)  processed 
with the system of Fig. 20 in which the  linear system had 
the frequency  response depicted in  Fig. 26.  This filter was 
chosen to be spatially isotropic  and so a one-dimensional 
plot of frequency  response  is  sufficient for its unique speci- 
fication. It also follows that the  phase shift of the linear 
filter was zero at all frequencies. Notice that  at low fre- 
quencies the gain of the filter was one-half, while at high 
frequencies it was unity. In Fig. 25(C) the areas which  were 
dark  in  the original scene  have  been made  far  more visible 
as if illuminated with auxiliary lights, but  without  disturb- 
ing  the rendition of the brightly lighted areas.* This effect 

8 Results similar to this can be obtained by means of the classical 
photographic technique of unsharp masking [14] or by use of a 
logetronics printer [15]. 

and  the effect  of  sharpening through  the use  of  gammas 
larger than one are obtained  simultaneously in the picture 
of Fig. 27. In this case, the frequency  response  was as given 
in Fig. 28.  Again the filter had isotropic properties, so a 
one-dimensional  frequency  response  curve  was  sufficient 
to specify it uniquely, and again the phase  was zero. Notice 
that while the gain at low frequencies was  maintained at 
one-half, the gain at high frequencies was increased to two. 
Fig. 27  is a kind of blend of Fig. 25(A) and (B) in which the 
best properties of both have  been retained and the worst 
properties of both greatly reduced. Relying upon  our ap- 
proximate analysis which  assigns the lowest-frequency 
components of an image to the illumination and  the 
higher-frequency components to  the reflectance, we can 
see that according to  our definition of partially indepen- 
dent processing the illumination component  has been 
treated by a gamma equal to one-half while the reflectance 
components have  been treated by a gamma equal to two. 
This  situation is summarized as follows: 

I - '  1 I Iz,l, - tz,l, .rx,fI - ix,v0.5.rz.7j2. (58) 

Since the large brightness ratios in a subject are usually 
produced by large  variations in illumination, the fact that 
L!,' contains  the  square root of the original illumination 
explains why the brightness ratio is reduced. On  the other 
hand,  the reflectance component has  the same [Fig. 25(C)] 
or greater (Fig. 27) variability than  in  the original and 
thus details  are preserved or enhanced. As has been 
stated, (58) is  only an  approximate  equation. In fact, the 
illumination which formed the scene certainly contains 
some high-frequency components while the reflectance 
function certainly contains some  low-frequency compo- 
nents. A communications engineer would  say that there is 
cross talk between these two components of the original 
image. Thus, in the processing  used to obtain the image 
of Fig. 27,  some components of the illumination function 
have  been increased and some components of the reflec- 
tance  function have  been decreased. Subjectively, these 
are  not obtrusive. However,  they are  there  and can  be 
seen most easily, especially if they are  pointed  out. Spe- 
cifically, in  Fig. 27 the glow around  the  doorway  making 
the building look whiter than it really is in  the vicinity of 
the blackened room,  the intense brightness level  of the 
door dampener,  and  the white ring around  the boiler- 
shaped object inside the  room  are typical artifacts of this 
type.  Others  can be  seen in Fig. 29(A), (B), and (C), which 
bears  the same relationship to Fig. 21(B), (C), and (D), 
respectively, as  Fig. 27 does to Fig. 21(A). In spite of these 
approximations,  the use  of these methods in  the process- 
ing of images has obvious practical implications wherever 
dynamic  range is limited and  the preservation of details is 
important. It has  the  additional  advantage of obeying a 
law of superposition which facilitates analysis through 
classical techniques  while operating according to  the same 
rules of combination that form the original subject infor- 
mation. The degree to which the artifacts in Fig. 27 and 
Fig. 29(A),  (B), and (C) are visible is a  strong  function of 
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Fig. 25. The image of Fig. 21(A) processed  using (A) y=$, (6) 7'2, and 
(C) a frequency-dependent y with  low-frequency attenuation. 
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Fig. 26. The radial cross section of the multiplicative  frequency 
response used to  produce Fig. 25(C). 

Fig. 27. The image  of Fig. 21(A) processed using a frequency-depen- 

dent y with low-frequency  attenuation  and  high-frequency  amplifica- 
tion. 

the exact nature in which the frequency  response  of Fig. 
28 makes its  transition  from one-half at low frequencies 
to two at high frequencies. Fig. 30(A) and (B) were ob- 
tained  from the image of Fig. 21(B) in  the same manner as 
was Fig. 29(A),  with the exception of the frequency re- 
sponse shape used. These  frequency  responses are shown 
in Fig. 31(A) and (B), respectively.  Both  frequency re- 
sponses are characterized by a  rather rapid transition 
between the high-frequency asymptote of  two and  the 
low-frequency asymptote of one-half. They differ, how- 
ever, in  that  the transition occurs in  the case of Fig. 31(A) 
at a relatively high  frequency and in Fig. 31(B) at a rela- 
tively  low frequency. The halo and flaring effects  of Fig. 
30(A) and (B) are  more objectionable by far  than those of 
Fig. 27. The frequency  response of Fig. 28 is a compro- 
mise. That of Fig. 31(A) favors flare along  large objects 
at  the expense  of halo  around small ones. That of Fig. 
31(B) favors  halo  around small ones at  the expense of 
flare along large. 

1 .o 
0.5 

I + 
0 

fr 

Fig. 28. The radio1 cross section of the multiplicative frequency 
response used to produce Fig. 27. 

The compromise characteristics of the frequency re- 
sponse  of Fig. 28 were arrived at through  an  attempt to 
find the frequency  response  which  would treat large and 
small objects equally or nearly so. Since the two-dimen- 
sional  Fourier  spectrum of an object  contracts as  the 
object grows in size and  spreads  as  the object shrinks in 
size, a frequency  response characteristic which is some- 
what invariant to changes in frequency scale would  meet 
the objective. A characteristic possessing some invariance 
is the logarithmic frequency function.  This invariance 
property is described by 

log Af = log A + log f .  (59) 

If  we think of the parameter A as  a scale factor on an 
image  of standard size, then we see that, except for  an 
additive constant,  the frequency  response  which an 
image encounters after magnification or reduction by the 
scale factor A is the same as that which it  encounters at  its 
standard size. The frequency  response  of Fig. 28 is such a 
logarithmic characteristic to a first approximation. Only 
for frequencies extremely close to zero is the logarithmic 
variation altered to provide an asymptote to  the value of 
one-half rather than minus infinity. 

At this point  it is quite reasonable to ask  what effect 
ordinary linear filtering would have  upon  the images pre- 
sented here and to draw  a  comparison in effectiveness. To 
this end we present Fig. 32(A) and (B). Fig. 32(A) repre- 
sents the original scene  of Fig. 21(A)  processed  using the 
frequency  response  of Fig. 28 in an ordinary linear filter- 
ing process and biased for best appearance. The results 
are instantly striking, but careful examination reveals 
some severe  drawbacks. The most serious of these is the 
black halo  around  the inside of the doorway in which all 
detail is lost. While the visibility inside the  room  has been 
increased the improvement falls short of that obtained 
multiplicatively in Fig. 27. Finally, there  are many places 
in  the scene that  are much darker  than they  should  be. 
Most of these problems are associated with the fact that 
the  linear processing employed produces negative bright- 
ness values in the processed  image  which due to the half- 
wave rectification of photographic processing appear  as 
black. The  addition of minimum bias sufficient to elimi- 
nate negative brightness results in a washed-out  image 
of such poor  quality that we do  not show it here. Fig. 

454 IEEE TRANSACTIONS ON AUDIO AND ELECTROACOUSTICS SEPTEMBER 1968 



Fig. 29. The remaining  images of Fig. 21 processed as in Fig. 27. 
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Fig. 30. Images  processed using abruptly  changing  frequency  characteristics. 

32(B) is a compromise in  this respect in which bias suffi- 
cient to restore the average  value  of the original image 
brightness is used. 

An effective approach  to  the  problem of television 
bandwidth  reduction [ 161, [ 171 centers around  the  idea of 
separating images into a relatively narrow-bandwidth 
low-frequency component  and  the conlplementary high- 
frequency component and preserving only a  small  fraction 
of the  information  in  the high-frequency component  in 
the form of edge contours. At  the receiver, the edge con- 
tours  are used in  an  attempt to re-create the high-fre- 
quency component. The results are combined  with the 
low-frequency component to produce an approximation 
of the original image. Standard practice has been to con- 
sider the low- and high-frequency components of the 
image in  the  additive sense in  keeping  with the established 
traditions of signal processing. If these components are 
taken  in the multiplicative sense, the results can be con- 
siderably enhanced. There  are two  reasons for this. When 
the  components  are  taken  in  the additive sense, poorly 
illuminated edges  may  remain  undetected during  the pro- 
cess of bandwidth  reduction. In the multiplicative case, 
all edges are represented equally by the high-frequency 
component since variations in illumination have  been 
more  or less separated out with the low-frequency  com- 
ponent. Since any  bandwidth  reduction process  will in- 
troduce  errors in the image and practice indicates that 
these errors occur more  or less uniformly throughout  the 
picture, then  in the additive case poorly illuminated por- 

Fig. 31. The multiplicative  frequency responses used to produce 
the images of  Fig. 30 from the  image of Fig. 2 1(B). 

(A) ( B) 
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tions of the image  will  be dominated by error  and  thus 
rendered totally useless.  If the process is carried out mul- 
tiplicatively, constant  errors are made in terms of the 
logarithm of the picture and  thus represent proportional 
errors  in  the final image. In this way, brightly illuminated 
areas  and dimly illuminated areas  are  treated equiva- 
lently. 

Fig. 33 represents an image as  it  appears  in the various 
stages of bandwidth  reduction  when the process is carried 
out using both  the  traditional ideas of additive superposi- 
tion  and  those of multiplicative superposition. The Iow- 
frequency  images of Fig. 33(Aj and (Bj are subjectively 
nearly indistinguishable and,  for  all  intents  and  purposes, 
appear much the same as a defocused photograph.  The 
edge contours of Fig. 33(C) and (D) are markedly differ- 
ent, however.  These  images  were  produced  by differentiat- 
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(A)  Biased  for  best  appearance. (B) Average  value  of  image  restored. 

Fig. 32. Two versions of the image of Fig. 21(A) processed as in Fig. 2 7  but using an ordinary  linear filter rather  than a multiplicatlve  filter. 

ing the original images in two dimensions and clipping 
the  results  into  three levels as dictated by suitably  adjusted 
thresholds.  Notice that for  linear processing there  is less 
edge contour  information  in  the regions corresponding 
to  the  dark  areas of the original. The artificial-highs 
images of Fig. 33(E) and  (F) which  were produced directly 
from  the edge contours by restoration filters can be com- 
pared similarly. The  reduced-bandwidth recreated images 
of Fig. 33(G) and (H) differ much as would be expected 
from  the  statements made above. In the most brightly 
illuminated areas, the  preservation of details is more  faith- 
fully carried  out by the  linear process. In the most dimly 
illuminated areas, however, the  preservation of details  is 
more faithfully carried out by the multiplicative process. 
Histograms of brightness  for typical scenes are heavily 
skewed towards black. Similar histograms of the log- 
arithm of these scenes reveal more or less rectangular 
distributions of log  brightness placing equal weight on 
bright  and dark areas.  This  fact  further  favors  the use  of 
the multiplicative scheme. Since the eye  is sensitive more 
nearly to brightness  ratios  than to absolute  brightness, it 
is not surprising that percentage  errors  are to be  preferred 
on a subjective basis. A drawback to the  multiplicative 
process is that  the bandwidth-reduced edge contour 
image of Fig. 33(C) contains  more  information  than  its 
counterpart of Fig. 33(D) and  thus,  all else  being equal, 
the use of the multiplicative scheme can  result  in smaller 
bandwidth  reductions.  This  fact is suggested by the first- 

order  entropies  of the actual  numerical samples of 
Fig. 33(C) and (D) which are 1.077 and 0.945 bits  per 
picture element, respectively. 

The images presented here were all processed digitally 
by the TX-2  computer at the M.I.T. Lincoln  Laboratory. 
The  analog signal from  a  low-noise  rotating  scanner was 
fed to a twelve-bit analog-to-digital  converter  and  the 
resulting  numbers  stored  in  the  computer memory. Tests 
have  shown that these  numbers  contain ten bits of  signifi- 
cance. Each image was represented by a  square  array, 340 
samples  on  a side. Before deposition  in  a  permanent 
image library,  the twelve-bit samples were converted to 
logarithms, the most significant nine  bits of which  were 
maintained. 

The  linear processing was performed  through  the use of 
high-speed convolution  methods [l8] applied  in  two 
dimensions.  The  two-dimensional  isotropic  convolution 
kernels were determined through the Hankel  transforms 
[17]  of the defining frequency characteristics of Figs. 26, 
28, and 31 truncated to possess nonzero values inside 
circles with diameters of about 80 picture elements. Each 
convolution  required  about 13 minutes. 

Photographs of processed images were made by  ex- 
ponentiating  the filtered image logarithms and controlling 
a vector-drawing computer  graphics display [ 191 with the 
resulting  eight-bit numerical values. The  control was ar- 
ranged to vary the velocity of scan while holding the 
cathode  ray  intensity at a  standard  constant level, thus 
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(A) low-pass,  multiplicative. (B) Low-pass,  linear. 

(C) Edge contours, multiplicative. (Dl Edge contours, linear. 

Fig. 33. The image of Fig. 21(C) in various stages of bandwidth  compression. 
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(E) Artificial highs, multiplicative. (Fl Artificial highs, linear. 

(G)  Recreated,  multiplicative. (H) Recreated,  linear. 

Fig. 33 (Cont’d). 
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avoiding the complications  of beam  and  phosphor non- 
linearity. The  time to display an output image  was be- 
tween ten  and fifteen  seconds  depending on average 
scene brightness, thus  permitting real-time viewing in a 
darkened room  as well as ordinary  photographic  record- 
ing  through time  exposure. For  the  latter, special digital 
compensation curves  were  used to straighten the  non- 
linear  photographic  characteristics of the films  employed, 
thus resulting in  much  improved image quality. 

Homomorphic Filtering of Echoed Signals [20], 121 ] 
In many areas of application, signals are  transmitted  or 

recorded in  a reverberant  environment, Le., one  which in- 
troduces echoes. Reverberation arises, for example, in 
audio recording, in  multipath  communication,  and in 
radar  and  sonar detection. In many cases we  wish to 
remove the distortion represented by the echoes, or to 
recover the echo structure as a means of probing  and 
characterizing the  channel. 

A simple  model for  the  distortion  introduced by re- 
verberation is a convolution of the original waveform  with 
a train of  weighted  samples, i.e., 

4%) = 44 @ p ( 4  

p ( n )  = ad(n - n k )  

m 

k=O 

where s(n) and x(n) are  the original and  distorted wave- 
forms, respectively. The analysis presented previously 
suggests that  in applying the notion of homomorphic 
deconvolution to separating  the echo pattern  and  the 
original waveform, we determine  the complex logarithm 
of the  z-transform of x(n), the distorted waveform, and 
then  look for a  property of  each of the  components that 
permits their separation by means of linear filtering. To 
help  focus the  approach  let us first consider the case of a 
simple echo, i.e., 

p(n) = S(n) + ad(n - no) 

so that 

~ ( n )  = ~ ( n )  C3 [S(n) f aS(n - no)]. (60) 

The  z-transform X(z)  evaluated on  the  unit circle is 

X(ej.1 = X(ejw) [I + a e - j ~ ~ o ] .  

We  observe that  the contribution  due to  the echo is a 
periodic function of w with  period 2a/no. Furthermore,  its 
repetition rate increases as no increases so that longer echo 
times are manifested by more  rapid  fluctuations in the 
spectrum.  Since the  logarithm of a periodic waveform 
remains periodic with the same repetition rate, the echo  is 
represented in  the log  spectrum as an additive periodic 
component. 

The character of the log spectrum of p(n) suggests the 
possibility that we may separate the contributions of 

s(n) and p(n) by removing the  variations in the log spec- 
trum which  occur at repetition rates which are multiples 
of 2a/no. Thus  the  linear filtering would  convolve the 
complex log  spectrum with a kernel designed to remove 
the periodic components. 

Since  convolution in frequency corresponds to a multi- 
plication in time, we may view this linear filtering as a 
multiplication of the complex  cepstrum by a fixed  weight- 
ing. Specifically, we observe that periodic variations in 
the log  spectrum  contribute to  the complex  cepstrum  only 
at values of n which are multiples of the echo  time no, in 
precisely the same  way that a periodic time function with 
period T has spectral components at only those frequen- 
cies  which are multiples of 1/T. Then  the  “comb” filtering 
suggested  above  will  correspond to multiplying the com- 
plex  cepstrum  by a weighting  which is unity except in re- 
gions that  are multiples of the echo  time no, in which case 
the weighting  is zero. This class of filters is depicted in 
Fig. 34. Clearly the  notion of comb filtering can  only  be 
successful if  we have approximate  information  about  the 
echo time. If  we do  not have this information,  and if the 
complex  cepstrum of s(n) is  concentrated  near n = 0, then 
we can replace the idea of comb filtering with that of 
“low-time’’ filtering, that is, weighting the complex cep- 
strum by unity  near the origin and zero otherwise. In 
terms of the  log spectrum this filtering corresponds to as- 
sociating the slow variations with s(n) and  the rapid varia- 
tions with the echo pattern p(n). An alternative is to use 
an adaptive  procedure whereby the parameters of a  comb 
filter are based on a measurement of the echo time. Such a 
measurement can  be based on  the  fact  that  a  peak is ex- 
pected to occur in  the complex  cepstrum at multiples of 
the echo time. If  we return to the more general case of 
multiple echoes, we recognize that as long as the echoes 
are equally spaced so that 

m 

p ( n )  = ad(% - kno) 
l i=O 

the approach is essentially identical to the case of a single 
echo. If the echoes are  not equally spaced the  situation be- 
comes more complex since we can no longer localize the 
effect  of the echo pattern  in  the complex  cepstrum. 

In principle the approach  taken to echo  removal by 
means of homomorphic filtering is based on  the reasoning 
presented  above.  However, the  above discussion assumes 
that we have available the  entire waveform x(n) and  are 
able to compute  its  Fourier  transform.  The more typical 
situation in practice is that  the waveform s(n) is indefinite 
in duration  and consequently it  is impractical to compute 
the  Fourier  transform of the  entire waveform. In addition, 
there  are  situations in which the reverberation times  vary 
slowly. Thus we are led to considering  echo  removal in 
which a short-time analysis of the waveform  is more  ap- 
propriate. In this case the waveform  is  processed in pieces 
and  the results fitted together to obtain  the  output.  To 
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Fig. 34. A linear  time-varying "comb" filter  for removing the compa- 
nent in the complex cepstrum due to a simple echo. 

illustrate how this  can be done,  let us again consider a 
simple echo as in (60) and  for which s(n) is a waveform of 
indefinite duration.  The  situation is depicted in Fig. 35(A) 
where s(n) is represented by the solid curve and as(n-no) 
is represented by the  dotted curve. Let us consider seg- 
ments of x(n) consisting of L samples. To facilitate  our 
discussion, we define for f = 0, L, 2L, . . . , 

~ ( f ,  n) = x(.$ + n) 0 I n < L 
= o  otherwise. 

From Fig. 35(A) we see that,  in general, a  particular seg- 
ment of the  input  can be expressed in  the  form 

x((, n) = 4!, n> + 4 5 ,  n - no) + 4 ,  4 
where 

d f ,  n) # 0 0 5 n < L 
= 0 otherwise 

and 

e ( E , n ) # O  OI:n<no and L i n < L + n o  
= o  otherwise. 

The  term e(f, n) accounts  for  the  overlap of the  echo  from 
the previous segment at  the beginning of the segment and 
the  overlap  into  the next segment at the  end of the seg- 
ment. Since  it is the  amount by which s(f, n) fails to have 
the desired form, e(g, n) is referred to as  the  error  in  the 
segment. 

The  nature of the  errors is depicted in  Fig. 35(B) for 
three consecutive segments of the  input of Fig. 35(A). It 
can be seen that the  error  at  the  end of a segment is the 
negative of the  error at  the beginning of the next segment. 

If we take  the  z-transform of a segment of the  input, we 
obtain 

+--t+-k- 
e(E,,+2L,n) 

L L+n, 

Fig. 35. (A) A signal s(n) (solid line) and  delayed scaled replica  (dashed 
line). Each of the depicted segments L is to  be  represented  separately as 
the sum of a component signal, an echo of this  signal, and  an error. (B)  The 
error term in this representation  depicted  for each segment. 

Fig.  36.  The output due to the error terms of Fig. 35(B). Successive lines 
represent the response due  to the error term for  adjacent segments of 
length L in Fig. 35(A). Note  that the error at the end of one segment i s  the 
negative  of the error at the  beginning of the next segment. 
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where S(f, z )  is given  by 
L-I 

S(5, x )  = s(& n)x-n. 
n=O 

We note  that X(t ,  z )  is not simply a  product  as  it would 
be if the  entire waveforms were transformed. It is  true, 
however, that if 

L >> no 

then  there will still be impulses in  the complex cepstrum 
at no, 2n0, . . . . Removing these impulses is  equivalent 
to removing the  factor (1 + c r r n o )  in (61) so that oper- 
ating with the inverse characteristic system on the com- 
plex cepstrum with the impulses removed  yields an  output 
whose z-transform is 
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Fig. 37. An example  of homomorphic echo removal.  [A) 410 ms of speech sampled a t  10 kHz with the four traces from  top  to bottom representing 
contiguous  segments of 102.5 ms. (B)  The speech sample  of (A) with a  50-ms echo. (C) The speech sample of (B) processed to remove  the echo. 

If I CY\ < 1, then  the corresponding output sequence is 
m 

~ ( t ,  n> = ~ ( t ,  n) + ( - c r ) n e ( t ,  n - knd. 
L O  

Thus  the  output consists of the desired output segment 
s((, n) plus an  error  term.  This  error  term is  effectively the 
error  in  the  input segment  passed through  a  linear system 
whose  system function is the reciprocal of the  z-transform 
of the impulse train which represents the echoes. 

The  error  in the  output  for  the  three consecutive seg- 
ments of Fig. 35 is depicted in  Fig. 36. The figure suggests 
how the  output segments can be put together. If we simply 
add the  appropriately delayed output segments, the result 
will  be the desired output signal s(n). An alternate proce- 
dure is suggested  by the fact that if L>>no, the  error  in the 
output decays as n gets large. Thus there may  be large 
portions of each output segment  which are relatively free 
of error. In this case we can process overlapping  segments 
of length L, and save  only part of each output segment. l f  
we choose  segments  such that  the portions saved are con- 
tiguous parts of the waveform, these pieces can simply  be 
placed  end-to-end to produce  the  output. 

This approach to echo  removal has been carried out on 
the TX-2 computer  at  the  M.I.T. Lincoln Laboratory 
using  speech as the original waveform  with  echoes arti- 
ficially introduced.  Informal listening tests indicate that 
echoes  can  be  removed to  the extent that they are  inaudi- 
ble with  only  minor degradation of the speech. An illus- 
tration of typical waveforms  obtained is shown in Fig. 37. 
Fig. 37(A) represents 410 ms of  speech  sampled at 10 kHz 
with the  four  traces  from  top to  bottom representing con- 
tiguous segments of  102.5  ms. This waveform  with a 
50-ms  echo is shown in Fig. 37(B). The result of carrying 
out  the processing which has been described above is 
shown in Fig. 37(C), indicating that  the echo has, to a 
large extent, been  removed. 

Deconvolution of Speech [22], [23] 

During voiced sounds  such  as vowels, the speech  wave- 
form may  be  considered as  the result of periodic puffs of 
air released  by the vocal cords exciting an acoustic 
cavity, the vocal tract [4]. Thus a simple and often useful 
model of the speech  waveform consists of the convolution 
of three components, representing pitch, the shape of the 
vocal cord  or  glottal excitation, and  the configuration of 
the vocal tract.  Many systems for compressing the  band- 
width of  speech and  for carrying out automatic speech 
recognition have as  the basic strategy the  separate isola- 
tion  and  characterization of the vocal tract excitation and 
the vocal tract impulse response. Thus many  speech pro- 
cessing  systems are directed in part toward carrying out  a 
deconvolution of the speech  waveform. 

As in  the previous  example of echo removal, the speech 
waveform is a  continuing signal and therefore must  be 
processed on a short-time basis. Thus we consider a por- 
tion s(t) of the speech  waveform as viewed through  a 
time-limited window w(t). Although the vocal tract  con- 
figuration changes  with time we  will  choose the  duration 
of the window to be sufficiently short so that we can as- 
sume that, over this duration,  the shapes of the vocal tract 
impulse  response and  the glottal pulse are  constant.  Then, 
if  we denote by p( t )  a  train of ideal impulses  whose  timing 
corresponds to the occurrence of the pulses released  by the 
vocal cords, by g(t) the shape of the glottal pulse, and by 
v(t) the impulse  response of the vocal cavity, we express 
s(t) approximately as 

do = [ P ( t )  c3 g ( t )  63 f J ( 0 I d Q .  (62) 

Furthermore, if w(t) is smooth over the effective duration 
of the  glottal pulse and  the vocal tract impulse response, 
then we can approximate (62) as 

40 = [P(t)W(t)I c3 do c3 o ( 0 .  (63) 

Thus, if a  smooth window is used to weight the speech 
waveform we can consider the weighted aperiodic func- 
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Fig. 38. An illustration of the characteristics of the 
complex cepstrum for speech. 

tion as a  convolution of weighted pitch,  glottal pulse, and 
vocal tract impulse response. 

In keeping with the previous discussion we  wish to 
phrase our remarks  in  terms of samples of s(t), which we 
denote by s(n). Assuming that we can replace the  con- 
tinuous  convolution of (63) by a discrete convolution  of 
samples of each of the  component terms, we write that 

4n) = C P ( 4 W ( 4 1  €4 d n )  €4 4 n )  
or 

4%) = Plb)  69 dn) 69 44 (64) 

where w(n), g(n), and v(n) are samples of tu(& g(t), and 
v(t), respectively, and pl(n) is  a  train of unit samples 
weighted with the window ~ ( n ) .  

The vocal tract impulse response v(n) is often  modeled 
as  the response of a cascade of damped resonators so that 
its  z-transform is 

K 
V(X) = ,M ___ 1 ai1 < 1. 

(1 - aiZ-1) (1 - ai*x-') 
i-1 

In this case, v(n) is minimum phase, and  it follows from 
(31) that .^(a), the complex cepstrum of v(n), is of the  form 

io n<O 
where 

ai = 1 ail ejui. 

Thus, $(n) decays as l /n and  therefore tends to have its 
major  contribution  near  the origin for n> 0. 

An accurate analytical representation of the  glottal 
pulse g(n) is not known and consequently it is difficult to 
make any specific statements regarding the  characteristics 
of its complex cepstrum g(n). However, we can expect in 
general that g(n) is nonminimum  phase [24]. Expressing 
g(n) as  the  convolution of a minimum phase sequence 
gl(n) and  a maximum phase sequence g2(n), we  will as- 
sume that gl(n), which is zero  for n < 0, and tz(n), which 
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Fig. 39. An example of the deconvolution of speech. (A)  Original 
sample of the vowel "oh" for  a male speaker. ( 6 )  Complex 
cepstrum of  the  sample of (A). ( C )  Recovered pitch pulses pl(nl. 
The Hanning  weighting applied to the original speech should b e  
reflected in this output. (D) Recovered impulse response function 
reflecting  the combined effects of  glottal pulse and vocal  tract 
impulse response. (E) Resynthesized speech using the impulse 
response of (Dl and pitch as measured from (C).  

is zero for n>O, both have an effective duration which is 
less than  a pitch period. 

The complex cepstrum of the  train of weighted unit 
samples representing pitch is, as we have seen previously, 
a train of weighted unit samples with the same spacing. 
Thus, we can diagrammatically represent  the complex 
cepstrum  as in Fig. 38. 

The  components of s(n) due to pitch and to the com- 
bined effects of vocal tract  and  glottal pulse tend to pro- 
vide their primary contributions  in  non-overlapping time 
intervals. The degree of separation will  of course depend 
to some extent on the  pitch, with more  separation  for low- 
pitched male  voices than  for high-pitched female  voices. 
Experience has  indicated, however, that except in  cases of 
very high pitch  a good separation of these components 
occurs. To illustrate, consider the example of Fig. 39. 
Fig. 39(A)  shows a  portion of the vowel  "ah" as in 
"father," with a male speaker,  and  Fig. 39(B) shows the 
complex cepstrum. Based on  the previous discussion, we 
can recover the  termpl(n) of  (64) by multiplying the com- 
plex cepstrum by zero  in  the vicinity of the origin (with a 
time-width of, say, 8 ms) and by unity elsewhere. Alter- 
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Fig. 40. Pulse obtained by retaining only 
those values in the complex cepstrum near the 

origin  for n <O. 

ndtively, to recover u(n)@g(n) we would  multiply the 
complex  cepstrum  by unity in  the vicinity  of the origin 
and by zero elsewhere. After this weighting, the result is 
transformed by means of the system D-I. In  Fig. 39 (C) is 
shown the result of attempting to recover the weighted 
train of pitch pulsespl(n). Pulses with the correct spacing 
are clearly e ~ i d e n t . ~   I n  Fig. 39(D) the result of retaining 
only the low-time portion of i(n), corresponding to  at- 
tempting to recover [v(n)@g(n)], is shown. To verify that 
the pulse of Fig. 39(D) can  be considered as a convolu- 
tional speech component the speech  was resynthesized by 
convolving this pulse with a train of unit samples  whose 
spacing  was  chosen to be a  pitch  period  as measured from 
the waveform  of Fig. 39(C). The resynthesized speech is 
shown in  Fig. 39(E) and  should  be  compared with the 
original speech  of Fig. 39(A). 

From  the diagram of Fig. 38 it  is clear that we could not 
expect to separate the glottal pulse g(n) and vocal tract 
impulse  response v(n) by  simple  weighting  of the complex 
cepstrum,  although we might  expect to recover the maxi- 
mum  phase part of the  glottal  pulse.  This  has been tried  in 
a few cases to verify the idea. An example of the type of 
pulse obtained  is shown in Fig. 40.  However, the value of 
recovering only the maximum phase  portion of the  glottal 
pulse is not  clear. 

To explore the feasibility of these ideas,  a speech 
analysis-synthesis system  based on homomorphic pro- 
cessing has been under investigation. In  the analysis the 
cepstrum is obtained by weighting the input speech  with a 
Hanning window  40  ms in  duration.  The cepstrum is 
separated into its high- and low-time parts with the cutoff 
time presently taken to be 3.2 ms. A decision as to 
whether the 40-ms  sample is voiced or unvoiced and a 
measurement of the  pitch frequency if  voiced  is made 
from the high-time portion. Thus, the synthesizer receives 
the low-time cepstral values, a voiced-unvoiced decision, 
and  a pitch frequency  measurement updated at IO-ms 
intervals. In the synthesizer, the pitch and voiced-unvoiced 
information is converted to  an excitation function  con- 

9 Pitch detection based directly on a measurement of the loca- 
tion of a peak in the cepstrum (as defined by Bogert et al. [6] )  has 
been  successfully demonstrated by No11 [25]. 

Fig. 41. (A) Spectrogram of original speech. The sentence is “yawning 
often shows boredom.” (6) Spectrogram of synthesized speech. 

sisting of impulses during voicing and noise during  un- 
voicing. The low-time cepstral values are converted to  an 
impulse  response function which is  then convolved  with 
the excitation function to form  the synthetic speech. 
Informal listening tests indicate that  the synthetic speech 
is of  high quality  and  natural sounding. In Fig. 41 are 
shown  spectrograms of a sentence before and after pro- 
cessing.1° 

VI. Conclusions 

The applications which we have  presented represent 
an  attempt to apply the point of  view  provided  by the 
theory of homomorphic systems to problems of  genera1 
practical interest. The  audio compression-expansion  sys- 
tem has been realized economically in analog hardware 
and  its success has led to  its use in equipment in which 
dynamic  range  compression  was required. As we have 
already stated, the other applications at present have 
been  simulated on general-purpose digital computers. 

The deconvolution of speech is being  pursued as an 
approach to obtaining a high-quality speech bandwidth 
compression  system  which can  be implemented in digital 
hardware with present technology. The  homomorphic 
processing of  images has immediate practical possibilities 
for non-real-time applications in  which a small computer 
with a graphics facility is available. The removal of echoes 
by homomorphic deconvolution appears applicable to 

10 The speech analysis-synthesis system was simulated on  the 
M.I.T. Lincoln Laboratory 1219 speech facility. Other  parts of the 
work described in this section were carried out  on the M.I.T. Lin- 
coln Laboratory TX-2 computer and the PDP-1 computer facility 
operated by the  Department of Electrical Engineering and the 
Research Laboratory of Electronics at M.I.T. 
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problems  in which processing can be carried out on a 
large  digital  computer. 

The full potential  of these and  other  applications relies 
to a  large  extent on the  advances which we can expect in 
system implementation. In particular, large-scale integra- 
tion  (both  analog  and  digital) most certainly will play a 
vital role in  providing  an efficient and inexpensive realiza- 
tion of real-time processing of the  kind which we have 
been discussing. 

It is natural  to  ask if there  are  other  areas of application 
for  homomorphic filtering. In this respect we offer the fol- 
lowing topics which we feel  deserve consideration. 

Applications of multiplicative filtering which  may have 
potential  are  compensators  for  channel  fading, systems 
for  simultaneous  amplitude  and phase modulation  and 
detection,  automatic gain controls  for  other  than  audio 
application,  ac  and  dc power regulators, and radar signal 
processing. 

Some problems  in  convolutional filtering which  may  be 
promising involve the  restoration of images blurred  in  an 
unknown  manner [26], the  suppression of multipath  dis- 
tortion,  the  enhancement of sonar signals, seismographic 
exploration, the sharpening of bioelectric signals blurred 
by propagation  through tissue, the analysis of probability 
density functions,  the measurement of auditorium acous- 
tics, and  the  separation of antenna  pattern  and  target 
impulse response in  radar  and  sonar  detection. 

During  the course of the research which resulted in  this 
paper,  the  thinking of the  authors was consistently influ- 
enced by some speculative ideas involving vision and  hear- 
ing. While these ideas  are presently being studied  and no 
specific conclusions have been reached, we  feel that  the 
paper would  be incomplete without  mentioning  them. 

The presence of a  logarithmic response in vision and 
hearing  has been accepted for some time. Even more 
readily evident, and mechanized through  the process of 
neural  interaction, is the means  for  linear filtering [4], 
[27], [28]. This  combination is so suggestive of both 
forms of homomorphic filtering which we have been dis- 
cussing that  questions  concerning  a possible relationship 
arose early during the research. Specifically, it seems rea- 
sonable to inquire whether to some approximation  the 
processes of vision and  hearing can be  modeled as  homo- 
morphic systems directed toward  a  separation of multi- 
plied components  in the case of vision and  a  separation of 
convolved components  in  the case of hearing.” While the 
question  as to whether a variety of psychophysical data 
can be modeled in these terms  is purely speculative at 
present, some preliminary investigations have  been en- 
couraging. If it can in  fact be verified that such models are 
reasonable,  the resulting point of  view may have a bearing 
on the design of communication systems for which the 
final receiver is the  human eye or the  human  ear. 

l 1  Although from a different point of view and with a different 
motivation, ideas suggestive  of this have appeared before. Marimont 
[29], [30] suggests a model for vision similar to the canonic form of 
Fig. 2. With regard to  hearing, Huggins 1311 discusses the  notion 
that hearing is a process of deconvolution, although the mechanism 
which he proposes is different from that discussed here. 
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