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Abstract

This thesis presents two topics related to the simultaneous calibration of a network of imag-
ing sensors, i.e. cameras, and the recovery of the trajectory of an object moving among
those sensors. The non-overlapping fields of view for the cameras do not cover the en-
tire scene, and therefore there are time steps for which no measurements are available. A
Bayesian framework is imposed on the problem in order to compute the MAP (maximum
a posteriori) estimate, the solution that maximizes the probability of the sensor network
configuration and target trajectory given the measurement set.

The first topic discussed is model order reduction to decrease the number of unknown
parameters in the motion and measurement models, thereby reducing the computational
requirements of the optimization algorithm. It is possible to reduce the dimension of the
search space, with no loss in accuracy, by treating the estimation of target’s trajectory while
it is outside the field of view of the network as an independent sub-problem that can be
solved at a later time. Additionally, one can further reduce the dimension of the search
space by taking advantage of the fact that the measurement noise is negligible compared to
other sources of error in the problem, and subsequently the measurements can be treated
as equality constraints in the optimization. This second procedure yields results that are
not equal to the solution determined by the original algorithm, with the magnitude of the
difference dependent on the covariance of the original measurement noise.

The second aspect of this thesis relates to improving the accuracy of the solution by taking
further advantage of missing measurement information. The original algorithm may yield
a solution that is infeasible with respect to knowledge of the times at which measurements
occurred. The MAP estimate may place the trajectory of the target inside the field of
view of one of the sensors at a time step for which no measurement is available. Three
techniques that treat the missing measurements as additional constraints on the problem
are presented. The first algorithm reformulates the problem as a mixed-integer nonlinear
(non-convex) programming problem. The second algorithm systematically explores only
feasible subsets of the search space, adding and removing constraints as needed according
to a simple set of rules. The last algorithm discusses the use of circular constraints to
approximate the actual sensor boundaries, which results in simpler problem formulation.

Thesis Supervisor: Charles E. Rohrs
Title: Research Scientist, DSPG
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Chapter 1

Introduction

Recovering the trajectory of a target from a sparse set of noisy measurements is a common

problem in a wide variety of fields. Questions arise as to how to optimally use the mea-

surement and missing measurement data to estimate the most likely path traversed by the

target. The problem can be complicated if the measurements are taken from sensors that

are not properly calibrated within a global map. The physical location or orientation of a

set of sensors may be not be known at the start of data collection. Historically, sensor net-

work calibration and target path estimation are treated as independent problems and many

algorithms for path estimation assume the measurements are taken from a pre-calibrated

network.

There are a wide variety of reasons why it may be difficult, if not impossible, to calibrate a

sensor network prior to the start of data collection. For example, in a military application,

a set of acoustic or imaging sensors may be dropped from an airplane onto a battleground,

rather than being carefully placed at specific locations by soldiers. In another military

application, a soldier may need to rapidly deploy a network of sensors inside a building in

order to detect and track the location of an enemy agent, and he or she may not have time

to carefully record the precise location and orientation of each sensor. In these two scenarios

not only is manual calibration impossible, but there are many reasons why self-calibration

of the network is also prohibited. First, in many military applications the network must

remain passive, so that the presence of the sensors cannot be detected by outsiders. This

rules out of the use of wireless communication between the nodes for calibration purposes.
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Second, it is not always possible to rely on passive GPS receivers for location identifica-

tion, due to either limited power availability or indoor use. As a result of these conditions,

it is often necessary to consider the joint problem of simultaneous calibration and target

path estimation. The problem can be easily formulated into a Bayesian framework and a

solution can be found that maximizes the posterior probability of an augmented state space.

In many applications, the sensor network cannot completely cover the global map, and

as a result there are missing measurements corresponding to those times for which the tar-

get is outside the field of view of the network. The goal of the sensor network is to not only

track the object during times when measurements are available, but also to find the optimal

trajectory between measurements. The target’s a priori motion model may be used for this

purpose, so long as the resulting track is feasible with respect to knowledge of measurement

times.

This thesis presents two aspects related to the simultaneous calibration of a sensor net-

work of non-overlapping video cameras and the recovery of the entire trajectory of a single

object moving between those sensors. Attention is restricted to an algorithm for computing

the trajectory of the target in batch form, rather than sequentially. The algorithm is essen-

tially a smoother rather than a filter, as it uses all of the data at the same time to update

its estimates of the sensor network parameters and position and velocity of the target across

all time.

The first topic analyzed is that of using preprocessing to reduce the size of the models

used, thereby reducing the computational requirements of the Newton-Raphson search al-

gorithm used to find the maximum a posteriori (MAP) point estimate to the joint calibration

and path recovery problem. Since the set of unknown quantities includes all of the sensor

parameters and then entire target trajectory, the problem quickly becomes computationally

intractable. Two methods are presented to decrease the dimension of the space over which

the algorithm must search. The first improvement removes from the state space those po-

sition and velocity entries corresponding to times for which no measurements are available.

The target’s motion model is adjusted to reflect multiple step transitions where needed.

The task of estimating the path between the sensors is then treated as an independent
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optimization problem. It is shown that the solution to this modified problem is exactly the

same as that of the full problem.

The next method to reduce the dimension of the state space takes advantage of the fact

that in the specific problem studied in this thesis, the measurement noise from the video

cameras is extremely low compared to other sources of error in the problem. As a result, the

measurements can be treated as constraints on the problem. It is then possible to eliminate

from the state space those position entries corresponding to times for which measurements

are available. The velocity entries can also be eliminated if the position measurements are

used to form local velocity estimates. The answer reached by this method is not exactly

the same as that determined by the full solution. It is shown that the error between the

two methods is inversely proportional to the standard deviation of the measurement noise.

The second topic analyzed in this thesis is that of making more efficient use of the missing

measurement information. Many algorithms rely solely on the target’s motion dynamics

to fill in the gaps between measurements. However, this often results in a solution that

is infeasible with respect to knowledge of the measurement times, since it may put the

target inside the field of view of one of the sensor’s corresponding to a time for which no

measurement data is available. One approach to properly address this problem is to refor-

mulate the problem in the context of a mixed-integer nonlinear (non-convex) programming

problem, in order to find the optimal solution that does not violate an additional set of

constraints. However, this new technique is computationally intractable, and falls into the

class of NP-hard problems. In an attempt to find a computationally tractable, although

possibly suboptimal, solution, an algorithm based on an adaptive Newton-Raphson search

is presented. This algorithm explores only feasible regions of the search space, adding and

removing active constraints according to a simple set of rules. Lastly, an approach based on

circular constraints to approximate the sensor boundaries is presented. If an appropriately

sized circle is used, this technique results in a feasible solution while requiring the execution

of only a single, although highly constrained, optimization problem.

Chapter 2 provides a summary of past research in the areas of calibration and path re-

covery, with particular focus on networks of cameras and joint calibration/path recovery
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problems. In Chapter 3 the problem formulation is presented, including a description of the

target motion model, measurement model, and a batch algorithm for computing the MAP

(maximum a posteriori) configuration of the sensors and target trajectory. Two methods

to reduce the computational requirements of the algorithm used to find the MAP point

estimate are presented in Chapter 4. Chapter 5 describes three methods to improve the

accuracy of the MAP solution by further taking in account knowledge of missing mea-

surements, so that the resulting solution is feasible with respect to knowledge of when

measurements occur. Finally, Chapter 6 provides a discussion of the results presented and

outlines future work in these areas.
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Chapter 2

Background

This chapter presents a survey of related work in the fields of camera calibration, simulta-

neous calibration and tracking, and the efficient use of missing measurements in tracking

systems. In addition, it includes a discussion of the tradeoffs between systems that process

the measurements sequentially versus systems that process all the measurements at the

same time in batch form. A discussion supporting the use of a batch algorithm in this

research is presented, and in particular the reasons for not using an approach based on a

particle filter are given.

2.1 Camera Calibration Methods

Many methods have been developed for the sole purpose of calibrating a network of cameras.

In the context of this thesis, calibration consists of recovering the pose parameters for each

device, such as the translation of the camera from some reference point and its rotation

about some reference direction, e.g. due north. The first set of techniques discussed below

deal with scenarios when the field of view of the cameras do not overlap, while the second

set of algorithms propose methods to exploit overlap in the field of view to recover the

relative locations of the cameras.

When the field of views for a network of cameras do not overlap, it may be possible to

rely on additional capabilities within the nodes to perform automatic self-calibration. For

example, in an outdoor environment, one could deploy the sensors with built-in GPS re-

ceivers, or one could deploy a single active training source into the environment with built

15



in GPS [2]. There are many drawbacks to these techniques, including additional functional,

memory, power, and processing requirements for each node. In addition, there are many

scenarios where the camera network must remain passive and undetectable by outside ob-

servers, thereby prohibiting the use of active training sources or active radio links.

Research by Fischer [4] showed that it is possible to calibrate a network of randomly placed

cameras with non-overlapping fields of view using moving scene features in the near and far

fields. Distant objects, such as stars, enable the recovery of the orientation (rotation) of the

cameras, while close objects, such as people or cars, enables the recovery of the translation

of the cameras up to a scalar multiple. In [4] it is assumed that the motion of the objects

is deterministic, not random. The camera parameters are recovered by solving a complex

geometry problem, and no probabilistic framework is imposed.

A method to calibrate two cameras observing the same scene from different locations is

given in [5]. Calibration is based on the simultaneous observation of a moving human being

by the stereo camera system. Here calibration refers to the recovery of a 3D translation

vector, a 3D rotation matrix, and an estimation of the effective focal length of the camera.

In order for calibration to be successful, there must be three moving “blobs” in common

between the two cameras, where a blob is defined to be a group of neighboring pixels that

all share some visual property that is not shared by the surrounding pixels. For example,

in a scene with only a single person, the face could serve as the first blob, while the two

hands serve as the second and third. Once the necessary blobs are identified, the calibration

parameters are recovered using an iterative Levenberg-Marquardt algorithm. After calibra-

tion is successful, the system can then track the movement of the person in real-time using

an extended Kalman filter. Again, the success of the tracking depends on whether or not

the target remains within the field of view of the stereo camera network, meaning that this

system cannot compensate for missing measurements.

In general, when there are multiple cameras with overlapping fields of view, it is possi-

ble to recover the calibration parameters by exploiting common feature correspondence,

although it may be quite difficult to automatically identify these correspondences [8]. If

the set of points in common between the cameras are coplanar, one can find a homography
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that relates the points from one scene to the points of another [6]. If the points are not

coplanar, one can use epipolar constraints instead [7].

2.2 Combined Calibration and Path Recovery

This thesis is a direct extension of work presented by Rahimi et al. [1], in which the prob-

lem of joint calibration and path recovery is solved using a Bayesian framework. In [1] the

maximum a posteriori (MAP) point estimate is found by placing prior probabilities over the

entire trajectory and the camera parameters. The prior over the trajectory is constructed

by assuming a random walk model for the motion of the target, while the prior for the con-

figuration of the cameras is constructed by imposing large variance Gaussian distributions

for each unknown parameter.

In a related technique, Structure from Motion (SFM), the trajectory of a moving cam-

era and the 3D coordinates of a stationary target are recovered at the same time from a

series of 2D images of a scene. The stationary target is not represented by a single 3D co-

ordinate, but rather by a set of N coordinates, so that the image can be spatially mapped

in great detail. Unlike the problem addressed in this thesis, it is the camera that moves,

not the target. SFM is a well studied problem, and there are numerous variations on the

technique. For example, in the approach taken by [9], the focus is on real-time processing

of the image data using an extended Kalman filter. The research specifically addresses

the problem of occlusions occurring when specific points in the scene become temporarily

unobservable by the camera. The problem of occlusions is the dual to the problem of the

target leaving the field of view of the sensor network. The concept of recursive or sequential

SFM can be traced back to [10] and [11]. On the other hand, much work has been focused

on batch techniques to process all the camera data offline [12]. For a detailed survey and

comparison of SFM methods, see [13].

In a set of techniques referred to as Simultaneous Localization and Mapping (SLAM), the

goal is to simultaneously localize the position of a moving robot equipped with a camera and

build a map of the scene in which the robot operates. Castellanos et al [14] adopt a graph
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theoretic approach, in which they create a symmetries and perturbation map (SPmap) to

completely represent the environment of the robot. The SPmap stochastically encodes all

of the information relating to the robot’s trajectory and scene feature locations. As each

new measurement (image of the scene) arrives, the SPmap is updated recursively using an

extended Kalman filter. SLAM is closer to SFM than to the problem developed in this

thesis, since again it is the camera that moves, not the target, and the goal is to calibrate

the scene features, not the cameras.

2.3 Treatments of Missing Measurements

The question of what method to use to perform filtering in the case of missing data has

long been studied. For example, in the case of a Kalman filter, it has been shown that if a

measurement is missing at time k, the optimal action, in the mean squared error sense, is

to replace the ideal estimator, i.e. the update step x̂k|k, with the optimal predictor, x̂k|k−1

[15]. A proof that the error residual in this scheme converges is presented in [16]. In the

context of joint calibration and tracking, this approach may result in trajectory estimates

that are infeasible with respect to knowledge of the set of times during which measurements

occurred. In other words, this approach may place the target inside the field of view of one

of the sensors at a time when the target must have been outside the field of view of all of

the sensors.

A second popular approach is to model the occurrence of measurements as a random pro-

cess. Sinopoli et al [17] develop an approach for treating the arrival of measurements as

an i.i.d. Bernoulli random process. They derive new Kalman filter equations that reflect

this assumption, and they prove that so long as the probability of success for the Bernoulli

process is above some critical value, the resulting error covariance converges. In their formu-

lation, the distribution for the measurement noise is conditioned on the Bernoulli process.

If there is a success, i.e. if a measurement arrives, the measurement noise is a Gaussian

random variable with zero mean and original covariance R. If there is a failure, i.e. if

no measurement arrives, the measurement noise is a zero mean Gaussian random variable

with significantly large covariance, σ2I, where σ2I >> R. They also show that in the lim-

iting case where σ2 tends to infinity, their equations exactly correspond to the approach
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discussed in [15]. In other formulations, such as those given by [18] and [19], the arrival

of a measurement is again given by a Bernoulli process, but the same measurement noise

is used under both scenarios. This approach cannot be directly applied to the problem

considered in this thesis due to the fact that the i.i.d. assumption is not valid here. The

arrival of a measurement is conditioned on the target’s current location and the location

of the sensors, and knowledge of whether or not a measurement arrives at one time step

affects the probability of an arrival at the next time step.

Another popular technique is to first estimate the values of the missing measurements,

and then solve the problem using the complete data set. This could be done using an

Expectation Maximization (EM) algorithm [26] or a Gibbs sampler [27]. These techniques

are most often used when knowledge of the missing data would significantly simplify the

likelihood function or other required quantities to compute the full posterior probability.

For the scenario examined in this thesis, it is possible to derive an analytic expression up to

a normalizing constant for the posterior without separately imputing for the missing data,

and therefore these methods are not needed.

2.4 Sequential versus Batch Methods

The method used in this thesis to determine the configuration of the sensors and the target’s

entire trajectory given a set of measurements is a batch procedure using a Newton-Raphson

search algorithm. The procedure processes all of the measurements together at one time

in batch form, rather than incorporating the new information sequentially. In this way,

the algorithm can be seen as a smoother rather than a filter, since the estimates of the

trajectory early in the track can benefit from the information gained by measurements re-

ceived later in the track. For systems with linear motion and measurement models, it is

possible to use a Kalman smoother, or if the problem can be linearized, one could adopt

an extended Kalman filter smoother. Since the measurement model used throughout this

thesis is nonlinear due to the angular rotations of the sensors, the batch method developed

in [1] was chosen over other methods.

Alternatively one could use a sequential Monte Carlo based smoother, commonly referred

19



to as a particle smoother, as developed in [20] and [21]. In a particle filter, a filtering

distribution is represented by a set of samples and corresponding weights, using concepts

derived for importance sampling and re-sampling. From these “particles” it is possible to

compute sample values of the problem’s posterior distribution, and then to derive empirical

distributions or to generate point estimates, such as the mean or the maximum of the pos-

terior distribution. During each iteration, a new set of samples is drawn and the weights

are updated to reflect any new measurement information and the propagation of the system

dynamics. In a particle smoother, a forward particle filter is run first, and then a backwards

smoothing pass is performed, in which samples are generated for each past step correspond-

ing to the proper smoothing density. A particle filter was not used in this thesis primarily

due to the high dimensionality of the posterior distribution. In high dimensional problems,

the samples are sparsely distributed within the space, and an extremely large number of

samples are needed to accurately characterize the distribution. The numerical method used

in this thesis performs a directed search within the overall parameter space to find a local

maximum of the posterior distribution, rather than trying to generate enough samples to

form meaningful point estimates.
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Chapter 3

Problem Formulation

3.1 Estimation Objective

The results in this thesis can be applied to a wide variety of sensor networks and applications.

However, the focus here is on a network of video cameras with non-overlapping fields of

view (FOV), as originally formulated by Rahimi et al [1]. Consider sensors positioned in

the ceiling of a single room, so that each camera has an aerial view of a portion of the

room. The purpose of the camera network is to measure the location of a person walking

throughout the room. However, the relative location and orientation of each camera is not

known ahead of time, and therefore the overall estimation objective is to simultaneously

recover both the trajectory of the target and the complete configuration of the cameras,

given only a set of local measurements taken at each sensor. It is assumed that the scene

observed by the camera is completely characterized by a two dimensional grid, referred to

as the global map, as shown in Fig. 3-1.

3.2 State Space Model

At each step, the target’s state consists of four variables representing its position and velocity

in the global coordinate system. The horizontal direction is denoted by u and the vertical

as v, so that the target’s state at each time step is given by:

xt =
[

ut u̇t vt v̇t

]T
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Figure 3-1: Aerial View of Room with Three Cameras. The global map is completely
characterized by a two dimensional grid.

The target’s state evolves according to linear, Gauss-Markov dynamics, as:

xt+1 = Axt + νt (3.1)

where the matrix A is given by:

A =


1 0.5 0 0

0 1 0 0

0 0 1 0.5

0 0 0 1


and where the νt’s are independent and identically distributed (i.i.d.) zero mean, Gaussian

random variables, with common covariance Σν . The matrix A encodes the assumption that

the target follows a smooth path, since the position in each direction is equal to the previ-

ous position plus a small displacement proportional to the target’s velocity. The additive

Gaussian noise is assumed to be negligible relative to the magnitude of the target’s position

and velocity, and is used to model small fluctuations or jitter in the target’s motion. This

motion model cannot capture sharp turns made by the target outside the field of view of

the sensor network, and subsequently all such turns will be estimated by rounded, smooth

curves. In contrast, sharp turns within the field of view of the sensor network are handled

correctly when the measurement noise is small relative to the magnitude of the measure-

22



ments.

The observations are supplied by a network of S cameras with non-overlapping fields of

view, each of which only reports the position of the target in its own local coordinate

system. It is assumed that direct velocity measurements are not available. Each camera

reports a time stamp and unique camera ID, along with the recorded local measurement, to

a central processor. There are three unknown parameters associated with the ith camera,

corresponding to the camera’s position in the global coordinate system (translation) and its

rotation about a reference direction (i.e. due north), as illustrated in Fig. 3-2. The field of

view for each sensor is assumed to be a square of known size. The parameters are denoted

SE
NS
OR

#1

1
θ

1

u
p

1

v
p

Figure 3-2: Unknown Camera Parameters. The parameters p1
u and p1

v define the sensor’s
horizontal and vertical translation from the origin, while the parameter θ1 defines the sen-
sor’s rotation about the reference direction, i.e. due north.

as:

µi =
[

pi
u pi

v θi
]T

=
[

pi θi
]T

where pi =
[

pi
u pi

v

]T
.

The location of one sensor must be fixed due to the fact that any configuration of x and

µ is equivalent to the same configuration arbitrarily translated and rotated, due to what

is known as gauge freedom [1]. By fixing one sensor, a reference coordinate system for
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the global map is inherently induced, and the algorithm finds the optimal solution in that

reference frame. The algorithm only needs to search for optimal values for the parameters

of the remaining S − 1 sensors. For notational convenience, let:

µ =
[

µ1 µ2 · · · µS−1
]T

be the collection of sensor parameters for those S − 1 cameras and let R(θi) denote the

rotation matrix for sensor i, given as:

R(θ) =

 cos(θ) sin(θ)

− sin(θ) cos(θ)



Due to the fact that the fields of view for the cameras do not completely cover the scene,

there are times for which no measurements are available. Let I1 be an index set containing

all of the times for which measurements are available, and let I2 be an index set containing

all of the times for which no measurements are available. Then the relationship between

the locally measured state and the global state is given by:

zt = πi(xt) + ωt = R(θi)
(
Cxt − pi

)
+ ωt, ∀ t ∈ I1 (3.2)

where

C =

 1 0 0 0

0 0 1 0


and the ωt’s are i.i.d. zero mean, Gaussian measurement noises with common covariance

Σω.

3.3 Bayesian Framework

Rahimi et al [1] adopt a Bayesian approach to the problem of jointly recovering the full

target trajectory and the camera parameters. The approach is Bayesian in the sense that

the posterior probability is computed using Bayes rule, as given by:

p (x,µ|z) =
p (z|x,µ) p(x)p(µ)

p(z)
∝ p (z|x,µ) p(x)p(µ) (3.3)
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where p (z|x,µ) is the likelihood function, p(x) is the prior probability for the full trajec-

tory, and p(µ) is the prior probability for the set of unknown sensor parameters.

The optimal solution to the joint calibration and path recovery problem is chosen to be

the maximum a posteriori (MAP) estimate, given as:

(x∗,µ∗) = arg max
x,µ

p (z|x,µ) p(x)p(µ) (3.4)

The approach cannot be called fully Bayesian, due to the fact that the optimal solution is

only a point estimate, and is not a full characterization of the posterior distribution. In

particular, the error covariance for the resulting estimate is unknown. It is for this reason

that the technique is closer to optimization than estimation.

Using Eq. 3.2, the likelihood function for a single measurement is given by:

p
(
zt|xt,µ

i
)

= N
(
zt;πi(xt),Σω

)
, ∀ t ∈ I1 (3.5)

Due to the assumption that all of the measurement noise process is i.i.d., the measurements

are conditionally independent given the trajectory and sensor parameters. Therefore, the

likelihood function for the entire collection of measurements given the full target trajectory

and entire collection of sensor calibration parameters is given by:

p(z|x,µ) =
∏
t∈I1

p
(
zt|xt,µ

i
)

(3.6)

The measurement noise variance is typically considered to be quite small compared to other

sources of uncertainty in the problem, a fact that is exploited in Chapter 4 for the purposes

of model order reduction.

From Eq. 3.1, it is well known that the transition density between consecutive steps is

also Gaussian:

p (xt|xt−1) = N (xt;Axt−1,Σν) (3.7)

25



Let the vector x denote the stacked position and velocity trajectory across all T time steps,

where x ∈ R4T , which is formed by concatenating the individual state vectors at each time

step. The prior probability p(x) over the entire trajectory is given by:

p(x) = p(x0)
T∏

t=1

p (xt|xt−1) (3.8)

Often the value of x0 is treated as an equality constraint, but it can also be modeled as

Gaussian random variable if there is uncertainty in the target’s initial location. One can

easily algebraically manipulate Eq. 3.8 so that p(x) can be expressed as a multivariate

Gaussian with a mean of zero and a single covariance matrix of Σx. It is straightforward

to show that each row of G =
√

Σ−1
x has the form:

Gi =
[

0 · · · −
√

Σ−1
ν A

√
Σ−1

ν · · · 0
]

The introduction of the G matrix is primarily for notational convenience in later calcula-

tions.

The prior distribution over the sensor calibration parameters, p(µ), is modeled using a

multivariate Gaussian density with zero mean and variance Σµ. The variance for each

parameter is typically chosen to be quite large, reflecting a non-informative prior.

3.4 Computing the MAP Solution

The optimal sensor network configuration and target trajectory is found by computing the

MAP estimate, given by:

(x∗,µ∗) = arg max
x,µ

p(z|x,µ)p(x)p(µ)

Since log is a monotonic function, the log of the posterior probability can be maximized

instead:

(x∗,µ∗) = arg max
x,µ

log (p(z|x,µ)p(x)p(µ)) = log p(z|x,µ) + log p(x) + log p(µ)
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which in turn is equal to minimizing the arguments of the exponentials for each Gaussian

term:

(x∗,µ∗) = arg min
x,µ

∑
t∈I1

(
zt − πi(xt)

)T
Σ−1

z

(
zt − πi(xt)

)
+ xTΣ−1

x x + µTΣ−1
µ µ (3.9)

A Newton-Raphson search method is used to find the optimal x and µ that minimizes

the above expression. A detailed description of Newton’s method applied to this specific

problem is presented in Appendix A. Note that Eq. 3.9 can be rewritten as:

(x∗,µ∗) = arg min
x,µ

r(x,µ)T r(x,µ)

where:

r (x,µ) =


rz

rx

rµ

 =



√
Σ−1

z

(
zk1 −R(θi)

(
Cxk1 − pi

))
...√

Σ−1
z

(
zkM

−R(θi)
(
CxkM

− pi
))√

Σ−1
ν (x2 −Ax1)

...√
Σ−1

ν (xT −AxT−1)√
Σ−1

µ µ1

...√
Σ−1

µ µS−1



(3.10)

Each measurement adds a 2x1 element into the rz section, each time step adds an 4x1

element into the rx section, and each sensor adds an 3x1 element into the rµ section. If

there are M measurements, T time steps, and S sensors, then the total length of r is

2M + 4(T − 1) + 3(S − 1).

The Newton-Raphson method also requires the Jacobian of r, which is denoted by J. The

Jacobian has the following block structure:

J =
[

∂r(x,µ)
∂µ

∂r(x,µ)
∂x

]
=


∂rz
∂µ

∂rz
∂x

∂rx
∂µ

∂rx
∂x

∂rµ

∂µ
∂rµ

∂x

 (3.11)
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where:

∂rz

∂µi
= −

√
Σ−1

z

[
R(θi)

(
(Cxt − pi)T ⊗ I

) ∂vec(R(θi))
∂θi

]
∂rx

∂µi
= 0

∂rµ

∂µi
=

√
Σ−1

µ

∂rz

∂xt
=

√
Σ−1

z R(θi)C

∂rx

∂xt
= Gt

∂rµ

∂xt
= 0

Note that ⊗ is the Kronecker product of two matrices and vec(R(θi)) is a vector formed by

concatenating the columns of R(θi).

The number of rows in J is equal to the dimension of r, and the number of columns is

equal to the dimension of x plus the dimension of µ. Once r and J are computed, the

Newton-Raphson step is taken as:

yk+1 = yk − (JTJ)−1JT r (3.12)

where y =
[

x µ
]T

and (JTJ)−1JT is the pseudo-inverse of J. For a complete derivation

of Eq. 3.12, see Appendix A. The time complexity of a single Newton-Raphson iteration is

quadratic with respect to the number of rows in the Jacobian, and therefore this algorithm

has a running time that is proportional to O
(
(2M + 4T + 3S)2

)
. As the number of time

steps and available measurements increases, this computation quickly becomes intractable,

often making real time computation impossible.
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3.5 Simulation

This section presents a simulation of the problem and solution method summarized in this

chapter, as originally formulated in [1], using the following parameters:

A =


1 0.5 0 0

0 1 0 0

0 0 1 0.5

0 0 0 1



Σν =


10−10 0 0 0

0 10−6 0 0

0 0 10−10 0

0 0 0 10−6



Σω =

 10−10 0

0 10−10



Σµ =


103 0 0

0 103 0

0 0 103


Figure 3-3(a) depicts a sample sensor configuration with four sensors positioned inside of a

single room. A target trajectory consisting of 100 time steps is generated according to the

target’s motion model. However, turns are simulated by negating the velocity value in one

direction, thereby creating a final path that violates the smooth motion model.

The estimation technique is based on maximizing the posterior distribution of the trajec-

tory and sensor configuration given the measurement set, using a Newton-Raphson iterative

search algorithm. Figure 3-3(b) depicts the estimated state after only a single iteration,

while Fig. 3-3(c) depicts the new state after 20 iterations. The result after only one itera-

tion is a good approximation to the final answer due to the fact that during each Newton-

Raphson iteration the algorithm is computing a quadratic approximation to r(x,µ)T r(x,µ),

which is actually quadratic in x and µ when the sensor rotations are all fixed at 0.
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Figure 3-3(d) shows the value of the overall cost function decreasing as a function of the

iteration number. Note that the solution appears to converge around iteration six or seven.

Thus the algorithm has found a local minima, which is not guaranteed to be globally opti-

mal since the cost function is not convex.

The simulation presented here is able to completely calibrate the network of imaging sensors

due to the fact that the target enters the field of view for each sensor at least once. In an

actual deployment, the target may not behave accordingly, and therefore it may only be

possible to recover a subset of the sensor parameters. Recall the military scenario explained

in Chapter 1, in which a soldier rapidly deploys a set of sensors inside a building in order

to track the location of an enemy agent. In this case, the soldier does not have time to

measure and record the exact location and orientation of each sensor in the room, as he or

she must exit the building as quickly as possible to avoid detection. However, the soldier can

calibrate the entire network by quickly walking in a loop around the room before exiting,

entering the field of view of each sensor. This procedure takes seconds, whereas a careful

calibration takes minutes or even hours.
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Figure 3-3: Example Illustrating MAP technique. (a) True sensor locations and true path
traversed by the target. (b) MAP solution after single iteration. The yellow squares (lighter
shade) and blue lines represent truth, while the blue squares (darker shade) and red lines
represent the current MAP estimate. (c) MAP solution after 20 iterations. (d) Decreasing
cost as a function of iteration. The solution appears to converge after approximately seven
iterations.
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Chapter 4

Model Order Reduction

Techniques

4.1 Motivation

This chapter presents two techniques to reduce the number of unknown parameters in the

motion and measurement models, thereby reducing the computational requirements of the

algorithm used to find the MAP estimate for the sensor calibration parameters and the

full trajectory of the target. The computational complexity of the Newton-Raphson search

method used to compute the maximum of the posterior distribution is quadratic with re-

spect to the number of rows in the Jacobian of r, as it requires a QR decomposition using

Householder reflections to solve the linear least squares problem Jy = r. The techniques

described in this chapter dramatically decrease the size of the Jacobian, thereby increasing

the algorithm’s efficiency.

Section 4.2 presents a technique to temporarily eliminate the state variables corresponding

to time steps for which no measurements are available. This enables one to first find the

optimal configuration of the sensors and target trajectory corresponding to those time steps

for which measurements are present. The sub-tasks of filling in the target’s paths between

the sensors are treated as separate optimization problems to be solved independently of the

main problem and each other. In addition, these sub-tasks consist of minimizing a quadratic

objective function, which can be solved either using a Kalman smoother, or by taking a
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single step in a Newton-Raphson search algorithm. The resulting solution is identical to

that of the original algorithm. The second model order reduction technique, presented in

section 4.3, exploits the ability of the cameras to take very precise measurements, i.e. the

observations have very small measurement noise. The approach treats the measurements

as equality constraints, not as random quantities. The answer derived by this method is an

approximation to the original answer, with the quality of the approximation dependent on

the original variance of the measurement noise. Both of these methods significantly reduce

the dimensionality of the space over which the algorithm searches. In addition, these two

techniques can be combined for even greater savings, as is discussed in section 4.4.

4.2 Separation Into Multiple Optimization Problems

Consider the following method to separate the larger optimization problem into a set of

independent sub-problems. Remove from the augmented state vector x those entries in the

path corresponding to time steps for which no measurements are available. This reduces

the length of the r vector, thereby reducing the dimension of the search space over which

the algorithm must search. It is shown in section 4.2.5 that the estimates of the sensor

parameters and remaining path entries produced by this method are exactly the same as

those produced by the original technique, as no information is lost by this reformulation.

The paths corresponding to missing measurements are computed in parallel to one another

after the main optimization has been solved, using the knowledge of the target’s dynamics

and the newly formed estimates for the sensor locations and positions of the target as it

leaves and re-enters the network’s field of view. These parallel optimization problems consist

of minimizing a quadratic objective function, which can be solved either using a Kalman

smoother, or by taking a single step in a Newton-Raphson search algorithm.

4.2.1 Multistep Transition Density

The first optimization problem solves for the unknown sensor parameters and the target

trajectory only at time steps for which measurements are available. When the target leaves

the field of view of the sensor network, the target’s last known state is propagated through

a new motion model that accounts for k-step transitions, and the skipped time steps are

computed separately.
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The general relationship between the state at time t and the state at time t + k is de-

rived by recursively applying Eq. 3.1, resulting in:

xt+k = Akxt +
k−1∑
i=0

Aiνt+i

Since all of the ν’s are i.i.d. Gaussian random variables with zero mean and covariance Σν ,

P (xt+k|xt) is also Gaussian, with mean Akxt and covariance equal to:

cov [xt+k|xt] = cov

[
k−1∑
i=0

Aiνt+i

]
=

k−1∑
i=0

cov
[
Aiνt+i

]
=

k−1∑
i=0

AiΣν

(
Ai
)T

where the last equality follows due to the fact that the νt’s are i.i.d. Thus the transition

density for the target’s state at time t given its state at time t− k is:

p (xt|xt−k) = N

(
xt; Akxt−k,

k−1∑
i=0

AiΣν

(
Ai
)T) (4.1)

This multi-step transition density replaces the corresponding k − 1 single step densities in

Eq. 3.8.

4.2.2 New Cost Function

Let x̃ denote the stacked column vector containing all of the position and velocity variables

corresponding to those time steps for which measurements are available. Thus, if there are

M measurements, the length of x̃ is 4M . The prior probability over this entire trajectory

is given by:

p (x̃) = p (x0)
∏
ti∈I1

p
(
xti |xti−1

)
where I1 is the set of all time steps with available measurements. Again, it is straightforward

to algebraically manipulate p (x̃) so that it is a multivariate Gaussian with zero mean and

covariance Σx̃. Each row of the Cholesky decomposition of the new covariance matrix has

the form:
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G̃ti =
√

Σx̃ti
=
[

0 · · · −
√

Σ̃
−1
ν Ak

√
Σ̃
−1
ν · · · 0

]
where k denotes the number of missing measurements between times ti and ti−1, and

Σ̃ν =
k−1∑
i=0

AiΣν

(
Ai
)T

The new objective function is given by:

(x̃∗,µ∗) = arg min
x̃,µ

∑
t∈I1

(
zi

t − πi(x̃t)
)T

Σ−1
z

(
zi

t − πi(x̃t)
)

+ x̃TΣ−1
x̃ x̃ + µTΣ−1

µ µ

A Newton-Raphson search procedure is again used to find a minima of the objective func-

tion.

4.2.3 Computational Savings

The algorithm again requires that Eq. 4.2 be rewritten in the form:

(x̃∗,µ∗) = arg min
x̃,µ

r(x̃,µ)T r(x̃,µ) (4.2)

where now:

r (x̃,µ) =


rz

rx̃

rµ

 (4.3)

The length of the rx̃ block has been reduced from 4(T − 1) to only 4(M − 1). The Jaco-

bian of r has the same number of rows as r, and the number of columns is equal to the

number of entries in x̃ plus the number of unknown sensor parameters. In many cases the

measurement set is quite sparse, and therefore this method results in a dramatic reduction

in the dimensions of both r and J. Since the computational complexity of a single Newton-

Raphson iteration is quadratic with respect to the number of rows in the Jacobian, the

new improved running time is proportional to O
(
(6M + 3(S − 1))2

)
, whereas the original

complexity was O
(
(2M + 4(T − 1) + 3(S − 1))2

)
. In most cases M << T , and therefore

the savings are significant.
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4.2.4 Estimating the Path Between Sensors

The problem of recovering the most probable path traversed by the target while outside the

field of view of the sensor network is addressed as an independent problem. A new linear

least squares problem is solved each time the target exits and re-enters to the network.

The objective is to maximize the probability of this unobserved trajectory between sensors

given estimates for the initial and final positions and velocities. The sensor parameters

and target trajectory inside the sensors are assumed to be given from the solution to the

previous problem. The vector x is formed by stacking the individual vectors for the target’s

state for each of the time steps for which no measurements are available between each exit

and re-entry. Let N denote the number of missing measurements corresponding to one

segment for which the target is outside the field of view of the sensor network. The new

optimization problem becomes:

x∗ = arg max
x

k+N∏
t=k+1

p (xt|xt−1)

where xk and xk+N are treated as given quantities. Equivalently, one can maximize the log

of the above expression:

x∗ = arg max
x

log

(
k+N∏

t=k+1

p (xt|xt−1)

)

= arg max
x

k+N∑
t=k+1

log (p (xt|xt−1)) (4.4)

Solving for the unknown trajectory between sensors using MAP estimation corresponds to

finding the maximum likelihood (ML) estimate of those random variables using the prior

probability over the trajectory as the likelihood function, and letting the probability of xk

and xk+N be delta functions. The solution is found by taking the derivative of Eq. 4.4

with respect to each of the unknown trajectory variables, setting each equation equal to

zero, and solving for the unknown target states. Since Eq. 4.4 is quadratic, the solution

can equivalently be found after a single iteration of a Newton-Raphson search algorithm.

The solution to the above optimization problem gives exactly the same estimates as a

Kalman smoother, as shown in Appendix B. Since the algorithm is only solving for time
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steps for which no measurements are available, all of the Kalman gain factors are equal

to zero, and hence the forward pass corresponds to simply propagating the target’s state

as it leaves the sensor network through the target’s motion model. The backward pass

then incorporates knowledge of where the target reenters the network to form the smoothed

estimates.

4.2.5 Mathematical Equivalence

Here is an outline of the proof that solving for the target’s trajectory between sensors as

independent sub-problems produces exactly the same results as the original optimization

problem. Consider the following specific example involving three time steps, with measure-

ments available only at the first and last time step. Finding the MAP solution consists of

solving the following optimization problem:

(x∗1,x
∗
2,x

∗
3,µ

∗) = arg max
x1,x2,x3,µ

p(z1, z2|x1,x3,µ)p(x1,x2,x3)p(µ)

= arg max
x1,x2,x3,µ

log (p(z1, z2|x1,x3,µ)p(x1,x2,x3)p(µ))

= arg max
x1,x2,x3,µ

log (p(z1, z2|x1,x3,µ)p(x1,x3)p(x2|x1,x3)p(µ))

= arg max
x1,x2,x3,µ

log (p(z1, z2|x1,x3,µ)) + log (p(x1,x3)) + log (p(x2|x1,x3)) + log (p(µ))

(4.5)

The first, second, and third terms in Eq. 4.5 are independent of x2. Appendix B shows that

the form of the third term, p(x2|x1,x3), is a multivariate Gaussian with mean and variance

equal to the estimates from the Kalman smoother:

p(x2|x1,x3) ∼ N (x2; x̂2,Σ2) (4.6)

where:

x̂2(x1,x3) =
(
I + ΣνATΣ−1

ν A
)−1 (

Ax1 + ΣνATΣν
−1x3

)
Σ2 = Σν −

((
AΣνAT + Σν

)−1
)T

AΣν
T
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Now let g = log (p(x2|x1,x3)). Choosing x∗2 = x̂2, the gradient of g evaluated at (x∗1,x
∗
2,x

∗
3)

equals 0 for any choice of x∗1 and x∗3.:

5g =


∂g
∂x1

∂g
∂x2

∂g
∂x3

 =


2Σ−1

2 (x∗2 − x̂2)
(
I + ΣνATΣ−1

ν A
)−1 A

2Σ−1
2 (x∗2 − x̂2)

2Σ−1
2 (x∗2 − x̂2)

(
I + ΣνATΣ−1

ν A
)−1 ΣνATΣν

−1


This choice of x∗2 minimizes the value of the third term without affecting the values of

the remaining three terms. The first, second, and fourth terms in Eq. 4.5 can be mini-

mized over x1 and x3 first, and subsequently the overall minimum is achieved by setting

x∗2 = x̂2(x∗1,x
∗
3) in the third term. Hence the problem is separable into two optimization

problems, one with the time steps corresponding to missing measurements and one without.

This method corresponds to removing unwanted nuisance parameters from the optimiza-

tion problem, that do not add or remove any information, i.e. measurement data, from

the computation. The removed parameters are solved for at a later time setting up a sim-

ilar optimization problem that optimizes only over those nuisance parameters previously

removed.

4.2.6 Using Only Entry and Exit Measurements

Further model reduction is possible by applying the multistep transition density concept

within the sensors. Suppose on a given pass though a sensor, six or seven time steps

are recorded, as in Fig. 4-1(a). Each of the measurements contributes information to the

position and velocity estimates for the entire target trajectory. However, it is possible to use

the position measurements within a single pass through a sensor to get a good local estimate

for the velocity at the entry and exit points. Those velocity estimates are then treated like

velocity measurements, while all of the interior measurements are disregarded. The resulting

solution is not be equal to the solution using all of the measurements across the entire path,

including visits to other sensors; however, in most cases it is a good approximation. The

fewer the measurements there are within a particular pass through a sensor, the worse the

local velocity estimates will be. Fig. 4-1(b) shows the result of the joint calibration and

tracking using only the entry and exit velocities. The velocities are determined using a

Kalman smoother over the set of local measurements for a given pass.
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Figure 4-1: Example of camera calibration using only entry and exit measurements. (a)
MAP solution using all of the steps. (b) MAP solution after first calculating a local estimate
of the velocity of the target upon entry and exit from the sensor, and then using only the
state information at these points to calibrate the sensor network.

4.3 Treating Measurements as Constraints

4.3.1 Justification

In most cases, the measurement noise from an imaging sensor is extremely low relative

to other sources of error in the problem. In these cases, one can treat the measurements

as known quantities or constraints on the problem. As with the previous technique, the

overall effect of this change is to reduce the dimension of the space over which the Newton

algorithm must search, thereby increasing the computation speed. The answer reached by

this method is not exactly equal to the original solution; however, the difference between

the two methods disappears as σz approaches zero.

4.3.2 Example in one dimension

In order to understand the effect of treating the measurements as constraints, consider a

simple example in which the sensors only observe the global scene in one dimension, i.e. the

measurements are a subset of R, not R2. Consider a scenario where there is only a single

camera, one measurement, and only two time steps to estimate the position and velocity of

the target. Note that in this case the sensor’s orientation, θ1, is only 0 or π.
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Figure 4-2: Treating Measurements as Constraints - Example in 1 Dimension

Begin by maximizing the posterior density:

(x∗,µ∗) = arg max
x,µ

p(z1|u1, p
1
u, θ1)p(u2, u̇2|u1, u̇1)p(u1, u̇1)p(p1

u, θ1)

Alternatively, one maximizes the log instead, and then the problem becomes a minimization

given by:

(x∗,µ∗) = arg min
x,µ

(z1 −R(θ1)(u1 − p1
u))2

σ2
z

+

(u2 − u1 − 0.5u̇1)2

σ2
u

+
(u̇2 − u̇1)2

σ2
u̇

+

(u1)2

σ2
u0

+
(u̇1)2

σ2
u̇0

+
(p1

u)2

σ2
µ

+
(θ1)2

σ2
µ

(4.7)

Next take the limit as σ2
z → 0. The minimization must occur at parameter values that

set the numerator of the first term equal to zero, since the weight of this term becomes

arbitrarily large. Solving for the target’s position at the first time step, u1, yields:

u1 = R−1(θ1)z1 + p1
u (4.8)

and now all instances of u1 in Eq. 4.7 are replaced with Eq. 4.8. This technique decreases

the size of the search space by removing the variable u1 completely, and replaces it with a

function of z1, p1
u and θ1.

4.3.3 Generalization

This technique can be extended to the main problem where each sensor has three unknown

parameters and the measurements are a subset of R2. For each measurement in the data

set, solve for the corresponding position variables of the path, and make the appropriate

substitutions within the minimization expression. Let x̆ denote the new stacked trajectory
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containing position variables for those times when no measurements are available and ve-

locity estimates for all time steps. Since there are 2T total velocities and T −M missing

measurements, x̆ contains 4T − 2M entries in all.

Formally, rewrite the new optimization problem in the following form:

(x̆∗,µ∗) = arg min
x̆,µ

x̆TΣ−1
x̆ x̆ + µTΣ−1

µ µ (4.9)

subject to:

C xk =

 uk

vk

 = R−1
(
θi
)
zk + pi ∀ k ∈ I1

where I1 is the set of all time steps for which measurements are available.

4.3.4 Computational Savings

Equation 4.9 is rewritten in the form:

(x̆∗,µ∗) = arg min
x̆,µ

r(x̆,µ)T r(x̆,µ) (4.10)

where now:

r (x̆,µ) =

 rx̆

rµ

 (4.11)

Note that the old rz block has been completely removed from r. The first block is still

the same size as the original rx block, due to the fact that it still uses the target’s motion

dynamics to form the prior probability over the trajectory, however many of the quantities

used in the calculation of that block are treated as known values, and do not correspond to

random variables found in the x̆ vector. Hence the length of the new r vector is 4T +3(S−1),

and the size of the new Jacobian of r is 4T + 3(S − 1) by 4T − 2M + 3(S − 1). Since the

computational complexity of a single Newton-Raphson iteration is quadratic with respect

to the number of rows in the Jacobian, the new improved running time is proportional to

O
(
4T + 3S)2

)
.
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Figure 4-3: MAP solution treating measurements as constraints. (a) MAP solution where
σz = 1. (b) MAP solution where σz = 10−6. (c) MAP solution treating measurements as
equality constraints.

4.3.5 Simulation

Fig. 4-3(a) shows the result of running the original MAP algorithm using a noise standard

deviation of unity on the same example presented in section 4.2.6, while Fig. 4-3(b) shows

the result of running the algorithm using a significantly smaller noise standard deviation of

10−6. As expected, as the noise variance approaches zero, the solution approaches that of

treating the measurements as constraints, as shown in Fig. 4-3(c).

4.4 Combined Improvement

Further improvement is realized if all of the techniques presented in this chapter are com-

bined. The positions and velocities corresponding to times when the target is outside the

field of view of the sensor network are computed as independent sub-problems through

use of the k-step transition model. The positions of the target inside the field of view of

the network are expressed as functions of the measurements and the corresponding sensor

parameters. Velocity estimates for the target while inside the field of view of the network

are obtained using a Kalman smoother, and are then also treated as equality constraints.

Therefore the only unknowns that remain to be estimated are the three unknown sensor
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calibration parameters per sensor. The length of the r vector is 4M + 3(S − 1) when p(x)

is computed using transitions between all times for which measurements are available. In

the case where only the input and output measurements on each pass through a sensor are

used, the length of the r vector is reduced to 4N + 3(S − 1), where N is the number of

times the target enters and exits the field of view of the sensor network.

4.5 Comparison of Model Order Reduction Techniques

Table 4.1 compares the computational savings achieved using each improvement. Recall that

the computational complexity of the Newton-Raphson search algorithm is quadratic with

respect to the length of the r vector, as it requires a QR decomposition using Householder

reflections to solve the linear least squares problem Jy = r.

Method Number Unknowns Length of r
Original 4(T − 1) + 3(S − 1) 2M + 4(T − 1) + 3(S − 1)

K-Step Transition 4M + 3(S − 1) 6M + 3(S − 1)
Treat Measurements as Constraints 4(T −M) + 3(S − 1) 4T + 3(S − 1)

Combined 3(S − 1) 4M + 3(S − 1)

Table 4.1: Comparison of Model Order Reduction Techniques. The total number of time
steps is given by T , the total number of sensors is given by S, and the total number of
measurements is given by M . Dramatic reduction in the dimension of the search space is
realized when all of the techniques discussed in this chapter are combined.
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Chapter 5

Missing Measurements

5.1 Motivation

This chapter addresses the issue of how to fully utilize measurement times to find a sen-

sor configuration and target trajectory that is consistent with this information. The MAP

solution may place the target inside the field of view of a sensor at a time for which no

measurement is available, as illustrated by the example in Fig. 5-1. If the target were

truly inside the range of that camera at that time, there would have been a corresponding

measurement in the data set, resulting in a contradiction. Knowledge of the times for which

no measurements are available provide additional constraints to impose on the optimization

problem in order to find a feasible solution.

In practice, this problem often arises and therefore deserves careful consideration. In a

simulation consisting of four sensors and ten randomly generated paths, each with approxi-

mately 200 steps, 5.18% of the time steps were found to be infeasible with respect to missing

measurement information, as summarized in Table 5.1.

In some cases, additional missing measurement constraints may lead to a sensor configura-

tion that is closer to the truth than the unconstrained solution, as illustrated by Fig. 5-2.

However, there are times when the additional constraints yield a solution further from the

truth. It is important to remember that the problem formulation has no knowledge of what

is truth and what is not. There are an infinite number of possible sensor configurations

and target trajectories that all result in exactly the same measurement set, and each one
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Figure 5-1: Motivating Example for Missing Measurement Algorithms. (a) True sensor
locations and true path traversed by the target. (b) MAP solution. Clearly the path
segment containing time steps {6, 7, 8, 9, 10, 11, 12} is infeasible, as no measurements occur
during these times despite the fact that the estimated path puts the target within the field
of view of sensor 3.

of these would share a common solution.

Section 5.2 derives equations for all of the constraints that arise in restricting the target’s

trajectory to lie outside the field of view of the sensor network at times for which no mea-

surements are available. Section 5.3 uses these constraints to reformulate the optimization

problem as a mixed-integer, nonlinear (and non-convex) programming problem. Section 5.4

presents a modified Newton-Raphson search algorithm that adaptively adds and removes

constraints as needed, resulting in a feasible, although possibly suboptimal, solution. Fi-

nally, section 5.5 discusses the use of circular constraints to approximate the boundaries of

the sensors.

5.2 Derivation of the Constraint Equations

All of the methods to find a solution consistent with the knowledge of measurement times

make use of a set of equations to limit the regions in the global map, i.e. the overall scene,

where the target is permitted to be when no measurements are available. If no measurement
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Trial Number Infeasible Percent Infeasible
1 7 3.55
2 24 12.18
3 12 6.09
4 6 3.05
5 11 5.58
6 8 4.06
7 4 2.03
8 14 7.11
9 12 6.09
10 4 2.03

Average 10.2 5.18

Table 5.1: Number of Infeasible Time Steps for Randomly Generated Data

is available at time t, the target is restricted to lie outside the field of view of each and every

sensor at that time. The target must be either below, above, to the left of, or to the right

of each of the sensors, as depicted in Fig. 5-3. The lines defining the four sensors walls

naturally divide the space outside of the sensor into eight distinct regions: above, below,

right, left, above/left, above/right, below/left, and below/right. However, these regions are

combined into the four overlapping sections depicted Fig. 5-3 in order to minimize the

number of possible scenarios that must be considered. These additional restrictions arising

from the missing measurements introduce a set of disjunctive, also referred to as either-or,

constraints into the problem.

5.2.1 General Equations for Sensor Boundaries

The first step is to derive the equations that define the sensor’s boundaries, in terms of

the sensor’s internal parameters of translation from the origin, rotation about a reference

direction, and size of the field of view in each direction. Note that while these constraints

form linear boundaries in the global map, the constraints are nonlinear (and non-convex)

functions of the unknown variables in the overall optimization problem. Figure 5-4 depicts

the geometry of a typical sensor, with all of the quantities labeled that are needed to derive

each of the four lines representing the sensor boundaries.
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Figure 5-2: Additional Missing Measurement Constraints May Improve Sensor Configura-
tion. (a) True sensor locations and true path traversed by the target. (b) MAP solution
before additional constraints. (c) MAP solution with constraints for the missing measure-
ments. In this case the additional constraints yielded a solution that matches closer with
truth. The missing measurement constraints do not improve the sensor estimates in all
cases.

The lines defining the top and bottom walls both have a slope of:

mBOTTOM = mTOP =
∆y

∆x
=

α sin θ

α cos θ
= tan θ

while the lines defining the left and right walls both have a slope of:

mLEFT = mRIGHT =
∆y

∆x
= −α cos θ

α sin θ
= − cot θ
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Figure 5-3: Feasible Regions. If no measurement is available in the data set at time t, the
target must be outside the field of view of each sensor during that time.

Using the three corners labeled in Fig. 5-4, the y-intercepts are determined to be:

bBOTTOM = p1
v − p1

u tan θ

bTOP = (p1
v + α cos θ)− tan θ(p1

u − α sin θ)

bLEFT = p1
v + p1

u cot θ

bRIGHT = (p1
v + α sin θ) + cot θ(p1

u + α cos θ)

Putting it all together yields the following four equations for the lines defining the sensor’s

walls:

BOTTOM : y = mBOTTOMx + bBOTTOM = y = tan θ x + p1
v − p1

u tan θ

TOP : y = mTOP x + bTOP = y = tan θ x + (p1
v + α cos θ)− tan θ(p1

u − α sin θ)

LEFT : y = mLEFT x + bLEFT = y = − cot θ x + p1
v + p1

u cot θ

RIGHT : y = mRIGHT x + bRIGHT = y = − cot θ x + (p1
v + α sin θ) + cot θ(p1

u + α cos θ)

5.2.2 Special Cases

A special case arises when the sensor’s rotation angle of θ is equal to a multiple of π
2 ,

including 0, since the above equations yield slopes of 0 and infinity for the two sets of walls.

In this case simpler equations arise, as given in table 5.2.
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Figure 5-4: Sensor Boundary Geometry

5.3 Mixed-Integer Nonlinear Programming Formulation

The general structure in a standard nonlinear programming program is given by:

min
x∈Rn

f(x)

subject to:

gi(x) = 0, i = 1..L

hk(x) ≤ 0, k = 1..P

where at least one of the functions f(x), gi(x), hk(x) are nonlinear functions of x. If all of

the functions are convex, then a locally optimal solution is also guaranteed to be globally

optimal. Note that an inequality constraint is said to be active if it is satisfied with equality

at the optimal solution.

In the problem studied in this thesis, the equality constraints arise from the times for which

measurements are available, and the inequalities arise from the times for which measure-

ments are not available. Not only are the constraint functions all nonlinear and non-convex,
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Rotation Angle Equations

0

BOTTOM : y = p1
v

TOP : y = p1
v + α

LEFT : x = p1
u

RIGHT : x = p1
u + α

π
2

BOTTOM : x = p1
u

TOP : x = p1
u − α

LEFT : y = p1
v

RIGHT : y = p1
v + α

π

BOTTOM : y = p1
v−α

TOP : y = p1
v

LEFT : x = p1
u

RIGHT : x = p1
u − α

3π
2

BOTTOM : x = p1
u

TOP : x = p1
u + α

LEFT : y = p1
v

RIGHT : y = p1
v − α

Table 5.2: Vertical and Horizontal Sensor Boundary Equations

but the inequality constraints are also disjunctive, due to the fact that the target must be

either below, or above, or to the right of, or to the left of each sensor for each missing

measurement. One approach to working with disjunctive constraints is to run parallel op-

timization programs with each set of constraints, and to pick the solution with the lowest

overall cost. While this approach is straightforward, it is still not simple, since within

each parallel optimization problem, there is still a nonlinear and non-convex optimization

problem that must be solved using numerical methods that are not guaranteed to find the

globally optimal solution.

Instead of using a brute force parallel processing technique, it is also possible to incorporate

disjunctive constraints directly into the nonlinear programming formulation by augment-

ing the state vector with a set of integer parameters, or binary integer variables. Integer

variables can take on any value in Z or Z+, while binary variables can only be 0 or 1. The

disjunctive constraints arising from the context of missing measurements naturally lend

themselves to a formulation using additional binary variables.
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For each missing measurement and each sensor, introduce four binary variables, λi, such

that:

BELOW :
{

vt ≤ mBOTTOMut + bBOTTOM + βλ1

ABOV E :
{

mTOP ut + bTOP ≤ vt + βλ2

LEFT :
{

vt ≤ mLEFT ut + bLEFT + βλ3

RIGHT :
{

mRIGHT ut + bRIGHT ≤ vt + βλ4

4∑
i=1

λi = 3

where β is a very large number. The last constraint,
∑4

i=1 λi = 3, guarantees that exactly

one of the above sets of constraints holds, while the others are effectively eliminated since

those constraints are effectively automatically satisfied. A set of constraints of the form

shown above would need to be added for each missing measurement, for every sensor. If

there are M missing measurements and S sensors, this results in MS sets of equations, each

with four inequality constraints and one equality constraint.

The task of solving a mixed-integer nonlinear programming problem has been shown to

be NP-hard. This is an active research area, and many algorithms have been developed,

including the Outer Approximation method [28] and the Branch-and-Bound method [29].

Due to the extremely large number of disjunctive constraints introduced to eliminate the

missing measurement infeasibility problem, an approach based on mixed-integer program-

ming is computationally intractable. The next section presents a modified Newton-Raphson

search technique that is computationally tractable, although it is not guaranteed to find

the globally optimal solution.

5.4 Modified Newton-Raphson Technique

This section presents an algorithm to find a feasible solution with respect to missing mea-

surements by modifying the original Newton-Raphson search technique. Starting from a
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feasible solution, the algorithm takes the largest step possible in the direction of the cur-

rent gradient, while still remaining feasible with respect to missing measurements. When

a boundary between the feasible and infeasible regions is reached, the new set of active

constraints is computed according to a simple set of rules, and the new search direction is

computed from this point. In this manner the algorithm explores only the feasible regions

of the search space. While the active constraint set changes over time, the overall optimiza-

tion is computationally tractable, unlike the full blown mixed integer programming problem

described in the previous section.

The algorithm behaves according to the flow diagram given in Fig. 5-5. The Make Feasible

Run 
unconstrained 
optimization

START

END TRUE FALSE

Take Largest 
Newton Step

Feasible
?

FALSE

TRUE

Neighbor 
constrained

?

FALSETRUE Full 
Step?

Make Feasible

TRUE

FALSE
Add constraint

Converged
?

TRUE

FALSE

Push lower 
timestep around 
the corner and 
release higher 
constraint

Last 
timestep in 
segment?

Figure 5-5: Modified Newton-Raphson Search: Flow Diagram

block moves all of the times for each infeasible segment to a point outside the field of view

of all of the sensors, but close to the point of entry for that segment. In the example given
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by Fig. 5-1, there is a single infeasible segment consisting of time steps 6 through 12, and

the algorithm would move all of these estimates to a feasible location between the top of

sensor 1 and the bottom of sensor 3, as shown in Fig. 5-6(a).

Recall from Eq. 3.12 that each Newton-Raphson step is taken as:

yk+1 = yk − (JTJ)−1JT r (5.1)

where y =
[

x µ
]T

. The two points yk+1 and yk in parameter space define a line given

by their convex combination:

(1− λ)yk + λyk+1

where λ ∈ [0, 1] and λ = 1 corresponds to taking a full step. Suppose yk is feasible, but

yk+1 is not. Then it must be true that for at least one value of λ, the line crosses the

boundary between the feasible and infeasible regions of parameter space. Starting from the

initial feasible solution, the Take Largest Newton Step block computes the largest value of

λ so that the next solution remains feasible, as shown in Fig. 5-6(b).

Since a full step is not possible, the algorithm must determine which constraints to add

and which to remove. The algorithm detects that time step 12 is attempting to cross into

the field of view of sensor 3. Since there were no previously active constraints, the algorithm

simply constrains time step 12 to be on the bottom of sensor 3, and then takes a new step,

the result of which is shown in Fig. 5-6(c). Careful inspection of the plot shows that this

newest solution places time step 13 on the boundary of sensor 3. The naive choice is to

constrain time step 13 to be on the top wall of sensor 3. However, the algorithm operates

under the guiding principle that if going through the sensor is infeasible, then the segment

must go around the corner. Hence, the algorithm pushes time step 12 around the southeast

corner of the sensor, releasing the constraint on the bottom wall, and adding a constraint

to the right wall. The result of this operation is given by Fig. 5-6(d).

At this point time step 11 approaches the bottom boundary of sensor 3. The same principle

of pushing the path around the corner is applied, and time step 11 is constrained to the

right wall of sensor 3, while the constraint for time step 12 is released. The process is

54



1

2

3

1

2

3

4

5
6789101112

13

14

15

16

17
18

19

20

21

22

23

24

25

26

(a)

1

2

3

1

2

3

4

5
67
89
101112

13

14

15

16

17
18

19

20

21

22

23

24

25

26

(b)

1

2

3

1

2

3

4

5
67
89101112

13

14

15

16

17
18

19

20

21

22

23

24

25

26

(c)

1

2

3

1

2

3

4

5
67
89
1011

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

(d)

1

2

3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

(e)

1

2

3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

(f)

Figure 5-6: Modified Newton-Raphson Search: Step-by-Step Example. (a) Initial Feasible
Solution. (b) Solution after largest first step taken. (c) Solution after time step 12 is
constrained to lie on the bottom of sensor 3. (d) Time step 12 is pushed around the corner,
and time step 11 is constrained to be on the bottom of sensor 3. (e) Time step 6 approaches
the bottom of sensor 3. (f) Final feasible solution. Time step 6 is constrained to lie on the
bottom of sensor 3, and time step 7 is constrained to lie on the right of sensor 3.
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repeated until the last time step in the segment attempts to enter the sensor, as shown in

Fig. 5-6(e). The last time step is not pushed around the corner, but rather it is constrained

to the bottom wall, without releasing the constraint for time step 7. The final result, after

the solution converges, is shown in Fig. 5-6(f).

It is important to note that this algorithm is not guaranteed to find the constrained solution

with minimum cost over the set of all possible constrained solutions. However, it successfully

finds a feasible solution, and it does this in a automatic and systematic manner.

5.5 Circular Constraints

The constraints derived in section 5.2 exactly define the square sensor boundaries within

the global map. However, in order to fully describe the region outside the field of view

of each and every sensor, it is necessary to use disjunctive constraints. This requires the

computation of many parallel optimization problems, resulting in a procedure that is simply

computationally intractable. Another approach to the problem is to use circular constraints

to approximate the sensor boundaries, as shown in Fig. 5-7. This results in a single,

although highly constrained, optimization problem to solve.

SE
NS
OR

i

Figure 5-7: Use of circle to approximate the sensor boundary

By using circles to approximate the sensor boundaries, the region outside the field of view

of the sensor can be described in a single equation. From Fig. 5-4 it is clear that the center

coordinate for each sensor is given by:

(uc, vc) =
(

1
2

(2pu + α cos(θ)− α sin(θ)) ,
1
2

(2pv + α cos(θ) + α sin(θ))
)
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and thus each circle has equation:

(ut − uc)
2 + (vt − vc)

2 ≥ r2

where r is the radius of the circle. A constraint of this form is required for each time step

for which no measurement is available, for each sensor. This results in a set of S(T −M)

simultaneous constraints, rather than the set of either-or constraints that arise from the use

of square sensor boundaries. This technique trades off the ability to exactly describe the

regions of the global map where the target is permitted to be when no measurements are

available with the ability to pose the problem as a single nonlinear optimization program.

As a result, the solution found using this method may not be the solution with lowest overall

cost.

The main question that naturally arises is how to pick the radius r of the circle that

approximates the sensor boundary. If the circle inscribed in the square is chosen, the re-

sulting solution may place the target within the corners of the field of view of the actual

sensor. If the circle circumscribing the square is chosen, the resulting solution may push the

target further away from the sensor than necessary, resulting in a solution with larger cost

that the true globally optimal solution. One possible approach is to systematically search

for the smallest radius necessary in order to push the entire infeasible path segment outside

the field of view of each sensor.

Figure 5-8(a) depicts the result of using circular constraints on the problem given in Fig.

5-1 at the beginning of the chapter. In this case the circle inscribed by the square was

used. As a result, time steps 7 and 8 are still infeasible with respect to the measurement

information. Figure 5-8(b) depicts the result of using the circle circumscribing the square.

Here none of the time steps lie on the boundary for sensor 3, as they were all pushed further

out than necessary by the use of the larger circle.

Recall that the algorithm presented in section 5.4 begins by first finding a feasible solu-

tion before adaptively adding and removing constraints as needed. One way to provide the

algorithm with an initial feasible solution is to first run the circularly constrained problem
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Figure 5-8: Example using circular constraints. (a) Solution using circles inscribed in the
square sensors. (b) Solution using circles circumscribing the square sensors.

using the circles circumscribing the squares, and then to refine the actual constraint set

using the adaptive Newton-Raphson method. Whether used alone or in conjunction with

another algorithm, circular constraints provide a simple, yet powerful, method for locating

a feasible solution with respect to missing measurements.
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Chapter 6

Conclusion

This thesis examines two aspects related to the simultaneous calibration of a sensor network

of non-overlapping video cameras and the recovery of the entire trajectory of a single target

moving between those sensors. The first topic analyzes the use of preprocessing to reduce the

number of unknown variables to be estimated. Two model order reduction techniques are

presented, both of which dramatically decrease the dimension of the search space, thereby

reducing the amount of computation needed. The second topic deals with the task of

finding a solution that is consistent with missing measurement information. The MAP

solution may put the target inside the field of view of one of the sensor’s corresponding

to a time for which no measurement data is available, resulting in a contradiction. Three

techniques are presented, each of which trades off computational complexity for the ability

to find a locally optimal yet feasible solution.

6.1 Model Order Reduction

In order to jointly calibrate a network of cameras and recover the trajectory of a single target

moving within the network, a Bayesian framework is imposed on the problem, and the max-

imum a posteriori (MAP) solution is computed. While this approach is successful at solving

the problem at hand, the resulting objective function is nonlinear, non-quadratic, and non-

convex, and therefore the maxima cannot be found analytically. A Newton-Raphson search

algorithm is used instead to iteratively compute a solution. The original problem formu-

lation results in an extremely high dimensional search space, making the search algorithm

computationally intractable.
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The first model order reduction technique divides the overall optimization problem into

smaller sub-problems. Initially, the path between the sensors is not computed, correspond-

ing to the times for which no measurements are available. The motion model is modified to

account for multistep transitions. After the new primary optimization problem is solved,

the time steps for which no measurements are available are filled in by running smaller

MAP estimation problems using the estimates of the target’s global position upon each

exit and re-entry from the network’s field of view. Since these optimization problems are

linear and Gaussian, they are solved using a Kalman smoother or by computing a single

step in a Newton-Raphson search routine. It is shown that the overall solution for all of

the unknown variables using this technique is exactly the same as that determined using

the original formulation.

The second model order reduction technique exploits the fact that the measurement noise

is low compared to other sources of error in the problem. As the measurement noise ap-

proaches zero, one finds that the solution to the MAP estimation problem occurs at those

points where the measurements are treated as equality constraints. The resulting solution

using this technique is not exactly the same as the original, with the difference between the

two techniques inversely proportional to the magnitude of the measurement error variance.

In cases where the measurement noise is low, the difference in the solutions is negligible,

while the computational savings are quite significant.

6.2 Missing Measurements

The MAP solution can, at times, result in a solution that is infeasible with respect to miss-

ing measurement times. In many cases, the optimal treatment for missing measurements

is to simply propagate the target’s last known state through the motion model, as with a

Kalman filter. However, in the problem studied in this thesis, the motion model occasionally

places the target within the field of view of a sensor at a time for which no measurement is

available, thereby resulting in a contradiction.

The first algorithm constrains the target to lie outside the field of view of each sensor
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for all of the times for which no measurements are available. Due to the fact that the field

of view for each sensor is given by a square in the global map, the only way to describe the

region where the target is allowed to be involves the use of a set of disjunctive, commonly

referred to as either-or, constraints. This construction results in the computation of a large

quantity of parallel optimization problems, resulting in an algorithm that is computation-

ally intractable.

The second algorithm attempts to build the optimal constraint set adaptively, rather than

trying all possible combinations of constraints. Starting from an initial feasible solution, the

algorithm takes the largest step possible in the direction of the current gradient, while still

remaining feasible with respect to missing measurement times. When a boundary between

the feasible and infeasible regions is reached, the new set of active constraints is computed

according to a simple set of rules. These rules implement a secondary goal of pushing the

infeasible path around any corners that are encountered. No guarantee is made on the

algorithm’s ability to find the constraint set that yields the feasible solution with lowest

overall cost.

The last technique involves the use of circular constraints to approximate the field of views

for each sensor. While the use of circles results in a single, computationally tractable, opti-

mization problem, the ability of the algorithm to find a final solution that is feasible with

respect to missing measurements depends on the radius of the circles used. If the radius

is chosen to be large enough to guarantee that a feasible path be found, then the resulting

solution is overly conservative, yielding a higher cost than necessary.

6.3 Future Work

There are many open research questions that remain to be answered in the context of this

thesis. The first question is whether it is possible to find a method to solve the mixed-integer

nonlinear programming formulation in a computationally efficient manner. There may exist

a systematic procedure for eliminating certain combinations of constraints, thereby reducing

the number of parallel optimization problems that must be solved. For example, it may be

possible to eliminate some constraint sets given knowledge of the sensors relative positions,
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as those constraints may correspond to physically impossible scenarios.

The next open question is whether it is possible to develop an algorithm that adaptively

adds and removes constraints in a manner similar to the algorithm in section 5.4, but that is

guaranteed to converge to the globally optimal solution. At this point it remains unclear if

such a globally optimal, yet feasible solution, even exists at all. The convergence properties

of the ad-hoc algorithm presented in section 5.4 must be analyzed in-depth.

Another avenue for future work would be to explore the use Monte Carlo statistical meth-

ods to solve this problem. For example, it may be possible to use a Metropolis-Hastings

algorithm to draw samples directly from the posterior distribution [27]. There are many

issues that one would need to address, including how to best choose the proposal density

from which to draw candidate samples, how to draw samples closest to the maximum of the

posterior rather than from the full posterior, and how to best choose the initial sample. In

high dimensional problems these issues taken on even greater importance so that one does

not become victim to the curse of dimensionality, where the samples are sparsely distributed

throughout the entire space.
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Appendix A

Optimization Methods

A.1 Newton-Raphson Search Algorithm

Newton-Raphson is an iterative method for finding a solution to the equation:

f(x) = 0

In this section, a derivation of the algorithm for the specific case of minimizing the function

||r(x)||2 = r(x)T r(x) is presented, where

r(x) =


f1(x)

f2(x)
...

fm(x)


and x is a vector in Rn. Thus r(x)T r(x) = f2

1 (x) + f2
2 (x) + · · · + f2

m(x), which is a single

valued function with vector valued input. Minimizing r(x)T r(x) is equivalent to solving:

5
(
r(x)T r(x)

)
=

∂
(
r(x)T r(x)

)
∂x

=



∂r(x)T r(x)
∂x1

∂r(x)T r(x)
∂x2

...
∂r(x)T r(x)

∂xn

 = 0
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In order to derive the algorithm, begin by taking the Taylor series expansion of5
(
r(x)T r(x)

)
about some initial guess of the solution, x(n), which yields:

5
(
r(x)T r(x)

)
= 5

(
r(x(n))T r(x(n))

)
+52

(
r(x(n))T r(x(n))

)(
x− x(n)

)
+ h.o.t.

where h.o.t. refers to higher order terms in
(
x− x(n)

)
. Dropping the higher order terms

and setting the above equal to zero yields:

5
(
r(x(n))T r(x(n))

)
+52

(
r(x(n))T r(x(n))

)(
x− x(n)

)
= 0

Now let x = xn+1 and rearrange:

52
(
r(x(n))T r(x(n))

)
xn+1 = 52

(
r(x(n))T r(x(n))

)
x(n) −5r(x(n))T r(x(n))

Let J(x) be the Jacobian of r(x), also denoted by 5 (r(x)), be given by:

J(x) =



∂f1(x)
∂x1

∂f1(x)
∂x2

· · · ∂f1(x)
∂xn

∂f2(x)
∂x1

∂f2(x)
∂x2

· · · ∂f2(x)
∂xn

...
...

...
...

∂fm(x)
∂x1

∂fm(x)
∂x2

· · · ∂fm(x)
∂xn


Applying the chain rule and product rule for matrices, it is easy to see that:

5
(
r(x)T r(x)

)
= 2J(x)T r(x)

and that:

52
(
r(x)T r(x)

)
= 5

(
2J(x)T r(x)

)
= 2J(x)T 5 (r(x)) + 25 (J(x))r(x)

= 2J(x)TJ(x) + 2
[

H1(x) H2(x) · · · Hm(x)
]
r(x)
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where Hi(x) is the Hessian of fi(x):

Hi(x) =



∂2fi(x)
∂x2

1

∂2fi(x)
∂x1∂x2

· · · ∂2fi(x)
∂x1∂xn

∂2fi(x)
∂x2∂x1

∂2fi(x)
∂2x2

· · · ∂2fi(x)
∂x2∂xn

...
...

...
...

∂2fi(x)
∂xn∂x1

∂2fi(x)
∂xn∂x2

· · · ∂2fi(x)
∂2xn


At the expense of a slower convergence rate, drop all of the second order derivative terms

in 52
(
r(x)T r(x)

)
, so that 52

(
r(x)T r(x)

)
is replaced by 2J(x)TJ(x). This yields the

following expression for the Taylor expansion:

(
J(x)TJ(x)

)
xn+1 =

(
J(x)TJ(x)

)
x(n) − J(x)T r(x)

Solving for xn+1 results in a final form for the Newton-Raphson of:

xn+1 = x(n) − (J(x)TJ(x))−1J(x)T r(x)

Recall that (J(x)TJ(x))−1J(x)T is referred to as the pseudo-inverse of J(x), which solves

the linear least squares problem:

J(x)y = r(x)

Note that in Matlab the above can be evaluated by simply using the command J(x) \ r(x).

A.2 Karush-Kuhn-Tucker (KKT) Conditions

The KKT conditions define a set of necessary conditions that must be satisfied at the

optimal solution, x∗, for a general nonlinear programming problem in the case where there

are equality and inequality constraints. Recall from section 5.3 that the general nonlinear

program is given by:

min
x∈Rn

f(x)

subject to:

gi(x) = 0, i = 1..L

hk(x) ≤ 0, k = 1..P
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where either all or some of the functions f(x), gi(x), hk(x) are nonlinear functions of x.

Suppose the functions f(x), gi(x), hk(x) are continuous and differentiable, then there exists

a unique set of Lagrange multipliers {λi, νi} such that:

5f(x∗) +
L∑

i=1

λi 5 gi(x∗) +
P∑

k=1

νk 5 hk(x∗) = 0

gi(x∗) = 0, i = 1..L

hk(x∗) ≤ 0, k = 1..P

λi ≥ 0

λigi(x∗) = 0, i = 1..L
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Appendix B

Equality of Estimates for Path

Between Sensors

This appendix shows that the maximum a posteriori (MAP) estimate obtained for the

target’s trajectory while outside the field of view of the sensor network is exactly the same

estimate that is obtained using a Kalman smoother. In both cases, the target’s state as

it leaves and reenters the network are treated as given quantities, and the optimization is

over all of the time steps in between. The proof is presented for the case where there is a

single unmeasured time step between exit and reentry, as the extension for multiple time

steps follows directly.

B.1 Derivation of the MAP estimate

The optimal value for the time step where the target is outside the field of view of the sensor

network is given by:

x∗2 = arg max
x2

p (x3|x2) p (x2|x1)

= arg max
x2

log (p (x3|x2)) + log (p (x2|x1))

= arg max
x2

(x3 −Ax2)
T Σ−1

ν (x3 −Ax2) + (x2 −Ax1)
T Σ−1

ν (x2 −Ax1)
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Take the derivative of the previous expression with respect to x2, set it equal to zero, and

solve for x2, as:

−2ATΣ−1
ν (x3 −Ax2) + 2Σ−1

ν (x2 −Ax1) = 0

−ΣνATΣ−1
ν (x3 −Ax2) + x2 −Ax1 = 0

−ΣνATΣ−1
ν x3 + ΣνATΣ−1

ν Ax2 + x2 −Ax1 = 0(
ΣνATΣ−1

ν A + I
)
x2 = Ax1 + ΣνATΣ−1

ν x3

The optimal estimate for x2 is given by:

x2 =
(
ΣνATΣ−1

ν A + I
)−1 (

Ax1 + ΣνATΣ−1
ν x3

)
(B.1)

B.2 Derivation of the Kalman smoother estimate

In general, the equations for the Kalman smoother are given by:

xk|N = xk|k + Γk

(
xk+1|N − xk+1|k

)
(B.2)

where:

Γk = Pk|kA
TP−1

k+1|k

where xi|j is the state estimate at time step i given all of the knowledge up to time step j,

and Pi|j is the covariance matrix for the estimate at time step i given all of the knowledge

up to time step j.

The above equations require some values computed during the forward pass of the Kalman
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filter. Treating x1 and x3 as known quantities, the forward pass produces:

x1|1 = x1

P1|1 = 0

x2|1 = Ax1

P2|1 = Σν

x2|2 = Ax1

P2|2 = Σν

x3|2 = A2x1

P3|2 = AΣνAT + Σν

x3|3 = x3

P3|3 = 0

Substituting into equation B.2 yields the following estimate for x2:

x2 = Ax1 + ΣνAT
(
AΣνAT + Σν

)−1 (
x3 −A2x1

)
=

(
A−ΣνAT

(
AΣνAT + Σν

)−1
A2
)
x1 + ΣνAT

(
AΣνAT + Σν

)−1
x3

=
(
I−ΣνAT

(
AΣνAT + Σν

)−1
A
)
Ax1 + ΣνAT

(
AΣνAT + Σν

)−1
x3 (B.3)

The proof now requires the following matrix inverse identity:

(E + BCD)−1 = E−1 −E−1B
(
C−1 + DE−1B

)−1 DE−1

where:

E = I

B = ΣνAT

C = Σ−1
ν

D = A
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Applying the identity to equation B.3 results in:

x2 =
(
I + ΣνATΣ−1

ν A
)−1

Ax1 + ΣνAT
(
AΣνAT + Σν

)−1
x3

Applying the identity again, this time to the second term, gives:

E = Σν

B = A

C = Σν

D = AT

Combining:

x2 =
(
I + ΣνATΣ−1

ν A
)−1

Ax1

+ ΣνAT
(
Σν

−1 −Σν
−1A

(
Σν

−1 + ATΣν
−1A

)−1
ATΣν

−1
)
x3

=
(
I + ΣνATΣ−1

ν A
)−1

Ax1

+ ΣνAT
(
Σν

−1ΣνA−T −Σν
−1A

(
Σν

−1 + ATΣν
−1A

)−1
)
ATΣν

−1x3

=
(
I + ΣνATΣ−1

ν A
)−1

Ax1

+
(
Σν −ΣνATΣν

−1A
(
Σν

−1 + ATΣν
−1A

)−1
)
ATΣν

−1x3

=
(
I + ΣνATΣ−1

ν A
)−1

Ax1

+
(
I−ΣνATΣν

−1A
(
Σν

−1 + ATΣν
−1A

)−1
Σν

−1
)
ΣνATΣν

−1x3

Applying the identity one last time, this time with:

E = I

B = ΣνATΣ−1
ν A

C = Σν

D = Σ−1
ν

yields:

x2 =
(
I + ΣνATΣ−1

ν A
)−1 (

Ax1 + ΣνATΣν
−1x3

)
(B.4)
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Since equations B.1 and B.4 are equal, the MAP estimate yields the exact same result as

the Kalman smoother for the case where the target’s position between sensors is estimated

without measurements.

B.3 Derivation of the Kalman smoother covariance

This section presents the expression for covariance of the estimate obtained using a Kalman

smoother. In general, the error covariance for a smoothed estimate is given by:

Pk|N = Pk|k + Γk

(
Pk+1|N −Pk+1|k

)
ΓT

k (B.5)

In the case where x2 is estimated using only x1 and x3, the covariance is:

P2|3 = P2|2 + Γ2

(
P3|3 −P3|2

)
ΓT

2

= Σν + ΣνAT
(
AΣνAT + Σν

)−1 (
0−

(
AΣνAT + Σν

)) (
ΣνAT

(
AΣνAT + Σν

)−1
)T

= Σν −
(
AΣνAT + Σν

)−T
AΣν

T

As expected, the covariance at time step x2 is made smaller by the additional information

obtained from x3, rather than simply relying on propagating x2 through the motion model.
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