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Abstract

With the development of A/D converters possessing sufficiently high sampling rates, it
is now feasible to use arbitrary, wideband waveforms in radar applications. Large sets
of quasi-orthogonal, wideband waveforms can be generated so that multiple radars can
simultaneously operate in the same frequency band. Each individual radar receiver
can process its own return as well as the orthogonal returns from the other radars,
which opens the possibility for developing algorithms that combine data from multiple
radar channels. Due to the random nature of chaotic signals, it is possible to develop
a procedure for generating large sets (> 50) of quasi-orthogonal radar waveforms
using deterministic chaos.

Deterministic chaos is defined as a bounded, aperiodic flow with a sensitive de-
pendence on initial conditions. There are many different types of chaotic systems. In
this thesis, waveforms will be generated from the well-studied Lorenz system. Each
waveform from the Lorenz system can be fully characterized by three parameters (σ,
b, and r) and a set of initial conditions, (xo, yo, zo). The particular parameter values
greatly affect quality of the Lorenz waveform as quasi-orthogonal radar waveform.
Therefore, this thesis conducts a parameter study to quantify how the parameters
affect various radar waveform metrics. Additionally, this thesis proposes a procedure
for modifying the Lorenz waveform in order to improve its performance on these
metrics.
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Title: Senior Staff, MIT Lincoln Laboratory

3



4



Acknowledgments

A great technical benefit in completing a thesis is collaborating with a research advisor

to gain both a better understanding in a particular field and to learn general problem

solving skills. I have been very fortunate to have had the opportunity to collabo-

rate closely with two advisors: Dr. Kevin Cuomo and Professor Alan Oppenheim.

In addition to collaborating with this thesis, both of my advisors are outstanding

individuals.

I have been involved in the MIT VI-A program for the last few years, which is a

program that enables me to collaborate with MIT Lincoln Laboratory on a laboratory

thesis project. My advisor at Lincoln Laboratory is Dr. Kevin Cuomo, and we have

worked very closely throughout the duration of this thesis. Despite that Kevin is very

intelligent and qualified, anyone who has spent time with him will tell you that he is

also uncharacteristically modest and completely down to earth. Moreover, even with

his busy schedule, Kevin could always make himself available when I needed help.

His encouragement, motivation, advice, and support were essential to the completion

of this thesis. However, not only has Kevin been a great advisor, but he is also a

great friend. I value all the time that I have had to get to know him better during

all of our meetings and lunches at Lincoln, where our conversations were not limited

to just technical topics.

Over the past year, I have had the opportunity to also work with Professor Alan

Oppenheim, who insists on me calling him Al. Many people are familiar with Al’s

many technical accomplishments and his reputation for being a fantastic thesis advi-

sor. Without question, the quality of this thesis was very heavily influenced by Al’s

guidance and help. However, I will never forget when Al saw me standing in the office

with my bags packed ready to catch the subway to the airport. Without hesitating,

he offered to drop me off at the airport. Al often explains that an advisor/advisee

relationship is much like a father/son relationship. I feel like Al is concerned with

my development both as an engineer and a person. I am very grateful for the impact

that he has made on my life.

5



I would also like to thank Dr. Frank Robey for funding most of this thesis re-

search. Frank has been very helpful during my stay at Lincoln Laboratory. He is

very understanding and has made sacrifices to make my research at Lincoln easier.

For example, Frank helped me acquire a laptop computer to allow me to more easily

transport my work between Cambridge and Lexington. Moreover, Frank has always

encouraged and promoted my research for which I am very appreciative.

This thesis was also funded, in part, by the Siebel Systems, Inc. I was provided

with a full semester of funding as a recipient of the Siebel scholarship. I am grateful

for this scholarship and consider this award a great honor.

Many others have contributed to the technical development of this thesis. Engag-

ing technical discussions with Ross Bland, Sourav Dey, Al Kharbouch, and Charles

Rhohrs significantly affected this thesis. They are, of course, great friends and are

also co-workers in the Digital Signal Processing Group at MIT. At Lincoln Labora-

tory, both Jeff McHarg and Scott Coutts always made themselves available whenever

I had any questions or concerns about this research. I would also like thank Scott for

some editorial comments. It has been my privilege to work with both Jeff and Scott

and to get to know them better. Additionally, Jeff had been my advisor at Lincoln

Laboratory while I was an undergraduate at MIT and has greatly contributed to my

development, and I am especially thankful. Also, I would like to thank Tom Gross

for helping me through tests on the Next Generation Radar.

I have worked closely with both Group 33 at Lincoln Laboratory and the Digital

Signal Processing Group (DSPG) at MIT. Specifically, in Group 33, I have had the

privilege of working closely with Scott Coutts, Kevin Cuomo, Jeff McHarg, Frank

Robey, and Dennis Weikle. In DSPG, I have had the privilege of working with Arthur

Baggeroer, Ross Bland, Tom Baran, Petros Boufounos, Sourav Dey, Zahi Karam,

Alaa Kharbouch, Al Oppenheim, Charles Rohrs, Melanie Rudoy, Joesph Sikora, Eric

Strattman, Archana Venkataraman, and Dennis Wei.

I have also had the opportunity to make several presentations to DSPG in the

weekly group meetings (which were actually referred to as ”brainstorming sessions

where 1 + 1 = 3”). In these meetings, I had the opportunity to present my research

6



in a casual setting to the other members of the group and a few visiting scientists

including Dan Dudgeon and Steve Smith. Moreover, these meetings provoked many

comments which became incorporated into my thesis. Without question, this thesis

was significantly influenced by these group meetings.

I would like to also thank all those who both directly and indirectly supported me

and this thesis. It is impossible to list everybody, and I apologize for anyone that I

have missed.

On a personal level, I would like to thank my loving family for all of their sacrifice

and support. I would like to thank my parents for their guidance and dedication to

raising me as best they could. Describing, in words, all that they have done for me

is simply impossible. From feeding the ducks with my dad in second grade to after-

school chats with my mom to all the high school basketball games that my parents

never missed, I feel extremely blessed to have such fantastic parents. I would also

like to thank my brother, Mark, and my sister, Kelli. I could have never ask for any

better siblings. I would also like to thank both sets of grandparents for supporting

me both emotionally and financially. Their support greatly encouraged me. I would

also like to thank all those in my extended family.

I would also like to thank my friends for making my stay in Boston enjoyable. I

have made many friends while in Boston, and without mentioning any names, I would

like thank them all. However, I would like to give a special thanks to Ross Bland

who was my roommate, my office-mate, class-mate, and close friend. I was around

Ross every day for almost my entire stay in Boston. We have many good memories.

We rode our bikes in sub-zero weather all around Boston. When I bought a pickup,

we drove all over New England. We spent many late nights studying and had many

late-night discussions on completely random topics such as college football. I am

extremely thankful for this friendship.

Finally, and most importantly, I would like to thank the Lord for providing and

guiding me through this period of my life.

7



8



Contents

1 Introduction 21

1.1 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Overview of Chaotic Systems 27

2.1 The Lorenz System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Bifurcations of the Lorenz System . . . . . . . . . . . . . . . . 32

3 Radar Waveform Design Considerations 39

3.1 Peak-to-RMS Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Autocorrelation Function . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Energy Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Cross-correlation Function . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Radar Waveforms Designed from the Lorenz System . . . . . . . . . . 50

4 The Effect of the Lorenz System Parameters on Radar Waveform

Design Metrics 53

4.1 Peak-to-RMS Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Autocorrelation Function . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Energy Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.1 Time-Scaling the Lorenz Equations . . . . . . . . . . . . . . . 72

4.3.2 Time and Amplitude Scaling the Lorenz Equations . . . . . . 75

4.3.3 Approximate Time-Scaling via the Lorenz Parameters . . . . . 76

4.4 Cross-correlation Function . . . . . . . . . . . . . . . . . . . . . . . . 87

9



4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Design Methods for Lorenz-Based Radar Waveforms 91

5.1 Evaluating the Lorenz Waveforms against Traditional Designs . . . . 92

5.1.1 Peak-to-RMS Ratio . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1.2 Autocorrelation Function . . . . . . . . . . . . . . . . . . . . . 93

5.1.3 Energy Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1.4 Cross-Correlation Function . . . . . . . . . . . . . . . . . . . . 96

5.2 Transformations to Improve the Lorenz Radar Waveforms . . . . . . 97

5.2.1 Peak-to-RMS Ratio Improvement . . . . . . . . . . . . . . . . 98

5.2.2 Spectral Shaping . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3 Evaluating the Transformed Lorenz Radar Waveforms . . . . . . . . . 113

5.3.1 Peak-to-RMS Ratio . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3.2 Autocorrelation Function . . . . . . . . . . . . . . . . . . . . . 113

5.3.3 Energy Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3.4 Cross-Correlation Function . . . . . . . . . . . . . . . . . . . . 114

6 Summary and Suggestions for Future Research 119

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . 121

A Chaos-Based Waveforms in Practice 123

A.1 Synthesizing a Transmit Radar Waveform . . . . . . . . . . . . . . . 123

A.2 Experimental Setup and Results . . . . . . . . . . . . . . . . . . . . . 130

A.3 Chaotic Synchronization through Free Space Transmission . . . . . . 134

10



List of Figures

2-1 Time Window of the Trajectories of the State Variables of the Lorenz

System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2-2 Time Window of Two Trajectories with Nearby Initial Conditions. . . 30

2-3 The Strange Attractor. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2-4 Definition of Σ. Σ, which lies in the z = r− 1 plane, stretches from q−

to q+. W u(p) is the unstable manifold of the origin. The segment of

W u(p) that is above the plane z = r − 1 is colored dark blue, and the

segment below z = r − 1 is colored light blue [8]. . . . . . . . . . . . . 33
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Chapter 1

Introduction

Radar systems typically utilize wideband waveforms that possess a narrow autocor-

relation function main-lobe in order to achieve fine range resolution. The wideband

radar waveform of choice is usually the linear-FM waveform, which has an instanta-

neous frequency that linearly increases with time. The wide-spread use of this wave-

form is mostly due to specific properties that allow for stretch processing, as explained

in [17]. The stretched processed linear-FM waveform can then be sampled by an A/D

converter with a sampling frequency that is less than what would be required for an

arbitrary wideband waveform. In fact, until recently, the sampling rate of practical

A/D converters has only been high enough to sample stretch-processed linear-FM

waveforms and not an arbitrary wideband waveform. However, linear-FM waveforms

have some disadvantages. For example, they have high range side-lobes, unless signifi-

cant spectral tapering is applied to the receive signal (which sacrifices range resolution

and degrades the signal-to-noise ratio). Furthermore, the set of linear-FM waveforms

includes only two quasi-orthogonal waveforms, i.e. the ”up-chirp” and ”down-chirp”.

With the development of A/D converters possessing sufficiently high sampling

rates, wideband waveforms other than linear-FM waveforms are beginning to see use

in applications with stringent requirements such as very low range side-lobes or a large

quasi-orthogonal set. Arbitrary wideband waveforms can be designed in a number of

ways. For example, minimum-shift keying can be used to embed a maximal-length

sequence into a complex exponential [1]. This technique and others like it require a
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discrete-time sequence. Unfortunately, as is the case for maximal-length sequences,

there is a limited number of possible sequences, and the length of these sequences

is only defined for lengths of 2k − 1 samples (where k is a positive integer). Thus,

although these waveforms have very low range side-lobes, they also have these two

significant drawbacks, which are now explained in more detail.

Many emerging radar applications often require a set of hundreds, or even thou-

sands, of distinct quasi-orthogonal waveforms. In a quasi-orthogonal waveform set, no

single waveform significantly interferes with the detection of another waveform that

is transmitted in the same frequency band and/or at the same time (this issue will be

addressed further in Chapter 3). An example of a radar system that requires a quasi-

orthogonal set is a multiple-input, multiple-output (MIMO) radar system. A MIMO

radar system consists of multiple apertures, where each aperture is capable of trans-

mitting and receiving radar waveforms [15]. In some modes of operation, a MIMO

radar system requires that every transmitted waveform must be quasi-orthogonal with

every other transmitted waveform being used at that time and every point of time

in the past. Thus, in examples like this where large numbers (hundreds, thousands,

millions, etc...) of quasi-orthogonal waveforms are required, finite-set sequences may

not be useful due to an insufficient number of waveforms, since each quasi-orthogonal

waveform is generated from a distinct sequence. However, as to be discussed in this

thesis, extremely large sets of quasi-orthogonal waveforms can, in fact, be generated

by exploiting the random nature of deterministic chaos.

An additional drawback to finite sets of fixed-length sequences is associated with

their fixed-length. For example, the length of the maximal length sequences is limited

to 2k−1 where k is any positive integer. Therefore, if the application specifies a length

between 2k − 1 and 2k+1 − 1 then a maximal length sequence may not be applicable.

On the other hand, waveforms derived from chaotic systems can be of any length since

they are generated by integrating a chaotic system over an arbitrary time-interval.

Apart from finite-set, fixed-length sequences, techniques have been developed for

generating other quasi-orthogonal radar waveforms, but these generation techniques

require complicated numerical optimization algorithms [2]. On the other hand, some
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chaotic systems naturally lend themselves to a simple waveform generation procedures

as explored in this thesis. The resulting procedure generates a large set of high-quality

waveforms in a very short time interval (perhaps even on a pulse-by-pulse basis). The

ability to develop a systematic waveform generation procedure with deterministic

chaos is largely due to the structure and properties of chaotic systems, which are

studied, in part, by many past publications such as [6], [7], [19], [9], and [8].

When using a chaos-based waveform, a well-designed receiver might also be able to

exploit the self-synchronization property possessed by certain chaotic systems, which

was discovered by Pecora and Carroll as explained in [13]. Self-synchronization offers

potential benefits in channel equalization [5], high-speed long-distance communica-

tions [3], and other signal processing applications. Self-synchronization benefits are

not discussed in this thesis although preliminary results of a self-synchronizing radar

waveform are given in the appendix. The focus of this project, however, is just on

the design of quasi-orthogonal radar waveforms via chaotic systems.

For all the above reasons, the use of deterministic chaos to generate large sets (>

50) of quasi-orthogonal radar waveforms has been explored in the past and is explored

further herein. Previously, chaos-based waveforms have been utilized in some of the

radars located in Kwajalein Atoll [1]. However, many of these waveforms are actually

based only loosely on deterministic chaos. In fact, generating each waveform requires

computationally intensive numerical optimization algorithms [2]. This thesis presents

a systematic radar waveform design technique, which is heavily based on deterministic

chaos, which can be used to generate large sets of quasi-orthogonal waveforms. The

chaotic system used in this thesis is the Lorenz system [10]. The generation technique

developed is much less computationally intensive when compared to methods used

to generate the previous chaos-based radar waveforms. Moreover, since the Lorenz

system is a self-synchronizing chaotic system and since the transmitted waveforms

are closely based on the original Lorenz waveform, the potential for exploiting the

self-synchronization property exists.
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1.1 Outline of Thesis

In this thesis, the use of the Lorenz system to generate radar waveforms is evaluated

and then improvements to the waveforms are suggested. The details are organized

into chapters as follows.

Chapter 2 summarizes deterministic chaos. In particular, an overview of the

Lorenz system is presented. For a more detailed summary on chaos and the Lorenz

system, refer to [4], [8], or [18].

Chapter 3 proposes four radar design goals, which will be used to evaluate the

strengths and weaknesses of various waveforms presented throughout the thesis. These

four design considerations include: (i) peak-to-RMS ratio, (ii) the autocorrelation

function, (iii) the energy spectrum, and (iv) the cross-correlation function. To sim-

plify the evaluation of the waveforms, the autocorrelation and cross-correlation func-

tions were considered in place of the two-dimensional ambiguity and cross-ambiguity

functions, although the results can also be illustrated with the ambiguity function as

shown in the appendix.

Chapter 4 investigates how to select the Lorenz parameters, when generating

Lorenz radar waveforms. Specifically, the parameters are varied to demonstrate the

tradeoffs between the peak-to-RMS ratio, the autocorrelation function side-lobe level,

and the bandwidth of a Lorenz waveform. Furthermore, this chapter discusses how

to time-scale the state variables in two ways in order to set the bandwidth of the

waveform.

Chapter 5, addresses practical issues associated with the Lorenz waveforms. The

waveforms are compared against an industry standard, and the practical limitations

are discussed. Transformations to the Lorenz waveforms are then suggested. The

modified waveforms are again compared against (and outperform) an industry stan-

dard. Thus, the major result of Chapter 4 is a systematic waveform generation

procedure, which is based closely on the Lorenz system. Moreover, this generation

procedure is capable of quickly generating waveforms that meet and surpass current

industry standards.
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Finally, as described in the appendix, the waveforms designed in Chapter 4 were

tested in a real radar at M.I.T. Lincoln Laboratory and preliminary results are pre-

sented.
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Chapter 2

Overview of Chaotic Systems

This chapter presents an overview of chaos theory. However, it is not an all-inclusive

introduction to the topic. For more information on chaos theory, refer to [8], [18],

and [4].

As described in the introduction, deterministic chaos is used to generate very large

sets of quasi-orthogonal waveforms. As similarly defined in [18], deterministic chaos

herein will be loosely defined as a bounded, aperiodic flow with a sensitivity to initial

conditions. Infinite numbers of continuous-time chaotic systems do exist [4], and there

are several well-known, continuous-time chaotic systems such as the Lorenz system,

the Rössler system, and the Double Scroll system. In general, the radar waveform

properties of waveforms generated from a different chaotic system will be noticeably

different. This thesis focuses on, perhaps, the most well-known chaotic system, the

Lorenz system. While this thesis provides a deep understanding of how to generate

radar waveforms from the Lorenz system, the concepts and tools developed herein

can also be extended to other chaotic systems.

2.1 The Lorenz System

The Lorenz system is a well-studied chaotic system [10] named after Edward N.

Lorenz. It is given in Eq. 2.1, and the three parameters σ, r, and b are referred to as

27



the Lorenz parameters.

ẋ = σ(y − x)

ẏ = rx− y − xz (2.1)

ż = xy − bz

Assuming all parameters are greater than zero, all fixed points of the Lorenz are

unstable if the following constraints are satisfied:

σ > b + 1 (2.2)

r >
σ(σ + b + 3)

(σ − b− 1)
≡ rc. (2.3)

For sets of parameters which satisfy Eqs. 2.2 and 2.3, the Lorenz system might give

rise chaotic dynamics or stable limit cycles. On the other hand, when 0 < r < rc, the

Lorenz system will be heavily influenced by the presence of stable fixed points. When

0 < r < 1 < rc, the Lorenz system has a stable fixed point at (x, y, z) = (0, 0, 0), and

all solutions eventually approach this fixed point. When 1 < r < rc, two nontrivial

and stable fixed points emerge at (x, y, z) = (±
√

b(r − 1),±
√

b(r − 1), r−1), and the

fixed point at the origin becomes unstable. When r becomes greater than rc, all the

fixed points become unstable, and chaotic dynamics may ensue.

When the Lorenz system exhibits chaotic dynamics, the resulting trajectories de-

scribed by the Lorenz system demonstrate a bounded, aperiodic flow with a sensitive

dependence on initial conditions. The bounded, aperiodic flow of these trajectories

can be verified by integrating the Lorenz equations and observing the nature of result-

ing trajectories. The Lorenz system can be approximately integrated via numerical

integration techniques, for example, by using a fourth-order Runge-Kutta method

with a step size equal to 10−3. A plot of each state variable of the Lorenz system can

be seen in Fig. 2-1. The values for the parameters used in generating this plot were

σ = 267, r = 595, and b = 100. The process for selecting the initial conditions will

be explained at the end of this section. The boundedness and aperiodicity associated
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with a chaotic system can be observed from from Fig. 2-1. The state variables in

this figure remain bounded. Also, if the time window was extended to reveal a longer

section of the waveform in time, the state variables would be noticeably aperiodic.

In addition to boundedness and aperiodicity, a chaotic system also exhibits a sen-

sitivity to initial conditions. For chaotic systems, two solutions with nearby initial

conditions exponentially diverge. To demonstrate that the Lorenz system has this

sensitivity, the x state variable from two distinct solutions with nearby initial condi-

tions are shown in Fig. 2-2. As can be seen by this figure, the two signals begin nearby

and rapidly diverge from each other. Although only x(t) is shown, the same behavior

can be observed from both y(t) and z(t). Therefore, as can be seen in Figs. 2-1

and 2-2, the Lorenz system demonstrates a bounded, aperiodic flow with a sensitive

dependence on initial conditions which is characteristic of any chaotic system.
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Figure 2-1: Time Window of the Trajectories of the State Variables of
the Lorenz System.

For parameter values for which the Lorenz system demonstrates chaotic dynamics,

all solutions, regardless of their initial conditions, converge to a set called the strange
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Figure 2-2: Time Window of Two Trajectories with Nearby Initial Con-
ditions.

attractor. The strange attractor can be observed in state space (also called phase

space) where each state variable is assigned a respective axis in the x− y − z space.

Figure 2-3 illustrates a solution to the Lorenz system tracing out the strange attractor

in state space. Since the Lorenz system satisfies the uniqueness theorem [8], no points

of intersection exist on the strange attractor. Nonetheless, all solutions eventually

converge to the butterfly-shaped attractor. Specifically, the attractor is composed of

two wings, and each wing of the attractor encircles one of the two nontrivial fixed

points.

The attractor in Fig. 2-3 illustrates several characteristics of the Lorenz system.

For example, the bounded, aperiodic nature of the Lorenz system is further demon-

strated. Also, it is worth noting that the shape of the strange attractor actually varies

for varying parameter values. This issue is addressed in Chapter 4. Additionally, an

explanation can be easily given for the selection of the initial conditions when solving

the Lorenz equations. In this thesis, the initial conditions are randomly selected from
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the attractor. Selecting the initial conditions on the attractor is accomplished by

randomly selecting a three-dimensional point, {x0, y0, z0}, from a cube enclosing the

origin. The Lorenz system is then numerically integrated, with a step size of 10−3,

using {x0, y0, z0} as the set of initial condition. Then, the first 104 samples of the

solution are discarded. Since empirical observations have shown that the solutions

converge to the attractor after 104 samples (for the Lorenz parameter values used in

this thesis), the effective result is that the initial conditions are randomly selected

from the attractor.
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Figure 2-3: The Strange Attractor.
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2.1.1 Bifurcations of the Lorenz System

As explained given in Eq. 2.3 of the previous section, when r < rc, the Lorenz

system is heavily influenced by stable fixed points. When r > rc, all fixed points

are unstable. At r = rc, a bifurcation occurs. The word bifurcation is used to

indicate when the qualitative dynamics of the Lorenz system change. The Lorenz

system undergoes multiple bifurcations as r is varied from 0 to rc (while σ and b

remain constant), and consequently, r is referred to as the bifurcation parameter. This

section studies these bifurcations as r is varied in order to understand the dynamics

and attractor of the Lorenz system in more detail. The reference [8] provides an

excellent description of these bifurcations, and the rest of this section summarizes

relevant issues in Sections 2.4, 5.7, and 6.4 of [8]. The purpose for including the

summary herein is to condense the relevant topics for the convenience of the reader,

but for a more rigorous discussion, see [8].

The qualitative dynamics of the Lorenz system can be simplified and described by

deriving a one-dimensional Lorenz map, which does not refer to the one-dimensional

mapping in [10] discovered by Lorenz. The Lorenz map herein is derived by first

defining a rectangle, Σ, as shown in Fig. 2-4 where q− and q+ correspond to two

nontrivial fixed points of the Lorenz system. As explained in Section 5.7 of [8] or as

observed through numerical simulation, every time a trajectory travels around one

wing of the attractor, the trajectory will eventually ”pass down through Σ”. As shown

in Fig. 2-5, a Poincaré map1 on Σ can be calculated, and an observable boundary

line, which will be called B, exists in Σ where points on the left side correspond to

trajectories that will proceed to rotate next around q− while points on the right side

correspond to trajectories that will next rotate around q+. It is assumed that this

boundary is the intersection of Σ and the stable manifold2 of the origin, W s(p) [8]. As

a notational simplification, a change of coordinates is performed, (x, y) −→ (u, v), by

rotating the x-y plane, and as a result, B is coincident with the line u = 0 as shown

1A Poincaré map is also known as a first return map and is explained in detail in pages 22-32 of
[8].

2The stable manifold is the set of all trajectories that converge to the stable fixed point. For
more details, refer to [8].
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Figure 2-4: Definition of Σ. Σ, which lies in the z = r−1 plane, stretches
from q− to q+. W u(p) is the unstable manifold of the origin. The segment
of W u(p) that is above the plane z = r− 1 is colored dark blue, and the
segment below z = r − 1 is colored light blue [8].

in Fig 2-5. With the change of coordinates, the u coordinate, independently of the

v coordinate, specifies which wing of the attractor the trajectory will rotate around

next. A mapping can be expressed mathematically as




ui+1

vi+1


 = F (ui, vi) (2.4)

where F, is a function used to relate consecutive points of the Poincaré map and i

indexes through all the points in time. As a further simplification, it is assumed that

the u coordinate completely specifies the value of the next u coordinate, which is

expressed mathematically in Eq. 2.5. This decoupling of the u and v coordinates

is consistent with the nature of the observed boundary, B, and can be validated
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Figure 2-5: Poincaré Map on Σ. Each time a trajectory passes through
Σ, the (x, y) coordinates are recorded. For illustration purposes, a change
of coordinates, (x, y) −→ (u, v), is performed to rotate the x − y plane.
An observable boundary exists, B, such that all points on the left of B
represent trajectories that rotate next around one wing of the attractor
while points on the other side of B rotate around the other wing of the
attractor. Also the upper cluster of points of this map all correspond to
trajectories that just completed one loop around the same wing, and the
lower cluster of points correspond to trajectories that just completed one
loop around the other wing [8].

numerically as explained in [8].




ui+1

vi+1


 = F (ui, vi) =




h(ui)

g(ui, vi)


 (2.5)

Thus, since consecutive u-coordinates have no dependence on the v-coordinate and

since the u-coordinate completely specifies the wing a trajectory will rotate around

next, h(ui) provides a one-dimensional mapping that qualitatively describes how the

trajectory moves around the Lorenz attractor. This mapping is referred to as the
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Lorenz map and is given in Eq. 2.6 and shown in Fig. 2-6.

ui+i = h(ui) (2.6)

All points, ui, to the left of the vertical line ui = 0 represent trajectories that will

rotate next around q− while points on the right correspond to trajectories that will

rotate next around q+.

As a notational clarification, successive iterations of Eq. 2.6 on an initial u-

coordinate, u0, will result in a sequence of u-coordinates that can be referred to as

un. Also, for notational clarity, the fixed points of h(ui), which correspond to the

fixed points of the Lorenz system, will also be denoted as q+ and q−.

0

0

u
i

u
i+

1

Figure 2-6: The Lorenz Map for r > rc. This Lorenz map describes a
Lorenz system exhibiting chaotic dynamics [8].

Using the Lorenz map, the qualitative dynamics of the Lorenz system are described

as the bifurcation parameter is increased from zero. The dynamics when r < 1 are

somewhat trivial. The Lorenz system has one, globally stable fixed point at the origin.
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All trajectories converge to this fixed point. When 1 < r < rc, the fixed point at

the origin becomes unstable, and the two nontrivial, stable fixed points, q+ and q−,

emerge at (x, y, z) = (±
√

b(r − 1),±
√

b(r − 1), r − 1).

0

0

u
i

u
i+

1
q

u
 +

q
u
 −

Figure 2-7: The Lorenz Map for 1 < r < rh. For this range of r, this
map demonstrates that the sequence un converges to the fixed points q+

and q−, which implies that all trajectories converge to the fixed points
also [8].

When r is marginally increased above unity, the Lorenz map is as given in Fig. 2-7.

As shown in the figure, successive iterations of all points on one particular side of ui =

0 will only give rise to points on the same side of ui = 0, and these successive iterations

will converge to either q+ or q−. Thus, the corresponding attractor dynamics are that

all trajectories originating on one wing of the attractor will remain on that wing of

the attractor and will converge to the appropriate fixed point, q+ or q−.

As explained more rigorously in [8], when r increases, the Lorenz map indicates

an interesting phenomenon. The endpoints of the Lorenz map on the line ui = 0

begin to move toward each other along the line ui = 0. Eventually, r reaches a value,
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rh, where the endpoints of the Lorenz map meet at (ui, ui+1) = (0, 0). This creates

an unstable fixed point of the Lorenz map at (ui, ui+1) = (0, 0). As r increases above

rh, the endpoints of the Lorenz map begin to move apart along the line ui = 0, and

the unstable fixed point at (ui, ui+1) = (0, 0) splits into two unstable fixed points, f+
p

and f−p as shown in Fig. 2-8. As r continues to increase, f+
p and f−p move in opposite

directions along the line ui+1 = ui toward either q+ or q−, respectively.

The region of the Lorenz map corresponding to ui ∈ [f−p , f+
p ] is a chaotic-like region

where, almost always, successive iterations of the Lorenz map will give rise to points

that move around the region somewhat randomly until, eventually, an iteration maps

a point outside the region [f−p , f+
p ]. Once a point jumps outside [f−p , f+

p ], successive

iterations will converge to either q+ or q−. The Lorenz map represents trajectories

that appear chaotic-like for some finite time interval, but then eventually approach

a fixed point. The behavior of the Lorenz system for the range of r where rh < r <

ra < rc is called preturbulence and is explained with more details in [8].

As r is increased to ra, the endpoints on the line ui = 0, as well as f+
p and f−p ,

continue to separate until all points ui ∈ [f−p , f+
p ] map to points ui+1 ∈ [f−p , f+

p ].

Consequently, even though the fixed points q+ and q− remain stable, a butterfly-like

attractor for the system exists in the aforementioned range, but not all trajectories

converge to this attractor. Many trajectories also converge to the fixed points q+ and

q−.

When r = rc, f+
p and f−p reach q+ and q−, respectively. Then when r is increased

arbitrarily above rc, all fixed points of the Lorenz map become unstable. At this

point, practically all trajectories converge to the Lorenz attractor.
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Figure 2-8: The Lorenz Map for rh < r < ra. For this range of r, almost
always, successive iterations of the Lorenz map will give rise to points that
move around somewhat randomly until converging to the fixed points.
The Lorenz map represents trajectories that appear chaotic-like for some
finite time interval, but then eventually approach a fixed point, which is
called preturbulence [8].
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Chapter 3

Radar Waveform Design

Considerations

In Chapter 2, the background for the Lorenz system is presented. This chapter

proposes four radar waveform design considerations, which will be used to evaluate

the strengths and weaknesses of the waveforms based on the Lorenz system. However,

before discussing various design considerations, an introduction to radar waveforms,

based on relevant sections of [14], is briefly summarized in the next paragraph1.

Any transmit radar waveform, s(t), considered herein will be a real signal of the

form shown in Eq. 3.1 where a(t) and θ(t) are slowly varying when compared to

ωc [14]. Signals of this form will have a Fourier transform with energy concentrated

around ±ωc [14].

s(t) = a(t) cos(ωct + θ(t)) (3.1)

Since s(t) is real, its Fourier transform, S(jω), is conjugate symmetric, which is

mathematically expressed as S(jω) = S∗(−jω). Consequently, s(t) can be described

as shown below where the first line follows from the definition of the inverse Fourier

1For a more detailed introduction, see Chapter 2 of the reference.
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transform and the last line follows from the conjugate symmetric property of S(jω).

s(t) =
1

2π

∫ ∞

−∞
S(jω)ejωtdω

=
1

2π

∫ 0

−∞
S(jω)ejωtdω +

1

2π

∫ ∞

0
S(jω)ejωtdω

=
1

2π

∫ ∞

0

[
S(jω)ejωt + S∗(jω)e−jωt

]
dω

The last line can also be written as

s(t) = <
{

1

2π

∫ ∞

0
2S(jω)ejωtdω

}
. (3.2)

Consequently, the positive frequencies of S(jω) completely determine the signal s(t).

A complex function, ψ(t), can be defined from the positive frequencies of s(t) as

shown in Eqs. 3.3 and 3.4. Substituting Eq. 3.3 into Eq. 3.2 and evaluating the

resulting integral, which is defined in Eq. 3.4, relates ψ(t) to s(t) as shown in Eq.

3.5.

Ψ(jω) =





2S(jω); ω > 0

0; ω < 0
(3.3)

ψ(t) =
1

2π

∫ ∞

−∞
Ψ(jω)ejωtdω (3.4)

s(t) = <{ψ(t)} (3.5)

Since the energy of S(jω) is concentrated around ±ωc, the energy of Ψ(jω) will be

concentrated around ωc. To center the energy of Ψ(jω) around ω = 0, a complex,

base-band signal, µ(t), can be defined and related to ψ(t) as shown in Eq. 3.6.

Substituting Eq. 3.6 into Eq. 3.5 relates s(t) and µ(t) as shown in Eq. 3.7. Rewriting

the real component of Eq. 3.7 results in Eq. 3.8 where |µ(t)| and θµ(t) denote the

magnitude and phase of µ(t), respectively. As can be seen by comparing Eqs. 3.1

and 3.8, Eq. 3.8 is consistent with the form of a radar signal given in Eq. 3.1.

ψ(t) = µ(t)ejωct (3.6)
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s(t) = <{µ(t)ejωct} (3.7)

s(t) = |µ(t)| cos(ωct + θµ(t)) (3.8)

In this thesis, all the waveforms are designed at base-band, and the base-band wave-

form, µ(t), will be related to the transmitted waveform via Eq. 3.7.

As typical in many engineering disciplines, waveform design involves various trade-

offs such as the tradeoff between bandwidth and the main-lobe width of the autocor-

relation function. A second major waveform tradeoff is the tradeoff between waveform

length (in time) and doppler precision as defined in [14]. Thus, waveform design in-

volves various qualitative features, which makes the design procedure as much of an

art form as a science.

Although waveform design involves various tradeoffs, this chapter attempts to

quantify several radar waveform metrics in order to compare the quality of different

radar waveforms. These metrics will be concentrated in four categories of interest:

(i) peak-to-RMS ratio, (ii) the autocorrelation function, (iii) the energy spectrum,

and (iv) the cross-correlation function. For example, metrics associated with the au-

tocorrelation function would include main-lobe pulse-width and peak side-lobe level.

Improving the metrics associated with the autocorrelation function will be consid-

ered one of the radar waveform design goals. Three additional design goals involve

improving various metrics associated with the peak-to-RMS ratio, energy spectrum,

and cross-correlation function.

Due to the various tradeoffs associated with waveform design, designing a ”good”

radar waveform is a relative statement. Thus, the complex, base-band waveforms

designed herein will be compared against a base-line radar waveform used in practice.

The comparison will be based on the radar metrics associated with the four major

design considerations presented in this chapter. In Chapter 5, the details of this

comparison are presented.
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3.1 Peak-to-RMS Ratio

One major design considerations is that transmitted waveform s(t) should have a low

peak-to-RMS ratio (PRMS). This design goal is a result of maximizing the output

power from the radar transmitter to maximize the signal-to-noise ratio (SNR) at the

receiver. The peak value of s(t) is set by the saturation level of the transmitter,

and the average power of s(t) is designed to be as high as possible. Since the RMS

level is the square root of the average power, the PRMS of s(t) is designed to be

as low as possible. For a perfect sine wave where the peak is one, the PRMS value

would be approximately 1.414. Ideally, the PRMS of s(t) should be close to 1.414.

Constraining s(t) to be close to 1.414 places a constraint on the base-band signal µ(t)

as defined in Eq. 3.8.

This constraint on µ(t) can be determined by expressing the PRMS of s(t) in terms

of the PRMS of µ(t) where the carrier frequency ωc (in Eq. 3.8) is assumed to be

much greater than all significant frequencies of µ(t). The PRMS of s(t) is calculated

by first calculating the RMS value of s(t), sRMS, as shown in Eq. 3.9, where L is the

length of s(t) in time.

sRMS =

√
1

L

∫ L

0
s(t)2dt (3.9)

By substituting Eq. 3.8 into Eq. 3.9, the equation can be written as

sRMS =

√
1

L

∫ L

0
|µ(t)|2 cos2(ωct + θ(t))dt. (3.10)

The integral in Eq. 3.10 can be broken apart as shown in Eq. 3.11 where T = 2π
ωc

.

Also, without loss of generality, L is assumed to be a multiple of T .

sRMS =

√√√√√ 1

L

L/T−1∑

k=0

∫ (k+1)T

kT
|µ(t)|2 cos2(ωct + θ(t))dt (3.11)

Since |µ(t)| and θµ(t) are assumed relatively constant on the interval from [kT, (k +

1)T ], then |µ(t)|2 cos2(ωct+ θ(t)) ≈ |µ(kT )|2 cos2(ωct+ θ(kT )) over this time interval.
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Thus, Eq. 3.11 can be rewritten as Eq. 3.12.

sRMS ≈

√√√√√ 1

L

L/T−1∑

k=0

|µ(kT )|2
∫ (k+1)T

kT
cos2(ωct + θ(kT ))dt (3.12)

Since
∫ (k+1)T
kT cos2(ωct + θµ(kT ))dt = T

2
, Eq. 3.12 can be re-written as in Eq. 3.13.

sRMS ≈

√√√√√ 1

2L

L/T−1∑

k=0

|µ(kT )|2T (3.13)

By the definition of an integral and since T is small on the time scale of µ(t), the

summation in Eq. 3.13 can be approximated with an integral. Consequently, Eq.

3.13 can be written as

sRMS ≈
√

1

2L

∫ L

0
|µ(t)|2dt. (3.14)

Since the RMS value of µ(t), µRMS, is
√

1
L

∫ L
0 |µ(t)|2dt, sRMS can be expressed as

shown in Eq. 3.15.

sRMS ≈ µRMS√
2

(3.15)

Since µ(t) is slowly varying when compared to T = 2π
ωc

, the peak of µ(t), µp, is approx-

imately equal to the peak of s(t), sp, which can be seen from Eq. 3.8. Consequently,

the PRMS of s(t), sprms, can be approximated in terms of the PRMS of µ(t), µprms,

as shown in Eq. 3.16 where µprms is calculated according to Eq. 3.17.

sprms =
sp

sRMS

=
√

2
µp

µRMS

=
√

2µprms (3.16)

µprms =
µp√

1
L

∫ L
0 |µ(t)|2dt

(3.17)
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As shown in Eq. 3.16, sprms will be approximately a factor of
√

2 greater than

µprms. The beginning of this section explained that sprms is desired to be close to

1.414. Consequently, µprms should be close to unity.

3.2 Autocorrelation Function

Another major design consideration is that the waveform should possess an autocor-

relation function with both a narrow main-lobe and low side-lobes. For a complex,

base-band waveform µ(t), we define the autocorrelation function, rµµ(t), as in Eq.

3.18 and/or 3.19 where ”∗” denotes a convolution and ”∗” denotes the complex con-

jugate.

rµµ(t) = µ(t) ∗ µ∗(−t) (3.18)

=
∫ ∞

−∞
µ(τ)µ∗(τ − t)dτ (3.19)

A typical autocorrelation function can be seen in Figure 3-1. As can be seen in the

figure, the function has both a main-lobe and many smaller side-lobes.

The autocorrelation function is an important design consideration since, in tra-

ditional radar processing, the base-band signal, µ̂(t), corresponding to the received

signal, is matched filtered with a replica of the base-band signal, µ(t), corresponding

to the transmit signal2. This filtering operation can be expressed as shown in Eq.

3.20.

rµ̂µ(t) = µ̂(t) ∗ µ∗(−t) (3.20)

For an idealized point scatterer in a zero-noise environment, rµ̂µ(t) equals a time

delayed and amplitude scaled version of rµµ(t) where the time delay is related to the

distance to the target3. Thus, if a cluster of targets is approximated by a collection

2Relating the base-band signals to the transmit signals was described at the beginning of this
chapter.

3To simplify this explanation, the doppler effect has been ignored. More information on this
processing, including the doppler effect, is found in [17].
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of idealized point scatters in a zero-noise environment, then the response of this

group of targets, described by rµ̂µ(t), is a linear superposition of the function rµµ(t).

Consequently, features of the autocorrelation function, such as the main-lobe width

and side-lobe level, are extremely important in target detection and classification.

The main-lobe of rµµ(t), centered around t = 0, is the maximum value of the

function. The width of the main-lobe is desired to be as narrow as possible, since a

narrower main lobe translates into a better capability of discriminating nearby targets.

One of the radar waveform metrics associated with the autocorrelation function will

be the main-lobe width. The main-lobe width will be evaluated by calculating the

time duration4 of the main-lobe of rµµ(t) as given below where the integrals are

evaluated from −∞ to ∞.

τd =

√√√√4
∫

t2µ(t)2

∫
µ(t)2

−
∫

tµ(t)2

∫
µ(t)2

(3.21)

In addition to a main-lobe, rµµ(t) will also have many smaller side-lobes. Ideally,

the autocorrelation function should have side-lobes as low as possible, since large,

peaky side-lobes result in false targets and could mask the presence of true targets.

Thus, the second radar waveform metric associated with the autocorrelation function

is the magnitude of the peak side-lobe of the normalized autocorrelation function.

This metric can be evaluated directly from the calculated autocorrelation function.

As explained in this section, the two metrics used in this thesis to evaluate the

quality of the autocorrelation function are: (i) main-lobe pulse width and (ii) peak

side-lobe value.

3.3 Energy Spectrum

A third radar waveform design consideration is that each radar waveform should have

a compact energy density spectrum, which will be referred to as the energy spectrum

of the waveform. The energy spectrum is defined as shown in Eq. 3.22 where M(jω)

4An explanation of the time duration can be found in [16].

45



−100 −50 0 50 100
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Time Delay (ns)

2
0

lo
g
1
0
|r

µ
µ
(t

)
r

µ
µ
(0

)
|
(d

B
)

Figure 3-1: Autocorrelation Function of a Typical Radar Waveform.

is the Fourier transform of µ(t) [11].

Φµµ(jω) = M(jω)M∗(jω)

= |M(jω)|2 (3.22)

The energy spectrum can be related to the energy of µ(t) via Parseval’s relation.

Moreover, the inverse Fourier transform of Eq. 3.22 equals rµµ(t). Thus, rµµ(t) and

Φµµ(jω) are Fourier pairs as shown in Eq. 3.23 and 3.24.

Φµµ(jω) =
∫ ∞

−∞
rµµ(t)e−jωtdt (3.23)

rµµ(t) =
1

2π

∫ ∞

−∞
Φµµ(jω)ejωtdω (3.24)

Figure 3-2 illustrates the energy spectrum of a typical waveform used in radar appli-

cations.

The energy spectrum of the waveform is desired to be compact over a given fre-
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quency range, R, in order to: (i) prevent the waveform from interfering with other

radars operating outside R and (ii) prevent the waveform’s detection by receivers

operating outside R. A compact spectrum, in general terms, means that

1. a large percentage of the energy of the waveform is concentrated within a con-

tinuous frequency range centered around ω = 0, and

2. the energy outside this frequency range should be a low percentage of the overall

energy of the waveform.

For example, the energy spectrum in Fig. 3-2 would be considered compact, since

most of the energy in this spectrum is concentrated within 500 MHz of the center

frequency.
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Figure 3-2: Energy spectrum of a Typical Radar Waveform. This graph
of the energy spectrum illustrates the compact spectrum of a typical
radar waveform.

Quantifying various properties of associated with the compactness of the energy

spectrum is difficult but can be helpful when comparing the energy spectra of differ-
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ent waveforms. A particular quantification is made by determining the continuous

frequency range containing 99.9% of the waveform’s energy, which will be considered

the in-band region of the waveform. The length of the in-band region will also be

considered the bandwidth of the waveform. The frequency range outside the in-band

region is the out-of-band region. The peak out-of-band side-lobe will be a metric asso-

ciated with the energy spectrum that quantifies an important property of a compact

spectrum. To measure this metric, the energy spectrum is normalized by the factor

given in Eq. 3.25 where Ninband is the number of samples in the in-band region and

N is the total of samples of the discrete-time approximation of the continuous-time

energy spectrum of the waveform.

norm =
Ninband

N2
(3.25)

The peak out-of-band side-lobe is then located and recorded. The peak out-of-band

side-lobe can be used to approximately compare an important property of compact-

ness: the amount of waveform energy that exists out of band.

3.4 Cross-correlation Function

A fourth radar design consideration is associated with the design of a large (> 50) set

of quasi-orthogonal waveforms. A quasi-orthogonal set is a set where each waveform is

quasi-orthogonal with every other waveform in the set. ”Quasi-orthogonality” in this

thesis means that the cross-correlation between any two distinct waveforms in a set

must be ”small.” To explain this statement in more detail, both the cross-correlation

and ”small” are defined in this section. The cross-correlation of two waveforms is

defined in Eq. 3.26 and 3.27.

rµν(t) = µ(t) ∗ ν∗(−t) (3.26)

=
∫ ∞

∞
µ(τ)ν∗(τ − t)dτ (3.27)
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In practice, the cross-correlation, rµν(t), is considered small if 20 log10 (rµν(t)/rµµ(0))

is on the order of −20 log10

(√
LB

)
where LB is the time-bandwidth product of

the waveforms5. As evident from the name, the time-bandwidth product equals L ·B
where L is the length of the waveform in time and B is the bandwidth of the waveform.

An example of the cross-correlation of two quasi-orthogonal waveforms, µ(t) and

ν(t), is illustrated by Figure 3-3. The cross correlation of the two waveforms is normal-

ized by dividing by the peak autocorrelation function value of one waveform, rµµ(0).

The average cross-correlation level is located at approximately −20 log10(
√

LB) dB.

Consequently, the two waveforms are considered quasi-orthogonal. The radar wave-

form metric used to evaluate quasi-orthogonality will be the peak value of the nor-

malized cross-correlation function.
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Figure 3-3: Cross-Correlation Function of Two Quasi-Orthogonal Radar
Waveforms. The function is normalized by dividing the cross correlation
by rµµ(0). In this figure, −20 log10

(√
LB

)
was plotted with a horizontal,

dotted line. The average side-lobe level is around −20 log10

(√
LB

)
.

5Herein, rµµ(0) is assumed to be approximately equal to rνν(0).
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3.5 Radar Waveforms Designed from the Lorenz

System

In Chapter 4 of this thesis, base-band radar waveforms will be derived from state vari-

ables of the Lorenz system. The Lorenz system is an excellent candidate system for

generating radar waveforms due to various characteristics of deterministic chaos. For

example, the bounded nature of the Lorenz system limits the magnitude of PRMS.

Moreover, the aperiodicity of solutions and the sensitivity to initial conditions con-

tribute to low side-lobes in both the autocorrelation and cross-correlation functions.

Also, as will be shown in the remaining chapters, the energy spectra of the state

variables are triangular-like, which provides a natural spectral control.

The state variable of the Lorenz system that best lends itself to radar waveform

design is not initially clear. However, based on preliminary empirical studies, x(t) was

observed to evaluate better on the radar waveform metrics than y(t) or z(t). Moreover,

no observable evidence suggested that a linear combination of state variables would

be significantly better than x(t). Thus as a simplification, all radar waveforms will

be based on just x(t). A Lorenz waveform, xL(t), will be defined as a normalized,

time-windowed segment of the x-state-variable as shown in Eq. 3.28 where L denotes

the length of the waveform in time and xp denotes the maximum of |x(t)| for the time

interval where t ∈ [0, L].

xL(t) =
1

xp

wr(t)x(t) (3.28)

wr(t) =





1; t ∈ [0, L]

0; else
(3.29)

Throughout this thesis, all reference to xL(t) will refer to the Lorenz waveform as

defined in Eq. 3.28, and x(t) will refer to the state variable, x.

As explained in the first Section 2.1, the initial conditions will be arbitrarily chosen

on the strange attractor at t = 0. What is actually done is that the initial conditions

are chosen in a small cube encompassing the origin at a time, t = −10 seconds, and
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the solutions are assumed to converge to the strange attractor after 10 seconds.

In Chapter 5 of this thesis, the base-band radar waveform will not be directly

extracted from the Lorenz system. The details related to constructing the radar

waveform in Chapter 5 will be explained therein.
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Chapter 4

The Effect of the Lorenz System

Parameters on Radar Waveform

Design Metrics

This chapter focuses on numerically and analytically exploring the Lorenz parame-

ter space to determine how various radar waveform metrics vary as the parameters

are varied. As explained in the previous chapter, these radar waveform metrics are

associated with four major design considerations: (i) peak-to-RMS ratio, (ii) the au-

tocorrelation function, (iii) the energy spectrum, and (iv) the cross-correlation func-

tion. Improving these metrics by varying the parameters gives rise to improved radar

waveforms.

4.1 Peak-to-RMS Ratio

The first design consideration presented in Chapter 3 is associated with reducing

the peak-to-RMS ratio (PRMS) of the Lorenz waveform, xL(t). Different Lorenz

parameters were observed to affect the PRMS. This section numerically determines

how the PRMS varies with different parameters and attempts to provide some insight

into some attractor properties that contribute to a lower PRMS.

When numerically determining how the PRMS varies with the parameters, the
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parameter, b, is fixed while σ and r are varied. The rationale for fixing b is that, as

will be explained later, b can be used to time-scale the state variables of the Lorenz

system. Since a time-scaling will not affect the PRMS, the parameters σ and r can

be varied to adjust the PRMS.

The b parameter was set to 100, and σ and r were independently varied to numer-

ically determine the effect on the PRMS. The constraints required to ensure unstable

fixed points are σ > b+1 = 101 and r > rc, which are given in Eqs. 2.2 and 2.3. Thus

when σ and r were varied, they were greater than these minimal values. Moreover,

preliminary studies demonstrated that ranges of σ and r relevant to the radar wave-

form metrics were σ ∈ (200, 850) and r ∈ (rc, 1.6rc). For each combination of σ and

r, the Lorenz system was numerically integrated over one hundred seconds to give

rise to xL(t). The PRMS of xL(t) is then determined by averaging over three trials.

The results are shown in Fig. 4-1. The figure demonstrates that as σ increases, the

PRMS likewise increases. Also, as r increases, the PRMS again increases. Thus as

can be verified by Fig. 4-1, the parameters that give rise to an xL(t) trajectory with

the lowest PRMS are the values of σ and r in the lower left-hand corner of the figure.

Since in this thesis, it is desirable to operate with a PRMS < 2.3, a two-dimensional

plot of the lower left-hand corner of Fig. 4-1 is shown in Fig. 4-2.

Two system trends that affect the PRMS of the Lorenz waveform were observed.

The first trend indicated that as σ increased, the trajectory of the Lorenz system (in

state-space) traveled a longer path from one maximum to the next maximum. This

trend was not addressed in this thesis. The second trend concerns distance separating

the minimum and maximum relative maximum of xL(t) for various values of σ and

r, which is investigated herein.

Relating the distance separating the minimum and maximum relative maximum

of xL(t) to the attractor is accomplished by analyzing an example. The attractor

of two distinct Lorenz systems was analyzed for the following sets of parameters:

{σ = 200, r = rc, b = 100} and {σ = 300, r = 1.6rc, b = 100}. The former set of

parameters gives rise to a Lorenz system with a lower PRMS than the one with the

latter set of parameters. For convenience, System A and System B will denote the
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Figure 4-1: Peak-to-RMS Ratio as a Function of σ and r. This figure
was created from a Lorenz system with b = 100 and varying values of
σ and r. For a particular value of σ and r, the system was numerically
integrated three times for distinct initial conditions with a step size of
10−3 seconds. The peak-to-RMS Voltage ratio was calculated for each of
the three solutions and then averaged together.

former and latter parameter sets, respectively.

An x-z slice of the attractor for System A and System B is shown in Fig. 4-3

to demonstrate the attractor differences between these systems, where the attractor

shown in the figure has been normalized so that the peak value of each state variable

is equal to unity. In this figure, a time-windowed solution traces out a trajectory on

the attractor, which is shown in state space. By comparing the trajectories from the

two systems qualitatively, the trajectory of System A appear to wrap more tightly

around the attractor than the trajectory of System B. In other words, the attractor

can be thought of as two separate butterfly wings. Each wing consists of several rings,

which are segments of the trajectory that wrap once around one of the wings. Both

System A and System B have an outermost ring where the solution stretches the
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Figure 4-2: Peak-to-RMS Ratio as a Function of σ and r.

greatest distance from the origin. However, since the rings of System A wrap more

tightly than System B, the rings of System A are assumed to, on average, lie closer

to the outermost ring of System A than the case for system B.
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Figure 4-3: Slices of the Attractor for Two Distinct Lorenz Systems. The
state variable have been normalized by their respective peak values, i.e.
xp = max(|x(t)|). The system in (a) was derived from a Lorenz system
with a parameter set of {σ = 200, r = rc, b = 100} and has a PRMS
of ≈ 2.15. The system in (b) was derived from a Lorenz system with a
parameter set of {σ = 300, r = 1.6rc, b = 100} and has a PRMS of ≈
2.41.
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To quantify this relationship further, a metric called wing width of a typical

solution is defined. For the time-windowed x-state-variable, which will be called

xw(t), wing width will be defined as the Euclidean distance between the minimum

relative maximum of |xw(t)| subtracted from absolute maximum of |xw(t)| as shown

in Eq. 4.1 where px represents the set of relative maximums of |xw(t)| over a certain

time interval. The wing width is normalized with the peak value of x(t) so that Wx

from distinct systems can be compared.

Wx =
1

max(px)
[max(px)−min(px)] (4.1)

Figure 4-4 illustrates Wx graphically on the attractor for a Lorenz system with the

parameters set of {σ = 300, r = 1.6rc, b = 100}.
It is important to clarify that the wing width is calculated based on a particular

time-windowed solution to the Lorenz system, not an infinitely long time segment that

traces out the entire attractor. In other words, the wing width metric is associated

with a time-windowed xw(t) for a given set of parameters, {σ, r, b}, and for a given

time interval, which in this experiment was 100 seconds. Therefore, by averaging

the wing width over several distinct solutions of the same length in time, the mean

value is, more or less, the typical wing width for that set of parameters and that time

interval1. Moreover the concept of wing width is a legitimate indicator of the PRMS

of the Lorenz waveform, xL(t), for the two following reasons: every radar Lorenz

waveform is a normalized time-windowed x-state-variable, and it is easy to intuitively

understand and numerically verify how the averaged wing width relates to the PRMS

of xL(t) as explained next.

Specifically, a larger wing width intuitively suggests that rings have the flexibility

to vary greatly from the outermost ring, or in other words, the relative extrema of

|xw(t)| have the flexibility to vary greatly from the global extremum. This flexibility

to vary greatly reduces the average power of xL(t) with respect to the peak value

1The concept of wing width may not be the most mathematically rigorous way to justify how
the peak-to-RMS ratio is related to the Lorenz attractor. However, it was chosen since it was easy
to depict its relation to the attractor graphically.

58



−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

x(t)/x
p

z(
t)

/z
p

W
x

Figure 4-4: The Wing Width of the Attractor. This figure plots an x-z
slice of the attractor for the Lorenz system with σ = 300, r = 1.6rc, b =
100. The wing width, Wx for this attractor is shown in red.

of xL(t). Thus the larger the wing width, the higher the PRMS of xL(t). To verify

this statement numerically, Wx was calculated for Lorenz systems with varying values

of σ and r with b = 100. Wx was calculated by numerically integrating the Lorenz

equations for a given set of parameters and random initial conditions. Three distinct,

100 second solutions were generated, and Wx was calculated for each of the three

solutions. The mean of the three calculations was recorded as the wing width for

that particular Lorenz system with that particular set of parameters. The parameters

were varied in the ranges σ ∈ (200, 300) and r ∈ (rc, 1.6rc). The results are shown

in Fig. 4-5. This figure demonstrates that increasing σ will increase the wing width,

and increasing r will also increase the wing width. Since increasing σ and r will also

increase the PRMS, the numerical results suggest that the wing width is, in fact,

related to the PRMS of xL(t).

In summary, the main result of this section is that lower values of both σ and r
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Figure 4-5: Wing Width as a Function of σ and r. This figure corresponds
to a Lorenz system with b = 100 and varying values of σ and b. For a
particular value of σ and r, the system was numerically integrated three
times for distinct initial conditions with a step size of 10−3 seconds. Wx

was calculated for each of the three solutions and then averaged together.

will lead to a lower values for the PRMS. Moreover, the peak-to-RMS ratio appears

to be related, in part, to how tightly trajectories wrap around the attractor, and the

wing width was a simple evaluation metric for the tightness of this wrapping.

4.2 Autocorrelation Function

Another design consideration of radar waveforms deals with improving metrics asso-

ciated with the autocorrelation function. Improving these metrics implies decreasing

the the main-lobe width and decreasing the magnitude of the peak side-lobe. This

section summarizes a numerical study on how to minimize the magnitude of the peak

side-lobe and explains why control of the main-lobe width will be considered when

discussing the energy spectrum of the Lorenz waveform.
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The variation in the main-lobe width was observed to be due to a difference in

bandwidth and not some other chaotic system property, which can be intuitively

explained utilizing 2 key points. First, the autocorrelation function and the energy

spectrum are Fourier pairs. Second, the energy spectrum of xL(t) has the same

triangular-like shape (as shown in Fig. 4-6) for any set of parameters that makes the

Lorenz system chaotic. Consequently, the main-lobe of the autocorrelation function

is closely related to the bandwidth of the energy spectrum (see [16] for further de-

tails). Therefore, to decrease the main-lobe width of the autocorrelation function,

the bandwidth should be increased, which is explained in Section 4.3. The remainder

of this section considers reducing the side-lobe level of the autocorrelation function.
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Figure 4-6: Energy Spectrum of a Lorenz Waveform.

The magnitude of the peak side-lobe of the autocorrelation function is very de-

pendent on the particular parameters used in the Lorenz system. Accordingly, it is

an important radar waveform metric when comparing radar waveforms from Lorenz

systems with different sets of Lorenz parameters. As explained in Section 4.1, b is
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fixed to equal 100, and it will be used to scale Lorenz waveform in time. Since time

scaling a xL(t) has no effect on the magnitude of the peak sid-lobe, the rest of this

section attempts to understand how this metric varies with the parameters σ and r.

To demonstrate the relationship between the magnitude of the peak side-lobe and

the parameters, the peak side-lobe is determined empirically for various combinations

of σ and r. To maintain chaotic dynamics, σ and r were chosen such that σ ∈
(200, 850) and r ∈ (rc, 1.6rc). For each combination of σ and r, the Lorenz system was

numerically integrated over one hundred seconds to give rise to xL(t). The peak side-

lobe of the autocorrelation function was determined. This process was repeated three

times for each combination of σ and r, and the mean was computed and recorded.

Figure 4-7 shows the average magnitude of the peak side-lobe for a given σ and r. For

b = 100, this plots shows the combinations of σ and r that minimize the side-lobes of

xL(t).

The dependence of the peak side-lobe on the Lorenz parameters is due to the

underlying Lorenz system properties. These properties can be explained by first

considering the autocorrelation function of a Lorenz waveform. There are three main

regions of the autocorrelation function of a chaotic waveform. One region is a region

containing the distinguishable main-lobe. Adjacent to the main-lobe are several,

smaller, but yet still distinct, side-lobes, which will be contained in a region referred

to as the side-lobe region. Beyond this region is a region that will be referred to as

the autocorrelation noise. These three regions can be seen in Fig. 4-8. Ideally, both

the autocorrelation noise and the side-lobe region should be minimized as much as

possible.

For an xL(t) with a fixed length in time, the level of the autocorrelation noise

was observed to be set by the bandwidth of the system. A waveform with a larger

bandwidth gives rise to a waveform whose autocorrelation function has a lower au-

tocorrelation noise level. The autocorrelation noise level was not observed to be

dependent on certain combinations of parameters, unless these sets of parameters

affected the bandwidth of xL(t). Using the parameters to set the bandwidth (and

correspondingly the autocorrelation noise) is discussed in detail in the next section.
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Figure 4-7: Peak Side-lobe of the Lorenz System for b = 100 and Varying
Values of σ and r. For a particular value of σ and r, the system was
numerically integrated three times with a distinct set of initial conditions
with a step size of 10−3 seconds. The peak side-lobe that was recorded
was the mean peak side-lobe of the three trials.

Moreover, since the level of the autocorrelation noise was not observed to be

affected by carefully selecting the Lorenz parameters and since in most cases, the

autocorrelation noise was observed to be less than the level of the side-lobes contained

in the side-lobe region, the issue of reducing the magnitude of the peak side-lobe

involves minimizing the side-lobes in the side-lobe region, which can be reduced to

about the same level as the autocorrelation noise2. In the remainder of this section,

when the word side-lobe is used, it refers to one of the side-lobes contained in the

side-lobe region depicted in Fig. 4-8.

The side-lobes of the autocorrelation function are due to the structure of the

2In these cases, it may be true that the peak of the autocorrelation noise may be higher than
the peak of the side-lobe region, but this behavior could not be controlled by varying the Lorenz
parameters. Moreover, this peak in the autocorrelation noise is usually far enough away from the
main-lobe of the autocorrelation function that it is insignificant in most applications.
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Figure 4-8: Typical Autocorrelation Function of a Lorenz Waveform. For
future reference, this figure labels the main-lobe, side-lobes, and autocor-
relation noise of the autocorrelation function.

Lorenz system. As evident from the Fig. 2-3, a Lorenz trajectory confined to the

attractor demonstrates certain ordered dynamics. The trajectory will loop around

one wing of the attractor an arbitrary number of times until eventually transitioning

to the next wing. This structure of the Lorenz system exists for any chaotic Lorenz

system, despite the parameters.

Since the state variable, x(t), is the projection of the trajectory onto the x-axis,

the dynamics of x(t) can be understood from the dynamics of a trajectory on the

attractor. For example, in a time period during which x > 0, the trajectory on

the attractor could move outward around a wing of the attractor, then continue to

move around toward the origin. The trajectory could then repeat this pattern, for

example, one more time and begin to move around the same wing twice. The behavior

corresponds to x(t) approaching a relative maximum, then moving back toward zero.

Before reaching zero, x(t) moves through a relative minimum and begins rising again
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toward a second consecutive relative maximum.

A simple analysis on the amount of time separating two consecutive maximum

of |x(t)| reveals that consecutive maxima appear to be separated by approximately

the same time interval3. Before further discussion of this timing issue, two notational

issues are clarified. The relative maxima of |x(t)| will be referred to as the peaks of

x(t). Also, the time interval between consecutive peaks of x(t) will be denoted as

the random variable ∆. Now, this timing issue can be described mathematically by

saying, a random sample of ∆ appears to cluster very close to the mean of ∆, µ∆.

To verify this clustering, a histogram of a random sample from ∆ is given in Fig. 4-9

for x(t) from a Lorenz system with σ = 8.05, r = 49.72, and b = 4.0. The mean of

∆, µ∆, was estimated to be 0.51 seconds. As can be seen from Fig. 4-9, the random

sample from ∆ clusters around 0.51 seconds. Consequently, if a peak of x(t) arrives

at a certain time, t0, then another peak is likely to arrive around t0 + µ∆. Thus,

information on the location, in time, of the next peak is contained in the location, in

time, of the previous peak.

Consecutive peaks separated by approximately µ∆ will have a significant effect

on the location and amplitude of the side-lobes of the autocorrelation function. This

effect can be best explained by example. Assume that a Lorenz system gives rise to

trajectories that have the following property. After a trajectory completes a rotation

around one wing of the attractor, it is twice as likely for the trajectory to transition

to the other wing than remain on the same wing. For any such trajectory, consecutive

peaks of x(t), which are separated by µ∆, will be twice as likely to be of opposite sign

than of the same sign. Therefore, the autocorrelation function will have a sizeable

negative side-lobe at µ∆ since rxx(µ∆) =
∫∞
−∞ x(τ)x(τ−µ∆)∗dτ will line up a relatively

large number of peaks of opposite sign.

Figure 4-10 demonstrates this principle with the Lorenz system used to generate

the histogram in Fig. 4-9. This system was observed to give rise to trajectories that

are more likely to transition to the next wing rather than remain on the same wing of

3|x(t)| is used as opposed to just x(t) since we are considering the arrival of both the positive
and negative peaks of x(t).
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Figure 4-9: Histogram for the Distance in Time Between Consecutive
Relative Extrema of x(t), ∆.

the chaotic attractor. Also, as shown by Fig. 4-9, consecutive peaks are separated, on

average, by approximately 0.51 seconds. Consequently as explained in the previous

paragraph, the autocorrelation function is predicted to have a side-lobe at t ≈ 0.51.

The autocorrelation function for x(t) is shown in Fig 4-10. As can be seen in the

figure, a large side-lobe is present at t ≈ 0.51 (although the peak of this side-lobe

actually occurs at 0.44).

By understanding the timing dynamics responsible for high side-lobes of x(t), a

method for reducing the side-lobe level can be suggested. Since the timing dynamics

of the Lorenz system ensure that consecutive peaks of x(t) will remain at about

µ∆, the only way to reduce the side-lobes of the Lorenz system is to ensure that a

trajectory is equally likely to proceed to the next wing as to remain on the same wing,

which is equivalent to saying that x(t) will have approximately the same number of

consecutive same-signed peaks as opposite-signed peaks. In this way, the value of

the autocorrelation function at µ∆ (as shown in Eq. 4.2) will be reduced since the
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positive value due to consecutive same-sign peaks will cancel with the negative value

due consecutive opposite-sign peaks.

rxx(0.44) =
∫ ∞

−∞
x(τ)x∗(τ − 0.44)dτ (4.2)

The likelihood that a trajectory jumps to the next wing as opposed to remaining on

the same wing depends on the parameters of the Lorenz system.
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Figure 4-10: Autocorrelation Function for xL(t).

Accordingly, to reduce the side-lobes of the Lorenz waveform the parameters of

the Lorenz system need to be set such that a trajectory is equally likely to jump

to the next wing as remaining on the same wing of the attractor. To quantify this

likelihood, a quantity called the transition rate, rt, is defined in Eq. 4.3. The variable

nt represents the number of times a trajectory rotates around one wing, then jumps

to the next wing, and then rotates around that wing. The variable ns represents the

number of times a trajectory completes a rotation around one wing and then proceeds
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to rotate again around the same wing of the attractor.

rt =
nt

nt + ns

(4.3)

Equation 4.3 calculates the transition rate of one particular time-windowed solution

to the Lorenz system. However, the transition rate of the Lorenz system with a

particular set of parameters is defined to be equal to the mean transition rate of

multiple time-windowed solutions of the system. As stated above, low side-lobes

require for this transition rate to equal 0.5, and the combinations of σ and r that give

rise to this transition rate is explored next.

A numerical simulation is used to explore how the parameters of the Lorenz system

affect the transition rate of the system. To begin, b is set to 100, and σ and r are

varied such that σ ∈ (200, 850) and r ∈ (rc, 1.6rc). For each combination of σ and

r, the Lorenz system was numerically integrated over one hundred seconds to give

rise to xL(t). The mean transition rate over three trials was then recorded. Figure

4-11 shows a mapping of the transition rate for varying values of σ and r. As can be

seen in the figure, for a constant r, increasing σ will decrease the transition rate until

around σ = 500. Then, increasing σ will increase the transition rate. For a constant

σ, increasing r will, in most cases, increase the transition rate, although the rate of

increase depends on the value of σ. The darkest region of the plot approximates where

the parameters give rise to Lorenz systems with a transition rate equal to 0.5. When

Fig. 4-11 is compared with Fig. 4-7, the low side-lobe region and the region where

the transition rate equals 0.5 overlap. Thus, to operate with a low peak side-lobe, σ

and r need to be chosen to give rise to a Lorenz system with a transition rate equal

to 0.5, which is the darkest region of Fig. 4-11.

To further illustrate this final point, the side-lobes of two systems with different

parameters and different transition rates are compared. The first set of parameters

is {σ = 262, r = rc, b = 100}, which gives rise to a system with a transition rate of

about 0.5. The second system has a parameter set of {σ = 262, r = 1.6rc, b = 100},
which gives rise to a transition rate of about 0.6. Figure 4-12 plots the autocorrelation
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Figure 4-11: Transition Rate of the Lorenz System for b = 100 and
Varying σ and r. This figure was generated from a Lorenz system with
b = 100 and varying values of σ and b. For a particular value of σ and
r, the system was numerically integrated three times for distinct initial
conditions with a step size of 10−3 seconds. The transition rate was
calculated for each of the three solutions and then averaged together.

function of the Lorenz waveform, xL(t), derived from the two Lorenz systems. As can

be seen in the figure, the autocorrelation function from the system with a transition

rate of 0.50 has considerably lower side-lobes than the autocorrelation function from

the system with a transition rate of 0.60.

By using Fig. 4-7 and Fig. 4-2, information from Sections 4.1 and 4.2 can be com-

bined. Specifically, the values of σ and r can be chosen to trade off the peak-to-RMS

ratio with the peak side-lobe level for b = 100. Specifically, the relevant information

in Figs. 4-11 and 4-2 can be fused to form the design curves for xL(t). These design

curves are shown in Fig. 4-13. The blue line, C1, represents the combinations of σ

and r that give rise to systems with transition rates equal to 0.5. Consequently, C1

also marks the combinations of parameters with autocorrelation functions possessing
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Figure 4-12: Side-lobe Comparison for Two Systems with Different Tran-
sition Rates. The autocorrelation functions in this figure are derived from
two separate Lorenz systems. The system in blue has a transition rate
of approximately 0.5, and the system in red has a transition rate of ap-
proximately 0.6.

minimized side-lobes. The red lines represent combinations of σ and r that give rise to

systems with a peak-to-RMS ratio equal to 2.2, 2.3, and 2.4, respectively. Moreover,

as shown in Fig. 4-1, the peak-to-RMS ratio in Fig. 4-13 monotonically increases

from the bottom left corner to the top right corner. In this thesis, combinations of σ

and r will be chosen on C1 in order to minimize the magnitude of the peak side-lobe

and reduce the peak-to-RMS ratio of xL(t) to less than 2.3. These combinations of

parameters are illustrated in the figure as the operating region, which is shaded light

blue4. Finally, the third section of this chapter explains how b can be used to time

scale xL(t).

4All lines in Fig. 4-13 are drawn with a relatively large width to indicate that the combinations
of σ and r that give rise to minimized side-lobes and particular realizations of the peak-to-RMS
ratio were numerically approximated (as opposed to analytically determined).
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Figure 4-13: Lorenz Waveform Design Curves. For b0 = 100, these curves
indicate combinations of σ0 and r0 that tradeoff the peak-to-RMS ratio
and magnitude of the peak side-lobe.

4.3 Energy Spectrum

A third radar design consideration deals with metrics associated with the energy spec-

trum of the Lorenz waveform. The metric isolated for this design consideration was

the peak out-of-band side-lobe. However, the energy spectrum of all the waveforms

presented in this thesis will have a energy spectrum qualitatively shaped as shown in

Fig. 4-6 where the only major observable difference is in bandwidth. Thus, a search

for the set of parameters that give rise to a minimal peak out-of-band side-lobe will

yield limited results. However, the bandwidth of xL(t), although not directly a radar

waveform metric, is very important to understand in order to meet the specifications

for a given application. Moreover, the bandwidth is indirectly related to other radar

waveform metrics such as the main-lobe width of the autocorrelation function. Thus,

the objective of this section is to explain how to set the bandwidth of the system.

Bandwidth control is discussed utilizing two separate approaches. Mathematically
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time scaling the Lorenz equations can be used to control the bandwidth of the state

variables. Also scaling the Lorenz parameters can be used to time and amplitude

scale the state variables. At first glance, scaling the parameters to set the bandwidth

may seem unnecessary. However, in doing so, tremendous insight into the Lorenz

system (and chaotic systems in general) is gained, and this insight is discussed in

detail in Section 4.3.3.

4.3.1 Time-Scaling the Lorenz Equations

Before discussing issues related to time scaling the state variables the Lorenz system,

some notation is introduced. The variable x(t) is defined as shown in Eq. 4.4 where

x, y, and z denote the state variable of the Lorenz system:

x(t) =




x(t)

y(t)

z(t)




(4.4)

Next, the f((xt)) is defined as:

f(x(t)) =




σ(y(t)− x(t))

rx(t)− y(t)− x(t)z(t)

x(t)y(t)− bz(t)




(4.5)

Therefore, the Lorenz system can be written as shown in Eq. 4.6.

ẋ(t) = f(x(t)) (4.6)

Also for notational convenience, x and f(x) can be defined by dropping the t-dependence

as shown below. The t-dependencies will be dropped from this point forward unless
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otherwise stated.

x =




x

y

z




(4.7)

f(x) =




σ(y − x)

rx− y − xz

xy − bz




(4.8)

Using this notation, let x(t) denote the solution to Eq. 4.9. Also let x̃(t) denote

the solution to Eq. 4.10 where a is a constant greater than zero.

ẋ = f(x) (4.9)

˙̃x = af(x̃) (4.10)

If both systems have identical initial conditions, then x̃(t) and x(t) are related as

described in Eq. 4.11.

x̃(t) = x(at) (4.11)

In other words, scaling the Lorenz equations by a (as shown in Eq. 4.10) has the

effect of time-scaling x(t) by a.

Before proceeding, an important issue about numerically generating x̃(t) and x(t)

is briefly discussed. Even though the above presentation is exact, due to rounding in

the numerical integration methods and to the divergence of nearby Lorenz trajectories,

numerically demonstrating the relationship in Eq. 4.11 is difficult if the magnitude

of a is too large. However, in this case, verifying the relation analytically is possible.

The time scaling principle can be proved by differentiating Eq. 4.11 by t to

determine the differential equations that describe x(at). First, let x(at) be denoted
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as x(τ) where τ = at. Next, x(τ) is differentiated with the chain rule as shown below.

˙̃x =
d

dt
x(τ)

=
d[x(τ)]

dτ

d[τ ]

dt

=
d[x(τ)]

dτ
a

= af(x(τ))

The last line in the above derivation follows from Eq. 4.6. The τ dependence can be

dropped to yield the differential equations in Eq. 4.12 that describe x̃(t) = x(at).

˙̃x = af(x) (4.12)

Therefore, time scaling the Lorenz equations by a will time-scale the state variables

as described in Eqs. 4.9-4.11.

Scaling x(t) by a in time also scales the bandwidth of x(t) by a. The Fourier

relationship in Eq. 4.13 describes how this time scaling affects the bandwidth of

x(at) (where X(jω) is the Fourier transform of x(t)).

x(at) ←→ 1

|a|X
(

jω

a

)
(4.13)

Thus as a increases, the bandwidth of the x(at) likewise increases by a factor of a.

By scaling the Lorenz equations, a Lorenz radar waveform can be generated with

the desired properties and bandwidth. To do so, first σ, r, and b in Eq. 4.14 must be

chosen such that the Lorenz system has the desired system properties.

ẋ = a




σ(y − x)

rx− y − xz

xy − bz




(4.14)

As explained above, the bandwidth of x(at) can then be scaled by varying a in Eq.

4.14. Finally, the length of the waveform in time is selected by numerically integrating
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Eq. 4.14 over the desired time interval. The result is Lorenz radar waveform with

the desired system properties (determined by setting the Lorenz parameters), desired

bandwidth, and the desired length in time.

4.3.2 Time and Amplitude Scaling the Lorenz Equations

Scaling the Lorenz parameters is, in fact, very close to a time and amplitude scaling

of the Lorenz system. Consequently, before presenting how scaling the Lorenz pa-

rameters approximately scales x(t) in time and amplitude, the differential equations

that describe an exact time and amplitude scaling are presented. Let x(t) denote the

solution to the Lorenz equations given in Eq. 4.15 wheref denotes the Lorenz system

as defined in Eq. 4.8. Also, let x̃(t) denote the solution to Eq. 4.16 where a > 0.

ẋ = f(x) (4.15)

˙̃x = a2f(
1

a
x̃) (4.16)

If the initial conditions of x(t) and x̃(t) are selected appropriately, then the two sets

of state variables are related according to Eq. 4.17.

x̃(t) = ax(at) (4.17)

Appropriately selecting the initial conditions means that the initial conditions are

related as shown in Eq. 4.18.

{x̃0, ỹ0, z̃0} = {ax0, ay0, az0} (4.18)

Thus, Eqs. 4.15-4.17 present an exact time and amplitude scaling of the Lorenz

equations.

This time and amplitude scaling by a can again be proved by differentiating ax(at)

by t to determine the differential equations that describe ax(at). First, let x(t) be a
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solution to the Lorenz system. Next, let ax(at) be denoted by x̃(t) as shown in Eq.

4.19.

x̃(t) = ax(at) (4.19)

Differentiating both sides of Eq. 4.19 gives rise to Eq. 4.20 where τ is substituted for

at.

˙̃x(t) = a
d

dt
x(τ)

= a
d[x(τ)]

dτ

d[τ ]

dt

= a2d[x(τ)]

dτ

= a2f(x(τ)) (4.20)

The last line in the above derivation follows from Eq. 4.6. Substituting at back in

for τ gives rise to Eq. 4.21.

˙̃x(t) = a2f(x(at)) (4.21)

By using Eq. 4.19, 1
a
x̃(t) can be substituted for x(at) on the right hand side of Eq.

4.21. By dropping the t-dependencies, this substitution yields Eq. 4.22, which is

equivalent to Eq. 4.16.

˙̃x = a2f(
1

a
x̃) (4.22)

Therefore, the differential equations that exactly describe x(t) and ax(at) are given

in Eqs. 4.15 and 4.16 where f denotes the Lorenz system as given in Eq. 4.8.

4.3.3 Approximate Time-Scaling via the Lorenz Parameters

Numerical observations clearly demonstrate that the bandwidth of a Lorenz waveform

significantly varies depending on the Lorenz parameters used. For example, Figure
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4-14 shows the typical energy spectra for two waveforms, xL1(t) and xL2(t), which are

generated from two systems with different parameters. The gray plot corresponds to

the spectrum associated with the parameters {σ = 8.05, r = 39.72, b = 4.00}, which

will be called System 1. The black plot corresponds to a spectrum associated with

{σ = 22.95, r = 69.04, b = 10.00}, which will be called System 2. The variable xL1(t)

is derived from System 1, and xL2(t) is derived from System 2. The bandwidth of

xL1(t) is approximately 9.40 Hz, and the bandwidth of xL2(t) is approximately 20.74

Hz (where the bandwidth is as defined in Chapter 3). The bandwidth of xL2(t) is

roughly a factor of 2.2 times greater than the bandwidth of the xL1(t). This result

can be verified by repeating the calculations with new Lorenz waveforms from System

1 and 2 to reveal that the bandwidth of waveforms from System 2 is about 2.2 times

the bandwidth of waveforms from System 1.
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Figure 4-14: Energy Spectrum of Two Lorenz Systems with Different
Parameter Values.

As shown above, varying the parameters of the Lorenz system has a significant

impact on the bandwidth of a Lorenz waveform, which is a normalized and time-
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windowed segment of the state variable x(t). Thus, based on this numerical obser-

vation, appropriately selecting the Lorenz parameters was hypothesized to time and

amplitude scale the state variables of the Lorenz system, since time and amplitude

scaling by a particular factor corresponds to scaling the bandwidth by the same fac-

tor5. Consequently, a method for determining this hypothetical scaling needs to be

determined.

First, a mathematical description of a time and amplitude scaling, via varying

the parameters, is given. Let two Lorenz system with different Lorenz parameters be

denoted as x(t) and x̂(t), respectively. Let x(t) and x̂(t) be described by Eqs. 4.23

and 4.24, respectively.

ẋ =




σ0(y − x)

r0x− y − xz

xy − b0z




(4.23)

˙̂x =




σ̂(ŷ − x̂)

r̂x̂− ŷ − x̂ẑ

x̂ŷ − b̂ẑ




(4.24)

If the parameters and initial conditions of x̂(t) and x(t) are related according to Eqs.

4.25 and 4.26, x(t) and x̂(t) will be related as shown in Eq. 4.27. However, there

exists two practical constraints in order for Eq. 4.27 to hold, which are given in Eq.

4.28.

{σ̂, r̂, b̂} = {aσ0, ar0, ab0} (4.25)

{x̂0, ŷ0, ẑ0} = {ax0, ay0, az0} (4.26)

x̂(t) ≈ ax(at) (4.27)

5This is due to the Fourier relationship where the Fourier transform of x(at) is 1
|a|X( jω

a ).

78



r0 ≥ 360

a ∈ [0.4,∞)
(4.28)

To understand both why Eq. 4.27 holds and the practical constraints, x̂(t) is

compared with a system that exactly time and amplitude scales x(t). Let x̃(t) denote

a system that time and amplitude scales x(t) exactly, i.e. x̃(t) = ax(at). The system

that describes x̃(t) was derived in the previous section and was given in Eq. 4.16. By

substituting the Lorenz system for f using Eq. 4.5, Eq. 4.16 can be re-written as Eq.

4.29.

˙̃x =




aσ0(ỹ − x̃)

ar0x̃− aỹ − x̃z̃

x̃ỹ − ab0z̃




(4.29)

This system has the same parameter set as x(t), which is {σ0, r0, b0} and also time

and amplitude scales x(t) by a.

By comparing Eq. 4.24 and 4.29, it is easy to see why x̂(t) cannot be exactly

equal to x̃(t) = ax(at). If x̂(t) equals x̃(t) = ax(at), then Eqs. 4.29 and 4.24 must be

equivalent, since ˙̂x(t) = ˙̃x(t) imposes the following constraints on the parameters of

x̂(t):

σ̂ = aσ0 (4.30)

r̂x̂− ŷ = ar0x̃− aỹ (4.31)

b̂ = ab0. (4.32)

These constraints are determined by equating Eqs. 4.29 and 4.24. Furthermore, if

x̂(t) = x̃(t) = ax(at), then ax(at) can be substituted into Eq. 4.31 to give rise to Eq.

4.33 as long as x 6= 0.

r̂ = ar0 − y

x
(a− 1) (4.33)

Since in general y 6= x and y
x

is time-varying, the preceding equation implies that r̂ is

time-varying, which is impossible due to the definition of a parameter. Consequently,

x̂(t) 6= x̃(t) = ax(at), or the constraint in Eq. 4.33 would hold.
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As shown in the previous paragraph, the Lorenz system cannot be exactly time and

amplitude scaled by simply varying the parameters. However, with the imposition

of the constraint that ar0 >> y(t)
x(t)

(a − 1), setting σ̂ = aσ0, r̂ = ar0, and b̂ = ab0

approximately corresponds to time and amplitude scaling the Lorenz system, since

Eq. 4.33 is almost satisfied (i.e. r̂ = ar0 ≈ ar0 − y
x
(a − 1)). This constraint can be

written as shown in Eq. 4.34.

1 >>
y(t)

r0x(t)
(1− 1

a
) (4.34)

When the inequality in 4.34 holds, then scaling the Lorenz parameters by a approxi-

mately corresponds to a time and amplitude scaling.

In order to compare the constraint in Eq. 4.34 for various values of a and r0, Eq.

4.34 is simplified to eliminate the time-dependence due to y(t)
x(t)

. This simplification is

made by substituting y(t)
x(t)

with the standard deviation of y(t)
x(t)

. The resulting constraint

is given in Eq. 4.35 where σyx is the standard deviation of y(t)
x(t)

.

1 >>
σyx

r0

(1− 1

a
) ≡ C(a) (4.35)

Since the mean of y(t)
x(t)

is roughly zero, for most time, y(t)
x(t)

lies within ±σyx. Figure

4-15 plots C(a) as a function of the scale factor, a, for various values of r0.

Operating at low values of C(a) is necessary if an approximate time and ampli-

tude scaling is desired (i.e. x̂(t) ≈ ax(at)). As can be seen in in Eq. 4.35, if a is

approximately unity, then C(a) will be small no matter the value of r0. However, in

this thesis, in order to operate over a large range of a, a ∈ [0.4,∞), the constraint of

r0 ≥ 360 is enforced so that C(a) remains less than 0.1 for all a ∈ [0.4,∞) as shown in

Fig. 4-156. Enforcing C(a) < 0.1 implies that, for most time, ar0− y
x
(a− 1) is within

10% of r̂ = ar0. Thus, scaling the parameters approximately time and amplitude

scales the Lorenz system since Eq. 4.33 is almost satisfied.

To illustrate and verify a time and amplitude scaling via scaling the Lorenz pa-

6Some applications may require a stricter constraint on r0. However, in this thesis, scaling the
parameters is only used for setting the bandwidth, so the constraint on r0 is sufficient.
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Figure 4-15: Estimation of Constraint Validity. This figure plots C(a),
which attempts to quantify how close scaling the parameter set by a is to
an exact time-scaling and re-normalization of the original Lorenz system.
Low values of C(a) correspond to a more accurate approximation of a
time-scaling and re-normalization. Multiple plots are shown. Each plot
is with a different parameter set with the value of r was given in the
legend. The value of b and σ were chosen so that the system had a
transition rate equal to 0.5 and so that it was operating at the onset of
chaos.

rameters, two Lorenz systems with scaled parameters are numerically integrated and

compared. The first system has a set of parameters {σ, r, b} equal to {267, 595, 100}.
A set of initial conditions were found on the attractor of this Lorenz system and were

used to give rise to the x state variable which is plotted in a solid blue line in Fig.

4-16. The parameters and the initial conditions of the second system were chosen

according to Eqs. 4.25 and 4.26, respectively, where a = 0.95. The x state variable

of the second system is plotted in a dashed red line in Fig. 4-16. As predicted by the

analysis, it is expected for the the red signal to be time-scaled by 0.95 and amplitude-

scaled by 0.95. Both of these expectations appear to be true. Although only x(t) is
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shown, y(t) and z(t) are also time and amplitude scaled.
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Figure 4-16: Time Evolution of the x State-Variable for Two Lorenz
Systems. The two systems have different parameter sets that give rise to
two Lorenz systems where one system is a time-scaled and re-normalized
version of the other system. The time-scaling and re-normalization factor
was 0.95.

Section 4.3.1 explains that even when two Lorenz systems are exact time-scalings

of each other, the solutions of the two respective systems only initially trace out

the same path on the attractor when numerically generated on a computer. Unfor-

tunately, due to both rounding errors and the fact that nearby trajectories diverge

exponentially, the two trajectories will eventually diverge. Consequently, an approx-

imate time-scaled version of the Lorenz system should, not be expected to exactly

trace out the trajectory of the original solution (although it performs reasonably well

when compared to the exact time-scaled version of the original system for certain

values of the Lorenz parameters).

As mentioned at the beginning of this section, insights into the Lorenz system

can be gained by using the parameters to time scale the state variables of the Lorenz
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system. The remainder of this section is devoted to two such insights. First, as

shown in this section, the Lorenz equations cannot be exactly time and amplitude

scaled because of the underlying structure of the Lorenz equations. However, an

exact time and amplitude scaling is attainable by changing the Lorenz system to

a different chaotic system with a similar structure. The second insight reveals how

Lorenz parameters that scale with the bandwidth will approximately decouple the

issues of setting the bandwidth and setting other system properties.

First, to determine how the structure of the Lorenz system should be modified,

the Lorenz system in Eq. 4.36 is compared with the two systems given in Eqs. 4.37

and 4.38. Equation 4.37 (which was derived in Section 4.3.2) describes a system that

exactly time and amplitude scales the Lorenz system in Eq. 4.36 by a. Equation 4.38

is just a Lorenz system with a set of parameters equal to {σ, r, b}.

ẋ =




σ0(y − x)

r0x− y − xz

xy − b0z




(4.36)

˙̃x =




aσ0(ỹ − x̃)

ar0x̃− aỹ − x̃z̃

x̃ỹ − ab0z̃




(4.37)

ẋ =




σ(y − x)

rx− y − xz

xy − bz




(4.38)

As explained in this section, there is no set of Lorenz parameters for Eq. 4.38 that can

exactly time and amplitude scale Eq. 4.36 by a factor of a. In other words, there is

no way to determine a set of Lorenz parameters so that the Lorenz system in Eq. 4.38

bears the form of Eq. 4.37. For example, if the parameters for the Lorenz system in

Eq. 4.38 are chosen to be {σ, r, b} = {aσ0, ar0, ab0}, then the resulting system, shown
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in Eq. 4.39, is close to Eq. 4.37, but not equivalent.

ẋ =




aσ0(y − x)

ar0x− y − xz

xy − ab0z




(4.39)

Specifically, the −y term of the Eq. 4.39 does not match the −aỹ term of Eq. 4.37.

However, if the Lorenz equations are changed, then the parameters could be chosen

to account for an exact time and amplitude scaling by a. For example, if a system is

defined as shown in Eq. 4.40, then a system that exactly time and amplitude scales

Eq. 4.40 by a would be described as shown in Eq. 4.41.

ẋ =




σ(y − x)

rx− σy − xz

xy − bz




(4.40)

˙̃x =




aσ0(ỹ − x̃)

ar0x̃− aσ0ỹ − x̃z̃

x̃ỹ − ab0z̃




(4.41)

As can be seen by comparing Eqs. 4.40 and 4.41, scaling the parameters by a is

equivalent to time and amplitude scaling the system by a. Although a σ was placed

in the −y term of the Lorenz system, either r or b could also be used. Moreover,

placing one of the state variables7, x, y, or z, in front of the −y term would also

enable scaling the parameters to correspond exactly to a time and amplitude scaling

of the original system8.

Lastly, the case is considered where the −y term in the Lorenz equation has been

omitted altogether. This system is given below in Eq. 4.42. For this system, the onset

of chaos occurs at r > σ(σ+b)
(σ−b)

. The attractor for this system is also butterfly-shaped

7The author would like to thank Charles Rohrs for suggesting that a state variable could also be
placed in front of the −y term to give a system that exactly time and amplitude scales with a.

8The dynamics of these systems are yet to be explored.
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and appears to be very similar to the attractor of the Lorenz system.

x =




σ(y − x)

rx− xz

xy − bz




(4.42)

If the parameters are given such that {σ, r, b} = {aσ0, ar0, ab0}, then Eq. 4.42 can be

written as in Eq. 4.43, and a controls a time and amplitude scaling of a system with

the parameters, σ0, r0, and b0.

x =




aσ0(y − x)

ar0x− xz

xy − ab0z




(4.43)

Additionally, for large parameter values, the dynamics of the Lorenz system such

as the one shown in Eq. 4.38 actually become very similar to the dynamics of the

system described by Eq. 4.42. For the Lorenz system, when scaling the parameters

by a, σ = aσ0, b = ab0, and r = ar0, the amplitude of the state variables increases

by about a factor of a, due to the approximate amplitude scaling. When scaling the

parameters by a, all the terms in the Lorenz equations in Eq. 4.38 increase by a factor

on the order of a2 except the −y term in the second line. This term only increases

on the order of a. Thus as a increases, the significance of the −y term in the Lorenz

system decreases, makes the dynamics very similar to Eq. 4.42 where the −y term

has been omitted.

A second insight into Lorenz system, due to Lorenz parameters that scale with

bandwidth9, involves decoupling the parameters that set the bandwidth and those

that set other system properties. Specifically if the parameters are selected according

to Eq. 4.44, σ0 and r0 can be used to select other system properties for a constant b0

9Again and as explained earlier, time-scaling by a corresponds to scaling the bandwidth by a.
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(which in this thesis will be 100), and a can be used to scale the bandwidth.

{σ, r, b} = {aσ0, ar0, 100a} (4.44)

Since a has a known effect on the system, the other parameters can be used to search

for system properties over two dimensions, σ0 and r0, instead of three (such as was

done for the minimum peak side-lobe and lowest peak-to-RMS in Figs. 4-7 and 4-1).

To understand why the bandwidth and other system properties decouple, the

scaled Lorenz parameters in Eq. 4.44 are written as shown in Eq. 4.45 where b0 is

set to a constant at 100.




σ

r

b




=




1

0

0




aσ0 +




0

1

0




ar0 +




0

0

100




a (4.45)

Next, if we let σ̃0 = aσ0 and r̃0 = ar0, then Eq. 4.45 can be re-written as shown in

Eq. 4.46 where a ∈ (0,∞), σ̃0 ∈ (0,∞) and r̃0 ∈ (0,∞) and the three parameters

can be selected independently.




σ

r

b




=




1

0

0




σ̃0 +




0

1

0




r̃0 +




0

0

100




a (4.46)

Consequently, all positive combinations of σ, r, and b are reachable by appropriately

varying σ̃0, r̃0, and a. Moreover, all positive combinations of σ̃0, r̃0, and a are reachable

from σ0, r0, and a. Thus, the parameters σ0 and r0 in Eq. 4.45 can be selected

when a = 1 and varying a will determine the values of σ, r, and b. Selecting the

parameters in this way gives rise to any positive combination of σ, r, and b; however,

the interpretation that a approximately time scales the dynamics is only valid if the

constraints in Eq. 4.28 are satisfied. If satisfied, σ0 and r0 are selected to set desired

system properties when a = 1, and then a is varied to time and amplitude scale the

particular dynamics of the system. Therefore, as long as Eq. 4.28 is satisfied, the
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parameters that set the bandwidth (i.e. a) have been decoupled from the parameters

that set system properties unaffected by a time and amplitude scaling (i.e. σ0 and

r0). These other system properties can be explored over two dimensions, σ0 and r0.

4.4 Cross-correlation Function

The objective of this thesis is to use chaos theory to generate sets of quasi-orthogonal

waveforms. Thus, verifying the quasi-orthogonality of the Lorenz waveform, xL(t),

is important. As explained in Chapter 3, two waveforms, w1(t) and w2(t), are only

quasi-orthogonal if the average cross-correlation level is on the order of 20 log10

∣∣∣
√

LB
∣∣∣

dB below rw1w1(0) and rw2w2(0). Waveforms generated from the Lorenz system were

observed to be quasi-orthogonal, which is a result of the aperiodicity of x(t) and the

sensitivity to initial conditions. As a result, every waveform generated with a set

of distinct initial conditions was observed to be quasi-orthogonal with a waveform

generated with a different set of initial conditions as long as the waveforms are not

trivially short in time.

Thus, to verify that the Lorenz waveforms are quasi-orthogonal, two distinct

Lorenz waveforms are generated and the cross-correlation function was determined.

The parameters utilized for this Lorenz system were σ = 441, r = 595, and b = 165. A

continuous time signal, xL(t) was approximated via numerical integration where the

initial conditions are selected as explained in Chapter 2. The resulting bandwidth of

x(t) was 500 MHZ, and the length of xL(t) in time was 20 µs. Consequently, the time-

bandwidth product for this waveform was calculated to be −20 log10

∣∣∣
√

LB
∣∣∣ = −40

dB. The cross-correlation of two 20 µs time-segments of xL(t) with randomly se-

lected initial conditions is shown in Fig. 4-17. The average side-lobe level of the

cross-correlation function in Fig. 4-17 was evaluated to -42.7 dB, which is less than

-20 log10

∣∣∣
√

TB
∣∣∣ and implies that these Lorenz waveforms are indeed quasi-orthogonal.

This example can be extended, without generality, to any set of arbitrary Lorenz pa-

rameters (that gives rise to chaotic dynamics) to conclude that waveforms generated

from the Lorenz system are indeed quasi-orthogonal.
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Figure 4-17: Cross-Correlation Between Two Distinct Lorenz Wave-
forms. The autocorrelation function is plotted behind the cross-
correlation function to demonstrate that average cross-correlation func-
tion is 20 log10

(√
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)
= 40 dB below the peak of the autocorrelation

function of one waveform.

4.5 Summary

The objective of this chapter was to determine a method for choosing the Lorenz

parameters to generate Lorenz waveforms, xL(t), with the desired radar waveform

metrics. As established in Sections 4.1 and 4.2, the two radar waveform metrics of

xL(t) that can be controlled by σ and r are the magnitude of the peak side-lobe and

the peak-to-RMS ratio. As explained in Section 4.3, if the parameters are selected

via Eq. 4.44, then these radar metrics are completely determined by σ0 and r0 for a

fixed b0 = 100. Consequently, for b0 = 100, σ0 and r0 can be appropriately selected

in the operating region of the design curve shown in Fig. 4-13 (which trades-off peak

side-lobe with peak-to-RMS ratio). Then as long as the constraints in Eq. 4.28 are

satisfied, a in Eq. 4.44 can be used to set the bandwidth as desired without affecting
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the side-lobes or peak-to-RMS ratio. In this thesis, this is the metho used for selecting

the Lorenz parameters for the Lorenz waveform.

As well as providing a method for selecting the Lorenz parameters, this chap-

ter discusses two additional key points. First, Section 4.4 verifies that waveforms

generated from the Lorenz system are indeed quasi-orthogonal. Second, Section 4.3

explains how the state variables of the Lorenz system can be time-scaled in two ways:

by scaling the Lorenz equations or by scaling the Lorenz parameters. Scaling the

Lorenz equations exactly time scales the state variables of the Lorenz system. On the

other hand, scaling the Lorenz parameters, only approximately time (and amplitude)

scales the state variables. However, the development of time scaling the state vari-

ables via the Lorenz parameters provides two additional insights. The first of which

is that the Lorenz system can be modified such that scaling parameters corresponds

exactly to time and amplitude scaling the state variables. Several candidate systems

are then suggested. The second insight reveals how the parameters being used to set

the bandwidth can be decoupled from the parameters being used to set other system

properties, which was used to develop a method for selecting the Lorenz parameters

when generating Lorenz waveforms (as explained in the previous paragraph).
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Chapter 5

Design Methods for Lorenz-Based

Radar Waveforms

In this chapter, the set of Lorenz waveforms is evaluated and improvements are sug-

gested. Specifically, the first section evaluates the Lorenz waveforms by comparing

them with waveforms from a set of quasi-orthogonal radar waveforms used in practice

at M.I.T. Lincoln Laboratory. These waveforms are generated from a method unre-

lated to deterministic chaos. For illustration purposes, the two sets of waveforms are

compared by comparing two sample waveforms, one from each set, to illustrate the

typical results. The Lorenz waveform will be referred to as xL(t), and the waveform

being employed in practice will be referred to as w(t). The two radar waveforms

will be compared on all of the four radar waveform design considerations. Based on

the comparison, the second section suggests improvements to the Lorenz waveforms.

Then in the last section, the improved waveform is compared with w(t) on all the

radar waveform metrics.
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Description of System Specifications
Bandwidth B ≈ 500 MHz

Pulse Length L = 20µs
Sampling Frequency 1

T
= 1.5GHz

Table 5.1: System Specifications.

5.1 Evaluating the Lorenz Waveforms against Tra-

ditional Designs

In this section, the Lorenz waveforms will be compared with w(t). Both waveforms

are designed to be compatible with the specifications given in Table 5.1. As explained

in Chapter 3, the initial conditions for the Lorenz waveforms were selected in a 800×
800 × 800 cube in state space, which is centered around the origin. The Lorenz

system was numerically integrated to generate 4 × 104 samples using a fourth-order

runga-kutta method and a step size of 10−3 seconds. The first 104 samples allowed

the trajectory enough time to converge to the chaotic attractor and were discarded.

The 104 + 1 sample was the n = 0 sample for the sequence of 3× 104 samples, which

is referred to as x[n]. For ease of implementation and without loss of generality,

the sampling period of x[n] is considered to be 2
3

of a nanosecond as opposed to the

integration step size of 10−3 seconds. Consequently the length in time of the resulting

continuous-time signal, xL(t), is 20 µs as required in Table 5.1. Also, the waveform

is normalized so that its peak magnitude equals unity. Next, the parameters of the

Lorenz system, {σ, r, b}, need to be selected to minimize side-lobes, to reduce peak-

to-RMS ratio, and set the bandwidth of xL(t) to 500 MHz.

The Lorenz parameters were selected consistent with the discussion in the previous

chapter. First, the parameters set of {σ ≈ 267, r ≈ 595, b ≈ 100} was used to give rise

to a Lorenz system with the lowest peak-to-RMS ratio for a transition rate of 0.5. The

bandwidth of waveforms from this system was then evaluated to be approximately 302

MHz. Since it was shown in Chapter 4 that scaling the parameter set approximately

scales the bandwidth by the same factor, the parameters were scaled by 1.65, which

yields {σ ≈ 441, r ≈ 982, b ≈ 165}. The bandwidth of waveforms from this system
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was evaluated to be approximately 500 MHz as required by Table 5.1. In this chapter,

a Lorenz waveform, xL(t), is generated from the Lorenz system given in Eq. 5.1.

ẋ = 441(y − x)

ẏ = 595x− y − xz (5.1)

ż = xy − 165z

It is worth noting that each one of the Lorenz waveforms generated in this sys-

tem can be represented by 6 finite-precision numbers. The first three numbers are

the initial conditions of Lorenz system, {xo, yo, zo}, and the set of three parameters,

{σ, b, r}. Consequently, to store these radar waveforms, all that is needed is these six

numbers or a method for selecting these six numbers.

5.1.1 Peak-to-RMS Ratio

The peak-to-RMS ratio (PRMS) is straightforward to evaluate for the Lorenz wave-

form. Using Eq. 3.17, the PRMS of the Lorenz waveform, xL(t), is 2.23. However,

the PRMS of w(t) is 1.21. Thus, the PRMS of xL(t) is significantly greater than

the PRMS of w(t). If the peaks of the two waveforms are normalized to unity, then

the average power of xL(t) is a factor 0.3 times smaller than the average power of

w(t), which corresponds to about a 5 dB reduction in signal power. This reduction

is unacceptable for many radar applications.

5.1.2 Autocorrelation Function

Comparing xL(t) and w(t) on metrics associated with the autocorrelation function

involves comparing the main-lobe width and the magnitude of the peak side-lobe of

the two waveforms. To make this comparison, the autocorrelation function of xL(t) is

shown in Fig. 5-1. The peak side-lobe has a magnitude that is -26 dB down from the

magnitude of the main-lobe and is located in time at a delay of 1.3 µs away from the

peak of the main-lobe. This peak is not visible in Fig. 5-1. For reference, the average
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side-lobe level was evaluated to be -42.8 dB, which is sufficient for many applications.

The main-lobe width of the autocorrelation function was evaluated to be 4.2 ns,

which, relatively speaking, is quite large as shown by comparing this waveform with

w(t).
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Figure 5-1: Autocorrelation Function of a Lorenz Waveform. This wave-
form is generated from the system given in Eq. 5.1.

The autocorrelation function of w(t) is shown in Fig. 5-2. The side-lobe level is

lower and the main-lobe width is narrower than the autocorrelation function of the

Lorenz waveform given in Fig. 5-1. The peak side-lobe, average side-lobe level, and

main-lobe width of the autocorrelation function of w(t) evaluate to be -31 dB, -44 dB,

and 1.8 ns, respectively. Consequently, due to a lower peak side-lobe and narrower

main-lobe width, the autocorrelation function of w(t) is usually better suited for radar

applications than the autocorrelation function of xL(t).
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Figure 5-2: Autocorrelation Function for w(t).

5.1.3 Energy Spectrum

The next comparison is associated with comparing the metrics associated with the

energy spectra of the two waveforms. The metric associated with the energy spec-

trum is the peak out-of-band side-lobe. However, severe qualitative differences exist

between the energy spectra of xL(t) and w(t). Consequently, comparing the energy

spectra with this metric is ambiguous. Specifically, for the triangular-like spectrum

of the Lorenz waveform, the frequencies that correspond to the out-of-band region

is somewhat arbitrary. Thus, the energy spectra of these two waveforms will just

be compared qualitatively, which is sufficient to illustrate the significant differences

between the energy spectrum of the two waveforms.

The energy spectra of both waveforms are calculated in order to make a compari-

son. The energy spectrum for one particular, 20 µs, Lorenz waveform, xL(t), is given

in Fig. 5-3 and is calculated as described in Eq. 3.22. The energy spectrum of w(t)

is given in Fig. 5-4. For a compact spectrum, it is important (for reasons listed in

95



Chapter 3) that most of the energy in the energy spectrum be concentrated in the

in-band region, [-250 MHz, 250 MHz], and little energy should be located outside the

in-band region. When comparing the two spectrums, the energy spectrum of w(t)

appears to be more compact than the energy spectrum of xL(t). First, the energy

spectrum of w(t) in the in-band region appears to be more evenly distributed, which

translates into a smaller main-lobe width of the autocorrelation function of w(t). Sec-

ondly, the out-of-band energy is significantly less than the in-band energy for w(t).

On the other hand, since the energy spectrum of xL(t) falls off somewhat linearly (on

a semi-log plot), the in-band energy is not significantly more than the out-of-band

energy. Consequently, xL(t) will see more distortion than w(t) due to filters in the

radar hardware that further attenuate energy outside of the in-band region. When

compared to the energy spectrum of w(t), the energy spectrum of xL(t) does not ap-

pear to be very compact. However, Section 5.2 addresses issues involved with making

the spectrum more compact.

5.1.4 Cross-Correlation Function

The next comparison requires evaluating the peak side-lobe of the cross-correlation

function of two distinct Lorenz waveforms and comparing it with w(t) and the quasi-

orthogonal counterpart to w(t). A sample cross-correlation function of two distinct

Lorenz waveforms, xL1(t) and xL2(t), is shown in Fig. 5-5. Even though only the

cross-correlation of two waveforms is shown, this function is typical of all observed

cross-correlation functions for all distinct Lorenz waveforms. The peak side-lobe level,

although not shown in the figure, was evaluated to be -25.4 dB. The average side-lobe

level was evaluated to be -42.7 dB, which verifies that the waveforms are quasi-

orthogonal, since −20 log10(
√

LB) = −40 (where LB denotes the time-bandwidth

product).

Figure 5-6 plots the cross-correlation of w(t) with a second waveform, w̃(t), de-

signed at M.I.T. Lincoln Laboratory, which is being used as a quasi-orthogonal coun-

terpart to the original w(t). The average side-lobe level and the peak side-lobe for

these two waveforms are -43.9 dB and -28.7 dB, respectively. Thus these two wave-
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Figure 5-3: Energy Spectrum of a Lorenz Waveform. This is the energy
spectrum for one particular Lorenz waveform and is calculated using Eq.
3.22.

forms are indeed quasi-orthogonal. When comparing the cross-correlation function

of the Lorenz waveforms with the cross-correlation function of w(t) and w̃(t), the

cross-correlation properties are roughly equivalent.

5.2 Transformations to Improve the Lorenz Radar

Waveforms

As indicated in the previous section, Lorenz waveforms do not evaluate well on the

radar design goals when compared to radar waveforms used in current applications. In

this section, small modifications to the Lorenz waveforms will be suggested so that the

new, Lorenz-based waveforms offer a valid set of quasi-orthogonal radar waveforms

that evaluate just as well on the radar design goals as quasi-orthogonal radar wave-

forms used in current applications. In fact, Lorenz-based waveforms perform better
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Figure 5-4: Energy Spectrum of w(t).

than current radar waveforms on some of the design goals. The result of this section

will be a systematic procedure for generating sets of quasi-orthogonal waveforms.

5.2.1 Peak-to-RMS Ratio Improvement

As mentioned in the previous section, Lorenz waveforms possess a relatively high

peak-to-RMS ratio. The high PRMS of xL(t) is due, in large part, to the lack of an

imaginary component to xL(t), since the Lorenz waveforms are real signals. Since

xL(t) is a wideband waveform, it must consist of spectral components other than

just the DC component, which forces the real signal xL(t) to vary in magnitude with

time. This variation results in a PRMS greater than unity1. However, if a waveform

consisted of both a real and imaginary component, then low power regions of the real

component could be aligned with high-power regions of the imaginary component.

This alignment of the real and imaginary components reduces the fluctuation in the

1As explained in Section 3.1, since xL(t) is centered around base-band, the PRMS should be as
close to unity as possible.
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= 40 dB below the peak of the autocorrelation

function of one waveform.

magnitude of the waveform, which results in a lower PRMS.

An example of this alignment can be demonstrated with the complex exponen-

tial. For the complex exponential, ejwct, the real component is cos(wct), and the

imaginary component is sin(wct). Moreover, low power regions of the real com-

ponent align with the high power regions of the imaginary component, and vice-

versa. Accordingly, the magnitude of the complex exponential is constant since

‖ejwct‖ =
√

cos2(wct) + sin2(wct) = 1. Consequently since the peak equals unity,

the PRMS, likewise, equals unity. Interestingly, since sin(wct) = cos(wc(t − π
2wc

)),

the imaginary component of the exponential is just a delayed version of the real

component that minimizes the PRMS.

Using this intuition, an imaginary component is introduced for the Lorenz wave-

forms, which is simply the delayed version of the real component that minimizes the
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PRMS. Thus, the objective is to choose the delay such that high power regions of the

real component will align with the low power regions of the imaginary component2.

The new waveform is now complex and is shown in Eq. 5.2, where τd is determined

empirically from x state variable of the Lorenz system.

x1(t) = xL(t) + jxL(t− τd) (5.2)

However, using a delayed version of the real component as the imaginary compo-

nent will have ramifications on the autocorrelation function of the complex waveform.

The real and imaginary components of the autocorrelation function of x1(t), rx1x1(t),

2As shown in Section 4.2, consecutive peaks of the Lorenz waveform arrive at about the same
time, which allows for the application of low and high power alignment.
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is given in Eqs. 5.3. - 5.6.

<{rx1x1(τ)} =
∫ +∞

−∞
[xL(t)xL(t− τ) + xL(t− τd)xL(t− τd − τ)]dt (5.3)

= 2rxLxL
(τ) (5.4)

={rx1x1(τ)} =
∫ +∞

−∞
[xL(t− τd)xL(t− τ) + xL(t)xL(t− τd − τ)]dt (5.5)

= rxLxL
(τ − τd)− rxLxL

(τ + τd) (5.6)

As expected, ‖rx1x1(τ)‖ has a global maximum at τ = 0, since <{rx1x1(τ)} =

2rxLxL
(τ). However, |={rx1x1(τ)}| introduces two additional relative maxima at

τ = ±τd, which can be seen in Eq. 5.6. These additional side-lobes could poten-

tially give rise to false targets in a radar system and need to be eliminated.

To eliminate the high side-lobes at ±τd while still maintaining a low peak-to-RMS

ratio, Eq. 5.2 is redefined as shown in Eq. 5.7 and 5.8.

x2(t) = xL(t) + jx̃(t) (5.7)

x̃(t) =





xL(t− τd); t ∈ [0, T
2
]

−xL(t− τd); t ∈ (T
2
, T ]

0; else

(5.8)

The autocorrelation function of x2(t) has the same real part, but |={rx2x2(τ)}| no

longer has relative maxima at τ = ±τd. To see this, first ={rx2x2(τ)} is written out

in Eq. 5.9 and 5.10.

={rx2x2(τ)} =
∫ +∞

−∞
[x̃(t)xL(t− τ) + xL(t)x̃(t− τ)]dt (5.9)

= rx̃xL
(τ)− rxLx̃(τ) (5.10)

Next, Eq. 5.9 can be evaluated to show that no relative maxima exist at τ = ±τd.

Eq. 5.9 is evaluated first at τ = τd.

={rx2x2(τd)} =
∫ +∞

−∞
[x̃(t)xL(t− τd) + xL(t)x̃(t− τd)] dt (5.11)
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=
∫ T

2

−∞
[xL(t− τd)xL(t− τd) + xL(t)xL(t− 2τd)] dt (5.12)

−
∫ +∞

T
2

[xL(t− τd)xL(t− τd) + xL(t)xL(t− 2τd)] dt

≈ 0 (5.13)

Equation 5.12 is derived by substituting Eq. 5.8 for x̃(t) into Eq. 5.11 and by breaking

the integral apart into two time segments. Both integrals in Eq. 5.12 evaluate about

the same magnitude and cancel so that Eq. 5.12 evaluates to approximately zero.

A similar evaluation could be performed to demonstrate that rx2x2(−τd) ≈ 0. Thus,

the spurious peaks of |={rx2x2(τ)}| have been eliminated and high magnitude time

segments of <{x2(t)} are aligned with low magnitude time segments of ={x2(t)}.

The peak-to-RMS ratio of the complex, base-band waveform x2(t) can now be

evaluated and compared with the original waveform, xL(t). The PRMS of x2(t) was

calculated over 10 different waveforms and the mean PRMS and maximum PRMS

were 1.5774 and 1.5912, respectively. The mean PRMS and maximum PRMS of

xL(t) were calculated to be 2.2082 and 2.2211, respectively. As expected the PRMS is

considerably lower in x2(t) than xL(t); however, this improvement, while encouraging,

is not enough.

To further reduce the peak-to-RMS ratio, a mapping is introduced to force the

trajectory to spend more time near the peak value. Accordingly, the following map-

ping in Eq. 5.14 is introduced to create a new waveform with a lower PRMS (where

‖ · ‖ denotes
√

(·)(·)∗). A plot demonstrating this concave mapping is shown in Fig.

5-7. As can be seen in this figure, this mapping boosts segments of the trajectory

with low instantaneous power and only slightly affects time segments with a high

instantaneous power. It is true that there might be other functions that might be

more suitable in reducing the PRMS, but this function is sufficient for the purposes

of this thesis.

fc(x) = sin




π
√
‖x‖

2 max
[√
‖x‖

]


 (5.14)
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Figure 5-7: Mapping for fc(x). This mapping was used
to boost the peak-to-RMS ratio of the waveforms in this
thesis.

Using this mapping, a new waveform can be proposed that has a lower peak-to-

RMS ratio but still remains closely based on the Lorenz system. This new waveform,

x̂3(t), is given in Eq. 5.15 where ‖ · ‖ denotes
√

(·)(·)∗ and f (2)
c (·) denotes fc(fc(·)).

x̂3(t) = f (2)
c (x2(t)) · x2(t)

‖x2(t)‖ (5.15)

For a set of ten distinct waveforms, the average PRMS and maximum PRMS were

1.0140 and 1.0144, respectively. Alas, the PRMS of x̂3(t) compares favorably against

typical waveforms used in practice. However, due to the application of fc, the energy

spectrum, Φx̂3x̂3(jω), of x̂3(t) has been altered as shown in Fig. 5-8. Also, the spec-

trum appears to have been compressed. Expanding and shaping Φx̂3x̂3(jω) without

significantly boosting the PRMS will be addressed in the next section.
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Figure 5-8: The Energy Spectrum of x̂3(t).

5.2.2 Spectral Shaping

Properly shaping the spectrum of the Lorenz-based waveform will make the energy

spectrum more compact and decrease the time width of the main-lobe of the au-

tocorrelation function, without significantly boosting either the peak-to-RMS ratio

or the side-lobes of the autocorrelation function. Shaping the spectrum (of x̂3(t))

is accomplished by a series of steps. First, the spectrum is expanded to correct for

the compression due to the concave mapping, f (2)
c (x). Then, the expanded spectrum

is filtered by a low-pass filter, which makes the spectrum compact. Finally, the in-

band frequencies of the resulting waveform are shaped with a shaping filter, which

trades-off autocorrelation main-lobe width with side-lobe area.

The first two necessary steps in shaping the spectrum of x̂3(t) are shown in Fig.

5-9, and both the filter, hlp(t), and the value for m need to be determined. hlp(t) is

designed to be compatible with the waveform specifications given in Table 5.1, i.e. the

width of the pass-band of hlp(t) was set to be approximately 500 MHz. The frequency

response of this filter is given in Fig. 5-10. The value for m in Fig. 5-9 (where

for simplicity m is assumed to be greater than unity) scales the frequency axis of

Φx̂3x̂3(jω), i.e. Φx3x3(jω) = 1
|m|Φx̂3x̂3(

jω
m

). Moreover, since hlp(t) is fixed, m is related

104



)(ˆ
3 tx )(ˆ)( 33 mtxtx =

)(3 tx
)()()(

34
txthtx lp *= )(

4
tx

Figure 5-9: Time-Compression and Low-Pass Filtering of x̂3(t).

to the frequency tapering of Φx4x4(jω), since when Φx3x3(jω) (shown in Fig. 5-8) is

greatly expanded, the highly tapered regions of Φx3x3(jω) are outside of the pass-band

of hlp(t) and significantly attenuated. Consequently, larger values of m result in less

tapering of Φx4x4(jω), and smaller values of m result in more tapering of Φx4x4(jω).

Since the in-band tapering is related to the main-lobe width of the autocorrelation

function, m is increased to 2.85 so that the main-lobe width of rx4x4(t) equals the

main-lobe width of the autocorrelation function of w(t) to make the comparison of

the two waveforms easier (for more details, see the discussion of effective bandwidth

versus time-width in [16]). The spectrum of the resulting waveform x4(t) is shown in

Fig. 5-11.
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Figure 5-10: Frequency Response of hlp(t).
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Figure 5-11: The Energy Spectrum of x4(t).
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Figure 5-12: Steps Required for In-band Spectral Shaping

Now that Φx4x4(jω) is both more compact and gives rise to an autocorrelation

function with a desirable main-lobe width, the in-band region of Φx4x4(jω) is further

filtered to match the shape of a Kaiser window, since a Kaiser window almost opti-

mally trades-off main-lobe width and side-lobe area [11]. Thus, the objective of this

operation is to lower the side-lobes of the autocorrelation function without widening

the main-lobe. To do so, a pseudo-normalization of the in-band region of Φx4x4(jω)

is performed. Next, a Kaiser window is applied to the in-band region of Φx4x4(jω).

These steps are expressed in Fig. 5-123.

The pseudo-normalization of the in-band region of Φx4x4(jω) was accomplished by

dividing by an averaged approximation of Φx4x4(jω). This division is shown in Eqs

5.16 and 5.17 where Φ̂x4x4(jω) denotes the averaged approximation of Φx4x4(jω) and

Φx5x5(jω) is the output of this shaping.

Φx5x5(jω) = |Hnorm(jω)|2 Φx4x4(jω) (5.16)

|Hnorm(jω)|2 =





1
Φ̂x4x4(jω)

; ω ∈ [−ωc, ωc]

1
Φ̂x4x4 (jωc)

; ω ∈ (−∞,−ωc) ∪ (ωc,∞)
(5.17)

In Eq. 5.17, the in-band region is defined as ωc ∈ [−ωc, ωc]. The in-band region is

3In a real radar, shaping the in-band frequencies of Φx4x4(jω) can be done either before trans-
mitting the waveform or upon reception of the waveform. If the shaping is done before transmission,
the peak-to-RMS is degraded, and the waveform could be distorted on transmit. If the shaping is
done upon receive, a reduction in the signal-to-noise ratio occurs. The remainder of this section
proceeds as if the spectrum is shaped prior to transmit, but the option exists to simply transmit
x4(t) and taper the waveform on receive.
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chosen to be consistent with the specifications in Table 5.1. Also, the out-of-band

region is multiplied by a constant factor, 1
Φ̂x4x4 (jωc)

, to ensure that there are no severe

discontinuities in Φx5x5(jωc). Φ̂x4x4(jω) is calculated using an averaged modified

periodogram method4.

Dividing the in-band region of Φx4x4(jω) by Φ̂x4x4(jω) (as opposed to Φx4x4(jω))

was done to preserve a low peak-to-RMS ratio. If the in-band region was instead

normalized to unity, the spectrum would be more greatly altered, which would raise

the peak-to-RMS ratio to an unacceptable level5. However, when dividing the in-band

region by Φ̂x4x4(jω), the minor distortion to x4(t) (which originally had a very low

peak-to-RMS ratio) does not significantly raise the peak-to-RMS due to averaging

involved in the calculation of Φ̂x4x4(jω).

The next step involves shaping the in-band region of Φx5x5(jω) with a kaiser

window. The kaiser window depends on two parameters, the length of the window

and the parameter, β, which trades off main-lobe width with side-lobe area. The

length was determined by the length of the in-band region of Φx5x5(jω). β was

determined to ensure the resulting waveform had an autocorrelation function main-

lobe width equal to the main-lobe width of rww(t). Consequently, β was chosen to be

4.75. The resulting Kaiser window is shown in Fig. 5-13.

Using wk(jω), the in-band region of Φx5x5(jω) was shaped as described in Eqs.

5.19 and 5.18 where Φx6x6(jω) is the output of this shaping.

Φx6x6(jω) = |Hk(jω)|2 Φx5x5(jω) (5.18)

|Hk(jω)|2 =





wk(jω); ω ∈ [−ωc, ωc]

wk(jωc); ω ∈ (−∞,−ωc) ∪ (ωc,∞)
(5.19)

The in-band region is defined as ωc ∈ [−ωc, ωc]. Also, the out-of-band region is multi-

plied by a constant factor, wk(jωc), to ensure that there are no severe discontinuities

4Φ̂x4x4(jω) was evaluated via Welch’s averaged modified periodogram method with one exception.
Welch’s method uses eight segments of equal length with 50% overlap; whereas, the approximation
computed herein uses fourteen segments of equal length with 50% overlap.

5If the in-band tapering is done upon receive, then one might consider normalizing the in-band
spectrum to unity.
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Figure 5-13: The Kaiser Window Used to Shape
Φx5x5(jω).

in Φx6x6(jωc). Thus, since the Kaiser filter is designed to trade-off main-lobe width

and side-lobe area, the side-lobes of the autocorrelation function of x4(t) have also

been reduced when compared to xL(t), which is shown in the next section.

For ease of implementation, both Hnorm(jω) and Hk(jω) are combined into one

shaping filter, Hmin(jω), which is shown in Fig. 5-14. The mathematical description
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6
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Figure 5-14: System Description of Hmin(jω).
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for this filter is given in Eq. 5.20.

|Hmin(jω)|2 =
Φx6x6(jω)

Φx4x4(jω)
(5.20)

By substituting Eq. 5.16 for Φx5x5(jω) in Eq. 5.18, Φx6x6(jω) can be expressed as

shown in Eq. 5.21.

Φx6x6(jω) = |Hnorm(jω)|2 |Hk(jω)|2 Φx4x4(jω) (5.21)

Consequently, by substituting Eq. 5.21 into Eq. 5.20, the squared magnitude of

Hmin(jω) can be described by Eq. 5.22, which can be evaluated as shown in Eq.

5.23.

|Hmin(jω)|2 = |Hnorm(jω)|2 |Hk(jω)|2 (5.22)

|Hmin(jω)|2 =





wk(jω)

Φ̂x4x4 (jω)
; ω ∈ [−ωc, ωc]

wk(jωc)

Φ̂x4x4 (jωc)
; ω ∈ (−∞,−ωc) ∪ (ωc,∞)

(5.23)

To also determine the phase information of Hmin(jω), spectral factorization is em-

ployed to factor |Hnorm(jω)|2 |Hk(jω)|2 into a minimum and a maximum phase com-

ponent [12], as stated in Eq. 5.24. The magnitude squared of the minimum phase

component satisfies Eq. 5.22.

|Hnorm(jω)|2 |Hk(jω)|2 = Hmin(jω)Hmax(jω) (5.24)

Herein, the Levinson-Durbin recursion algorithm was utilized estimate Hmin(jω) by

approximating this factorization with an IIR filter.

Therefore, hmin(t) (the inverse Fourier transform of Hmin(jω)) can be used to

shape the in-band frequencies of Φx4x4(jω) in order to reduce the side-lobes of the

autocorrelation function of x4(t). This operation is illustrated in Fig. 5-14 and

described by Eqs. 5.25 and 5.26.
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x6(t) = hmin(t) ∗ x4(t) (5.25)

|Hmin(jω)|2 =





wk(jω)

Φ̂x4x4 (jω)
; ω ∈ [−ωc, ωc]

wk(jωc)

Φ̂x4x4 (jωc)
; ω ∈ (−∞,−ωc) ∪ (ωc,∞)

(5.26)

Since shaping Φx4x4(jω) boosts the PRMS of x6(t), the amplitude of x6(t) is

clipped to lower the peak-to-RMS to a reasonable level. This was a simple operation

accomplished by simply re-normalizing the amplitude of x6(t) by dividing by 0.7

and then setting all values of |x6(t)| > 1 equal to unity in magnitude as described

by Eq. 5.27. The PRMS of the resulting waveform, µL(t), was calculated over 10

different waveforms and the mean PRMS and maximum PRMS were 1.22 and 1.26,

respectively.

µL(t) =





1
0.7
· x6(t) if

‖x6(t)‖
0.7

< 1

1
0.7·‖x6(t)‖x6(t) if

‖x6(t)‖
0.7

≥ 1
(5.27)

Thus, as a result of this section, the original Lorenz waveform, xL(t), has been

modified in a systematic way to both correct for the PRMS and to decrease the main-

lobe width of the autocorrelation function and to make the spectrum more compact.

The systematic procedure developed in this thesis to generate Lorenz-based radar

waveforms is shown in Fig. 5-15. The new, Lorenz-based waveform, µL(t), will be

evaluated in the next section.
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Figure 5-15: Systematic Procedure for Generating Lorenz-Based Waveforms.
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5.3 Evaluating the Transformed Lorenz Radar Wave-

forms

The Lorenz-based waveforms, µL(t), perform much better than the original Lorenz

waveforms, and in some ways, out perform w(t), the waveform used in practice. More-

over, the waveform w(t) was generated via a long numerical optimization program

that lasts several hours to even days when generated on a desktop machine using

Matlab. On the other hand, utilizing the Lorenz system, Lorenz-based radar wave-

forms can be generated very quickly (seconds in Matlab) suggesting the potential

of generating these waveforms in real-time on a pulse-to-pulse basis in a radar. The

objective of this section is to evaluate the Lorenz-based waveforms based on the radar

waveform design goals and compares them with w(t). The output radar waveforms

all were compatible with the system specifications given in Table 5.1.

5.3.1 Peak-to-RMS Ratio

After taking steps to reduce the PRMS of the Lorenz waveforms (most importantly

by adding an imaginary component to the Lorenz waveforms), the PRMS of the

resulting Lorenz-based waveforms is significantly reduced. As mentioned earlier the

mean PRMS of µL(t) over ten distinct waveforms is 1.22 and the peak value is 1.26.

Since the PRMS of w(t) 1.21, it is concluded that the PRMS of the Lorenz-based

waveforms is roughly equal in value to that of w(t).

5.3.2 Autocorrelation Function

The autocorrelation function of the Lorenz-based waveform demonstrates both a nar-

rower main-lobe and lower side-lobes than the original Lorenz waveform. The narrow

main-lobe is due to shaping the in-band frequencies of the energy spectrum of the

original Lorenz waveform to create a larger effective bandwidth for the system. More-

over, application of the filter described in Eq. 5.26 effectively lowers the side-lobes

centered around the main-lobe of the autocorrelation function. Both of these effects

113



can be seen in Fig. 5-16. The autocorrelation function is plotted alongside the au-

tocorrelation function of w(t) to demonstrate an equal main-lobe width and lower

side-lobes. Specifically, without applying hmin(t), the side-lobes of rµLµL
(t) would be

on the order of 20 log |√LB| below the main-lobe, as is the case for the side-lobes of

rww(t). With the application of hmin(t), the side-lobes of rµLµL
(t) centered around

the main-lobe are lowered an additional 10 dB6.

5.3.3 Energy Spectrum

The triangular-like energy spectrum of the original Lorenz waveforms has been mod-

ified to make the spectrum more compact. The original energy spectrum (given in

Fig. 5-3) has been transformed through spectral shaping into a more compact en-

ergy spectrum. The energy spectrum for an example Lorenz-based radar waveform is

given in Fig. 5-17, which was computed via Eq. 3.22. As can be seen from the figure,

less out-band energy exists in Fig. 5-17 than Fig. 5-3 (where in-band is defined as

the 500 MHz region centered around zero as specified by Table 5.1). Moreover, the

energy spectrum is of comparable compactness as the energy spectrum of w(t), which

is given in Fig. 5-4.

5.3.4 Cross-Correlation Function

The cross-correlation level of the Lorenz-based radar waveform is unaffected by the

operations that modify xL(t). The cross-correlation function of two distinct Lorenz-

based waveforms, µL1(t) and µL2(t), is shown in Fig. 5-18 where the autocorrela-

tion function of one of the waveforms is plotted lightly behind the cross-correlation

function. The time-bandwidth product remains at -40 dB; thus, the average cross-

correlation level is expected to be located around -40 dB. The average side-lobe level

and peak side-lobe of the cross-correlation function was calculated to be -44.56 and -

28.04, respectively. Therefore, as expected the cross-correlation between two distinct

6Remembering that the autocorrelation function is the zero-doppler slice of the ambiguity func-
tion is important. A full ambiguity function is given in the appendix, which illustrates the low
side-lobes in both time and doppler. Also, the appendix demonstrates how these low side-lobes are
not degraded by a radar transmitter.
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Lorenz-based waveforms remains low and comparable to both the original Lorenz

waveforms (as shown in Fig. 5-5) and the cross-correlation level between w(t) and

w̃(t), which are both being used in current applications (as shown in Fig. 5-6).

115



−2000 −1500 −1000 −500 0 500 1000 1500 2000
−80

−70

−60

−50

−40

−30

−20

−10

0

10

Time Delay (ns)

M
ag

ni
tu

de
 (

dB
)

20 log10 |
rww(t)
rww(0) |

20 log10 |
rµ

L
µ

L
(t)

rµ
L

µ
L

(0) |

(a)

−200 −150 −100 −50 0 50 100 150 200
−80

−70

−60

−50

−40

−30

−20

−10

0

10

Time Delay (ns)

M
ag

ni
tu

de
 (

dB
)

20 log10 |
rww(t)
rww(0) |

20 log10 |
rµ

L
µ

L
(t)

rµ
L

µ
L

(0) |

(b)

Figure 5-16: The Autocorrelation Function of µL(t).
This figure plots the autocorrelation function of µL(t),
rµLµL

(t). Behind is the autocorrelation function of w(t),
rww(t). The second plot is an enlarged view of the first
plot.
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Chapter 6

Summary and Suggestions for

Future Research

This chapter summarizes the thesis and also suggests various directions for future

work.

6.1 Summary

As discussed in the introduction, the development of A/D converters possessing suffi-

ciently high sampling rates allows the use of arbitrary, wideband waveforms in radar

applications. This thesis studies the utilization of the Lorenz system to generate

large sets (> 50) of high-quality, wideband, quasi-orthogonal radar waveforms. The

systematic waveform generating procedure is closely based on the Lorenz system and

requires only a few seconds to generate each waveform in Matlab. Additionally, each

waveform can be represented by 6 parameters: three initial conditions and the Lorenz

parameters, σ, r, and b.

Chapter 3 proposes and explains four radar waveform design considerations. The

four design considerations are (i) the peak-to-RMS ratio, (ii) the autocorrelation

function, (iii) the power spectrum, and (iv) the cross-correlation function. These

design considerations are used to evaluate waveforms in this thesis.

Chapter 4 demonstrates that scaling the Lorenz parameters approximately time
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and amplitude scale the state variables of the Lorenz system. This scaling is exploited

such that one parameter, b, sets the bandwidth and the remaining two parameters, σ

and r, set the remaining system properties. Specifically, for a fixed value of b, σ and

r can be chosen to minimize the autocorrelation function side-lobes, as well as reduce

the peak-to-RMS ratio of the Lorenz waveform. The trade-off between side-lobes and

peak-to-RMS ratio is summarized by the design curves in Fig. 4-13.

As well as providing a method for selecting the Lorenz parameters, Chapter 4 ver-

ifies that the Lorenz system can be used to generate quasi-orthogonal waveforms and

suggests two distinct methods for time-scaling the Lorenz system. The first method,

via scaling the Lorenz equations, is exact. The second method, via scaling the Lorenz

parameters, is approximate. This second method provides two additional insights.

First, the parameters being used to set the bandwidth can be decoupled from the

parameters being used to set other system properties. The second insight reveals

the existence of other chaotic systems where scaling the parameters corresponds ex-

actly to time and amplitude scaling of the state variables. Several such systems are

suggested, but the dynamics of these systems are yet to be explored.

Chapter 5 discusses how the x state variable from the Lorenz system can be used

to generate practical radar waveforms. This discussion begins by illustrating the

deficiencies in using the Lorenz waveform as a radar waveform. Based on these weak-

nesses, a correction procedure is suggested to modify the Lorenz waveform. This

procedure is summarized by Fig. 5-15. The resulting Lorenz-based waveform, µL(t),

is then compared with a sample radar waveform, w(t), which is taken from a set

of quasi-orthogonal radar waveforms used in practice at M.I.T. Lincoln Laboratory

and generated from a method independent of deterministic chaos. The comparison

illustrates that the peak-to-RMS ratio, the energy spectrum, and the cross-correlation

function are, more or less, equivalent for the two waveforms1. However, the autocorre-

lation function of µL(t) has considerably lower side-lobes centered around the main-

lobe2. Moreover, generating w(t) requires many hours. Generating µL(t) requires

1The appendix describes how to also reduce the PRMS of the Lorenz-based waveform to a level
significantly less than the PRMS of w(t).

2The appendix illustrates that these low side-lobes can be realized in practice.
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only a few seconds, and unlike w(t), each Lorenz-based waveform can be represented

with only 6 finite-precision parameters.

By combining the highlights from each chapter, a concise summary of the entire

thesis can be expressed in just two figures. The first, Fig. 4-13, describes how to

optimally choose the Lorenz parameters to trade-off side-lobe level of the autocor-

relation function with the peak-to-RMS ratio of the Lorenz waveform. The second,

Figure 5-15, describes the operations that are performed on the Lorenz waveform to

arrive at a Lorenz-based waveform, which outperforms sample waveforms employed

in current radar applications.

6.2 Future Research Directions

Two significant directions are explored within this thesis. One direction is a study of

the parameter space of the Lorenz system as described by Chapter 4. Another direc-

tion addresses various practical radar design issues when generating radar waveforms

via the Lorenz system. These directions can be used to illustrate the clearest avenues

for future research.

From the discussion of scaling the Lorenz parameters to approximately time and

amplitude scale the Lorenz system, two major extensions are suggested. The first

extension involves the reduction of the three-dimensional parameter space to two

dimensions by decoupling σ and r from b. This new two-dimensional parameter space

has only been explored in the context of radar waveforms. However, exploration

of arbitrary properties and dynamics in this parameter space has been neglected.

For example, the changes in the attractor shape appear easier to visualize when two

parameters are varied, as opposed to three parameters. Moreover, when r is fixed, the

transition rate of the Lorenz system behaves somewhat symmetrically for increasing

values of σ, i.e. the transition rate first decreases, and then begins increasing until

the system is no longer exhibits chaotic dynamics. Thus, perhaps this symmetrical

behavior can be quantified and understood.

The second extension of the parameter space involves the exploration of chaotic
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systems introduced in Chapter 4. Scaling the parameters of these systems results in an

exact time and amplitude scaling of the corresponding state variables. Specifically,

the Lorenz system for large parameter values appears to exhibit similar dynamics

as one of the systems introduced in Section 4.3.3. Consequently comparing the two

systems might provide insight into the dynamics of the Lorenz system at all parameter

values.

There are numerous directions of research in utilizing chaos theory to generate

practical radar waveforms. The systematic procedure used to generate radar wave-

forms could be improved. Also, the synchronization property of Lorenz system has

not been exploited in either the waveform design procedure or when processing the

radar waveform after reception.

Also, as mentioned in Section 5.2.2, it is not clear how much spectral shaping (by

application of hmin(t)) should take place before transmit versus after receive. For

example, if frequency shaping is not applied until after receiving the radar waveform,

this new waveform, which we will call µ̂L(t), will have a lower peak-to-RMS ratio

but higher side-lobes in the autocorrelation function3. Using µ̂L(t) for transmission

and applying the shaping filter on receive (which trades off side-lobes with the signal-

to-noise ratio) might be more advantageous in certain applications than using µL(t)

for transmission. Thus a study contrasting the practical trade-offs between µ̂L(t) or

µL(t) would be very useful.

3When compared with w(t), the new transmitted waveform will have a lower peak-to-RMS ratio
and comparable side-lobes. Since the peak-to-RMS of µ̂L(t) is lower than the peak-to-RMS of w(t),
the degradation of the signal-to-nose ratio might be less when using µ̂L(t) as opposed to w(t) when
both waveforms are spectrally shaped on receive to lower the autocorrelation function side-lobes.

122



Appendix A

Chaos-Based Waveforms in

Practice

The preceding chapters describe the utilization of chaotic systems to generate sets of

quasi-orthogonal radar waveforms. This appendix evaluates the performance of the

designed waveforms in an operational radar system. Before evaluating the waveforms

in practice, the complex base-band waveforms in Chapter 5 need to be converted into

real signals capable of being transmitted, which is explained next.

A.1 Synthesizing a Transmit Radar Waveform

Transmitting a radar waveform requires the conversion of a base-band waveform to

a real signal via Eq. 3.7. Consequently, the procedure for generating Lorenz-based

waveforms (as given in Fig. 5-15) is modified to account for the construction of this

real radar signal. The new generating procedure for the synthesized radar signal is

given in Fig. A-2. As can be seen from the figure, the amplitude clipping function in

Eq. 5.27 has been placed after the construction of the real signal, since this location

more effectively reduces the peak-to-RMS ratio. A summary of the changes made to

the original procedure can be found in Fig. A-1 where ωc = 2π800 rad/s and x6(t) is

as defined in Section 5.2. The synthesized radar waveforms will still be referred to as

Lorenz-based waveforms.
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Figure A-1: Summary of Changes made to Waveform Generation Procedure.

To generate one particular Lorenz-based waveform, a Lorenz waveform, xL(t), is

generated as described in Section 5.1 with one exception. The bandwidth for the

waveforms generated in this appendix is specified to be 440 MHz (as opposed to

500 MHz) in order to minimize the effect of the hardware filters on the transmitted

waveform1. This Lorenz waveform is then passed through the improvement proce-

dure given in Fig. A-2, which results in the generation of a Lorenz-based waveform.

Although practically infinite numbers of these waveforms are realizable, the results

of just one waveform are shown to illustrate the typical results. This waveform will

be referred to as sL(t). Since the systematic generating procedure has been modified

and for reference, sL(t) is compared with µL(t) and w(t), which were introduced and

evaluated in Chapter 5.

When comparing the PRMS, it is important to clarify that the PRMS of a trans-

mitted waveform is different from the PRMS of a base-band waveform. The PRMS

of a transmit signal should be close to 1.414; whereas, the PRMS of a base-band

signal should be close to unity as explained in Section 3.1. To compare the PRMS of

sL(t) and w(t), the transmit signal, sw(t), corresponding to w(t) is calculated from

Eq. 3.7. The PRMS of sL(t) and sw(t) is 1.51 and 1.72, respectively. A value of 1.51

for sL(t) is significantly less than the value 1.72 for sw(t). Moreover, 1.51 is close the

the desired value of 1.414. A 2 µs time segment of sL(t) is included in Fig. A-3 to

illustrate this low PRMS.

The PRMS of sL(t) compares more favorably against the PRMS of sw(t) than

did the PRMS of µL(t). Specifically, if the transmit signal corresponding to µL(t) is

calculated from Eq. 3.7, the PRMS is 1.73, which is about the same as the PRMS of

1Consequently, the main-lobe increased by a factor of 1.15.
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Figure A-2: Systematic Procedure for Generating Lorenz-Based Waveforms.
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Figure A-3: A 2 µs Time Segment of sL(t).

w(t). As claimed earlier, the amplitude clipping function (which lowers the PRMS)

described in Eq. 5.27 is justified in being implemented on the real signal as opposed

to the base-band signal, and the low PRMS is now another advantage of the Lorenz-

based waveform over w(t).

The base-band signal, µ̃L(t) (not to be confused with µL(t) as defined in Chapter

5), corresponding to sL(t) can be recovered with Eqs. 3.3 and 3.6. The autocor-

relation of µ̃L(t) is given Fig. A-4 and demonstrates a narrow main-lobe and low

side-lobes. Specifically, the side-lobes centered around the main-lobe are especially

low as a result of the application of the filter described in Eq. 5.26. The side-lobes

far away from the main-lobe are at the same level as w(t), as discussed in Section

5.3.1. The autocorrelation function for µ̃L(t) is qualitatively equivalent to the au-

tocorrelation function of µL(t) (given in Fig. 5-16), and both functions outperform

the autocorrelation function of w(t) (given in Fig. 5-2). Also for completeness, the

ambiguity function of sL(t) is included. Details on the ambiguity function are given

in [14] and not explained herein.

The energy spectrum for sL(t) is given in Fig. A-6, which was computed via Eq.

3.22. As explained in Chapter 3, the energy of the transmit signal is concentrated
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around the carrier frequency of 800 MHz. Only the positive frequencies are given

in this figure; however, the energy spectrum is symmetric, since sL(t) is real. The

spectrum of sL(t) is appropriately compact when compared energy spectra of both

w(t) and µ(t), which are given in Section 5.3.3. Although the spectra in Section 5.3.3

are centered around base-band, computing the real signals of these two base-band

functions via Eq. 3.7 would center the spectra around 800 MHz, and all these real

signals would be qualitatively equivalent.

As discussed in Section 5.3.4, the cross-correlation level of µL(t) is unaffected by

the operations that modify xL(t). The same results hold true in this section although

the plots and discussion are omitted to avoid repetitiveness
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Figure A-4: The Autocorrelation Function of the Lorenz-
based Waveform. The second plot is an enlarged view of
the first plot.
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A.2 Experimental Setup and Results

The synthesized radar waveform sL(t) was placed in an operational radar at M.I.T.

Lincoln Laboratory. Figure A-7 shows this radar operating with a Lorenz-based

waveform. The antennas transmitting the waveforms are seen in the background of the

picture, and three instruments taking measurements of the Lorenz-based waveform

can be seen in the foreground. The radar waveform sL(t) was radiated from the

antennas at a moving target simulator (not seen in the photo) about ten feet from

the antennas. The scattering response from the target simulator was then received by

the same antennas from which the waveform was transmitted. The received waveform

will be referred to as sr(t). Via Eqs. 3.3 and 3.6, the base-band signal, µr(t), can be

recovered from sr(t).

As the case in many radar systems, the target response is determined by convert-

ing the returned signal to a base-band signal and cross-correlating it with a time-

reversed, base-band replica of the transmitted waveform2, µ̃L(t). This operation can

be expressed as shown in Eq. A.1.

rµrµ̃L
(t) =

∫ ∞

−∞
µr(τ)µ̃∗L(τ − t)dτ (A.1)

If a target is approximated by a group of point scatterers in a zero-noise environment,

rµrµ̃L
(t) would be a linear superposition of the function rµ̃Lµ̃L

(t) as long as sL(t) is

not significantly distorted by the transmit or receive process. The time, t, of rµrµ̃L
(t)

is proportional to the distance, in range, between the target and the radar. The

amplitude of rµrµ̃L
(t) is related to the size of the target (among other factors)3. Thus,

for illustration purposes, the signal-to-noise ratio for this experiment was set to be

sufficiently high to test if sL(t) is significantly distorted.

After receiving sr(t), rµrµ̃L
(t) is calculated and plotted in Fig. A-8. In the figure,

the function has been normalized, and the time axis has been shifted so that the

2More information on radar processing and radar systems can be found in [14] and [17].
3In general, the doppler effect on the waveform due to the motion of the target must be properly

removed. For simplicity, the doppler effect is made negligible in this experiment, although in practice,
compensation for doppler needs included in target detection.
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Figure A-7: Operational Radar Utilizing Lorenz-based Waveforms. The first instru-
ment on the left is an oscilloscope, which measures the amplitude of the transmitted
waveform in time. Moving to the right, the next instrument is spectrum analyzer,
which displays the frequency content of the transmitted waveform. Finally to the right
of the spectrum analyzer is a computer monitor, which displays the cross-correlation
function (compressed pulse) of the received waveform with the time-reversed replica
of the transmitted waveform.
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peak value of 0 dB occurs at t = 0. The function rµrµ̃L
(t) is then compared with

the function rµ̃Lµ̃L
(t) by plotting rµ̃Lµ̃L

(t) behind the plot of rµrµ̃L
(t). Figure A-

8 demonstrates that the target response is more complicated than the response of a

single point scatterer4. However, since the magnitude of the leading scatterer at t = 0

is significantly greater than the magnitude of the other scatterers, the leading scatterer

dominates rµrµ̃L
(t) outside the range of times corresponding to the response of the

target, i.e. outside t ∈ [0, 200]. Outside this region, rµrµ̃L
(t) closely approximates

rµ̃Lµ̃L
(t) as can be verified by the figure. Specifically, the low side-lobe basin centered

about the main-lobe is not degraded by the transmit or receive process. In fact,

the visibility of the target response is the result of especially low side-lobes centered

about the main-lobe. Additionally, the main-lobe of the autocorrelation function is

not significantly widened. Consequently, comparing rµrµ̃L
(t) and rµ̃Lµ̃L

(t) verifies that

sL(t) is not significantly distorted by the transmit and receive process.

4This target response is also verfied using other waveforms independent of chaotic systems.
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Figure A-8: The Function rµrµ̃L
(t). This figure demon-

strates that several properties of the waveforms designed
in Chapter 5 are realizable in practice by comparing the
expected results with the realized results. The second
plot is an enlarged view of the first plot and illustrates
the detailed response of the target.
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A.3 Chaotic Synchronization through Free Space

Transmission

Chapter 6 suggests studying the exploitation of chaotic synchronization. The pur-

pose of this section is to demonstrate preliminary results of what appears to be the

approximate self-synchronization of a received radar waveform through free-space

transmission. As explained in [4], the Lorenz system is a self-synchronizing chaotic

system that satisfies Eqs. A.2 - A.5.




ẋd

ẏd

żd




=




σ(yd − xd)

rxd − σyd − xdzd

xdyd − bzd




(A.2)




ẏr

żr


 =




rxd − yr − xdzr

xdyr − bzr


 (A.3)

ẋr = σ(yr − xr) (A.4)




xd(t)− xr(t)

yd(t)− yr(t)

zd(t)− zr(t)




≈




0

0

0




(A.5)

The system given in Eq. A.2 is considered the drive system that outputs a drive

waveform, xd(t). The system in Eqs. A.3 and A.4 is considered the receiver, which

receives xd(t) and generates three receive state variables: xr(t), yr(t), and zr(t). In a

zero-noise environment, the state variables of the receiver equations will exponentially

approach the state variables of the drive system. Thus, assuming a sufficient amount

of time has passed, the receive state variables approximately equal the drive state

variables as expressed in Eq. A.5.

To demonstrate approximate self-synchronization, a radar waveform is generated
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as shown Fig. 5-15. However, instead of using µL(t) as the base-band radar waveform,

x4(t) is used as the radar waveform to avoid too severely modifying the original

Lorenz waveform5. The real component of x4(t) approximates a time segment of

the x state variable of the Lorenz system as illustrated in Fig. A-9. The waveform

x4(t) is then related to a transmit signal, transmitted through free-space, received,

and converted again to a base-band waveform, x̂4(t). A plot of the matched filter

response of x̂4(t) is provided in Fig. A-10 for reference. Using the real component of

x̂4(t) as the drive waveform xd(t), xr(t) is computed from Eqs. A.3 and A.4. The close

correspondence between x̂4(t) and xr(t), in Fig. A-11, demonstrates the preliminary

results of what appears to be approximate self-synchronization of chaotic systems via

free-space transmission.
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Figure A-9: Comparison of the Real Component of x4(t)
with the x State Variable.

5Although an evaluation on the design considerations of Chapter 3 is not shown, x4(t) is compa-
rable to the practical waveform w(t) introduced in Chapter 5.
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Figure A-10: Matched-Filtered Response for x̂4(t). The
function r(t) denotes this response.
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ered the received waveform, and xr(t) is considered the
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