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Abstract

In this thesis, a framework for designing fixed-point and optimization algorithms realized
as asynchronous, distributed signal processing systems is developed with an emphasis on
the system’s stability, robustness, and variational properties. These systems are formed by
connecting basic modules together via interconnecting networks. Several classes of systems
are constructed using interconnecting networks that obey certain conservation principles
where these principles specifically allow steady-state system variables to be interpreted as
solutions to optimization problems in a generally non-convex class and provide local condi-
tions on the individual modules to ensure that the variables tend to such solutions, including
when the communication between modules is asynchronous and uncoordinated. A particu-
lar class of signal processing systems, referred to as scattering systems, is designed that can
solve convex and non-convex optimization problems, and where convex problems do not re-
quire problem-specific tuning parameters. Connections between scattering systems and their
gradient-based and proximal counterparts are also established. The primary contributions
of this thesis broadly serve to assist with designing and implementing scattering systems,
both by leveraging existing signal processing paradigms and by developing new results in
signal processing theory. To demonstrate the utility of the framework, scattering algorithms
implemented as web-services and decentralized processor networks are presented and used to
solve problems related to optimum filter design, sparse signal recovery, supervised learning,
and non-convex regression.
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Chapter 1

Introduction

Natural phenomena closely resemble many problems appearing in signal processing and

elsewhere, and in this sense, these problems have been solved already by the laws of physics,

biology, etc. From the systems theory perspective, the physical laws governing natural

systems often allow for decentralized and seemingly uncoordinated dynamics as the systems

transition into equilibrium states satisfying extremal or variational principles. An important

distinction between signal processing and natural systems lies in the ability of the former to

modify or dismiss certain constraints when modeling the physical principles controlling the

latter. This observation has motivated numerous philosophical viewpoints and mathematical

frameworks, often leading to applications far removed from their nature-inspired origins.

Examples of this are abundant: the role of biomimicry in pattern recognition and machine

learning, the design of algorithms based upon sensory models of human perception, and the

use of conservation principles in numerically solving differential and integral equations.

Analogies to the physical sciences, and to conservation laws in particular, have enabled

researchers to determine the minimal set of features required by a class of systems so that a

number of useful theorems then apply. For example, Tellegen’s theorem allows for extremal

properties to be easily identified in systems involving electrical, biological, chemical, and

transport networks by first identifying the conserved quantities in each [4]. More broadly,

physical reference systems have been used to make important connections between problems

sharing fundamental structure across different fields and distinct application areas. In con-

trol theory, for example, open-loop conditions for closed-loop stability of certain feedback
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structures were developed by Zames in [1,5] by referencing equivalent representations of the

feedback structure as an electrical network and by extending the physical notions of passiv-

ity and dissipativity to that setting. In economics, particular solutions to the Black-Scholes

equation for valuating options in volatile financial markets were obtained by Edelstein and

Govinder in [6] by making comparisons with common diffusion equations in materials science

and by recognizing structural similarities in their conserved quantities. Despite a lack of

economic or financial interpretation for these quantities, their utility in solving initial value

problems remains. In the field of optimization theory, similarities between current-voltage

pairs in ideal diode models and primal-dual complementarity conditions derived using La-

grangian duality principles were recognized by Dennis in [7, 8] and then used to connect

steady-state current and voltage distributions in a class of electrical networks with solutions

to network programming problems. This approach was later extended by Chua in [9,10] to

incorporate active circuit elements like operational amplifiers to address certain nonlinear

optimization problems. In signal processing, conservation principles in physical and non-

physical systems alike were unified within a cohesive framework developed by Baran in [11]

where the basic idea is to properly organize a system’s variables into a lossless connection of

subsystems so that conserved quantities and their associated properties naturally emerge.

This framework provides a common language where connections between classes of systems

exhibiting conservation principles, including the example systems above, can be discussed.

A variety of large-scale signal processing problems can be formulated as nonlinear systems

of equations and then solved using iterative techniques where any solution is considered as

good as any other [12–14]. From the behavioral perspective of Willems [15,16], solutions to

these problems correspond to the configurations of variables allowed by a system formed as

a lossless interconnection of subsystem modules and, therefore, does not require the system

variables to be explicitly labeled as inputs or outputs of the individual modules. When the

behavioral model of a system is known to satisfy a variational principle, thereby providing

the system variables and problem solutions interpretation as decision variables and extremal

points of an associated optimization problem, the behavioral formulation provides a natural

way to handle the mixture of input-output and constraint-based relationships that often

form the optimality conditions. As such, the process of producing discrete-time algorithms
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Figure 1-1: Examples of two types of distributed signal processing systems. (a) An example of a
centralized architecture. (b) An example of a decentralized architecture.

from behavioral models often involves discretizing differential or integral relationships and

breaking implicit global constraints such as delay-free cycles or loops. Although the basic

idea is straightforward, the behavioral viewpoint has been applied in signal processing con-

texts for the automated reduction of delay-free loops within linear signal-flow graphs [17]

and the inversion of certain nonlinear and time-varying signal processing systems [18].

Procedures for arranging signal processing algorithms onto distributed processor net-

works have a rich history of blending tools from graph theory and linear algebra, including

for the purpose of determining schedules and precedence relations as well as performing real-

time adaptations [19–21]. A common strategy is to start with a non-distributed iteration

and rearrange the computation so that it separates into concurrent subroutines that can run

on independent processors that transfer data through communication or interconnecting net-

works [22,23]. This strategy is limited by its ad hoc nature and requirement of a separable

initial iteration. Figure 1-1 illustrates the difference between two types of distributed signal

processing systems where the depicted interconnecting networks coordinate data exchanges

between their adjacent subsystem modules. The centralized system in Figure 1-1(a) has

a single interconnecting network that is connected to all subsystem modules while the de-

centralized system in Figure 1-1(b) has many interconnecting networks that independently

coordinate communication between their connected subsystems.

In making efficient use of large-scale distributed signal processing systems to solve op-

timization and fixed-point problems, identifying conditions on the individual subsystem
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modules so that synchronous and asynchronous communication between the subsystems

produces correct solutions becomes especially important as the storage, retrieval, and move-

ment of data gets increasingly spread across networks prone to time-varying disruptions,

congestion, and outages [24]. For example, the optimization algorithms designed by Dennis

were obtained by discretizing models of electrical networks onto groups of processors where

the interprocessor communication links mimicked the topology of the electrical network.

The discretization of energy storage elements naturally brings forward questions of stability

and robustness, and convergence arguments for Dennis’ algorithms used their close rela-

tionship to the minimum heat principle and the associated conservation law, namely that

the discretized current and voltage variables on each processor monotonically approach a

limit point as a consequence of the sum of their products tending to zero. In numerically

solving more general partial differential and integral equations, conservation principles have

been used to stabilize a variety of successive approximation algorithms by perturbing the

numerical solution on each iteration to conserve multiple quantities [25].

Identifying conserved quantities in physical and non-physical systems has provided a

variety of insights into the dynamics and emergent properties of many algorithms spanning

a broad range of applications. The examples discussed above suggest further opportunity in

developing a framework in which to design algorithms realized as signal processing systems

where the system’s variables satisfy conservation principles and, therefore, enable the sys-

tem to tackle complex problems in computing environments where the associated emergent

properties have merit. The primary contributions of this thesis broadly serve to assist with

developing such a framework in the context of solving fixed-point and optimization prob-

lems. To elaborate, this thesis proposes a modular strategy in which large-scale, distributed

signal processing systems are formed by connecting basic modules together so that the sys-

tem variables obey certain conservation principles. The conservation principles allow for

interpretation of the system’s steady-state variables as solutions to a broad class of convex

and non-convex optimization problems and ensures the variables converge to such solutions

when the modules communicate using uncoordinated and asynchronous protocols.

Toward this goal, the thesis is organized as follows: in Chapter 2, we review some back-

ground material on conservation principles and optimization theory that will be helpful in
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investigating properties of various organizations of a signal processing system. In Chapter 3,

we develop an interconnective framework to handle large-scale systems with a focus on the

separability and connectivity of a system’s behavior, and we present a theorem to assist

with recognizing correspondences between systems that are closely related to one another.

Straightforward procedures for generating algorithms from behavioral models are developed

by changing the coordinate system used to describe the model. Using the language de-

veloped in [11], two classes of signal processing systems are defined whose interconnecting

networks satisfy certain conservation principles. These classes set the stage for Chapters 4

and 5 where the focus is on the stability and robustness of algorithms realized as signal

processing systems in the first class and variational properties of systems in the other. In

particular, systems belonging to the first class are shown in Chapter 4 to be robust to asyn-

chronous communication protocols and can be used to solve a wide variety of fixed-point

and constraint satisfaction problems. Connections between the second class of systems and

optimality conditions for a broad class of convex and non-convex optimization problems

are established in Chapter 5. Drawing upon the correspondences established in Chapter 3,

stability properties belonging to the first class can take advantage of variational properties

belonging to the second and vice versa, thereby providing direction in designing distributed

and asynchronous optimization algorithms realized as signal processing systems where con-

vergence for convex problems occurs without the use of problem-specific tuning parameters.

Although the primary focus of this thesis is the theoretical development of the contri-

butions outlined above, the interconnective framework describes signal processing systems

at an intermediary level of abstraction that can also be used to implement optimization

algorithms leveraging a wide variety of computing resources. To demonstrate this, example

algorithms for solving convex and non-convex optimization problems commonly appearing

in signal processing applications are presented in Chapter 6 using centralized and decentral-

ized structures. The results of several numerical experiments demonstrating the convergence

of these algorithms implemented as web services and decentralized processor networks are

also included.
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Chapter 2

Background and conventions

The primary purpose of this chapter is to present background material on conservation

principles and optimization theory using well-established concepts in the signal processing

community and elsewhere. In particular, methods for handling implicit functions and re-

lations are reviewed and then used to summarize existing behavioral and interconnective

system models. With these tools in place, a framework is discussed wherein conservation

principles can be identified and manipulated within signal processing systems. The chapter

concludes with a brief overview of some key concepts in optimization theory, focusing specif-

ically on aspects pertinent to signal processing applications. The intent of the presentation

on optimization is not to provide a comprehensive literature review or list of references,

but instead to indicate several interpretations of independent interest while establishing

conventions and preliminaries to build upon in the subsequent chapters.

2.1 | Conventions

The non-negative and positive integers are respectively denoted by N0 = {0, 1, . . . } and

N = {1, 2, . . . }. Vectors are written in boldface with individual entries denoted by subscripts,

e.g. vk is the k-th entry of v. For vectors with parenthetical superscripts, subscripts refer to

subvectors according to the partitioning scheme indicated by the superscript. Sequences of

vectors are indicated using superscripts sans parenthesis, e.g. {vn : n ∈ N0} = {v0,v1, . . . }.

The expectation and probability operators are respectively denoted by E and P.
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2.2. Behaviors, relations, and graphs

2.2 | Behaviors, relations, and graphs

Conventional methods of designing signal processing systems involve connecting basic mod-

ules together to form directed graphs, thereby establishing an overall system. For systems

represented in this way, a separate and important issue pertains to whether computable

algorithms exist that are consistent with the collective constraints imposed by the individ-

ual modules and the dependencies implied by the graph topology. As has been discussed

in [26–28], functional relationships mapping overall system inputs to outputs are not gener-

ally guaranteed to exist, even if each module in the graph has a well-defined input-output

form. Furthermore, when an overall mapping does exist, the form of the algorithm may

not be directly evident from the assembled graph due to implicit global constraints such as

delay-free cycles or loops [21]. These issues often require special consideration in determining

the precedence relations used to schedule an execution order of the modules, and common

remedies for some special cases, including iterative constraint satisfaction procedures [29,30]

and nonlinear module transforms [31], attempt to break certain delay-free loops by invoking

implicit mapping principles to produce valid input-output pairs.

In the context of solving a variety of large-scale signal processing problems, a funda-

mental challenge involves designing distributed algorithms where the processing instructions

can be separated into concurrent subroutines and run on independent processors that com-

municate with only a small number of other processors. The design of these algorithms

is often informed by the interplay between properties of the available computing resources

and structure belonging to the problem itself [24]. For example, the kinds of communication

protocols supported by the computing resources and the achievable time synchronization be-

tween connected processors often dictates the choice between synchronous and asynchronous

protocols. Synchronous algorithms require the computing resources to progress as a group,

and this level of coordination can hinder efficiency as the number of available processors

becomes large [32]. Asynchronous algorithms, on the other hand, allow each processor to

progress independently, thereby overcoming some of the drawbacks faced by synchronous

algorithms in the presence of processor heterogeneity and interprocessor communication fail-

ure. Key research questions for enabling the widespread use of asynchronous, distributed
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algorithms for a class of problems include understanding and identifying sufficient condi-

tions under which the results produced by asynchronous algorithms are correct. Important

concerns also include the robustness and resilience of the asynchronous algorithms to faulty

computing resources and various communication disturbances.

Motivated in part by the potential benefits afforded by the design of asynchronous, dis-

tributed algorithms realized as signal processing systems for certain problem classes and by

the issues surrounding computability and precedence in cyclic graphs of computable mod-

ules, we proceed in this section to review several tools for capturing the action of a system

or subsystem without solely relying on functional techniques. More broadly, the viewpoint

in this thesis is that functions, which are the well-behaved subset of more general relations

as can be identified using the so-called vertical line test, are not the critical issue in the

design, analysis, and implementation of signal processing systems for a broad and impor-

tant number of contexts and applications. The language we adopt to discuss these tools

blends together terms developed by Willems in [15] and Polderman and Willems in [16],

wherein their approach was to view equations as exclusion principles permitting only ad-

missible configurations of the associated variables, and Zames in [1,5], wherein his approach

was to focus on correspondences between constraints. These approaches have a long and

rich history within the dynamical systems and control community, specifically in establish-

ing fundamental results such as the small gain theorem for feedback control systems and

without explicitly relying on Lyapunov or storage functions. These viewpoints guide the

presentation style and interpretations used to develop stability conditions for distributed

signal processing systems using uncoordinated and asynchronous communication protocols

in Chapter 4.

Within a mathematical framework, if T : U → V denotes a function whose domain U

and codomain V are vector spaces then the graph of T refers to the set of all ordered pairs

(u, T (u))1 consistent with T . In the field of signal processing, the term “graph” refers to

different mathematical objects depending on context. To disambiguate, we henceforth use

the term behavior, originally coined by Willems [15], in reference to functions and reserve

1In this thesis, the notation (u,v) is used as an in-line shorthand for the standard vector notation
[

u

v

]
.
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the term graph to mean a collection of nodes and edges. Proceeding with this nomenclature,

when T is bijective the behavior of the inverse function T−1 : V → U is related to the

behavior of T in a straightforward way, i.e. the behavior of T−1 is the set of all ordered pairs

(T−1(v),v) consistent with T−1. More formally, the behavior BT of an invertible function

T and the behavior BT−1 of the inverse function T−1 are related according to

BT = {(u,v) ∈ U × V : v = T (u), u ∈ domT} (2.1)

= {(u,v) ∈ U × V : u = T−1(v), v ∈ domT−1} (2.2)

= BT−1 (2.3)

where domT denotes the domain of T . Our primary use of behaviors moving forward is to

model constraints, and to do so without distinguishing between input and output variables.

For prespecified behaviors B, a functional realization, or realization for short, refers

to any function T satisfying BT = B. Functional realizations are generally not unique, and

therefore do not uniquely determine how a particular input u generates T (u), i.e. exhaustive

input-output knowledge does not uniquely specify internal dynamics or relationships for

many signal processing systems represented via operators. This point suggests evaluating

notions of internal and external stability, complexity, and computability when selecting

among candidate realizations, and is discussed further in Chapter 3. In this thesis, when

the realization of a behavior exists for a specified configuration of the variables u and v

as inputs and outputs, it is assumed to be computable, e.g. analytically, algorithmically, or

through table lookup.

An important class of behaviors includes those generated by linear operators. With

A : U → V denoting a linear map, the behavior BA in (2.1) reduces to

BA = {(u,v) ∈ U × V : Au = v, u ∈ domA} (2.4)

= range


 I

A


 (2.5)

where (2.5) holds if domA = U . The behavior BA is itself a vector subspace of the parent
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Figure 2-1: Four relations whose behaviors are related through invertible linear transformations.
The first column corresponds to the original relation in (2.7) and the following three columns depict
the functions whose behaviors are related to the first through the linear transformations listed.

space U × V with dimensionality equal to the dimension of U . Consequently, behaviors of

linear transformations can be completely characterized using standard vector space descrip-

tions, e.g. as the null space or range space of an appropriately defined linear map.

A relation generalizes the notion of a function to allow for mapping objects T where the

outcome T (u) is multi-valued for at least one u. Notationally, relations are described using

the same behavioral definition as functions with the caveat that v = T (u) in (2.1) is inter-

preted to mean {v : v = T (u)}. Procedurally, for functions and relations, behaviors can be

generated by collecting together the set of all input-output pairs that result from applying

the mapping object to all elements in its domain and concatenating these pairs into vectors.

The usual operations on functions extend to relations in a straightforward way, e.g. addition,

scalar multiplication, composition, etc. In the coming chapters, we are interested in produc-

ing functional realizations of relations. The implicit function theorem is a standard tool in

functional analysis that generates local (over open disks) realizations of a relation, provided

the relation is appropriately differentiable over the local regions [33, Theorem 9.17]. In this

thesis, however, the processing goal often involves solving fixed-point problems where the

relations of interest are not differentiable at their fixed points. To circumvent this potential

difficulty, we will instead focus on realizing the behavior of a relation after first transforming

it by an invertible linear map. We motivate this approach with an example next.

An important principle that emerges as a consequence of the behavioral viewpoint taken

in this thesis is that the relationship between two functions whose behaviors are related
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through an invertible linear transformation is often nonlinear from the perspective of the

functions. Generalizing to include relations, let M and T respectively denote an invertible

linear map and a generic relation. The transformation of BT by M is then given by

MBT = {Mv : v ∈ BT } (2.6)

where the dimensions of M and T are such that (2.6) is well-defined. If T = A is a linear

map then any realization of MBA, if one exists, is also a linear map due to the closure

of linear transformations under composition [34]. Our reasons for restricting attention to

invertible transforms are many and will become clear in the context of system representation

in Chapter 3 and asynchronous algorithms in Chapter 4. Another reason, illustrated next

using a simple example, involves solving for a fixed-point of a relation using a realization of

its transformed behavior. With f : R → R denoting the relation or multi-valued function

corresponding to the subderivative of the absolute value function described by

{f(x)} =

 sgn(x), x 6= 0

[−1, 1], x = 0
, (2.7)

the behavior Bf is a proper subset of R2 with fixed-points (0, 0), (1, 1), and (−1,−1). Note

that the implicit mapping theorem cannot be used to realize Bf over a region including all

three fixed-points using either x or f(x) as the independent variable. Figure 2-1 depicts

the behaviors Bh = MBf for four invertible matrices M . Referring to the figure, the first

column depicts the original relation (2.7) and the following three columns of the figure

depict functional realizations of Bh associated with the matrices listed. Let y? denote a

fixed-point of h, i.e. h(y?) = y?. A strategy for identifying fixed-points of f is to first solve

for y? using functional techniques and then perform the transformationM−1(y?,y?). As we

alluded to earlier, when this approach works it relies critically onM being invertible. For this

particular example, fixed-points of f are not guaranteed to map to fixed-points of h and vice

versa, so identifying a fixed-point of f by transforming points in the graph of h may require

additional structure on M . This structure is developed for solving optimality conditions

describing solutions to convex and non-convex optimization problems in Chapter 5.
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2.3 | Interconnective and signal-flow representations

The representation of an overall system using directed graphs to couple together subsystem

modules has a long history throughout branches of engineering. Within the signal processing

community, many classical tools for synthesizing systems and analyzing their global proper-

ties are consistent with this approach. In this section, we contrast the widely-used signal-flow

graph representation with the interconnective descriptions appearing, e.g., in [11,15,17]. For

a complete introduction of signal-flow graphs, we refer readers to [35].

An important distinction emphasized in this thesis between signal-flow and interconnec-

tive graphs is the interchanged roles played by the graph’s edges and nodes with respect

to the signal and processing objects themselves. More specifically, for linear and nonlinear

signal-flow graphs, the signal variables are defined as nodes and the processing instructions

are assigned to edges as branch functions, whereas for interconnective graphs, the signal

variables are defined as edges and the processing instructions are assigned to nodes. The

duality between these representations, and importantly the perspective of the latter, forms

the basis for what we refer to in the remainder of this thesis as the interconnective view-

point ; a generalization of which is the subject of Chapter 3. Although the basic distinction

is straightforward, we will find the interconnective viewpoint beneficial in several contexts.

This basic distinction between signal-flow and interconnective representations is illustrated

next with the aid of an example, and is discussed in greater detail in Section 3.3.

As an example, the direct-form representation of a biquadratic filter or second-order

section using signal-flow and interconnective graphical structures is depicted in Figure 2-

2 for comparison. Referring to the signal-flow graph in Figure 2-2(a), the node variables

correspond to the labeled signals wi[n], for i = 1, . . . , 9, and the branches or directed edges

indicate both pairwise dependencies between nodes as well as the their explicit functional

relationships. The instantaneous value of a node variable, i.e. for a particular value of n,

is computed by summing the values generated by applying the branch functions to the

nodes incident neighbors, and nodes with no incident neighbors such as w1[n] are designed

overall system inputs. Procedurally, signal-flow graphs can be constructed from systems

of equations by starting with a fully connected graph with each variable assigned a node,
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writing all pairwise branch functions, and then removing all branches corresponding to

everywhere-zero branch functions.

In contrast to signal-flow graphs, interconnective graphical structures distinguish be-

tween two types of nodes. The first type of node is referred to as an interconnecting node

and corresponds to a system’s memoryless and linear relationships, and the second type is

referred to as a constitutive subsystem or module and corresponds to generally nonlinear

constraints that may contain memory and overall system inputs and outputs. Referring to

the interconnective graph in Figure 2-2(b), the edges correspond to the labeled signals vi[n],

for i = 1, . . . , 6, and the nodes indicate the computation which defines the signal values and

are depicted using boxes. Observe that the interconnecting node is internally specified using

a memoryless signal-flow representation and can be equivalently expressed as a matrix equa-

tion. More generally, the description of each processing node in an interconnective graph can

be arbitrary since the interconnective graph of the overall system does not explicitly focus

on the values of the variables internal to the nodes or the subcomputations performed within

them. As demonstrated by this example, interconnective structures in this thesis will always

be bipartite, meaning variable edges will only be defined only between processing nodes of

opposite type. To reiterate, the key point of using an interconnective representation is to

describe a behavioral model of a system as the coupling together of generally many modules

using a lossless interconnecting system where the constraints imposed by each module can

be described using either functions or relations.

For general interconnective descriptions of signal processing systems, we shall refer to

the scalar-valued variables available for interconnection between the interconnecting nodes

and constitutive modules as the terminal variables and collectively arrange them into a

terminal vector. The behavior of a signal processing system, defined via the interconnective

viewpoint, is then the set of all terminal vectors consistent with the constraints imposed

by the overall system. Written more formally, the behavior of a system s with N terminal

variables v = (v1, . . . , vN ) is the set Bs described colloquially by

Bs = {v : v complies with all constraints imposed by s} . (2.8)
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(a) Signal-flow graph (b) Interconnective graph

Figure 2-2: An illustration used to underscore the fundamental quantities of interest in signal-flow
and interconnective representations. In particular, a direct form biquadratic filter is portrayed using
(a) a signal-flow graph and (b) an interconnective graph.

The interconnection of two systems is straightforward to characterize from the behavioral

viewpoint. In particular, as the interconnection of two systems refers to a direct coupling of

the terminal variables shared between the systems, the behavior of the interconnected system

corresponds to the intersection of the behaviors of the individual systems over those variables

that are shared. As a straightforward example, let s1 and s2 denote two systems that when

interconnected share all of their terminal variables. The behavior of the interconnected

system si is then

Bsi = Bs1 ∩ Bs2 (2.9)

= {v : v ∈ Bs1 , v ∈ Bs2} . (2.10)

By induction, this definition extends to the interconnection of three or more systems in a

straightforward way.

When both of the signal processing systems s1 and s2 correspond to linear and memo-

ryless systems, respectively characterized by linear maps A1 and A2, then the behavior of

the interconnected system Bsi = BA1 ∩ BA2 is a linear subspace. This point follows from

the fact that the behavior of a linear map over a vector space is a vector space and that the

intersection of vector spaces results in a vector space.
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Utilizing the behavioral perspective of interconnective systems, many methods developed

in this thesis do not require the terminal variables to be explicitly labeled as either inputs

or outputs between the processing nodes. In this way, the interconnective viewpoint is a

natural choice for handling signal processing systems with implicit or set-valued constraints,

as may arise in signal-flow graphs with delay-free loops or implicitly defined modules.

2.4 | Conservation principles in signal processing systems

Conservation principles give rise to convenient properties in both physical and non-physical

systems and are often used to analyze or emulate the steady-state and transient dynamics

of a system. A characterization of conservation principles for signal processing systems was

developed within a cohesive framework in [11] where the basic idea is to organize a system’s

variables in certain ways so that desirable properties emerge as a consequence; in particular,

in response to the organization enforced by a system’s memoryless and linear relationships.

Using this framework, stability properties of a particular vehicle density control architecture

were established in [36] by identifying a conservation principle inherent to the architecture

itself. The class of results in [7, 11, 36] suggest further opportunity in utilizing this frame-

work to establish robustness, stability, and variational properties of large-scale, distributed

signal processing systems by appropriately designing their interconnecting networks. In this

section, we review the core elements of this framework as they pertain to the class of signal

processing systems considered in this thesis. In Chapter 3, we return to this framework to

make connections between behavioral and interconnective system models sharing intrinsic

similarities that may otherwise be difficult to connect together.

2.4.1 | Organized variable spaces

The main goal in this section is to establish the terminology necessary to describe conserva-

tion principles as quadratic forms q satisfying q(v) = 0 for all v in a so-called conservative

set, and to use this language to define a conservative signal processing system. In building

to the formal definition of conservation in signal processing systems, we first introduce the

concept of an organization for an even-dimensional, real inner product space (V, 〈·, ·, 〉V).
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The idea behind an organization is straightforward and involves decomposing V in two ways

so that the action of a quadratic form on V belonging to a particular class can be expressed

in agreement with both decompositions. To this end, let q : V → R denote a real quadratic

form written using the inner product on V as

q(v) = 〈Cv,v〉V , v ∈ V (2.11)

where C : V → V is a symmetric linear map referred to as a correspondence map and is

required to be invertible and possess a spectral decomposition2 with an equal number of

positive and negative eigenvalues. A correspondence map satisfying this spectral property is

referred to as being balanced. The quadratic form q, or equivalently the correspondence map

C, serves as the primary tool by which subsets of V may be identified as being conservative.

In the broader scope of linear algebra, a correspondence map paired with an inner product

space (V, 〈·, ·, 〉V) is referred to as an indefinite inner product space and is primarily asso-

ciated with the study of matrix polynomials, Ricatti equations, and symmetric differential

and difference equations [37].

The first decomposition used to define an organization of (V, 〈·, ·, 〉V) is called a partition

decomposition and consists of K even-dimensional, linear subspaces {Vk : Vk ⊆ V, 1 ≤ k ≤

K} that uniquely decompose V according to the direct sum

V = V1 ⊕ · · · ⊕ VK (2.12)

and linearly separate the quadratic form q into the sum of K terms as

q
(
v(1) + · · ·+ v(K)

)
=

K∑
k=1

〈
Ckv

(k),v(k)
〉
V
, v(k) ∈ Vk, k = 1, . . . ,K (2.13)

where each Ck : Vk → Vk is a correspondence map for Vk, i.e. is linear, invertible on Vk,

symmetric, and balanced. In Chapter 3, we generalize the definition of a partition decompo-

sition presented here for the purpose of system representation and do so without reference

2Since C is symmetric without loss of generality, the eigenvalue decomposition, singular value decompo-
sition, and Schur decomposition are equal to within sign changes of the associated decomposition vectors.
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to quadratic forms. The link between these settings and the role played by the quadratic

form in establishing this link is discussed in Section 3.4.

The second decomposition used to define an organization of (V, 〈·, ·, 〉V) is called a conju-

gate decomposition and consists of two linear subspaces VA and VB that uniquely decompose

V according to

V = VA ⊕ VB (2.14)

and further allow the quadratic form q to be expressed through an inner product on a

lower dimensional inner product space (U , 〈·, ·〉U ). Specifically, a conjugate decomposition

requires the existence of an inner product space (U , 〈·, ·〉U ) as well as two linear, invertible

maps MA : VA → U and MB : VB → U such that

q(v(A) + v(B)) =
〈
MAv

(A),MBv
(B)
〉
U , v(A) ∈ VA,v(B) ∈ VB. (2.15)

Note that the invertibility required ofMA andMB is between U and the conjugate subspaces

VA and VB, not between U and V directly. When these objects are well-defined, the inner

product space (U , 〈·, ·〉U ) is called a comparison space and the linear maps MA and MB are

called conjugate maps. The role played by the vectors MAv
(A) and MBv

(B) is reminiscent

of conjugate effort and flow variables that are associated with describing classical notions of

power conservation in physical systems.

With formal conditions for partition and conjugate decompositions in place, we are now

prepared to define an organization. Indeed, an organization O of the inner product space

(V, 〈·, ·, 〉V) is defined as a triple

O , (C, Dp, Dc) (2.16)

consisting of a correspondence map C, a partition decomposition Dp = {Vk, 1 ≤ k ≤ K},

and a conjugate decomposition Dc = {VA,VB} where the partition decomposition subspaces
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are uniquely decomposed by the conjugate decomposition subspaces according to

Vk = (Vk ∩ VA)⊕ (Vk ∩ VB) , k = 1, . . . ,K (2.17)

and the conjugate decomposition subspaces are uniquely decomposed by the partition de-

composition subspaces according to

VA =
K⊕
k=1

(Vk ∩ VA) (2.18)

VB =
K⊕
k=1

(Vk ∩ VB) . (2.19)

Putting this all together, the collection of (V, 〈·, ·, 〉V) and an organization O is referred to

as an organized variable space. For a particular organized variable space, we shall say that

a set S ⊆ V is conservative or satisfies conservation principle q provided that

q(v) = 0, v ∈ S. (2.20)

In the language of quadratic forms, a vector space S satisfying (2.20) is referred to as an

isotropic subspace. Similarly, in the language of indefinite inner product spaces, a set S

satisfying (2.20) is referred to as a neutral set. Concerning signal processing, the definition

of a conservation principle in this section is consistent with [11] in that it does not explicitly

pertain to a signal processing system, but rather to arbitrary collections of vectors allowing

application in more general settings.

The interconnective system representation introduced in Section 2.3 provides a reason-

able definition of a conservative system through (2.20) where the set S corresponds to the

system’s behavior, provided S is appropriately contained within an even-dimensional, real

vector space. For reasons of tractability, we proceed entirely focused on conservative sys-

tems where S is a subspace describing the behavior of a system’s linear and memoryless

constraints, previously referred to as the interconnecting network. From the discussion

surrounding (2.9), the interconnection of these constraints with constitutive modules only

further restricts the behavior of the overall system, thus, any system whose linear inter-
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connection behavior is conservative remains conservative independent of the constitutive

modules coupled to it. Indeed, this restriction allows for a broad class of systems to be iden-

tified as conservative while relying primarily on linear and quadratic analysis techniques.

2.4.2 | Linear transformations of conservative sets

As was mentioned previously, we are primarily interested in realizing signal processing sys-

tems after linearly transforming their behaviors. In this subsection, we discuss the relation-

ship between an organization for which a set is conservative and an organization for which

the transformed set is conservative. To state this relationship, we rely on straightforward

variable substitutions and properties of correspondence maps. Specifically, let M denote

an invertible linear map and let S be a conservative set in (V, 〈·, ·〉V) with respect to the

organization O = (C,Dp,Dc). The set MS, contained in the same inner product space, is

then conservative with respect to the organization O′ = (C ′,D′p,D′c) where

C ′ = MTCM (2.21)

D′p = M−1Dp (2.22)

D′c = M−1Dc. (2.23)

The identity used to establish (2.21)-(2.23) as well as verify that the unprimed organiza-

tion for S and the primed organization for MS do indeed satisfy the requirements of an

organization is

〈Cv,v〉V = 0, v ∈MS, ⇐⇒ 〈CMv,Mv〉V = 0, v ∈ S. (2.24)

The validity of C ′ as a bona fide correspondence map follows from several observations.

First, the composition of invertible linear maps results in an invertible linear map, and

the form of C ′ implies it preserves the symmetry of C. It remains to be seen that C ′ is

balanced, i.e. has equal numbers of positive and negative eigenvalues. This fact follows by

direct application of Sylvester’s law of inertia [37], which states that the number of positive

and negative eigenvalues of any symmetric matrix A is invariant to transformations of the
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form BTAB for any invertible matrix B. The conjugate maps M ′A and M ′B associated with

the primed organization are obtained from the conjugate maps MA andMB associated with

the unprimed organization according to M ′A = MAM and M ′B = MBM .

The discussion to this point formally justifies an isomorphism between correspondence

maps related by (2.21) where M is an invertible linear map and where the isomorphism

is specifically on the number of positive and negative eigenvalues. In the remainder of this

subsection, we draw attention to some special linear maps and their effect on the organization

O′ according to (2.21) through (2.23). Figure 2-3 highlights three particular classes of linear

maps using a Venn diagram and contrasts their effect on the organization. The first class,

indicated in the figure as quadratic form preserving transformations, is composed of those

linear transformations M for which

〈MTCMv,v〉V = 〈Cv,v〉V , v ∈ V. (2.25)

The collection of linear maps which satisfy (2.25) is the indefinite or split orthogonal group

O(N/2, N/2) [11, Theorem 3.1]. The second class of transformations, indicated in the figure

as partition decomposition preserving transformations, is composed of all linear maps that

the partition decomposition is invariant to, i.e. for whichMDp = Dp. These transformations

correspond to block diagonal matrices whose block sizes equal the dimensions of the partition

decomposition subspaces Vk for k = 1, . . . ,K. To describe the third group of transforma-

tions, let S denote the behavior of a linear map A as demonstrated by (2.4). An interesting

subset of transformations, indicated in the figure as interconnection invariant transforma-

tions, are those linear maps M for which the vector subspace MS is realized by the same

linear map A. Interconnection invariant transformations are described in more detail in

the context of interconnective system representation in Section 3.5.2 where a procedure for

numerically generating them is also presented.

2.4.3 | Conservative vector spaces

Conservation principles are closely related to orthogonality principles, so a natural question

pertains to the distinction between pairwise and subspace orthogonality. To address this,
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ecomposition 

transformations

Invertible linear transformations

on invariant

tranformations

Quadratic form

preserving transfo

nal transformations

General Linear Group :

Split orthogonal group

Figure 2-3: A Venn diagram illustrating several categories of linear transformations. Those in the
regions labeled “quadratic form preserving transformations” and “partition decomposition preserving
transformations” are used in the discussion on the isomorphism between conservation principles.

we discuss in this subsection two types of organizations for which a subspace S = S ⊆ V

may be conservative, and we do so by focusing on properties the organizations exhibit when

viewed through the comparison space. In particular, the conservation principle expressed in

the comparison space in (2.15) may be due to pairwise orthogonality between the particular

elements MAv
(A) and MBv

(B) for each element v = v(A) + v(B) ∈ S, or may be due to a

stronger condition that requires the set of all possible elements MAv
(A) to form a subspace

that is orthogonal to the set of all possible elements MBv
(B).

To formalize this distinction, we first relate the inner-product space V to the conjugate

subspaces VA and VB using two oblique projection operators PA : V → V and PB : V → V

satisfying range(PA) = VA and range(PB) = VB. In addition, we require the projectors PA

and PB to uniquely decompose elements of V, i.e. PA + PB = I. Using these operators, we

define two vector spaces SA and SB as vector subspaces of V given by

SA = {v(A) : v(A) = PAv,v ∈ S} (2.26)

and

SB = {v(B) : v(B) = PBv,v ∈ S}. (2.27)

An organized variable space is referred to as being strongly conservative provided that the

vector spaceMA(SA) is orthogonal to the vector spaceMB(SB) under the comparison spaces’
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inner product, i.e. satisfiesMA(SA) ⊥U MB(SB) which is shorthand for the formal condition

〈MAv
(A),MBv

(B)〉U = 0, v(A) ∈ SA,v(B) ∈ SB. (2.28)

In the next chapter, we shall make use of this particular characterization of strong conser-

vation. Several equivalent conditions are provided in [11, Theorem 3.2]. A key property of

this definition is that any linear combination of vectors in SA will always be orthogonal to

any linear combination of vectors in SB. This property will allow for conservation principles

in certain signal processing systems to be stated independently of the systems evolution.

2.5 | Mathematical optimization

A primary contribution of this thesis involves designing distributed algorithms for solving

convex and non-convex optimization problems by assembling nonlinear signal processing

systems that possess innate variational properties at their equilibrium states. With this in

mind, we briefly review some fundamentals of optimization theory in this section and present

the duality principle behind many popular classes of problems and associated algorithms.

These preliminaries later assist in relating the contributions in this thesis to distinct classes

of algorithms in the optimization literature. For a rigorous and complete development of

this subject, we refer readers to classic texts such as [38–40].

In reviewing the fundamentals, we begin by considering a primal constrained optimiza-

tion problem of the form

minimize
x

f(x)

s.t. gk(x) = 0, k = 1, . . . ,K

hj(x) ≤ 0, j = 1, . . . , J

(2.29)

where f : RN → R is the objective or cost function, gk : RN → R, for k = 1, . . . ,K, are

the equality constraints, and hj : RN → R, for j = 1, . . . , J , are the inequality constraints.

The collection of vectors x satisfying all of the constraints is referred to as the feasible

set, and algorithms for solving (2.29) typically attempt to determine a feasible element
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x? for which f(x?) is locally or globally minimum. In the sequel, we exclusively consider

continuous feasible sets, e.g. closed subsets of RN . Tools to minimize over discrete sets are

often combinatoric in nature or consist of solving sequences of continuous problems.

Convexity principles are ubiquitous in casting practical problems into the form (2.29).

To elaborate on this, a function T : RN → R is referred to as being convex if

T (ρv + (1− ρ)u) ≤ ρT (v) + (1− ρ)T (u), u,v ∈ RN , ρ ∈ [0, 1]. (2.30)

If (2.30) holds with a strict inequality for ρ ∈ (0, 1) and u 6= v, then T is referred to as being

strictly convex. Convex optimization problems are special cases of (2.29) where the cost and

constraint functions are all convex. Convex problems conveniently equate local and global

solutions whereas strictly convex problems also ensure the uniqueness of a solution.

2.5.1 | Duality principles and optimality conditions

In a broad sense, duality principles in optimization theory typically emphasize structural

relationships between primal and dual functions or problems using injective transformations

including symmetries, involutions, and inequalities. Examples of this include Kantorovich-

Rubinstein duality for optimal transportation inequalities and linear programming [41, The-

orem 5.10], Strassen duality for stochastic variables, and Fenchel duality in convex analy-

sis [40, Theorem 31.1]. In Chapter 5, we draw upon the duality principle relating orthogo-

nality and variational properties of conservative vector spaces. In this subsection, we focus

on Lagrangian duality, which is, loosely speaking, well-known to be connected to Fenchel

duality by representing convex sets using supporting hyperplanes.

In reviewing Lagrangian duality, we define the Lagrangian function L : RN ×RK×RJ →

R associated with a primal optimization problem of the form (2.29) as

L(x,π,λ) = f(x) +

K∑
k=1

πkgk(x) +

J∑
j=1

λjhj(x) (2.31)

where π and λ are Lagrange multipliers and are also referred to as dual variables. From
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this, the Lagrange dual function g : RK × RJ → R is defined according to

g(π,λ) = inf
x
L(x,π,λ). (2.32)

By construction, evaluating g(π,λ) at any point (π,λ) with λ ≥ 0 (coordinate-wise) pro-

vides a lower bound to the optimal cost of (2.29), and a natural step is to identify the

tightest possible lower bound. Thus, for the primal problem (2.29), the Lagrangian dual

optimization problem is given by

maximize
π,λ

g(π,λ)

s.t. λj ≥ 0 j = 1, . . . , J.

(2.33)

Observe that, independent of the convexity of the primal problem, the dual problem is

concave. The quantity f(x?)− g(π?,λ?) for any (π?,λ?) that solves (2.33) is referred to as

the duality gap, and problems where the duality gap is zero are said to exhibit strong duality.

In some cases, a solution (π?,λ?) can be used to generate x? and vice versa. Indeed, solving

both problems is often desirable as dual variables have various convenient interpretations,

e.g. they are useful in understanding the sensitivity of primal solutions.

It is common to characterize optimal solutions to (2.29) in terms of conditions that are

satisfied when such a solution is obtained. Let the Lagrangian in (2.31) be differentiable

with respect to x. Any optimal solution x? satisfying some regularity3 is then associated

with a dual solution (π?,λ?) and collectively these solutions satisfy the conditions:

Stationarity: ∇xf(x?) +

K∑
k=1

π?k∇xgk(x
?) +

J∑
j=1

λ?j∇xhj(x
?) = 0 (2.34a)

Primal Feasibility: gk(x
?) = 0, k = 1, . . . ,K (2.34b)

hj(x
?) ≤ 0, j = 1, . . . , J (2.34c)

Dual Feasibility: λ?j ≥ 0, j = 1, . . . , J (2.34d)

Complementarity: λ?jhj(x
?) = 0, j = 1, . . . , J (2.34e)

3There exist many forms of regularity or constraint qualification conditions. In this thesis, we use the
condition that gk and hj are affine or, for convex problems, the feasible set has a well-defined relative interior.
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where ∇x denotes the gradient with respect to x. These necessary conditions are the cele-

brated KKT optimality conditions and are strengthened to sufficiency when the cost function

f and inequality constraints hj are convex and the equality constraints gk are affine.

For problems with non-differentiable Lagrangians, the KKT conditions generalize in a

straightforward way by proper application of subderivative relations. Moreover, if J = 0,

the KKT conditions reduce to the method of Lagrange multipliers in elementary calculus

and reduce further to the unconstrained first-order condition ∇xf(x?) = 0 if K = 0 too.

Geometrically, constrained optimization problems are essentially unconstrained when the

constraints are not active at the minimizer. More generally, when solutions are on the

boundary of the feasible set, the complementarity conditions ensure that only active in-

equality constraints contribute to the stationarity condition. Similarly, the dual feasibility

conditions ensure that the primal inequality constraints hj contribute appropriately to the

dual objective function. Methods aimed at directly solving the KKT conditions have the

potential to yield solutions to both the primal and dual problems simultaneously.

2.5.2 | Optimization algorithms

In designing algorithms to solve distributed or large-scale optimization problems, a common

strategy is to partition an iteration onto several processors that simultaneously perform

computation and regularly exchange data. Convergence analysis for distributed or non-

distributed computing platforms is essentially the same when data transfers follow pre-

specified schedules or use round-robin token passing. Performance for these data exchange

protocols may suffer in the presence of synchronization problems, e.g., arising from network

congestion or processor heterogeneity. In response to this, many traditional algorithms have

been adapted to alleviate these problems by allowing asynchronous communication between

processors while maintaining convergence guarantees [42]. In this subsection, we review two

algorithm classes of this type.

We first consider minimizing an unconstrained, differentiable objective function f : RN →

R that is separable into the sum of M terms according to

f(x) = f1(x) + · · ·+ fM (x) (2.35)
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where each summand fm : RN → R, for m = 1, . . . ,M , might operate on only a subvector

of x. For example, (2.35) may represent an empirical estimate of the expectation of f in

probabilistic settings. The stochastic gradient descent algorithm attempts to determine a

solution x? by producing a sequence of vectors {xn : n ∈ N0} according to the update

xn = xn−1 − ρ∇xfm(xn−1), n ∈ N (2.36)

where m ∈ {1, . . . ,M} is a random integer chosen independently for each n and ρ > 0

is the step size. The change in xn after multiple iterations is interpretable as moving

in the direction of a noisy gradient estimate and provides robustness to minimizing non-

smooth objective functions with many local minima. When individual terms fm are not

differentiable, ∇xfm(xn−1) can be replaced by subdifferentials of fm at xn−1.

The fact that the iteration in (2.36) selects the parameter m without reference to the

previous iteration suggests opportunity in distributing and asynchronously implementing

the stochastic gradient descent algorithm. By assigning each summand fm to a different

processor, each processor independently retrieves the current state of the partial solution x

from globally accessible memory, computes the update (2.36) or an incremental form of it,

and writes the result back into memory. This strategy is similar to the HogWild! approach

discussed in [43] where convergence is guaranteed under reasonable assumptions such as

Lipschitz continuity of the gradients∇xfm. When the gradient of each summand fm happens

to be sparse, asynchronous implementations converge in approximately the same amount of

computation or equivalent iterations as their synchronous or batched counterparts.

Another common class of asynchronous and distributable algorithms pertain to solving

linearly constrained optimization problems of the form

minimize
x, z

f1(x) + f2(z)

s.t. Ax +Bz = c

(2.37)

where f1 and f2 are possibly non-smooth convex functions. The alternating direction method

of multipliers (ADMM) algorithm is widely used to solve problems within this class. In
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writing the ADMM algorithm, we define an augmented Lagrangian as

Lρ(x, z,π) = f1(x) + f2(z) + πT (Ax +Bz− c) +
ρ

2
‖Ax +Bz− c‖2 (2.38)

where ρ > 0 is a tuning parameter. The augmentation provides the dual function associated

with (2.38) to be differentiable for a broader set of choices for f1 and f2. Note that (2.38)

is the standard Lagrangian associated with (2.37), except with the term ρ
2‖Ax + Bz− c‖2

added to the cost function. The ADMM algorithm seeks a solution by generating sequences

for x, z, and π given by:

xn = arg min
x
Lρ(x, zn−1,πn−1) (2.39a)

zn = arg min
z
Lρ(xn, z,πn−1) (2.39b)

πn = πn−1 + ρ(Axn +Bzn − c). (2.39c)

Distributed implementations of the iteration above have been incorporated into the MapRe-

duce programming model [44]. In addition, block splitting methods allow the linear con-

straints to be arbitrarily partitioned by row and column and assigned to different proces-

sors [22]. In terms of convergence, guarantees for asynchronous implementations of ADMM

have been shown almost surely [45]. This differs from the mean-square convergence under

which asynchronous implementations of the algorithms developed in this thesis are guaran-

teed to work. On a technical level, the stochastic and asynchronous convergence analysis in

this thesis has similarities to the analysis of proximal algorithms in [46] and monotone oper-

ators in [47] wherein the approach is to focus on fixed-point properties rather than gradient

based optimality conditions since the iterated operators are generally not directly related to

the gradient of the cost function. Connections between gradient-based algorithms, ADMM

and other related proximal algorithms, and the class of algorithms developed in this thesis

are discussed in detail in Section 5.6.
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Interconnective framework

The general idea behind an interconnective description of a signal processing system is to

model the system through the coupling of many independent constitutive modules and in-

terconnecting networks. The interconnecting networks are used to characterize the linear

and memoryless relationships internal to the system while the constitutive modules char-

acterize the system’s nonlinear features, memory, and overall system inputs and outputs.

Separability of the constitutive modules is helpful in understanding the connectivity and

communication required for distributed implementations of the system whereas separability

of the interconnecting networks informs the choice between centralized and decentralized

implementations. These separability properties, utilized in Chapter 6 for the purposes just

mentioned, are invariant to the complexity of each module as well as to the domains in

which the constraints associated with the modules are enforced.

This chapter begins with a generalization of the interconnective system representations

presented in Section 2.3 by introducing new terminology with which to describe a signal

processing system, and the remainder of the chapter is spent formulating the consequences

of those terms. In particular, an interconnective description is developed with multiple levels

of specificity by allowing the system to be described using different amounts of structure.

Starting in the coordinate-free setting, a fixed-coordinate model is presented that naturally

inspires an equivalence relation between systems whose behaviors are equal to within linear

transformations of one another. Systematic procedures for translating behavioral models

into computable signal processing structures are proposed so that algorithms can be pro-
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duced by inserting delay modules to break delay-free loops, thereby instilling coordinated

or uncoordinated dynamics into the structure as well as ensuring a well-defined precedence

tree exists for scheduling purposes. Algorithms produced this way encapsulate a broad range

of organizations and input-output configurations of a system’s variables, and the focus is

specifically on two types of algorithms: synchronous processing loops and asynchronous

processing systems. The chapter then concludes with several examples.

3.1 | Interconnective descriptions of signal processing systems

Selection between different models or descriptions of a class of signal processing systems

are often based on intended processing goals. In some contexts, for example, a particular

description may be better suited to handle specific tasks when compared to its alternatives

due to convenient properties the chosen description exhibits toward the present context. In

this section and the next, we develop an interconnective description to represent and ma-

nipulate large-scale signal processing systems that is well-suited to the eventual processing

goals in this thesis. Toward this end, we build upon the existing interconnective descriptions

reviewed in Section 2.3. Key factors motivating the extension of these descriptions include

the current focus on large-scale and decentralized systems involving multiple independent

interconnecting networks and constitutive modules as well as a link to be discussed in the

following section between equivalent systems operating on the same underlying graph for a

particular notion of equivalence. In this section, we develop the foundations of an abstract

interconnective description where connectivity and separability properties important to de-

signing and implementing distributed signal processing systems are explicitly underscored,

and then we define a notation for illustrating these properties using graphical structures.

3.1.1 | Interconnective decompositions

To characterize the behavior of a system through the coupling of a memoryless, linear

interconnecting network to several independent constitutive modules, we shall make use of

a particular decomposition of the vector space containing the system’s behavior as well as

a particular decomposition of the behavior itself. Utilizing the terminology developed by
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(a) An interconnective decomposition

Constitutive Module Interconnecting Network

(b) A partition decomposition of the structure in (a)

Constitutive Module Interconnecting Network

Interconnect 1

Interconnect 2

Constitutive 

Module 1

Constitutive 

Module 2

Constitutive 

Module 3

Constitutive 

Module 4

Figure 3-1: An illustration of the interconnective description of a signal processing system formed
by coupling a constitutive module F to an interconnecting network W . (a) An interconnective
decomposition. (b) A partition decomposition further decomposing the structure in (a).

Willems in [15], we shall refer to the vector space as the terminal linear space, or terminal

space for short. Formally, the terminal space is defined as the finite-dimensional vector space

V whose dimensionality equals the number of terminal variables used in the description of

a system’s behavior. From this, an interconnective decomposition Di of a system’s behavior

B ⊆ V is defined as a description of B using the components

Di , {W, F} (3.1)

where W and F are each subsets of V, so that the behavior equals the intersection of W

and F , i.e. the behavior B decouples according to

B = W ∩ F , (3.2)

and where W in particular is a linear subspace of V. Figure 3-1(a) depicts a graphical

representation of an interconnective decomposition for a signal processing system whose

behavior is expressed using nine terminal variables v = (v1, . . . ,v9).

Comparing (2.9) and (3.2), forming an interconnective decomposition is interpretable as

generating separate linear and nonlinear systems whose behaviors form the overall system’s
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behavior when connected together. In the sequel, the interconnective decomposition Di will

routinely be used to refer to the behavior of a system rather than referencing the intersection

of W and F directly, and we do so with the understanding that we specifically mean their

intersection as demonstrated by (3.2). Also, the vector subspace W or any linear map that

realizes it according to (2.4) will be referred to as the interconnecting network, or interconnect

for short. Similarly, the set F or any generally nonlinear relation or function that realizes

it according to (2.1) will be referred to as the constitutive module or relation. Constitutive

modules will also provide an external interface for systems with overall inputs and outputs.

Finally, signal processing systems whose behaviors are expressed using an interconnective

decomposition will be referred to as interconnective systems.

3.1.2 | Partition decompositions

Interconnective decompositions, introduced in the previous subsection, are universal in the

sense that they can express the behavior of any signal processing system. To see this, let F

denote a system’s behavior and let W be any subspace that subsumes F . Interconnective

decompositions constructed in this way are not very descriptive, so, in this subsection, we

proceed by introducing some additional structure through a decomposition of the terminal

space V that serves to separate the constitutive module F into generally many independent

constitutive modules or subsystems. When this decomposition is appropriately selected, it

helps to restrict the choice of the interconnecting network subspace W so that the system’s

behavior W ∩ F is a proper subset of both W and F .

For an interconnective system with terminal space V and interconnective decomposition

Di = {W,F}, a partition decomposition corresponds to separating the terminal space V

into several lower dimensional vector spaces such that the constitutive relation F acts as an

independent set constraint on each. More formally, a partition decomposition is defined as

a collection of K vector spaces {Vk} that decompose the terminal space V according to

V = V1 × · · · × VK (3.3)

and that separate the constitutive module F into K constitutive modules {Fk} satisfying
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Fk ⊆ Vk, for k = 1, . . . ,K, such that F can be reconstructed according to

F = F1 × · · · × FK . (3.4)

The vector space Vk will be referred to as the k-th partition subspace of V and collectively

the partition subspaces form a partition decomposition Dp = {V1, . . . ,VK}. With access to a

bona fide partition decomposition, there is no ambiguity in determining what the individual

constitutive modules are, thus the formal definition of an interconnective description of a

signal processing system does not need to explicitly include them.

The total number of partition subspaces provides some level of insight into how ex-

tensively a signal processing system can be distributed onto different processors that then

implement the system by concurrently or sequentially executing their assigned processing in-

structions. On the other hand, separability of the interconnecting network dictates whether

or not the group of processors can be decentralized. To illustrate this, consider the case

where the interconnection subspace W decomposes using direct products as

W = W1 × · · · ×WL (3.5)

where the case L = 1 subsumes the outcome that a proper direct product decomposition

of W does not exist. Figure 3-1(b) illustrates a graphical representation of a partition de-

composition for the interconnective system in (a) where the constitutive relation has been

split into four independent modules and where the interconnecting network has additionally

been separated into two independent interconnects. As indicated by the figure, the separa-

tion of the interconnects implies that any information exchange between the first two and

the fourth constitutive modules will only be communicated through the third constitutive

module, thus enabling the possibility of a decentralized implementation of the system.

As was the case with interconnective decompositions, partition decompositions are gen-

erally not unique. In response to this, we will typically be interested in partition decom-

positions whose partition subspaces satisfy a particular separability property, namely each

subspace being two dimensional. This property is only possible, of course, for terminal
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spaces of even dimensionality, which is also a necessary condition for a system to be con-

servative. Partition decompositions whose partition subspaces satisfy this property will be

referred to as maximal partition decompositions.

We conclude this subsection by commenting on the relationship between the definition

of a partition decomposition made in this subsection and the definition made in [11] that

was used to discuss conservation principles in signal processing systems in Section 2.4. To

modify the definition above to be consistent with the decomposition in (2.12), the terminal

space V would need to be decomposed using a direct sum of K subspaces {Vk} according

to V = V1 ⊕ · · · ⊕ VK rather than the direct product decomposition in (3.3). Then, the

constitutive modules Fk would be generated according to

Fk = projVkF +
⊕
j 6=k
Vj , k = 1, . . . ,K, (3.6)

where projVkF is the orthogonal projection of F onto Vk, and the original constitutive

relation F would be reconstructed using intersections according to F = F1∩· · ·∩FK instead

of using direct products as in (3.4). Notice that the notation for the partition subspaces Vk

and subsystem modules Fk is now overloaded since they represent sets of vectors of different

lengths depending on whether they correspond to decompositions using direct products or

direct sums and intersections. Despite this ambiguity, the quantity dimVk, which is essential

to capturing the separability of an interconnective system, is invariant to the decomposition

used, so we proceed with the convention that an interconnective description uses the direct

product decompositions in (3.3) and (3.4) unless explicitly stated otherwise.

3.1.3 | Coordinate-free interconnective descriptions

Having established both interconnective and partition decompositions to describe behav-

ioral models of large-scale signal processing systems, we are now equipped with an ade-

quate amount of structure to define a meaningful representation of a system. This descrip-

tion specifically captures dependencies implied by a system’s topology in an abstract way,

i.e. without reference to a particular basis or coordinate system. This formulation will be

referred to as a coordinate-free description and written using the notation Rcf .
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Definition 3.1.1 (Coordinate-free interconnective descriptions). A coordinate-free inter-

connective description of a signal processing system is defined as a triple

Rcf , (V, Dp, Di) (3.7)

with elements

V : a terminal linear space defined over an appropriate field,

Dp : an associated partition decomposition, and

Di : an associated interconnective decomposition,

where the elements composing the partition and interconnective decompositions uniquely de-

compose the constitutive relation F according to

F = (F1 ∩ V1)× · · · × (FK ∩ VK) (3.8)

where K is the total number of partition subspaces.

3.1.4 | Graphical structures for interconnective systems

As is common in working with general signal processing systems, it is often useful to be able

to write a succinct and unambiguous description of a system using a graphical language

or structure. In this subsection, we define a graphical convention that focuses on issues

pertinent to the design and implementation of large-scale systems using elements from the

system’s interconnective description. Also, we establish a notational convention for address-

ing certain subsets of terminal variables that will later be used to manipulate the individual

constitutive modules and interconnecting networks composing the overall system.

Formally, an interconnective graph or structure is defined as a bipartite, undirected

graph where the constitutive modules Fk form the first type of nodes and are depicted

using blocks with rounded corners, and the interconnects Wl form the second type of nodes

and are depicted using blocks with square corners. Edges of a graph are used to indicate

that two adjacent nodes of opposite type constrain an overlapping subset of the terminal

variables and that the nodes will require a direct communication link when implemented
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on different processors. Graphically, edges are depicted using bidirectional arrows of the

form ←→ where the bidirectional notation underscores the fact that the communication

links may need to be reciprocal in order to enforce the collective constraints the nodes

place over their shared terminal variables with respect to the overall system’s behavior as

well as the fact that the terminal variables have yet to be designated as being inputs or

outputs of the nodes. A similar convention appears in the bond graph literature where

arrow bidirectionality is used to emphasize the reciprocal exchange of information or energy

between physical subsystems [48]. In many places throughout this thesis, an interconnective

system will be defined using a graphical structure rather than an analytic description with

the understanding that the two are equivalent to one another, i.e. that an analytic description

is completely determined by an interconnective graph as described above and vice versa.

With direct product decompositions (3.3) through (3.5) in place, two conventions for

partitioning a length N terminal vector v = (v1, . . . ,vN ) will play an essential role in

manipulating interconnective systems and their graphs. In the first convention, a terminal

vector v is split into K subvectors, denoted by v
(CR)
k for k = 1, . . . ,K, such that the k-

th constitutive module Fk is the only constitutive module that constrains the subvector

v
(CR)
k for each k. Similarly, in the second convention, the terminal vector v is split into

L subvectors, denoted by v
(LI)
l for l = 1, . . . , L, such that the l-th interconnect Wl is the

only interconnect that constrains v
(LI)
l for each l. Written formally, these partitioning

conventions are summarized by

v = (v1, . . . , vN ) (3.9)

= (v
(CR)
1 , . . . , v

(CR)
K ) (3.10)

= (v
(LI)
1 , . . . , v

(LI)
L ). (3.11)

The length of each subvector v(CR)
k and v

(LI)
l is respectively denoted by N (CR)

k and N (LI)
l

and collectively these lengths satisfy

N = N
(CR)
1 + · · ·+N

(CR)
K (3.12)

= N
(LI)
1 + · · ·+N

(LI)
L (3.13)
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Constitutive Module 1 

Behavior: 

Notation:

Constitutive Module 2

Behavior: 

Notation:

Interconnect 1

Behavior: 

Notation:

Interconnect 2

Behavior: 

Notation:

Constitutive Module 4 

Behavior: 

Notation:

Constitutive Module 3 

Behavior: 

Notation:

Figure 3-2: The interconnective structure associated with a decentralized behavioral model of
the signal processing system in Figure 3-1 illustrating the notational conventions used to describe
systems graphically.

where N (CR)
k = dimVk for k = 1, . . . ,K. To this point, the partitioning scheme has yet to

designate the individual terminal variables composing the terminal vector v as being inputs

or outputs from either the interconnects Wl or constitutive modules Fk.

Before concluding this subsection, we present an example to demonstrate both the graph-

ical conventions outlined above as well as the partitioning schemes summarized by (3.9)

through (3.11). To do this, we continue with the the signal processing system whose inter-

connective description is shown in Figure 3-1. The coordinate-free interconnective descrip-

tion of this system is written according to Rcf = (V,Dp,Di) where the terminal space V is

9-dimensional and the elements composing the decompositions take the form

Dp = {V1, V2, V3, V4} (3.14)

Di = {W1 ×W2, F1 ×F2 ×F3 ×F4} (3.15)

where dimVk is equal to 2 for k = 1, 2, 3, and 3 for k = 4. Figure 3-2 describes the system

using an interconnective graph. The notation established for the various arrangements of

the terminal vector v is also depicted. In particular, the first three constitutive modules

constrain the first three pairs of terminal variables while the fourth constitutive module con-

strains the remaining three. The decentralized nature of the structure follows immediately

from the separation of the interconnecting network into two independent interconnects.
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3.2 | Equivalent interconnective descriptions

The core operating principle underlying many well-established signal processing algorithms

is to transform an input signal to a domain for efficient processing, process the signal in

that domain, and then transform the processed signal back to the original domain. Ho-

momorphic filtering methods, originally used in speech contexts and more recently in deep

learning networks [49, 50], illustrate this principle where the transform of the input signal

is non-linear. Fast convolution methods are also consistent with this principle where fast

implementations of the discrete Fourier transform are used to reduce the complexity asso-

ciated with performing convolution. From the interconnective viewpoint, algorithms in this

spirit are interpretable as performing the transforms via pre- and post-processing by the

interconnects coupling adjacent constitutive modules where the modules specifically process

signals in different coordinate systems. In this section, we build upon the interconnective

description of a signal processing system to allow for invertible linear transformations of the

system behavior and then identify conditions under which these transformations preserve

the separability of the systems underlying graph.

A recurring and important theme emphasized throughout this thesis is that the organiza-

tion of a system’s behavior for which a useful property manifests itself is not necessarily the

only organization that can take advantage of that property in practice. To assist with using

this observation, we conclude this section by defining an equivalence relation between in-

terconnective systems whose behaviors are intrinsically related to one another and then use

the correspondences between those system’s organizations to parameterize the associated

equivalence classes. By doing this, properties derived from one organization can poten-

tially be exploited by any system in the same equivalence class by understanding the effect

reorganizing the system’s behavior has on those properties.

3.2.1 | Coordinate maps

A coordinate map is defined as any invertible linear map M taking the terminal space V

into itself. The basic utility of a coordinate map is to employ the transformation M so that

a system’s behavior Di is viewed in V as MDi. We proceed with the following convention:
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when M corresponds to a general linear operator then V remains an abstract vector space,

but whenM corresponds to a coordinate matrix then V = RN is assigned the standard basis

{e(1), . . . , e(N)} through which to view MDi, where N = dimV and e(n) is the length N

vector that is unity in its n-th entry and zero elsewhere. The role of the coordinate map is

important in many contexts and is discussed for the purposes of generating algorithms in

Section 3.3 and stability analysis for uncoordinated data processing systems in Section 4.3.

Specifying a coordinate map can be thought of as selecting N linearly independent dual

vectors1 m(n) ∈ V?, where V? denotes the dual vector space to V, and arranging them into

the linear transformation M according to

M =


m(1)

...

m(N)

 . (3.16)

The perspective provided by thinking of a coordinate map as a mapping from the dual

vector space V? to the terminal space V is useful in interpreting the action of each dual

vector m(n) in the expression MDi as specifically producing a new terminal variable as a

linear combination of the terminal variables used to describe Di.

In dealing with interconnective systems, an important subset of coordinate maps are

those for which a system’s partition decomposition remains the same, i.e. for which Dp =

MDp, or, equivalently, for which F and MF decompose into the same partition subspaces.

We shall refer to coordinate maps satisfying this property as being Dp-invariant coordinate

maps. These special maps later assist with designing algorithms that naturally distribute

onto various processor networks and can easily be generated by selecting K bases for the

dual partition subspaces V?k , for k = 1, . . . ,K. More concretely, the linear map M in (3.16)

is Dp-invariant if the N linearly independent dual vectors m(n) ∈ V?, for n = 1, . . . , N , also

1In this thesis, the parenthetical superscript notation v(n) is used to indicate a vector in a vector space
and the parenthetical subscript notation v(n) to indicate a covector (linear functional) in a dual vector space.
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satisfy the conditions

V∗1 = span
{
m(1), . . . ,m(dimV1)

}
(3.17a)

...

V∗K = span
{
m(N−dimVK+1), . . . ,m(N)

}
. (3.17b)

It is a straightforward exercise to show that the partition decomposition Dp is invariant to

M when constructed using dual vectors satisfying (3.17).

As a matter of choice, we restrict ourselves moving forward to using Dp-invariant co-

ordinate maps whenever the interconnective description of a system uses direct product

decompositions. By doing so, separability of the constitutive modules is preserved when

applying the coordinate map M to Di. Selecting a coordinate map consistent with this

requirement reduces to specifying a block-diagonal coordinate map M of the form

M =



M1 0 · · · 0

0 M2 · · · 0

...
...

. . . 0

0 0 0 MK


(3.18)

whereM is invertible if and only if each blockMk, for k = 1, . . . ,K, is an invertible N (CR)
k ×

N
(CR)
k linear map taking Vk into itself. Note that while separability of the constitutive

modules is preserved, separability of the interconnecting network may change when using

Dp-invariant coordinate maps, meaning only a subset of these maps allow algorithms to be

derived from the transformed system that operate on the same decentralized graph.

If the behavior of a signal processing system is initially described using the coordinate

mapM , then a related system can be defined by describing the same system’s behavior using

any second coordinate map M ′ by appropriately changing coordinate maps. This process,

referred to as a coordinate transform, corresponds to reorganizing the first system’s behavior

by applying the coordinate transform M ′M−1 to it. Since the inverse of a block-diagonal

linear map is block-diagonal, the coordinate transform M ′M−1 used to move to the new
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behavioral model preserves the partition decomposition and sparsity pattern in (3.18) if M ′

and M are each block diagonal with conforming block sizes.

3.2.2 | Fixed-coordinate interconnective descriptions

In the same sense that a linear transformation can be represented as a matrix once bases have

been chosen for the transformation’s domain and codomain, the interconnective description

of a signal processing system becomes more specific once a coordinate matrix has been

selected. This level of description will be referred to as a fixed-coordinate interconnective

description and will be written using the notation Rfc.

Definition 3.2.1 (Fixed-coordinate interconnective descriptions). A fixed-coordinate de-

scription of a signal processing system is defined as a quadruple

Rfc , (V, MDp, MDi, M) (3.19)

with elements

(V, Dp, Di) : a coordinate-free interconnective representation, and

M : an associated coordinate map or matrix.

In the remainder of the thesis, we work exclusively with fixed-coordinate descriptions of

signal processing systems using both coordinate maps and matrices, thus Rfc will simply be

referred to as the interconnective description. In principle, this description remains abstract

and coordinate-free when the coordinate map M represents a general invertible linear map.

However, once M becomes a coordinate matrix and V is set to RN , the description becomes

numeric. As was mentioned previously, the coordinate map used to initially describe a signal

processing system is not the only coordinate map that can provide a complete description

of the system. The requirements of coordinate maps and matrices allow for a potentially

large number of candidates for use in a system’s interconnective description. This flexibility

inspires an equivalence relation between interconnective systems whose behaviors are related

through changing coordinate maps, the formal statement and justification of which is the

subject of the next subsection.
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3.2.3 | Interconnective equivalence classes

Consistent with the earlier discussion surrounding Figure 2-1, the correspondence between

functions whose behaviors are related through invertible linear transformations is often non-

linear from the perspective of functional operations and manipulations. Generalizing this

point to interconnective descriptions, similar correspondences become increasingly impor-

tant in the coming chapters for relating systems in various contexts. The equivalence classes

established in this subsection provide a straightforward way to identify these types of con-

nections as well as distinguish between signal processing systems that are distinct from one

another on a more fundamental level. Toward this goal, we state a binary relation that leads

to an interconnective notion of equivalence between systems in the following definition.

Definition 3.2.2 (Interconnective binary relation). Let sk denote a signal processing system

whose fixed-coordinate interconnective description R(k)
fc is given by

R(k)
fc = (V, D(k)

p , D(k)
i , Mk). (3.20)

Let sk1 and sk2 denote two signal processing systems whose interconnective descriptions are

given by R(k1)
fc and R(k2)

fc according to (3.20), respectively. We define sk1 and sk2 to be

equivalent interconnective systems if the description of sk2 can be obtained by an appropriate

coordinate transform applied to sk1, i.e. if and only if

D(k2)
p = Mk2M

−1
k1
D(k1)
p (3.21)

and

D(k2)
i = Mk2M

−1
k1
D(k1)
i . (3.22)

When (3.21) and (3.22) hold, this equivalence is written succinctly as sk1 ∼ sk2.

For an invertible linear map M , the notation MDp and MDi in the previous definition

specifically refers to the linear transformation of each element in the decompositions as

demonstrated by (2.6). In principle, justifying that a binary relation is an equivalence
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relation requires the relation to satisfy three properties: (i) reflexivity, (ii) symmetry, and

(iii) transitivity. For the specific definition of an interconnective relation ∼ established

above, each of these properties is verified next by using the appropriate coordinate change.

Let sk denote an interconnective system with fixed-coordinate representation R(k)
fc in

(3.20) for k = 1, 2, 3. The reflexivity property required of ∼ is satisfied if any interconnective

system is equivalent to itself. The relationship s1 ∼ s1 immediately follows from (3.21) and

(3.22) by noting thatMk2 = Mk1 , thereby simplifying the linear mapMk2M
−1
k1

that is applied

to the partition and interconnective decompositions to the identity map sinceMk1M
−1
k1

= I.

The symmetry property required of ∼ is satisfied if the assumption s1 ∼ s2 implies that

s2 ∼ s1. This follows again from (3.21) and (3.22) and the invertibility required of a

coordinate map. Specifically, invertibility of the linear map M2 can be used to manipulate

(3.21) by multiplying the partition decomposition D(2)
p by M1M

−1
2 to obtain

D(1)
p = M1M

−1
2 D

(2)
p , (3.23)

and similarly to multiply the relationship in (3.22) to obtain

D(1)
i = M1M

−1
2 D

(2)
i (3.24)

as required. Finally, the transitivity property required of ∼ is satisfied if the assump-

tions s1 ∼ s2 and s2 ∼ s3 imply that s1 ∼ s3. By assumption, the relationships D(2) =

M2M
−1
1 D(1) and D(3) = M3M

−1
2 D(2) hold where D is a placeholder for both the parti-

tion decomposition Dp and the interconnective decomposition Di. The desired result then

follows from the associativity of composing linear maps. In particular, for the partition

decompositions we obtain

D(3)
p = M3M

−1
2 D

(2)
p (3.25)

= M3M
−1
2 M2M

−1
1 D

(1)
p (3.26)

= M3M
−1
1 D

(1)
p (3.27)
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and similarly for the interconnective decompositions we obtain

D(3)
i = M3M

−1
2 D

(2)
i (3.28)

= M3M
−1
2 M2M

−1
1 D

(1)
i (3.29)

= M3M
−1
1 D

(1)
i . (3.30)

These relationships together imply that s1 ∼ s3, therefore the argument above justifies

the assertion that the interconnective relation ∼ is in fact an equivalence relation between

interconnective systems. The following theorem summarizes this result.

Theorem 3.2.1 (Interconnective equivalence relation). The interconnective relation ∼ as

described in Definition 3.2.2 forms an equivalence relation between fixed-coordinate intercon-

nective descriptions of a system.

Equivalence relations in general mathematical settings provide a sound mechanism by

which like objects may be discerned using structure derived from the objects themselves.

Having established an interconnective equivalence relation, we are equipped with several

additional tools beyond unambiguously determining whether or not the behavioral models

of two systems are equivalent in the sense of (3.21) and (3.22). For example, we shall make

substantial use of the equivalence classes associated with ∼ in the remainder of the the-

sis. Specifically, if s denotes an interconnective system with fixed-coordinate representation

R(s)
fc = (V, D(s)

p , D(s)
i , Ms), then the class of interconnective systems equivalent to s with

respect to ∼, denoted using the standard notation [s], is defined by

[s] ,
{(
V, MM−1

s D(s)
p , MM−1

s D
(s)
i , M

)
: MM−1 = I

}
. (3.31)

Section 3.4 in particular focuses on a class of interconnective systems for which the terminal

vectors comprising the behavior of any system in the class satisfy a quadratic conserva-

tion principle. In this context, we will link to another standard tool provided by having

established an equivalence relation, specifically the concept of class representatives.
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3.3 | Implementing interconnective systems

Behavioral models such as the interconnective description of a signal processing system

provide a higher level of abstraction than traditionally provided by algorithmic or functional

models. In the coming chapters, we derive results primarily using behaviors while freely

referencing implementations and without specifying the details associated with generating

them. The methods developed in this section, preliminaries to which appear in [14, 17],

justify this practice. Namely, the processing instructions associated with an implementation

are obtainable from a system’s interconnective description using the methods described next.

Depending on context, an implementation will refer to one of two kinds of algorithms.

The first corresponds to an organization of a system’s interconnective description into a

synchronous processing loop and the second corresponds to an organization into an asyn-

chronous processing system. For either type, the viewpoint we adopt in this thesis is that

the key issues in generating the processing instructions are essentially the same. These issues

are analogs to the issues found in designing compilers to convert declarative programming

models into imperative ones [51]. Selecting the kind of algorithm in practice may involve

understanding how synchronization affects the processing task at hand and the capabilities

and overhead associated with synchronizing the available processing resources. For example,

either can be used in the context of solving fixed-point problems formulated as solving for

elements in the behavior of an associated signal processing system.

We use the following general strategy to generate algorithms from an interconnective

description of a signal processing system:

(i) determine a coordinate matrix and input-output configuration of the terminal variables

so that each constitutive module and the interconnecting network have well-defined

functional realizations

(ii) obtain these functional realizations,

(iii) insert state or memory into the system as needed,

(iv) determine a protocol for exchanging state.

Chapter 6 builds upon this strategy while using the methods developed in this section
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to efficiently organize interconnective systems onto decentralized and multicore computing

platforms by assigning constitutive modules to independent processors and distributing the

interconnecting network accordingly.

3.3.1 | Realizing interconnective systems

The general strategy for generating algorithms from a system’s interconnective description

hinges on the ability of functional realizations of the processing nodes in the system’s inter-

connective graph to be obtained. In this subsection, the goal is specifically to obtain these

functions, i.e. to obtain a set of K functions fk whose behaviors Bfk equal the constitutive

modules behaviors Fk and a set of L matrices Al whose behaviors BAl
equal the interconnect

subspaces Wl. In the two subsections that follow, these functions and matrices are used to

design a variety of synchronous and asynchronous algorithms.

A key preliminary step to generating these functions and matrices involves configuring

the terminal variables into inputs and outputs of the processing nodes. Without loss of

generality, we define this configuration with reference to the interconnecting network to

which the constitutive modules are connected. By symmetry, this is equivalent to selecting

the opposite configuration with reference to the constitutive modules.

Consistent with [17,18], an input-output configuration is formally defined as a collection

of L permutation matrices Pl that encode the configuration by partitioning each intercon-

nection vector v(LI)
l into two subvectors, denoted v

(i)
l and v

(o)
l , according to

 v
(i)
l

v
(o)
l

 = Plv
(LI)
l , l = 1, . . . L (3.32)

where Pl denotes the N
(LI)
l ×N (LI)

l permutation matrix associated with the l-th interconnect

Wl, and v
(i)
l and v

(o)
l respectively denote the terminal variables that are assigned to be inputs

to and outputs from Wl. The length of each subvector v(i)
l and v

(o)
l is respectively denoted

by N (i)
l and N (o)

l and collectively these lengths satisfy

N
(LI)
l = N

(i)
l +N

(o)
l , l = 1, . . . L. (3.33)
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Constitutive Module 1 

Behavior: 

Realization:

Constitutive Module 3 

Behavior: 

Realization:

Constitutive Module 4 

Behavior: 

Realization:

Constitutive Module 2

Behavior: 

Realization:

Interconnect 1

Realization:

Behavior: 

Input-output configuration:

Interconnect 2

Realization:

Behavior: 

Input-output configuration:

Figure 3-3: The interconnective graph associated with a decentralized behavioral model of the
signal processing system in Figure 3-2 illustrating the notational conventions used to describe realized
systems graphically. The input-output configuration in the figure is consistent with (3.34) and (3.35).

Continuing the graphical definition of an interconnective description of a signal process-

ing system, Figure 3-3 illustrates the system in Figure 3-2 with functional realizations of the

constitutive modules and interconnects consistent with the input-output configuration

 Inputs: v2,v3

Outputs: v1,v4,v5

⇐⇒ P1 =



0 1 0 0 0

0 0 1 0 0

1 0 0 0 0

0 0 0 1 0

0 0 0 0 1


(3.34)

and

 Inputs: v6,v8,v9

Outputs: v7

⇐⇒ P2 =



1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0


. (3.35)

More generally, to describe an input-output configuration graphically, the bidirectional ar-

rows are replaced with directed arrows where the arrow heads indicate the direction of

functional dependencies amongst the terminal variables. The example structure in Figure 3-

3 additionally serves to illustrate that realized interconnective graphs can be used to recover
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behavioral interconnective graphs in a straightforward way.

Let s denote a signal processing system whose interconnective description uses the coor-

dinate matrix M and input-output configuration P . A functional realization of s formally

refers to having access to a collection of generally nonlinear functions fk and matrices Al,

with respective behaviors Fk and Wl, where the functions and matrices are mutually con-

sistent with the input-output configuration P . The general strategy we follow to generate

such a realization is summarized by:

(i) If a realization of each constitutive module Fk exists and is consistent with P , de-

termine the realizations fk. If any of the realizations do not exist, change coordinate

matrices and start over.

(ii) If a realization of each interconnect subspace Wl exists and is consistent with P ,

determine the realizations Al. If any of the realizations do not exist, change coordinate

matrices and start over.

All possible changes to the input-output configuration P can be accounted for by appro-

priately modifying the coordinate matrix M , see Section 3.5.1 for a complete description

of this fact. Indeed, changing coordinate matrices corresponds to selecting different sys-

tems from the equivalence class [s], as was discussed in Section 3.2.3. This strategy may

only make sense in the context of certain processing tasks. For example, this strategy is

used in Chapter 4 where fixed-point problems are related to interconnective systems so that

identifying a fixed-point corresponding to the problem described by s effectively identifies

a fixed-point of all problems described by the group of systems [s]. We proceed assuming

an appropriate coordinate matrix has been selected so that the realizations fk of the con-

stitutive modules are available. The process of realizing the constitutive modules, however,

may result in interconnects whose descriptions contain implicit constraints. For example,

if an interconnect is initially described using a linear, memoryless signal-flow graph, then

the interconnect after changing coordinate maps may possess delay-free loops. In light of

this observation, we focus on realizing behavioral models of interconnects as matrices in the

remainder of this subsection. An example illustrating the use of the procedure developed

next in the context of eliminating linear delay-free loops in allpass-warped filtering systems
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Element type

Signal-flow notation

Constraint-form 

encoding

Summation node Distribution node Constant-coefficient multiplier

Figure 3-4: Linear signal-flow elements and their corresponding constraint form equations for (a)
a summation node, (b) a distribution node, and (c) a constant-coefficient multiplier.

is presented in Section 3.6.1.

To produce functional realizations of the interconnect subspaces Wl as matrices Al, we

apply straightforward manipulations to certain characterizations of the finite-dimensional

vector spaces Wl so that the matrices Al naturally emerge. To this end, let Bl denote a

matrix whose null space equals the subspace Wl. This condition, null(Bl) = Wl, is written

more explicitly as

Blv
(LI)
l = 0, v

(LI)
l ∈Wl. (3.36)

Procedurally, Bl can be populated row by row as follows: for each linear and memoryless

constraint involving the terminal variables in v
(LI)
l , append one or more rows to Bl where

the coefficients in the row(s) are the coefficients of the constraints written in constraint-form,

i.e. as homogeneous linear equations. Figure 3-4 depicts the constraint-form encoding of the

signal-flow elements used in linear, memoryless signal-flow graphs. The decomposition of

the interconnecting network W via direct products in (3.5) ensures that the only coupling

between terminal variables in v
(LI)
i and v

(LI)
j for i 6= j is through a constitutive module.

Therefore, once the procedure above is repeated for all relevant constraints, the resulting

matrix Bl satisfies (3.36) as desired.

Next, a second matrix Cl is generated from Bl such that it satisfies two key properties:

(i) the rows of Cl are ordered such that a row partitioning yields an upper block C
(i)
l

corresponding to the N (i)
l input terminal variables v(i)

l and a lower block C(o)
l corresponding

to the N (o)
l output terminal variables v(o)

l , and (ii) the range of Cl equals the subspace PlWl.
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Initial system description Coordinate transformations Realized transformed system

Example realized interconnects for various coordinate selections

Figure 3-5: An illustration of three realized interconnects for different coordinate matrix selections
and the same input-output configuration. The constitutive modules remain unspecified throughout.

Procedurally, Cl can be assembled by concatenating the singular vectors of Bl associated

with zero-valued singular values and then permuting the rows to be consistent with the

input-output configuration Pl for Wl. This procedure is summarized according to

Plnull (Bl) = range


 C

(i)
l

C
(o)
l


 . (3.37)

Comparing (3.37) to (2.5), we immediately obtain that the desired matrix Al, when it exists,

is given by

Al = C
(o)
l

(
C

(i)
l

)−1
. (3.38)

The matrix Al will exist if and only if the submatrix C(i)
l is invertible. Although a straight-

forward observation, the consequence of this fact is important to selecting well-defined

input-output configurations and realizing interconnective graphs. In particular, the inter-

connect Wl constrains a total of N (LI)
l terminal variables, and from (3.33) we know that

N (LI) = N
(i)
l + N

(o)
l . The consequence of (3.38) is that N (i)

l must equal the dimension of

Wl. To see this, recall that multiplying a first matrix on the right by a second invertible

68 / 282



Chapter 3. Interconnective framework

matrix does not change the dimension of the subspace generated by the rows of the first

matrix [34], so the dimension of the l-th interconnect equals the rank of Cl which must be

equal to the number of input variables to Wl for C
(i)
l to be invertible.

To conclude this subsection, we present an example of the procedure above for generating

functional realizations of an interconnecting network after performing coordinate transforms

to a vector space description of the interconnect for a simple signal processing system. This

example also illustrate the breadth of interconnective structures that can be achieved in

the same interconnective equivalence class. Consider the interconnective graph on the top

left of Figure 3-5. The interconnective description of this system is given by (V,Dp,Di,M)

where the terminal space V is four dimensional, the coordinate matrix M is assumed to

be the identity matrix without loss of generality, and the partition and interconnective

decompositions are of the form

Dp = {V1,V2} (3.39)

Di = {W,F1 ×F2} (3.40)

where dimVk = 2 for k = 1, 2. The constitutive modules F1 and F2 respectively con-

straining the terminal subvectors v(CR)
1 = (a1,b1) and v

(CR)
2 = (a2,b2) remain unspecified

throughout the figure. The interconnecting network W is described by

W =





a1

b1

a2

b2


∈ V :

 1 0 0 −1

0 1 1 0




a1

b1

a2

b2


=

 0

0



, (3.41)

= range





1 0

0 −1

0 1

1 0




(3.42)

where the description in (3.41) illustrates the use of a constraint-form encoding. The
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input-output configuration depicted in the figure corresponds selecting v
(i)
1 = (a1,a2) and

v
(o)
1 = (b1,b2). The graph of the transformed system in the top right of Figure 3-5 depicts

the general form of the realized interconnect as a matrix A consistent with an input-output

configuration with inputs (c1, c2) and outputs (d1,d2). The coordinate transforms for a Dp-

invariant coordinate change are provided in the middle. The structures along the bottom

correspond to common signal-flow interconnecting networks found in signal processing appli-

cations and are obtained by applying a coordinate transform to (3.42) using the coordinate

submatrices M1 and M2 listed underneath.

3.3.2 | Synchronous processing loops

Conventional methods of organizing signal processing systems into ordered sequences of

processing instructions have primarily focused on scheduling input-output computations

to form overall iterations. For a broad class of signal-flow structures, schedules can be

identified by using callback functions in data pull or data push arrangements or through

similar graph-based techniques, as have been discussed in [21, 52, 53]. In these approaches,

issues of computability directly relate to the existence of delay-free loops or cycles within

various directed graphs derived from the model or system at hand. Consistent with the

discussion in Section 2.2, methods including those in [26–31] handle some special cases where

these techniques either fail or do not apply by breaking certain delay-free loops via inserting

memory modules or applying the implicit function theorem as part of the iteration. The

techniques presented in this subsection specifically extend the implementation procedures

developed in [17] to incorporate the additional flexibility provided by having a coordinate

matrix as part of the interconnective description of a system.

The procedure discussed in the previous subsection to produce functional realizations of

an interconnective graph handled issues related to computability by appropriately selecting

the coordinate matrix M and input-output configuration P . Jointly selecting M and P so

that the functions fk are well-defined is equivalent to eliminating implicit constraints from

the constitutive modules. The method developed to realize an interconnect subspace as a

matrix then dealt with implicit linear constraints through the constraint form encoding of

the subspace. A sufficient condition for scheduling synchronous processing loops, established
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in [21, 52, 53] and translated into the present context, is the absence of delay-free paths

starting from any terminal variable and ending with itself, where the edges of the graph

are only traversed in directions that are consistent with the input-output configuration.

Therefore, from the definition of a functional realization, any system that would be scheduled

using [21,52,53] can also be scheduled using the procedure presented next.

To generate globally synchronous algorithms from a functional realization of an intercon-

nective graph, we focus on two key steps. The first step involves inserting state or memory

into the system and the second involves determining a protocol for state exchange, thereby

introducing a semblance of evolution into the system. For the purpose of designing glob-

ally coordinated algorithms in the form of synchronous processing loops, i.e. ordered sets

of processing instructions to be repeatedly executed, we take the constitutive modules to

already contain any memory required to realize their behaviors. Referring to the intercon-

nective graph in Figure 3-3, designing a synchronous iteration corresponds to identifying an

execution order for the functions fk that in turn implies how the terminal variables are to

be processed through subsets of the interconnecting networks Al.

A processing loop is designed in reverse order of its execution by properly satisfying the

functional dependencies of the constitutive functions fk as determined by the input-output

configuration, system memory, and graph topology. To do this, let A denote the collective

realization of W and define D(LI) and D(CR) as binary dependency matrices populated as

follows. The entry D(LI)
i,j = 1 if the i-th input to A interacts with the j-th output of A,

i.e. D(LI)
i,j takes value one if Ai,j is non-zero and is zero otherwise. Similarly, the entry

D
(CR)
i,j = 1 if, within the same clock cycle, the i-th output of A is used to produce the j-th

input to A as determined by the constitutive functions and is zero otherwise. A schedule

will be identified if the matrix D(LI)D(CR) is nilpotent, which can be certified using the fact

a matrix D is nilpotent if trace
(
Dk
)

= 0 for any k between 1 and the dimension of D. The

smallest value of k for which Dk = 0 is called the degree of the matrix.

Let pn denote a sequence of length N (o)
1 + · · ·+N

(o)
L precedence vectors where the i-th

entry of each precedent vector corresponds to the i-th interconnect output variable, i.e. the

i-th entry of p corresponds to the i-th output of A. A schedule is identified by running the
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Example synchronous runloop

(2) Execute interconnect 1

Execute constitutive relations 2 and 5(3)

Execute interconnect 2(4)

Execute constitutive relation 3(5)

Execute interconnect 3(6)

(1) Read input 

(7) Send output

Dependency matrices

Precedence sequence

Interconnective system realization

Constitutive subsystem 1

Overall system input

Constitutive subsystem 4
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Constitutive subsystem 3

Realization:
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Realization:

Implied dependency structure
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Figure 3-6: A demonstration of the procedure for generating synchronous processing loops from
interconnective graphs with functional realizations of the graph’s constitutive modules and intercon-
nects.

forward iteration

pn =
(
D(LI)D(CR)

)T
pn−1, n = 1, . . . ,m (3.43)

where m is the degree of D(LI)D(CR) and the iteration is initialized by setting p0
j = 1 if

the j-th output of A is an overall system output. The execution order of the functions fk is

determined from the precedence tree described by the precedence sequence. Specifically, the

processing loop is assembled by ordering the functions fk in reverse of the order that first

non-zero value appears in the associated row of pn. The processing loop is then completed

by inserting the relevant rows of A between the ordered function calls. This procedure is

demonstrated next.

Figure 3-6 demonstrates the scheduling procedure described above applied to the example

interconnective graph depicted on the left. The constitutive modules and interconnects are

assumed to have the functional realizations depicted in the figure. The sparsity pattern

of the binary dependency matrices D(LI) and D(CR) indicates the functional dependencies

between the terminal variables on a given clock cycle. The sparsity pattern of the precedence

sequence pn, for n = 0, 1, 2, is also provided where the coordinates of pn correspond to the

terminal variables (v2, v4, v6, v7), which are the terminal variables that are outputs of

the interconnecting network. The initial precedent vector is p0 = (0, 0, 1, 0) indicating
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that the terminal variable v6 is the only overall system output. From the sparsity pattern

of the displayed precedence sequence, the synchronous processing loop in the top right is

generated by ordering the constitutive functions and inserting the relevant interconnects in

between. An equivalent visualization of the precedent sequence is provided on the bottom

and highlights the dependency structure amongst the system’s terminal variables. As is

evident in either the precedence sequence of equivalent structure, certain of the constitutive

modules can be implemented in parallel, thereby allowing distributed processing loops to be

designed based upon the joint separability of the constitutive modules and interconnects.

We briefly comment on how the processing loop design procedure can be augmented to

account for multirate relations appearing in the description of an interconnective system.

To handle this, each terminal variable vk is associated with a clock rate rk. Using the

previously defined dependency matrices D(LI) and D(CR), a system of nonlinear equations

is assembled as follows: for each pair of terminal variables vi and vj that interact during

the same clock cycle according to D(LI) or D(CR), collect a constraint of the form

rir
−1
j = µi,j (3.44)

where µi,j is the rate relation between vi and vj . In particular, (3.44) is interpreted to

mean that vi operates at µi,j times the rate of vj . Substituting the transformed variables

r̂k = log rk, we reduce (3.44) to a linear system of equations

r̂i − r̂j = logµi,j . (3.45)

Any non-trivial solution to (3.45) uniquely specifies a rate vector r. Sufficient conditions for

designing a valid processing loop‘ according to the rates r are twofold. First, the right-hand

side of (3.45) must lie in the range of the linear system. Second, the rates obtained must all

be rational numbers, i.e. the vector r needs to be converted to a vector of integers to assign

valid rates to the processing nodes. If the rate conversion modules in an interconnective

system description are all upsampling or downsampling by integer amounts then the second

condition will always be satisfied. The rates obtained in this way determine those iterations
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of the processing loop where particular functions are to be executed.

3.3.3 | Asynchronous processing systems

The processing goal behind a variety of signal and data processing problems is to determine

a solution to a generally nonlinear system of equations where any solution is considered as

good as any other. Problems of this type, sometimes referred to as constraint satisfaction

problems, are predominately solved using iterative techniques after first reformulating the

problem into fixed-point form. For example, many algorithms for solving convex optimiza-

tion problems can be viewed as numerical fixed-point solvers where the fixed-point problem

corresponds to recasting the KKT conditions in Section 2.5.2 into fixed-point form. Draw-

ing upon the interconnective framework developed in this chapter, solving a broad class of

fixed-point problems can be reduced to identifying a terminal vector v? in the behavior of an

appropriately defined interconnective system s. Moreover, solving for this terminal vector

simultaneously identifies a terminal vector in the behavior of every system in [s], thus the

fixed-point problems corresponding to the interconnective systems in [s] are solved too.

A potential strategy for solving the fixed-point problem associated with an interconnec-

tive system s is to build a physical system to model the constraints of any system in [s],

and to use the steady-state behavior of the physical system provides a solution to within the

appropriate coordinate transform. This strategy is consistent with the approach to solving

network programming problems in [7] where analog circuits played the role of the physical

system. Motivated in part by this, we formulate an interconnective description of fixed-point

problems using operator methods in this subsection, and use the asynchronous implemen-

tation of the system to describe the corresponding asynchronous algorithm. This setup is

in anticipation of solving a class of fixed-point problems described in detail in the following

chapter. This setup can also be viewed as a discrete-time approximation of the strategy

above where careful synchronization between the constitutive modules and interconnects is

not required when they are implemented on different processors.

Returning to the procedure outlined at the beginning of this section for generating al-

gorithms from interconnective structures, an asynchronous processing system is defined as

any functional realization of the structure with memory inserted so that no delay-free loops

74 / 282



Chapter 3. Interconnective framework

remain. Every asynchronous processing system is associated with a system operator defined

as the generally nonlinear mapping of the terminal variables at the outputs of the delay mod-

ules to the inputs of the same delay modules in a manner consistent with the constraints of

the system. For example, a valid memory configuration for the interconnective structure in

Figure 3-3 corresponds to placing delay modules along the edges directed toward constitu-

tive modules so that the system operator maps the terminal subvector (v
(o)
1 , . . . ,v

(o)
L ) from

the output of the delays through the modules and interconnects to the input of the same

delays. It is straightforward to verify that system operators can be formed by designing

a synchronous processing loop where the delay modules are used to define overall system

inputs and outputs. In Chapter 4, system operator properties are used to state sufficient

conditions for which an asynchronous processing system solves the associated fixed-point

problem by simply letting the system settle. These asynchronous algorithms, of course, do

not explicitly require the system operator associated with a problem to be formed.

To run an asynchronous processing system, an asynchronous processing protocol is de-

fined for exchanging state by defining each delay module as an asynchronous delay element,

i.e. a randomly triggered sample-and-hold element. Specifically, for the purpose of analysis,

the behavior of an asynchronous delay element is modeled using a discrete-time sample-and-

hold state module triggered by an independent Bernoulli process. For example, a scalar

asynchronous delay element with output yn and input xn operates according to

yn =

 xn, with probability p

yn−1, with probability 1− p
(3.46)

for each n independently. The associated protocol with this state exchange behavior for an

asynchronous processing system is stated formally in the following definition.

Definition 3.3.1 (Asynchronous processing protocol). The protocol for an asynchronous

processing system with associated system operator T : RN → RN , and starting from initial

state v0 ∈ RN , corresponds to the state sequence {vn ∈ RN : n ∈ N0} generated according to

vn = D(p)T
(
vn−1

)
+
(
IN −D(p)

)
vn−1, n ∈ N (3.47)
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where D(p) is an N × N , stochastic, binary, diagonal matrix whose diagonal elements are

i.i.d. Bernoulli and independent of n, taking values D(p)
i,i = 1 with probability p and D(p)

i,i = 0

with probability 1− p.

The interpretation of the role played by the stochastic matrix D(p) in (3.47) in the con-

text of a decentralized implementation of an interconnective system is that the entries of

the terminal vector v that get updated correspond to those processors in the network which

communicate at that time instant and those entries which do not get updated correspond

to those processors which do not communicate. Furthermore, the definition above natu-

rally encompasses synchronous implementations of the processing system by setting p = 1.

Identifying sufficient conditions on the system operator T so that running an asynchronous

processing system according to the protocol above produces a state sequence that tends to

an invariant state or fixed-point of T is the central focus of Section 4.3.

3.4 | Strongly-conservative interconnecting networks

A widespread practice in deploying signal processing algorithms is to map a mathemati-

cal description of an algorithm into a predefined structure or form whose properties are

well-understood and that can be readily executed by off-the-shelf processors. For example,

in digital filtering applications where forward and inverse systems are required, it may be

convenient to use lattice structures so that coefficient quantization effects in the forward sys-

tem are easily accounted for by the inverse system [35]. Similarly, in implementing multirate

filtering systems, polyphase structures can be used to eliminate the computational burden

associated with subcomputations that do not affect the overall system output [54]. In this

section, we discuss the role played by the interconnecting network with regard to conserva-

tion principles and call attention to two organizations of an interconnecting network that

exhibit particular strong conservation principles and then derive the coordinate transforms

used to translate between these organizations.

The two forms of an interconnective description defined in this section, respectively

referred to as canonical-form and scattering-form, can be easily identified by their inter-

connecting networks and conservation principles. In particular, terminal vectors consistent
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with the interconnecting network of a system organized into canonical-form satisfy quadratic

conservation principles similar to the expression

v1v2 + v3v4 + v5v6 = 0 (3.48)

while terminal vectors consistent with the interconnecting network of a system organized

into scattering-form satisfy quadratic conservation principles similar to the expression

v2
1 − v2

2 + v2
3 − v2

4 + v2
5 − v2

6 = 0. (3.49)

The coordinate transforms relating these two forms will be referred to as scattering coordi-

nate transforms. The chosen nomenclature reflects the fact that the quadratic conservation

principle in (3.48) is reminiscent of the conservation principle satisfied by current and volt-

age terminal variables in electrical networks while the quadratic conservation principle in

(3.49) corresponds to the conservation principle satisfied by the scattering parameter rep-

resentation of an electrical network [55]. These two descriptions or forms set the stage for

the following two chapters where, in Chapter 5, connections between canonical-form systems

and optimality conditions for solving certain optimization problems are established, and this

connection can be taken advantage of by the scattering-form description of the system, which

is shown in Chapter 4 to be robust to asynchronous processing issues for a wide variety of

data processing problems. Before defining these forms, we first discuss the interplay between

conservation principles, coordinate transforms, and interconnective equivalence classes.

3.4.1 | Conservation principles for equivalent interconnecting networks

Let sk denote a signal processing system for each value of k whose fixed-coordinate inter-

connective description R(k)
fc is given by

R(k)
fc = (V, D(k)

p , D(k)
i , Mk) (3.50)

where the terminal space V is even-dimensional and defined over a real field. Using the

conservation framework originally developed in [11] and summarized in Section 2.4, let O(k)
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denote an organization of (V, 〈·, ·〉V) where 〈·, ·〉V denotes the standard inner product on V

and the organization O(k) is of the form

O(k) = (Ck,D(k)
p ,D(k)

c ) (3.51)

where the connection between the partition decompositions D(k)
p in (3.50) and (3.51) was es-

tablished in the discussion surrounding (3.6). Drawing upon the definition of a conservation

principle in Section 2.4.2, the behavioral model of the interconnecting network described as

the vector space W (k) is said to be conservative with regard to the organization O(k) if

〈Ckv,v〉V = 0, v ∈W (k). (3.52)

In the remainder of this subsection, we assume (3.52) holds for k = 1.

The central result in this subsection is that every interconnective system sk ∈ [s1] is

conservative with regard to the organization O(k) in (3.51) where the elements composing

the organization O(k) are related to the elements of the organization O(1) according to

Ck = (M1M
−1
k )TC1M1M

−1
k (3.53)

D(k)
p = MkM

−1
1 D

(1)
p (3.54)

D(k)
c = MkM

−1
1 D

(1)
c . (3.55)

The assertion in (3.53) is justified by application of the identity in (2.24) as follows:

q(v) = 〈C1v, v〉, v ∈M1M
−1
k Wk (3.56)

= 〈C1M1M
−1
k v, M1M

−1
k v〉, v ∈Wk (3.57)

= 〈(M1M
−1
k )TC1M1M

−1
k︸ ︷︷ ︸

Ck

v, v〉, v ∈Wk. (3.58)

Furthermore, the transformation of the partition decomposition in (3.54) agrees with the

transformation required by the assumption s1 ∼ sk in (3.21). It is straightforward to verify

that if the coordinate matricesM1 andMk in (3.54) are block diagonal with matching blocks
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sizes, then any partition decomposition described using direct products as demonstrated by

(3.3) will be invariant to the coordinate transform MkM
−1
1 . To summarize, every inter-

connective system that can be obtained by applying a coordinate transform to an initial

conservative system is itself a conservative system, and the interconnecting network of the

initial system being conservative is sufficient for the transformed system to be conservative

under any such coordinate transform.

3.4.2 | Canonical-form interconnective systems

In this subsection, we define a canonical-form interconnective description to model the

subset of strongly conservative signal processing systems whose terminal vectors satisfy

conservation principles akin to the quadratic form in (3.48). To do this, we first define

the components of a canonical-form interconnective description through skew-symmetry

properties of its interconnecting network, and then we associate the description with a

canonical-form organization. For brevity in future use of this form, we then express the

class of canonical-form systems using an interconnective graph. Properties of canonical-

form systems are used in Chapter 5 to derive variational interpretations of conservative

signal processing systems, and this analysis allows for the straightforward modular design

of optimization algorithms realized as conservative signal processing systems.

Let s(c) denote a signal processing system whose interconnective description R(c)
fc is

defined as being in canonical form and is given by

R(c)
fc , (V(c), D(c)

p , D(c)
i , Mc) (3.59)

where the elements composing (3.59) take the general form

V(c) = R2(R(c)+L(c)) (3.60)

D(c)
p = span(e(1), . . . , e(2(R(c)+L(c)))) (3.61)

D(c)
i = {W (c), F (c)} (3.62)

and where the coordinate mapMc is a 2(R(c) +L(c))×2(R(c) +L(c))-dimensional linear map
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or matrix. Referring to the interconnective decomposition D(c)
i in (3.62), the constitutive

module F (c) is an arbitrary memoryless relation defined on the entire set of terminal vari-

ables, and the interconnecting network W (c) is specifically a subspace of V(c) generated by

a matrix A : RR(c) → RL(c) and takes the form

W (c) =


v ∈ V(c) : v =



a
(c)
1

b
(c)
1

a
(c)
2

b
(c)
2


,

 A 0 −IL(c) 0

0 IR(c) 0 AT




a
(c)
1

b
(c)
1

a
(c)
2

b
(c)
2


=

 0

0




(3.63)

= range





IR(c) 0

0 −AT

A 0

0 IL(c)




. (3.64)

Note that the description of the vector spaceW (c) in (3.63) corresponds to a constraint-form

encoding of the interconnecting network.

In dealing with equivalence classes in general settings, the concept of a class representa-

tive is often used to designate a particular member of each equivalence class that is special in

some sense. Formally defining a representative requires an injective mapping to exist from

an equivalence class to the representative. In the context of interconnective equivalence

classes, the conditions required for an interconnective description to be in canonical form

are not sufficient for s(c) to be a representative of [s(c)]. Indeed, applying any interconnection

invariant coordinate transform from Section 3.5.2 produces a system s′ ∈ [s(c)] that also has

a canonical form representation. Also, a representative must be defined on all equivalence

classes, including those that do not contain conservative systems.

Moving forward, we equip the terminal space V(c) in (3.60) with the standard inner

product and associate the canonical-form interconnective description of a system with a

canonical organization O(c) defined by

O(c) , (Cc,D(c)
p ,D(c)

c ) (3.65)
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where the connection between the partition decompositions D(k)
p in (3.61) and (3.65) was

established in the discussion surrounding (3.6). The correspondence map and conjugate

decomposition in (3.65) take the form

Cc =
1

2



0 IR(c) 0 0

IR(c) 0 0 0

0 0 0 IL(c)

0 0 IL(c) 0


(3.66)

D(c)
c =

{
span

(
e(1), . . . , e(R(c)+L(c))

)
, span

(
e(R(c)+L(c)+1), . . . , e(2(R(c)+L(c)))

)}
.(3.67)

In describing canonical organizations, the associated comparison space is (RR(c)+L(c)
, 〈·, ·〉RR(c)+L(c) )

where the inner product is the standard inner product and the conjugate maps are given by

M
(c)
A =

√
2

 IR(c) 0 0 0

0 0 IL(c) 0

 (3.68)

and

M
(c)
B =

√
2

 0 IR(c) 0 0

0 0 0 IL(c)

 . (3.69)

For these conjugate maps and the partitioning scheme of the terminal vector v in (3.63),

the conservation principle associated with a canonical organization may be written in the

comparison space as

〈 a
(c)
1

a
(c)
2

 ,
 b

(c)
1

b
(c)
2

〉
RR(c)+L(c)

= 0, (a
(c)
1 ,b

(c)
1 ,a

(c)
2 ,b

(c)
2 ) ∈W (c), (3.70)

which is reminiscent of the form (3.48) where the terminal vector v has been partitioned

into an equal number of a and b variables.

Interconnective structures describing signal processing systems in canonical form are

illustrated in Figure 3-7 where the structure in (a) depicts a behavioral model represented
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(a) General canonical-form structure (b) Realized canonical-form structure

Figure 3-7: Interconnective descriptions of a signal processing system in canonical form. (a) The
interconnective structure corresponding to a generic canonical-form description. (b) A realization of
the interconnective structure in (a) corresponding to the input-output configuration in (3.71).

as a graph according to the partitioning of v in (3.63) and the structure in (b) corresponds

to a functional realization of the structure in (a) according to the input-output configuration

 Inputs: a
(c)
1 , b

(c)
2

Outputs: b
(c)
1 , a

(c)
2

⇐⇒ P =



IR(c) 0 0 0

0 0 0 IL(c)

0 IR(c) 0 0

0 0 IL(c) 0


. (3.71)

The functional realization of the interconnecting network as a matrix that is consistent with

the input-output configuration P is readily obtained using the procedure in Section 3.3 or

by inspection of the graph and is given by

 b
(c)
1

a
(c)
2

 =

0 −AT

A 0


 a

(c)
1

b
(c)
2

 . (3.72)

In the coming chapters, we will frequently be interested in assembling large-scale signal

processing systems by connecting together a number of constitutive modules and inter-

connects to form a canonical-form system where the partition decomposition is specifically

chosen to be maximal. To be consistent with the definition above, the partition decomposi-

tion in (3.61) is organized for these systems into a collection of R(c) + L(c) two-dimensional
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subspaces (using direct sums for notational convenience) according to

D(c)
p =

{
span

(
e(1), e(R(c)+1)

)
, . . . , span

(
e(R(c)), e(2R(c))

)
,

span
(
e(2R(c)+1), e(2R(c)+L(c)+1)

)
, . . . , span

(
e(2R(c)+L(c)), e(2(R(c)+L(c)))

)}
.
(3.73)

The constitutive modules are then each decomposable into individual relations in R2. When

a system in canonical-form utilizes (3.73), we shall refer to the system as being in maximal

canonical form.

3.4.3 | Scattering-form interconnective systems

In this subsection, we define a scattering-form interconnective description to model the

subset of strongly conservative signal processing systems whose terminal vectors satisfy con-

servation principles akin to the quadratic form in (3.49). To do this, we first define the com-

ponents of a scattering-form interconnective description through orthogonality properties of

its interconnecting network, and then we associate the description with a scattering-form

organization. For brevity in future use of this form, we then express the class of scattering-

form systems using an interconnective graph. Scattering-form systems aid the presentation

in Chapter 4 where fixed-point and constraint satisfaction problems are linked to conser-

vative signal processing systems, and implementations of scattering-form systems, referred

to as scattering algorithms, are shown to possess strong stability and robustness properties

when organized into asynchronous processing systems.

Let s(s) denote a signal processing system whose interconnective description R(s)
fc is

defined as being in scattering form and is given by

R(s)
fc , (V(s), D(s)

p , D(s)
i , Ms) (3.74)
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where the elements composing (3.74) take the general form

V(s) = R2(R(s)+L(s)) (3.75)

D(s)
p = span(e(1), . . . , e(2(R(s)+L(s)))) (3.76)

D(s)
i = {W (s), F (s)} (3.77)

and where the coordinate mapMs is a 2(R(s) +L(s))×2(R(s) +L(s))-dimensional linear map

or matrix. Referring to the interconnective decomposition D(s)
i in (3.77), the constitutive

module F (s) is an arbitrary memoryless relation defined on the entire set of terminal vari-

ables, and the interconnecting network W (s) is specifically a subspace of V(s) generated by

an orthogonal matrix Q : RR(s)+L(s) → RR(s)+L(s) and takes the form

W (s) =


v ∈ V(s) : v =



c
(s)
1

d
(s)
1

c
(s)
2

d
(s)
2


,

d(s)
1

d
(s)
2

−Q
c(s)

1

c
(s)
2

 =

 0

0



. (3.78)

Note that the description of the scattering-form interconnecting network in (3.78) uses a

constraint-form encoding. Similar to the previous discussion of equivalence class representa-

tives for canonical-form systems, the conditions required for an interconnective description

be in scattering form are not sufficient for a representative of an equivalence class [s(s)] to

be defined.

Equipping the terminal space V(s) in (3.75) with the standard inner product, we associate

the scattering-form interconnective description of a system with a scattering organization

O(s) defined according to

O(s) , (Cs,D(s)
p ,D(s)

c ) (3.79)

where the connection between the partition decompositions D(s)
p in (3.76) and (3.79) was

established in the discussion surrounding (3.6). The correspondence map and conjugate
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decomposition in (3.79) take the form

Cs =



IR(s) 0 0 0

0 −IR(s) 0 0

0 0 IL(s) 0

0 0 0 −IL(s)


(3.80)

D(s)
c =

{
span

(
e(1), . . . , e(R(s)+L(s))

)
, span

(
e(R(s)+L(s)+1), . . . , e(2(R(s)+L(s)))

)}
.(3.81)

In describing scattering organizations, the associated comparison space is (RR(s)+L(s)
, 〈·, ·〉RR(s)+L(s) )

where the inner product is the standard inner product and the conjugate maps are given by

M
(s)
A =

 IR(s) IR(s) 0 0

0 0 IL(s) IL(s)

 (3.82)

and

M
(s)
B =

 IR(s) −IR(s) 0 0

0 0 IL(s) −IL(s)

 . (3.83)

For these conjugate maps and the partitioning scheme of the terminal vector v in (3.78),

the conservation principle associated with a scattering organization may be written in the

comparison space as

〈 c
(s)
1 + d

(s)
1

c
(s)
2 + d

(s)
2

 ,
 c

(s)
1 − d

(s)
1

c
(s)
2 − d

(s)
2

〉
RR(s)+L(s)

=

∥∥∥∥∥∥∥
 c

(s)
1

c
(s)
2


∥∥∥∥∥∥∥

2

−

∥∥∥∥∥∥∥
 d

(s)
1

d
(s)
2


∥∥∥∥∥∥∥

2

(3.84)

and evaluates to zero for all (c
(s)
1 ,d

(s)
1 , c

(s)
2 ,d

(s)
2 ) ∈ W (s). This conservation principle is

reminiscent of the form (3.49) where the terminal vector v has been partitioned into an

equal number of c and d variables.

Interconnective structures describing signal processing systems in scattering form are

illustrated in Figure 3-8 where the structure in (a) depicts a behavioral model represented

as a graph according to the partitioning of v in (3.78) and the structure in (b) corresponds
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(a) General scattering-form structure (b) Realized scattering-form structure

Figure 3-8: Interconnective descriptions of a signal processing system in scattering form. (a) The
interconnective structure corresponding to a generic scattering-form description. (b) A realization
of the interconnective structure in (a) corresponding to the input-output configuration in (3.85).

to a functional realization of the structure in (a) according to the input-output configuration

 Inputs: c
(s)
1 , c

(s)
2

Outputs: d
(s)
1 , d

(s)
2

=⇒ P =



IR(s) 0 0 0

0 0 IL(s) 0

0 IR(s) 0 0

0 0 0 IL(s)


. (3.85)

The functional realization of the interconnecting network as a matrix that is consistent with

the input-output configuration P is readily obtained using the procedure in Section 3.3 or

by inspection of the graph and is given by

 d
(s)
1

d
(s)
2

 = Q

 c
(s)
1

c
(s)
2

 . (3.86)

Similar to the case of a canonical-form description, we will frequently be interested in

assembling large-scale signal processing systems by connecting together many independent

constitutive modules and interconnects to form a scattering-form system where the partition

decomposition is specifically designed to be maximal. To be consistent with the definition

above, the partition decomposition in (3.76) is organized for these systems into a collection

of R(s) + L(s) two-dimensional subspaces (using direct sums for notational convenience)
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according to

D(s)
p =

{
span

(
e(1), e(R(s)+1)

)
, . . . , span

(
e(R(s)), e(2R(s))

)
,

span
(
e(2R(s)+1), e(2R(s)+L(s)+1)

)
, . . . , span

(
e(2R(s)+L(s)), e(2(R(s)+L(s)))

)}
.
(3.87)

The constitutive modules are then each decomposable into individual relations in R2. When

a system in scattering form utilizes (3.87), we shall refer to the system as being in maximal

scattering form.

3.4.4 | Scattering coordinate transforms

In this subsection, we present the scattering coordinate transform used to move between

canonical-form and scattering-form descriptions of a system. To do this, we focus on ma-

nipulating the interconnective description of a system that has a maximal partition de-

composition and is initially represented in canonical form. By symmetry, and the fact that

coordinate transforms are required to be invertible, this presentation also defines the scatter-

ing coordinate transform used to manipulate a system initially described in scattering form

to a canonical form description, assuming a canonical-form description exists. One benefit

to focusing on canonical and scattering descriptions with maximal partition decompositions

is that the same coordinate transform will also work between systems with non-maximal

partition decompositions.

Without loss of generality, let the coordinate matrix Mc associated with a canonical-

form structure be the identity matrix and let R = R(c) = R(s) and L = L(c) = L(s). Then,

by inspection of the canonical and scattering organizations, and (3.68) through (3.70) and

(3.82) through (3.84) in particular, it is straightforward to verify that a valid scattering

coordinate transform is summarized by



c
(s)
1

d
(s)
1

c
(s)
2

d
(s)
2


=



IR −IR 0 0

IR IR 0 0

0 0 −IL IL

0 0 IL IL


︸ ︷︷ ︸

MsM
−1
c



a
(c)
1

b
(c)
1

a
(c)
2

b
(c)
2


. (3.88)
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Figure 3-9: An illustration of the coordinate transform in (3.88) applied to a relation belonging to
maximal canonical-form structure. The shaded regions indicate that passivity in the (a,b) coordinate
system results in passivity in the (c,d) coordinate system [1].

This transformation matrix is easily verified to be unique to within matched pairwise multi-

plication of columns that preserve any partition decomposition by ±1 and matched column

scalings where the matching refers to columns i and i+R for 1 ≤ i ≤ R and columns i and

i + L for 2R + 1 ≤ i ≤ 2R + L. Importantly, the sparsity pattern in (3.88) is sufficient to

preserve the partition decompositions in (3.61) and (3.76) and preserve the maximal parti-

tion decompositions in (3.73) and (3.87). The action of this coordinate transformation, and

by symmetry the inverse coordinate transformation, is discussed next with regard to the

constitutive modules and interconnecting networks separately.

Consider an interconnective system organized into a maximal canonical-form description

where the canonical constitutive module F (c) in (3.62) decomposes according to

F (c) = F (1)
1 × · · · × F (1)

R ×F
(2)
1 × · · · × F (2)

L (3.89)

where F (1)
r denotes the relation coupling the variables (a,b) = (a

(c)
1,r,b

(c)
1,r) corresponding to

the r-th entries of a(c)
1 and b

(c)
2 and F (2)

l similarly denotes the relation coupling the variables

(a,b) = (a
(c)
2,l ,b

(c)
2,l ) corresponding to the l-th entries of a

(c)
2 and b

(c)
2 . The conservation

principle in (3.70) is expressed using this notation as the sum of terms ab = 0 where the

sum is over the R + L relations in (3.89). The variables (c,d) used in the scattering-form

description of the system can be obtained using (3.88) or using R+L smaller transformations
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as follows. For each relation F (1)
r the transformed variables (c,d) = (c

(s)
1,r,d

(s)
1,r) corresponding

to the r-th entries of c(s)
1 and d

(s)
1 are generated from (a,b) = (a

(c)
1,r,b

(c)
1,r) according to

 c

d

 =

 1 −1

1 1


︸ ︷︷ ︸

,M(i)

 a

b

 . (3.90)

Similarly, for each relation F (2)
l the transformed variables (c,d) = (c

(s)
2,l ,d

(s)
2,l ) corresponding

to the l-th entries of c(s)
2 and d

(s)
2 are generated from (a,b) = (a

(c)
2,l ,b

(c)
2,l ) according to

 c

d

 =

 −1 1

1 1


︸ ︷︷ ︸

,M(o)

 a

b

 . (3.91)

A maximal scattering-form system has relations that constrain (c,d) pairs satisfying the

conservation principle c2 − d2 = 0. The matrix M (i) defined in (3.90) corresponds to a

scaled rotation by π
4 and the matrixM (o) defined in (3.91) corresponds to a squeeze mapping,

i.e. a transformation which preserves Euclidean area in the plane which is not a rotation or a

sheer transformation. Figure 3-9 illustrates these transformations for the example relation in

(2.7) which is repeated on the left of the figure for completeness. More generally, the figure

illustrates that relations in the (a,b)-plane contained within the first and third quadrants

map to conic sections in the (c,d)-plane as indicated by the shaded regions. This well-

known result is referred to as incremental passivity in the controls community and will play

an important role in Chapter 5 [1].

A closed-form expression for the matrix Q denoting a realization of the scattering-form

interconnecting network that is consistent with the input-output configuration P in (3.85)

and that is stated in terms of the matrix A from the canonical-form interconnecting net-

work W (c) in (3.63) can be obtained by following the procedure developed in Section 3.3.1.

Specifically, by following the steps associated with (3.37), the transformed interconnect

W (s) = MsM
−1
c W (c) with rows permuted to conform to the input-output configuration can

be written as the range of an appropriately defined matrix. For the setup in this subsection,
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this corresponds to



c(1)

c(2)

d(1)

d(2)


∈ range





IR 0 0 0

0 0 IL 0

0 IR 0 0

0 0 0 IL


︸ ︷︷ ︸

input-output config. in (3.85)



IR −IR 0 0

IR IR 0 0

0 0 −IL IL

0 0 IL IL


︸ ︷︷ ︸
coordinate transform in (3.88)



IR 0

0 −AT

A 0

0 IL


︸ ︷︷ ︸
W (c) in (3.63)


(3.92)

∈ range





IR AT

−A IL

IR −AT

A IL




. (3.93)

By direct application of (3.38) we immediately obtain that the realization Q is given by

Q =

IR −AT

A IL


 IR AT

−A IL


−1

(3.94)

=

(IR −ATA) (IR +ATA
)−1 −2AT

(
IL +AAT

)−1

2A
(
IR +ATA

)−1 (
IL −AAT

) (
IL +AAT

)−1

 (3.95)

where the matrix inverse in (3.94) is guaranteed to be well-defined and (3.95) is obtained from

(3.94) by application of the matrix inversion lemma. The inversion of (3.94) follows from

the observation that the inverse is applied to an identity matrix added to a skew-symmetric

matrix which cannot result in a zero-valued eigenvalue. Indeed, further inspection of (3.94)

yields that Q is the Cayley transform2 of the negative of the realization of the canonical form

matrix in (3.72) and that the block diagonal components of Q in (3.95) are respectively the

Cayley transform of ATA and AAT . The implication of this observation is that Q will always

have eigenvalues bounded away from −1 on the unit circle, and will become important in

Chapter 4 in the context of stability analysis. Note that only special orthogonal matrices

2The Cayley transform is a single-parameter family of transforms. The parameter will not matter to us
due to the invariance of (3.88) to matched column scalings.
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Q will map through the inverse Cayley transform to produce a canonical-form interconnect,

and so we will primarily be interested in orthogonal form structures where this is possible.

When A is itself an orthogonal matrix, the expression for Q in (3.95) simplifies to

Q =

 0 −AT

A 0

 (3.96)

which is identical to the realization of the canonical form interconnect for the input-output

configuration in (3.71). Said another way, the coordinate transform between scattering-

form and canonical-form descriptions in (3.88) is an interconnection invariant coordinate

transform when A is an orthogonal matrix. In the context of implementing interconnective

systems, the consequence of (3.96) is that when A denotes an orthogonal transform for which

a fast implementation exists, such as a fast Fourier transform algorithm, then the same fast

implementation may be used to implement Q.

3.5 | Properties of equivalent interconnective systems

So far in this chapter, we have seen that every interconnective system s belongs to an

equivalence class [s] and that, by properly selecting the coordinate matrix and input-output

configuration, some of the systems in [s] may be organized into realized interconnective

structures and then algorithms. In this section, we present several properties pertaining to

groups of systems belonging to the same interconnective equivalence class.

3.5.1 | Redundancy in coordinate maps and input-output configurations

The design task in many signal processing contexts is specifically to invert a generally non-

linear and time-varying forward system, assuming of course that an inverse system exists.

Previous approaches in the literature have had varying degrees of success with this task, of-

ten resorting to blending heuristics with graph based techniques [18, 56–58]. As was briefly

discussed in [17], methods similar to the procedure in Section 3.3 for designing synchronous

processing loops can be leveraged to automate the inversion of many signal processing sys-

tems. In this subsection, we state this more clearly in the context of the interconnective
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framework and use it to illustrate the redundancy that exists between selecting coordinate

matrices and input-output configurations.

The behavior of an invertible forward operator is closely related to the behavior of the

inverse operator, as demonstrated by (2.1) through (2.3). Similar to this, the interconnective

description of a forward signal processing system is in the same interconnective equivalence

class as the interconnective description of a signal processing system that inverts it, again

assuming that an inverse system is well-defined. To see this, let s denote an interconnective

system using coordinate matrixM and whose implementation corresponding to input-output

configuration P is known to be invertible. Without loss of generality, assume there are an

equal number of overall system inputs and outputs and that they are organized into the

first constitutive module F1 such that the inputs appear above the outputs in v
(CR)
1 . Let

s′ denote the inverse system. The coordinate matrix M ′ and input-output configuration

P ′ associated with s′ can be related to M and P in at least two ways. In the first, the

coordinate matrix M ′ = M is preserved and the input-output configuration P ′ is generated

from P by modifying the overall system inputs and outputs to be outputs and inputs,

respectively. In the second, the input-output configuration P ′ = P is preserved and the

coordinate submatrix M ′1 is generated from M1 according to the permutation

M ′1 =

 0 I

I 0

M1. (3.97)

The symmetry between these definitions of the system s′ highlight an important comple-

mentarity property between general coordinate matrices and input-output configurations.

From either description of s′, the procedure for obtaining a synchronous processing loop can

then be used to generate an implementation of s′ to invert s. Hence, this property suggests a

straightforward way to automate the inversion of many signal processing systems. However,

the fact that s and s′ are equivalent descriptions of the same underlying behavioral model

is not sufficient to conclude that a schedule for s′ will be successfully identified without

imposing additional structure on s.
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3.5.2 | Interconnection invariant coordinate transforms

In Section 3.3.1 we presented a general approach as well as developed some numerical tools

for obtaining a collection of functions fk and matrices Al with respective behaviors Fk and

Wl. The key step in that process is the selection an appropriate coordinate matrix and input-

output configuration so that the mapping objects are well-defined. In this subsection, we

characterize the set of all coordinate matrices for which the realization of the interconnecting

network remains the same and provide a straightforward numerical recipe to generate them.

To elaborate, let s denote an interconnective system with coordinate matrix M . We shall

say that the coordinate transform M ′M−1 used to represent s as an equivalent system

s′ ∈ [s] with coordinate matrix M ′ is an interconnection invariant coordinate transform if

the realization of the interconnecting network for both systems is the same matrix. The

realization of the constitutive modules, when they exist, will generally be different. This

observation lends itself to generating implementations of interconnective systems for which a

decentralized architecture for the interconnects has been found but for which the constitutive

modules are not directly realizable. In particular, performing coordinate transforms of

this type can be used to generate functional realizations of the constitutive modules while

retaining the robustness and separability of the interconnecting network, thereby allowing

algorithms to be found for decentralized systems without modifying the topology of the

decentralized interconnective graph.

Let A and P respectively denote a realization of the interconnecting network and the

associated input-output configuration of an interconnective system s. The collection of

all coordinate matrices associated with systems in the equivalence class [s] with the same

interconnecting network realization A and input-output configuration P are parameterized

using the generic coordinate matrix M according to

 P


 M


 I

A

 [R ]
=

 I

A

 (3.98)

where R is any dim(W )×dim(W ) invertible matrix. If we restrict ourselves to Dp-invariant

coordinate matrices then the sparsity pattern ofM is further constrained by the direct prod-
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uct decomposition of V used to define the partition decomposition Dp, i.e.M is composed of

K diagonal submatrices Mk each of size dimVk × dimVk. The use of the matrix R in (3.98)

follows from the fact that the subspace generated by the span of the columns of a matrix

is invariant to the right multiplication of the matrix by any invertible matrix [34]. In the

context of realizing interconnective systems, a complementary approach that reverses the

steps outlined in Section 3.3.1 is to specifically generate a realization of the interconnecting

network first and then draw coordinate matrices from (3.98) until the constitutive modules

can also be realized as functions.

We now present a numerical procedure to generate interconnection invariant coordinate

matricesM satisfying (3.98). To assist with the notation in doing this, we define a matrix C

whose range is equal to the interconnect subspace W using the realization A, i.e. a natural

choice for C is given by

C =

 I

A

 , (3.99)

and define the function d : RN×N × Rdim(W )×dim(W ) → R according to

d(M,R) = ‖PMCR− C‖2F (3.100)

where ‖A‖F =
√

trace(ATA) denotes the Frobenius matrix norm. By construction, any

appropriately block diagonal matrix M ′ and invertible matrix R′ for which d(M ′, R′) = 0

defines an interconnection invariant coordinate transform from an initial coordinate matrix

M associated with A to the coordinate matrix M ′ according to M ′M−1. The function d

is biconvex, i.e. the function d(M, ·) is convex in its second argument for fixed M and the

function d(·, R) is convex in its first argument for fixed R. This property suggests an efficient

method to solve for a block diagonal matrix M is to use an alternating projection approach.

Specifically, letM (0) denote an initial coordinate matrix and R(0) an initial invertible matrix.
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The procedure is to iteratively solve the least squares problems

M (k) = arg min
M
‖PMCR(k) − C‖2F s.t. M block diagonal (3.101a)

R(k+1) = arg min
R
‖PM (k)CR− C‖2F (3.101b)

until d
(
M (k), R(k+1)

)
= 0. Each step in (3.101) can be solved in closed form since they

are simply linearly constrained and unconstrained least squares problems, respectively. The

stopping criterion implies that R is invertible as required. As a final remark, note that

the initial guess M (0) is critical to identifying coordinate transformations which are not

stationary, e.g. the initial coordinate matrix M and R = I is a solution to the iterative

procedure that yields a fairly uninteresting coordinate transformation.

3.5.3 | Numerical sensitivity of interconnecting networks

Large-scale signal processing systems, notably those involved in solving machine learning

and big data problems, make ubiquitous use of linear algebra subroutines. In the context of

implementing decentralized interconnective systems, numerical errors inevitably arise during

the execution of the interconnecting network when the individual interconnects are imple-

mented using different digital processors which may further have varying bit-depths or num-

ber systems. In asynchronous processing systems, for example, each processor, independent

of every and all other processors, is assigned and continually implements a different matrix,

therefore propagating numerical errors throughout the graph in a relatively unpredictable

manner. These types of errors are typically understood through an assortment of pertur-

bation and sensitivity analysis tools. For example, finite-precision effects such as coefficient

quantization can be quantified by invoking sensitivity theorems as discussed, e.g., in [35].

These sources of error contribute significantly to the total accumulated error in a system’s

output, especially as problem sizes continue to scale. To evaluate the numerical sensitivity

of decentralized interconnecting networks in this thesis, we will primarily restrict our anal-

ysis to the sensitivity and robustness of the global interconnecting network rather than, for

example, the individual interconnects or constitutive modules. In Chapter 4, in the context

of synchronous and asynchronous stability analysis, we will consider a broader classification
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of the entire system’s robustness to a variety of network disturbances using conic properties

and well-known concepts of continuity.

Motivated by the extensive use of floating-point arithmetic in modern digital signal

processing platforms, we measure the sensitivity of a matrix to many perturbation sources

using its relative condition number, i.e. the ratio of the matrix’s extremal singular values.

Loosely speaking, if this measure is on the order 10k, then approximately d − k digits of

the processed output are reliable where d is the maximum number of digits available on the

chosen computational platform [2]. This loss of accuracy is inherent to the matrix itself and

says nothing about further degradations that accumulate due to a particular constitutive

modules stability nor to errors that arise due to round-off noise and coefficient quantization.

When evaluating the numerical sensitivity of a realization A of the interconnect W , we will

use a suitably modified version of the relative condition number where we take the ratio

of the largest to smallest non-zero singular values of A, i.e. we use the modified condition

number κ̂(A) given by

κ̂(A) = ‖A‖‖A†‖−1 (3.102)

where A† denotes the Moore-Penrose pseudo inverse of A and the term ‖A†‖ evaluates to

the smallest non-zero singular value of A and can be equivalently expressed according to

‖A†‖ = min
x∈range(A)
‖x‖=1

‖ATx‖. (3.103)

The expression (3.102) also has a simple interpretation: it is the ratio between the relative

change or error in the interconnecting network due to a small perturbation of its input with

respect to the relative size of the perturbation itself where the modification is justified using

the fact that the number of interconnect inputs N (i) and outputs N (o) are frequently not the

same and having repeated outputs generates a non-trivial null space that is not a reflection

of numerical instability. In what follows, we refer to to interconnecting network as being

either ill-conditioned or well-conditioned, consistent with the traditional treatment of this

topic. If an interconnecting network is ill-conditioned, i.e. if κ̂(A) � 0, it means that the
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matrix A is extremely sensitive, in the relative sense, to perturbations in its input. On the

contrary, if the interconnecting network is well-conditioned, i.e. if κ(A) u 1, then the matrix

does not rapidly change in value as small perturbations to the input are made.

The numerical sensitivity of the interconnecting network associated with interconnec-

tive structures within the same equivalence class can generally range from ill-conditioned to

well-conditioned. For example, the modified condition number of the functional realization

of the interconnecting network associated with a canonical-form system can be arbitrarily

large, while the conditioning of the interconnecting network associated with the equivalent

scattering-form system is perfect. Of course, this fact assumes that the numerical compu-

tation described by (3.95) for generating the orthogonal matrix Q from the skew-symmetric

matrix A is unaffected by the ill-conditioning of the matrix A.

3.6 | Examples of interconnective systems

In this chapter, we established an interconnective framework to handle behavioral models

of large-scale signal processing systems and then used it to various ends. In this section, we

present two examples to further illustrate the utility of the framework. First, the constraint-

form encoding of a system’s interconnecting network presented in Section 3.3.1 is used

to eliminate delay-free loops in allpass-warped signal-flow graphs. Second, a nonuniform

sampling system that characterizes bandlimited signals using level crossings that correspond

to nonuniform sampling instants is described. Using the interconnective viewpoint, we

show that this procedure is essentially mapping the behavior of the input signal through

a particular coordinate transform followed by standard periodic sampling. This example

serves a dual purpose in that it provides direction for generalizing the tools developed in

this chapter to handle broader classes of signal processing systems than we consider in this

thesis as well introduces the notion of an interconnective signal model. In closing, we remark

that a promising strategy for future research involves characterizing known signal processing

systems using the interconnective framework and then using the interconnective equivalence

classes established in Section 3.2.3 to provide new insight or benefit, e.g. for purposes of

analysis, implementation, or interpretation.
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3.6.1 | Delay-free loop reduction in allpass-warped filter structures

Linear and nonlinear signal-flow graphs, commonly used to represent signal processing and

filtering systems graphically, are often interpretable as mixtures of both behavioral and

input-output descriptions of a system. Signal-flow representations of allpass-warped filtering

structures, for example, may contain elements with well-defined input-output relationships

as well as elements that readily form implicit algebraic constraints. In this subsection, we

demonstrate the utility of the procedure that was developed in Section 3.3.1 for eliminating

implicit constraints manifesting themselves in a signal-flow graph as delay-free loops or

cycles. In doing so, the interconnective description of a system is used as an intermediary

representation of these constraints and is also used to preserve the input-output configuration

from the initial signal-flow description of the system while manipulating the behavior of the

interconnecting network into a computable form.

LetH(z) denote the system function or z-transform of an impulse response corresponding

to a stable, all-pole second order filtering system of the form

H (z) =
1

1− a1z−1 − a2z−2
. (3.104)

A signal-flow implementation of H(z) may use any number of well-known structures. We

proceed focusing on direct-form structures with an understanding that the same sequence of

steps would apply to other forms as well, e.g. lattice or farrow structures. Next, the filtering

system is composed by taking the flow-graph implementation of H(z) and replacing each

delay element z−1 with the first-order all-pass system Hap(z) given by

Hap (z) =
z−1 − α
1− αz−1

(3.105)

where the free parameter α ∈ (−1, 1) controls the warping effect on the phase response in

the Fourier transform of the original filtering system and may be desired for the applications

identified in [59]. The signal-flow structure of the warped filtering system is illustrated in

Figure 3-10(a) and can be interpreted as indicating that the overall system output yn is to

be explicitly computed as a function of the overall system input xn and the two previous
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(a) Allpass warped signal-flow graph

Figure 3-10: An illustration of the procedure for realizing interconnecting networks, shown for a
second-order all-pole system in direct form where the delays have been replaced by first-order allpass
elements. (a) The signal-flow graph containing delay-free loops. (b) The interconnective description
of the system in (a). (c) The interconnective description using a constraint-form encoding of the
interconnecting network. (d) A computable system with a matrix A whose behavior is W from (c).

outputs yn−1 and yn−2, and also that the computation should satisfy a set of implicit

algebraic constraints despite the fact that the functional form of the overall computation is

not immediately visible by inspection of the signal-flow graph.

An interconnective description of the filtering system after the warping or composition

has been performed is depicted in Figure 3-10(b) and corresponds to an equivalent analytic
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description of the system given by

V = C6 (3.106)

Dp =
{
C2,C2,C2

}
(3.107)

Di = {W,F1 ×F2 ×F3} (3.108)

M =


I2 0 0

0 I2 0

0 0 I2

 (3.109)

where the first constitutive module F1 contains the overall system input and output, the

second and third constitutive modules F2 and F3 correspond to synchronous delay modules,

and the vector space description of the interconnecting network W is expressed using a

constraint-form encoding according to

W =



v ∈ C6 :


0 1 −1 α 0 0

0 0 −α 1 −1 α

−1 1 −αa1 a1 −αa2 a2





v1

v2

v3

v4

v5

v6


=


0

0

0





. (3.110)

Referring to Figure 3-10, the sequence of steps depicted by the interconnective structures

in (b) through (d) illustrate the effectiveness of the proposed realization strategy in synthe-

sizing a computable interconnecting network from the composed signal-flow representation

containing delay-free loops, and in this sense represent an automated way to obtain a so-

lution to the class of problems discussed in [26]. Referring to structures (b) through (d) in

100 / 282



Chapter 3. Interconnective framework

the figure, the descriptions conform to the input-output configuration

 Inputs: v1, v4, v6

Outputs: v2, v3, v5

⇐⇒ P =



1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0


. (3.111)

The matrix used in the description of the interconnecting network in (3.110) corresponds

to a constraint-form encoding of the linear and memoryless constraints in the structure in

Figure 3-10(b), and from this we obtain that the behavior of the interconnecting network

can also be written as the range of a matrix C as demonstrated by (3.37). For the chosen

input-output configuration, C is given by

C =



α2−αa1+a2
α2

(α2−1)(a2−αa1)

α2

(1−α2)a2
α

−α−1 α−1 0

α−2 α2−1
α2 α−1

1 0 0

0 1 0

0 0 1


. (3.112)

Observe that the top three rows of (3.112) correspond to a matrix that is the realization of

the interconnecting network for an inverse filtering system with the opposite input-output

configuration and is consistent with the earlier discussion that forward and inverse systems

belong to the same equivalence class. Making use of (3.38), the interconnecting network can

be realized by a matrix A given by

A =
1

1− αa1 − α2a2


1

(
α2 − 1

)
(a1 − αa2)

(
α2 − 1

)
a2

1 α− a1 + αa2

(
α2 − 1

)
a2

−α
(
1− α2

)
α (1− αa1 + a2)

 . (3.113)
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Allpass

parameter

Sensitivity

Figure 3-11: The numerical sensitivity of second-order filters, plotted for various pole loca-
tions when realized using an allpass-warped structure as in Figure 3-10 for allpass parameters
α = 0,± 1

3 ,±
2
3 . For each allpass parameter, the realization is generated and analyzed for all complex

conjugate pole pairs located within the unit circle of the z-plane.

As expected, the realization of the interconnecting network for the original direct-form

filtering system described as an interconnective system corresponds to selecting the allpass

warping parameter α in A to be zero.

For applications of allpass-warped filtering systems, a well-known design strategy is to

select the allpass parameter α so that the effective pole locations of the composed filter lie in

regions of the complex plane with desirable sensitivity properties. For signal-flow graphs such

as the one in Figure 3-10(a), understanding the sensitivity of the interconnecting network in

the modified sense of Section 3.5.3 is straightforward when no delay-free loops are present

in the system and less so in the general case. Using the realized interconnecting network

illustrated in Figure 3-10(d), Figure 3-11 depicts the sensitivity of the matrix A assuming the

two poles are chosen to be in complex conjugate pairs within the unit circle for several values

of the parameter α. The optimal regions of the z-plane for a fixed allpass parameter α using

this sensitivity metric are consistent with the expected locations derived using traditional

conformal mapping theory [59].

3.6.2 | Interconnective signal models for nonuniform sampling and time

encodings of bandlimited signals

The application of the interconnective framework to manipulating behavioral models is fo-

cused in this thesis on models of systems rather than signals. More concretely, we focus

specifically on terminal spaces V that correspond to finite-dimensional coordinate spaces

and behaviors B that represent internal and external relationships characterizing a system

in response to arbitrary inputs and initial conditions. In this final subsection, we allude
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to the opportunity in extending this framework to handle more general function and signal

spaces and, by extension, their representation and acquisitions systems too. In particular,

we examine the representation of bandlimited signals through uniformly and non-uniformly

spaced samples from the interconnective viewpoint. In doing so, the discussion in this sec-

tion highlights a potential future research direction by informally extending the body of

work in this chapter to handle signal acquisition models.

Nonuniform sampling naturally occurs in many real-world signal acquisition systems and

is typically attributed to irregular phenomena such as jitter, the asynchronous coordination

of interleaved analog-to-digital converters, or the imprecision in spatially distributed sen-

sors. Fortunately, the representation of a bandlimited signal as a collection of nonuniformly

spaced samples remains unique as long as, roughly speaking, the sampling density is strictly

greater than twice the bandwidth of the signal [60]. This fact suggests opportunity in in-

tentionally sampling a signal in this way so that the samples contain enough redundancy

for a particular feature to be robustly identified, either by further processing or visually by

human inspection. In the following discussion, we consider a sampling system where the

sampling rate is proportional to the amplitude of the first derivative of the input signal and

may be desired for applications like non-intrusive load monitoring [61] where the processing

goal is to detect envelopes of real-valued exponential signals.

The model of a signal acquisition system that samples a bandlimited signal f : R→ R at

a rate proportional to its first derivative is illustrated by the signal-chain in Figure 3-12(a).

Rather than formally characterizing this system using an interconnective description, the

focus will be on using the interconnective viewpoint to analyze the acquisition system since

it is equivalent to analyzing the representation of f through its samples. Referring to the

figure, the input signal f is added to a ramp, denoted by αt, in order to produce a monotone

signal g : R → R that is subsequently differentiated after passing through an ideal uniform

quantizer with granularity ∆. The result of this procedure is an impulse train whose timing

instants encode a unique representation of f through the time series {(tn, n∆): n ∈ Z}.

An equivalent input-output model for this sampling system involves uniformly sampling

a related signal h : R → R defined on a different independent variable y. Specifically, the
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Figure 3-12: (a) A time-encoding of a bandlimited signal f at a rate proportional to its first
derivative. (b) An equivalent sampling system using a coordinate transform. (c) A windowed
segment of the input signal f . (d) The signal g obtained by adding f to a ramp. (e) The signal
g−1(y) obtained by setting y = g(t). (f) The signal h. The gray lines in (c)-(f) correspond to the
sampling instances associated with uniformly sampling the signal h.

signal h is generated according to

h(y) = g−1(y)− 1

α
y (3.114)

where g(t) = f(t) + αt and the design parameter α is chosen sufficiently large so that g−1

is well-defined, i.e. α > supt
d
dtg(t). Uniformly spaced samples of the signal h are denoted

in the figure by q(n∆) and have a one-to-one correspondence with the previously encoded

timing instants through the relationship

q(n∆) = tn −
1

α
n∆ (3.115)

where tn is the time of the n-th sample of p(t). This correspondence is demonstrated

graphically by the vertical sampling bars in the processing stages mapping f to h in Figure 3-

12(c) through (f).

From the interconnective viewpoint, the signals f and h can be related through coordi-

nate transforms between their behaviors. Specifically, the action of the acquisition system

transforming the input signal f to h equals an invertible linear transformation of the behavior
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of f according to

 h(y)

y

 =

−α−1 0

1 α


 f(t)

t

 (3.116)

where α can be interpreted here as the parameter which ensures the behavior Bh has a well-

defined functional realization. Allowing the behaviors of the signals f and h to respectively

define the signal models sf and sh, (3.116) implies that sf ∼ sh. From the symmetry

property of the interconnective equivalence relation, we also have that sh ∼ sf , so for any h

produced using (3.116) we can recover f according to

 f(t)

t

 =

−α 0

1 α−1


 h(y)

y

 . (3.117)

The mapping (3.117) can be thought of as the interconnective coordinate transform used by

the reconstruction system. The relationship between the samples at the output of the signal

chains in Figs. 3-12(a) and (b) are related by the transformations described in Section 3.5.1,

and suggest methods for on-line computation of the processing system without needing to

numerically invert the function g. The statement that sf ∼ sh is meant informally here

since the signal spaces required to handle a complete characterization of the processing

systems in Figure 3-12(a)-(b) would require terminal spaces V to be more general than the

finite-dimensional vector spaces considered in this chapter.
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Stability and robustness properties of

scattering structures

A variety of large-scale signal processing problems, including those blending data analytics

and alternating projection principles [12], can be formulated as nonlinear systems solving

fixed-point or constraint satisfaction problems involving decentralized and/or heterogeneous

data sets. Consistent with this, a variety of computational tools have been developed to pro-

vide scalability and fault tolerance in many distributed computing models [19,20]. However,

as the availability and geographic displacement of data and computing resources continues

to grow, the benefits provided by reorganizing algorithms onto distributed systems diminish

as global and local synchronization issues compound, e.g., including issues caused by the

unreliability and intermediate latency of certain processors and interprocessor communi-

cation links [42, 62]. Common remedies work by introducing redundancy, thereby gaining

functionality at the expense of resource usage and task replication [63].

Asynchronous computing models provide an alternative paradigm through which many

of these issues can be handled, especially as the storage, retrieval, and movement of data be-

comes increasingly bottlenecked by networks prone to time-varying disruptions, congestion,

and resource outages. Asynchronous communication protocols also allow for data exchanges

to occur between processing nodes that are spread across dynamically changing networks

where synchronized communication including some forms of token passing can become es-
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sentially impractical. In a broad sense, this thesis addresses pertinent aspects of the design,

implementation, and analysis of both synchronous and asynchronous data processing algo-

rithms using a distributed signal processing framework.

In this chapter, we specifically consider two kinds of data processing problems. The

first corresponds to the class of constraint satisfaction and fixed-point problems that re-

duce to finding invariant states of nonlinear equations represented in scattering-form. With

the intent of solving a broad range of these problems, we develop sufficient conditions for

which simply implementing the associated interconnective system, either synchronously or

asynchronously, effectively provides a solution. Moreover, we show that additional classes

of problems can be solved by first-order filtering of the delay modules in these systems.

The second kind of problem corresponds to finding sparse solutions to convex systems of

equations. The approach we take is to recast these problems as problems of graph discovery,

i.e. learning the structure of an associated tree graph. To uncover this structure, several

generic processing instructions are proposed that can readily be assembled into various dis-

tributed greedy algorithms. These algorithms are interpretable as producing sequences of

embedded convex polytopes whose elements are increasingly sparse. To conclude this chap-

ter, numerical experiments are presented that have been specifically chosen to complement

the theoretical analysis associated with solving fixed-point problems by asynchronously im-

plementing interconnective systems and to demonstrate the utility of the greedy processing

instructions in designing frequency-selective filtering systems with sparse impulse responses.

4.1 | Constraint satisfaction and fixed-point problems

The general strategy behind many well-established signal and data processing algorithms is

to formulate a behavioral description of the constraints associated with a problem, which are

then used to incrementally refine an initial state into a space of solutions or set among which

any solution is considered as good as any other. Gossip algorithms [64] and the methods used

to perform spectral analysis and filtering for signal processing systems defined on graphs [65]

are notable examples consistent with this. Mathematically, this strategy is consistent with

iterating a collection of K relations Tk : RK → R, for k = 1, . . . ,K, according to a pseudo-
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iteration of the form

v1 ← T1((v1, . . . ,vK)) (4.1a)
...

vK ← TK((v1, . . . ,vK)) (4.1b)

where the associated algorithm is formed by assigning an execution order to (4.1).

Referring to (4.1), standard successive approximation algorithms produce state sequences

vn by executing all K relations before incrementing n while Gauss-Seidel style algorithms

sequentially execute the relations and increment n after each. In parallel computing environ-

ments where v is stored in globally accessible memory, asynchronous algorithms can execute

the relations ad infinitum on different processors without concurrency rules. Common stop-

ping criteria include identifying fixed-points v? = T (v?) or after the size of vn+1 − vn

falls below a threshold. To design time and frequency constrained filters, for example, the

updates may represent orthogonal projections onto convex sets [66, 67]. Similarly, many

parametric signal denoising algorithms apply sequences of oblique projectors until an ade-

quately cleaned signal is identified in the intersection of the subspaces corresponding to the

range of each operator [68]. Furthermore, many sparse signal recovery algorithms alternate

linear and nonlinear operators until sufficiently sparse solutions are identified [69–71]. In this

thesis, these and additional related problems are formulated using a constraint satisfaction

viewpoint, and the interconnective framework is used to design algorithms for solving them.

Traditional constraint satisfaction problems (CSPs) are defined as triples (X , D, C)

where X denotes a set of variables, D denotes a set of corresponding domains over which

the variables are defined, and C denotes a set of constraints between the variables. More

formally, we define the elements of a CSP as

X = {x1, . . . ,xK} (4.2)

D = {D1, . . . ,DK} (4.3)

C = {C1, . . . , CR} (4.4)
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with each variable xk satisfying xk ∈ Dk, for k = 1, . . . ,K, and with each constraint Cr,

for r = 1, . . . , R, being representable as a set constraint or relation imposed on a particular

subset {xk} of the variables in X . Algorithms for solving CSPs, consistent with the strat-

egy summarized by (4.1), seek to identify vectors x? satisfying the constraints C where no

preference is given among the set of elements in D that jointly satisfy C. In the remainder

of this section, we define two types of CSPs and then spend the rest of the chapter devel-

oping methods to solve them. Before doing this, a brief survey of key features appearing in

iterative algorithms for solving nonlinear systems of equations is provided.

4.1.1 | Fixed-point problems and iterative algorithms

A straightforward procedure for solving certain classes of nonlinear equations is to assemble

a physical system that mimics the equations so that the steady state behavior of the system

provides a solution. An analogous procedure was discussed in Section 3.3 where the inter-

connective description of the equations was assembled into an interconnective structure, and

then memory was inserted to produce a well-defined iteration. The placement of memory

in the structure is vital to whether repeatedly executing the corresponding iteration will

produce a solution for certain initial conditions, since each placement can correspond to a

different algorithm. In this subsection, we survey some of the recurring themes pertinent

to understanding the stability and robustness of iterative algorithms. A more complete

treatment of this review material can be found in standard texts such as [72,73].

Let T : V → V denote a generally nonlinear operator and let FT denote the associated

fixed-point set, i.e.

FT , {v? ∈ V : T (v?) = v?} . (4.5)

Questions pertaining to the existence of elements v? ∈ FT arise in many contexts, and pro-

cedures for generating them often must be iterative. A classic linear example is solving for

roots of a quintic or higher order polynomial, which is equivalent to an eigenvalue problem

using the polynomial’s companion matrix, and which can only be solved iteratively. Sim-

ilarly, the existence and uniqueness of solutions to certain ordinary differential equations
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correspond to examining fixed-point properties of related nonlinear operators. As is well-

known, if an operator T is a contractive mapping, i.e. satisfies ‖T (x)−T (y)‖2 ≤ α‖x−y‖2

for some α ∈ [0, 1) and all x,y ∈ V, then the Banach fixed-point theorem [33, Theorem 9.23]

ensures that a unique fixed-point v? exists, and that the simple iteration

vn = T (vn−1), n ∈ N (4.6)

converges linearly1 to the solution v? independent of v0. When an operator T is not guaran-

teed to be contractive, two main issues arise. Namely, the fixed-point set FT may be empty,

and even when it is not, the iteration (4.6) may not converge. Assuming a fixed-point ex-

ists, a common remedy is to modify the iteration in (4.6) by using a sequence of iterations

described by the maps g(n) : V × V → V, for n ∈ N, where the n-th iteration takes the form

vn = g(n)
(
T (vn−1),vn−1

)
, n ∈ N. (4.7)

When the update iteration can be described using a map g : V ×V → V that is independent

of n, the corresponding iteration is referred to as pure or stationary and takes the form

vn = g
(
T (vn−1),vn−1

)
, n ∈ N. (4.8)

Key issues in designing iterations like (4.7) and (4.8) include requiring that the update map

only has stationary points equal to FT and that the iterative process converges to one such

point. Concerns also include improving the rate of this convergence as well as the overall

numerical stability and robustness of the iteration.

When fixed-point or constraint satisfaction problems admit both direct and iterative

methods, iterative algorithms sometimes offer advantages that direct algorithms cannot.

Figure 4-1 illustrates two potential advantages iterative algorithms provide in solving linear

systems of equations Tv = u where T is a K×K matrix. First, iterative methods generally

provide approximate solutions after small increments of work are completed and may be

1Linear convergence refers to the exponent in the distance to the fixed-point, describing precision gained
per iteration for floating-point number systems. More formally, a sequence xn converges linearly to x? if
limn→∞

‖xn−x?‖
‖xn−1−x?‖ ∈ (0, 1).
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Residual error

direct method

machine precision - 

iterative method 1

iterative method 2

work

Figure 4-1: A schematic illustration adapted from [2, Figure 32.1] comparing the residual
log ‖T (vn) − v?‖ after fixed amounts of computation for three methods: one direct and two it-
erative. The conditioning of the K ×K matrix T is assumed to be unity so that machine precision
O(εmachine) is achievable.

terminated early if limited precision is required in the solution. Second, iterative methods

are able to solve for particular vectors u or particular problem instances more generally

rather than solving for arbitrary vectors u and therefore can require less work than direct

methods do for certain matrices T . This is equivalent to trading computational recyclability

for efficiency as is often the case with linear Krylov methods [74]. As was mentioned earlier,

for many nonlinear and transcendental problems, direct method do not always exist.

4.1.2 | Conservative constraint satisfaction problems

The first type of CSP we focus on in this chapter relates fixed-point problems to the

scattering-form interconnective description introduced in Section 3.4.1.

Definition 4.1.1 (Conservative constraint satisfaction problem). A conservative constraint

satisfaction problem (CCSP) is defined as being reducible to a CSP described by a triple

(X , D, C) having elements that take the following form:

X = {(c1, . . . , cK), (d1, . . . ,dK)} (4.9)

D = {RK , RK} (4.10)

C = {W, M} (4.11)

where W andM are each constraints imposed on the entire set of variables (c,d), and where
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W in particular is a linear subspace of RK × RK that satisfies the following property:

‖c‖2 − ‖d‖2 = 0,

 c

d

 ∈W. (4.12)

The interconnective equivalence classes defined in Section 3.2.3 provide a straightforward

way to identify whether a particular CSP either is or can be transformed into a CCSP.

This is done by first representing the CSP using an interconnective description and then

changing coordinate maps. More broadly, algebraic reductions and manipulations beyond

coordinate transforms may be used to reduce an initial CSP into a form that satisfies (4.9)

through (4.12) where solutions to the CCSP can be used to generate solutions to the initial

problem. For example, determining steady-state voltage and current distributions in linear

or nonlinear electrical networks is reducible to a CCSP since electrical networks can be cast

into canonical-form structures as defined in Section 3.4.2. In addition, we develop a class of

conservative optimization problems in Chapter 5 that serve as a large and important class

of problems that reduce to CCSPs. In that context, additional algebraic techniques are

introduced to reduce the dimensionality of a CCSP.

There are many algebraic descriptions consistent with the form in (4.9) through (4.12)

that can be used to describe a particular CCSP. In light of this, we focus our attention in this

chapter to CCSPs for which the set constraints W andM can be realized using respective

functional relationships specified as

W =


 c

d

 ∈ RK × RK : d = Qc

 , (4.13)

where Q : RK → RK denotes an orthogonal matrix and

M =


 c

d

 ∈ RK × RK : c = m(d)

 , (4.14)

where m : RK → RK denotes a generally nonlinear, memoryless operator. With these

descriptions in place, the techniques for realizing behaviors discussed in Section 3.3.1 can
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be used to obtain these functions for a given CCSP.

From the characterization of the constraint sets in (4.13) and (4.14), it follows that an

equivalent statement of a CCSP can be posed by making use of the operators Q and m. In

particular, consider the fixed-point problem of identifying any vector (c?,d?) ∈ RK × RK

which satisfies the implicit and often transcendental system of equations

d? = Qc? (4.15)

c? = m(d?). (4.16)

Sufficient conditions under which asynchronously implementing the interconnective descrip-

tion of (4.15) and (4.16) as a scattering-form system successfully produces a solution (c?,d?)

is the primary focus of Sections 4.2 and 4.3. A key link between this approach and the iter-

ative methods summarized by (4.1) is that the execution order and state exchange protocol

are given by the asynchronous processing protocol in Definition 3.3.1.

4.1.3 | Sparse constraint satisfaction problems

Sparsity principles, in a broad sense, are often associated with desirable properties spanning

a wide range of signal processing and computational applications including sampling theory,

model-order reduction, and the design of power efficient systems and architectures. The

second type of CSP we focus on in this chapter is closely related to many classical sparse

recovery problems.

Definition 4.1.2 (Sparse constraint satisfaction problem). A sparse constraint satisfaction

problem (SCSP) is defined as being reducible to a CSP described by a triple (X , D, C) having

elements that take the following form:

X = {(v1, . . . ,vK)} (4.17)

D = {RK} (4.18)

C = {S, T } (4.19)

where S and T are each constraints imposed on the entire set of variables {v}, and where
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S is a generally closed convex set in RK and T imposes a sparsity constraint of the form:

‖v‖0 ≤ t (4.20)

where ‖ · ‖0 indicates the number of non-zero entries of its argument and t is an integer

satisfying 0 ≤ t ≤ K.

In the most general case, solving sparse CSPs for either maximally sparse or t-sparse

solutions is a computationally difficult problem [75]. Often the smallest value of t for which S

contains a t-sparse element is unknown, so the non-convex optimization problem statement

v? ∈ arg minimize
v

‖v‖0

s.t. v ∈ S
(4.21)

is used instead. Conventional algorithms for solving these problems can be categorized into

two classes: convex optimization algorithms and greedy iterative methods. When S is a sub-

space whose matrix realization satisfies certain constraint qualification conditions, e.g. the

restricted isometry property or coherence conditions, recovery guarantees for particular algo-

rithms can often be made. For example, (4.21) and a convex relaxation of the cost function

to the 1-norm have been shown to produce identical solutions [3]. The verification of such

qualifications, however, is often itself computationally expensive or intractable. More im-

portantly, several problems of interest to the signal processing community and elsewhere do

not meet such constraint qualifications, e.g. the design of frequency-selective sparse impulse

responses. Specialized algorithms that make use of heuristics and/or side information are

often utilized instead and may lead to sufficiently sparse solutions for these problems.

Understanding the conditions under which various guarantees are possible as well as

the grace with which such assurances degrade when the conditions start to be violated has

been the focus of much attention in the literature, especially surrounding the performance

of greedy methods. In fact, greedy methods often probably result in maximally sparse

solutions for problems meeting certain constraint qualifiers [76]. Well-known algorithms

tend to sequentially decrease the sparsity of a single solution in agreement with a suitable

error metric until a particular stopping criterion is met. For example, (orthogonal) matching
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pursuit methods are of this type [77]. Another trend, encompassing methods such as iterative

hard thresholding (IHT), subspace pursuit (SP), and compressive sampling matching pursuit

(CoSaMP), is to iteratively threshold a single dense solution until a predetermined sparsity

level while simultaneously attempting to decrease an error metric [69–71].

In Section 4.4, several generic processing instructions are developed that can be assem-

bled into various greedy algorithms for solving SCSPs for fixed values of t or for solving

(4.21) for the smallest possible t. To do this, the approach is to monotonically increase the

sparsity of a bunch of elements via tree-based processing where feasibility with respect to S is

maintained for every element at every stage. These greedy algorithms are easy to distribute

and do not require constraint qualifiers, and therefore are of use when such qualifications

either fail or cannot be verified. Furthermore, side information or heuristic knowledge on

the sparsity pattern of optimal solutions is easy to incorporate into these algorithms with

only minimal adjustment.

4.2 | Solving CCSPs using asynchronous scattering algorithms

In modeling systems in the physical sciences, conservation principles often underlie the pre-

dictability and stability of system behavior at macroscopic scales, thereby eliminating a

need for careful analysis of the interactions between features at the subsystem levels. Con-

servation of energy, for example, emerges in Hamiltonian physics as a consequence of the

time-invariance of physical principles governing isolated bodies as described by Noether’s

theorem and allows for the analysis of many physical processes without detailed handling

of time-valued boundary conditions. As previously discussed in Section 2.4, conservation

principles in signal processing systems are often far removed from having physical interpre-

tations, due in part to the fact that the system variables are not required to have physical

meanings and the system dynamics are not subject to the laws of physics. However, as we

emphasize in this chapter and the next, the benefits provided by their existence are not

readily diminished by the lack of a physical reference system.

The main purpose of this section is to define several categories of system operators,

as well as modifications thereof that are consistent with (4.7) and (4.8), in anticipation
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Figure 4-2: (a) The description of a CCSP as a scattering-form interconnective structure. (b)-
(e) Example scattering algorithms formed by inserting memory to form asynchronous processing
systems. The system operator associated with each algorithm is also provided.

of the subsequent stability and robustness analysis in Section 4.3. In discussing this, we

shall refer to the description of a CCSP illustrated in Figure 4-2(a) as a scattering-form

structure. The strategy in using this structure to solve CCSPs is specifically to implement

the associated scattering algorithm corresponding to interconnective systems like those in

Figure 4-2(b) through (e), where, in steady-state, the processing system can be replaced

by the structure in (a), which graphically represents a solution to the fixed-point problem

in (4.15) and (4.16). Referring to the definition of scattering-form interconnective systems

in Section 3.4.3, the structures depicted in Figure 4-2(d) and (e) demonstrate additional

separability of their partition decompositions using a single direct product decomposition of

the terminal space and generalize inductively to any number. Concerning the deployment of

asynchronous scattering algorithms in practice, the modifications discussed in this section

are easily reflected into actual processing systems and require minimal adjustments to the

system. The details associated with doing this are provided in Chapter 6.

4.2.1 | Categorization of system operators

In the sequel, the convergence of an asynchronous algorithm is closely related to stability and

robustness properties of the system operator associated with the algorithms interconnective

description. In this subsection, a broad class of system operators are categorized to assist

with this analysis. We initially restrict our attention to those interconnective structures
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whose system operators satisfy the following definition.

Definition 4.2.1 (α-conic system operators). A system operator T : RK → RK is referred

to as being α-conic about v ∈ RK provided a non-negative constant α exists such that

sup
u6=0

‖T (v + u)− T (v)‖
‖u‖

≤ α. (4.22)

If T satisfies (4.22) for all v ∈ RK then T is referred to as being α-conic everywhere.

We briefly call attention to the relationship between (4.22) and existing notions of con-

tinuity. In particular, the assumption that T is α-conic everywhere is sufficient to conclude

that T is also Lipschitz continuous with Lipschitz constant α whereas the assumption that

T is α-conic about v is weaker since bounded discontinuities away from v are admissible.

To see this, observe that the inequality ‖T (v+u)−T (v)‖ ≤ α‖u‖ is implied by (4.22) since

it is assumed that T is α-conic for all v ∈ RK and that α is the least upper bound for all

u 6= 0. Rewriting this inequality using the translated arguments v′ and u′ where v′ = v+u

and u′ = v yields

‖T (v′)− T (u′)‖ ≤ α‖v′ − u′‖, v′,u′ ∈ RK (4.23)

hence (4.23) is a sufficient condition for T to be α-conic everywhere with the same constant.

Next, the class of α-conic system operators are divided into three groups that, roughly

speaking, are used to organize the stability and robustness conditions presented in Sec-

tions 4.3.2 through 4.3.4. The nomenclature chosen to describe these categories is consistent

with the the classes of functions defined by Zames in [1,5] to discuss the stability of certain

feedback control systems.

Definition 4.2.2 (α-dissipative, passive, and α-expansive system operators). Let T : RK →

RK denote a system operator that is α-conic about v. Then T is referred to as being:

(i) α-dissipative about v provided α ∈ [0, 1);

(ii) passive about v provided α = 1;

(iii) α-expansive about v provided α > 1.
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Furthermore, if T is α-conic everywhere, i.e. satisfies (4.22) for all v ∈ RK , then T is

referred to as being:

(i) α-dissipative everywhere provided α ∈ [0, 1);

(ii) passive everywhere provided α = 1;

(iii) α-expansive everywhere provided α > 1.

Let T (i) : RK → RK denote a system operator that is αi-conic everywhere for i =

1, . . . ,m. By induction it follows that the composite system operator T (m) ◦ · · · ◦ T (1) is

also α-conic everywhere with parameter α =
∏m
i=1 αi. This fact is important to determining

the conic parameter of system operators derived from interconnective graphs where the

interconnecting network and constitutive modules are both realized by α-conic operators.

For example, the composition of any number passive everywhere system operators with a

single dissipative operator results in an overall dissipative composite operator.

4.2.2 | Adaptive and homotopy system operators

A common technique used to generate a fixed point of a nonlinear operator, and that is

consistent with the iteration-dependent methods summarized by (4.7), is to parameterize

the nonlinear operator using a so-called homotopy map to which an associated numerical

continuation scheme is then applied [78]. The basic idea behind this approach is to contin-

uously deform a well-behaved operator into the original nonlinear operator, and to generate

a sequence of intermediate fixed points that terminates when a fixed point of the original

operator is obtained. The map used to describe these deformations is referred to as a ho-

motopy map. Often the intermediary fixed points are only approximately determined. In

this thesis, we view this continuation scheme through the lens of traditional adaptive sys-

tem techniques [79] where we additionally restrict ourselves to the simple analytic form of a

homotopy map appearing in the following definition, although alternative homotopy maps

may generally be used by the same continuation scheme in practice.

Definition 4.2.3 (Adaptive system operator Ta). Let T (0) : RK → RK and T (1) : RK → RK

denote two system operators. The homotopy map or adaptive system operator Ta : [0, 1] ×
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RK → RK associated with T (1) is defined as

Ta (ρ,v) , ρT (1)(v) + (1− ρ)T (0)(v). (4.24)

The family of fixed-point problems associated with Ta is described by Ta(ρ,v) = v for

ρ ∈ [0, 1], and the standard continuation strategy is to track the fixed points v = Ta(ρ,v)

starting from (ρ,v) = (0,v∗) as ρ progresses from 0 to 1, where v∗ is an easily obtained

fixed point of T (0). Typical implementations discretize the interval [0, 1] and sequentially

increment ρ by a sufficiently small amount where, under some mild regularity conditions,

e.g., Lipschitz continuity, the procedure results in a pair (ρ,v) = (1,v?) where T (1)(v?) = v?.

Thus any fixed point of the adaptive system operator Ta(1, ·) is also a fixed point of T (1), as

desired. Sections 5.4 and 6.1.1 use this method to decentralize an interconnecting network.

4.2.3 | Filtered system operators

Selecting the simple system operator T (0) to be the identity operator on RK results in

an adaptive system operator Ta and an associated numerical continuation scheme where a

fixed point of T (1) is immediately obtained after generating any fixed point of Ta(ρ, ·) for

any non-zero value of the parameter ρ. So, in light of this observation and the fact that

it remains true if ρ is not constrained to the unit interval, we next develop a stationary

iteration consistent with (4.8) which subsumes these observations.

Definition 4.2.4 (Filtered system operator Tf ). Let T : RK → RK denote a system opera-

tor. The filtered system operator Tf : R×RK → RK is defined as the operator whose action

is to take an affine combination of v and T (v) of the form

Tf (ρ,v) , ρT (v) + (1− ρ)v (4.25)

where ρ is referred to as the filtering parameter.

We briefly justify the motivating observation above by fixing the filtering operator

Tf (ρ, ·) : RK → RK for a given non-zero value of ρ. Let v? denote a fixed point of Tf (ρ, ·),

i.e. v? ∈ FTf (ρ,·). After some straightforward manipulations to the fixed-point equation
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Tf (ρ,v?) = v? we obtain the fixed-point equation T (v?) = v?. Thus, it follows that any

fixed point of Tf (ρ, ·) is also a fixed point of T . The analysis holds for any non-zero value

of the parameter ρ and the converse of this fact is also true.

Numerical iterations resembling the direct and synchronous implementation of a fil-

tered system operator appear in many signal processing contexts where, instead of taking

a weighted average or convex combination (if ρ ∈ [0, 1]) of a system’s state, the operator

instead acts on design parameters defining a real-time system. In these cases, the filter-

ing parameter ρ is reminiscent of the so-called forgetting factor used to stabilize numerous

weight adjustment protocols using in adaptive filtering systems. For example, least mean

squares filters form a special case of the stochastic gradient descent algorithm discussed in

Section 2.5.2 where the step size parameter plays the role of the filtering parameter in (4.25).

In the following lemma, we characterize the distance of a filtered system operator applied

to an arbitrary state to any of its fixed points, and afterwards we make a connection between

this characterization and well-known results in Euclidean geometry.

Lemma 4.2.1 (Distance of solutions to filtered system operators). Let T denote a system

operator with a non-empty fixed-point set FT . The distance of the continuum of states that

are achievable by applying Tf to an arbitrary element v to any fixed point v? ∈ FT is given by

‖Tf (ρ,v)− v?‖2 = ρ‖T (v)− v?‖2 + (1− ρ)‖v − v?‖2 − ρ(1− ρ)‖T (v)− v‖2. (4.26)

Proof. The assertion above is justified by performing the following manipulations:

‖Tf (ρ,v)− v?‖2 = ρ2‖T (v)− v?‖2 + (1− ρ)2‖v − v?‖2 (4.27)

+2ρ(1− ρ)〈T (v)− v?,v − v?〉

= (ρ− ρ(1− ρ))‖T (v)− v?‖2 + [(1− ρ)− ρ(1− ρ)]‖v − v?‖2(4.28)

+2ρ(1− ρ)〈T (v)− v?,v − v?〉

= ρ‖T (v)− v?‖2 + (1− ρ)‖v − v?‖2 (4.29)

−ρ(1− ρ)[‖T (v)− v?‖2 + ‖v − v?‖2 − 2〈T (v)− v?,v − v?〉]

= ρ‖T (v)− v?‖2 + (1− ρ)‖v − v?‖2 − ρ(1− ρ)‖T (v)− v‖2 (4.30)
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Stewart's theorem Application of Stewart's theorem to a filtered system operator

Figure 4-3: An illustration of Stewart’s theorem (left) and the application of Stewarts theorem to
the filtered system operator Tf (right) where the vertices of the triangle correspond to an arbitrary
state v, the application of T to v and a fixed-point v?.

where the first equality is due to the fact ‖v + u‖2 = ‖v‖2 + ‖u‖2 + 2〈v,u〉, the second

equality is due to the fact ρ2 = ρ− ρ(1− ρ) and (1− ρ)2 = 1− 2ρ+ ρ2 = (1− ρ)− ρ(1− ρ),

and the fourth equality is due to the fact ‖v − u‖2 = ‖v‖2 + ‖u‖2 − 2〈v,u〉. We reiterate

that the identity in (4.26) holds for any real value of ρ.

A geometric interpretation of the distance in (4.26) with the filtering parameter restricted

to the interval ρ ∈ [0, 1] is established through a connection with Stewart’s theorem from

Euclidean geometry [80, Theorem 3]. In particular, Stewart’s theorem, illustrated in the

left pane of Figure 4-3, states that a given triangle with sides of lengths a, b, and c, and a

cevian to the size of length a with length d, where the cevian divides a into two pieces of

lengths n and m where m is adjacent to c and n is adjacent to d satisfy the relationship

b2m+ c2n = a(d2 +mn) which we rewrite prophetically as

d2 =
m

a
b2 +

n

a
c2 −mn. (4.31)

By proper assignment of the vertices of the triangle (listed in Figure 4-3 for completeness),

the identity (4.30) follows immediately from (4.31). As a further connection, the special case

of (4.30) for ρ = 1
2 is then interpretable by a similar application of Apollonius’ theorem [80,

Exercise 3.5]. The fact that the continuum of states achievable by applying Tf forms the

collinear subspace to the side of the triangle opposite the fixed-point vertex underlies the

stability analysis of filtered system operators considered in Sections 4.3.3 and 4.3.4.
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4.3 | Stability and robustness of interconnective structures

As asynchronous algorithms organized into distributed signal processing systems become

increasingly used to solve large-scale constraint satisfaction and fixed-point problems, it will

also become increasingly important to identify sufficient conditions that are easy to certify in

practice to guarantee that these algorithms work. In this section, we study the convergence

of asynchronous algorithms through properties of the system operator derived from their

interconnective description. In particular, convergence of the algorithm corresponds to the

stability and robustness of the interconnective system, and the conditions are therefore

straightforward to identify in many signal processing systems encountered in practice.

In the context of designing asynchronous algorithms as interconnective systems, condi-

tions that allow local and independent certificates of the individual subsystems to provide

global stability and robustness guarantees are especially desirable. Algorithms whose inter-

connective descriptions are in scattering form, for example, allow the certificates derived in

this section to be used in practice by certifying only the individual constitutive modules,

and do not need the interconnecting network to be certified or aggregated when decentral-

ized. Some of these conditions have appeared previously in [14] and preliminaries to those

appeared in [81]. In addition, some of these conditions generalize known deterministic con-

vergence results corresponding to synchronous and unfiltered implementations, respectively

generated by setting ρ = 1 and p = 1 in (4.25) and (3.47).

4.3.1 | Stability and robustness definitions

Stability conditions in signal processing and control theory often refer to various criteria that

ensure the output of a system remains bounded in response to any bounded input. In the

context of solving fixed-point problems using globally clocked, synchronous implementations

of an interconnective system, the system will be called stable if it’s terminal variables tend

to an equilibrium state, i.e. a state that is invariant to the dynamics of the iteration. Equiv-

alently, stability can be formulated in terms of the associated system operator by connecting

the iteration vn+1 = T (vn) to classical notions of convergence of the state sequence to a

fixed-point. More concretely, let let T : RK → RK denote the system operator associated
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with an interconnective system and let vn, for n ∈ N, denote the associated state sequence.

Then the system operator is said to be r-stable if the state sequence satisfies the condition

limn→∞ ‖vn−v?‖r = 0 where v? is a fixed-point of T and the norm is the standard 2-norm.

Robust signal processing and feedback control systems typically refer to systems that per-

form properly when uncertainty is accounted for in some way. For example, uncertainty can

be incorporated into the system operator itself [82] or through disturbances to the iterations

dynamics [42]. In viewing asynchronous algorithms as interconnective systems, robustness

properties will essentially refer to stability properties when the subsystem modules commu-

nicate using asynchronous protocols. This is consistent with uncertainty being incorporated

through random deviations from the nominal synchronous operating mode. Indeed, an in-

terconnective system will be referred to as being r-robust if it is r-stable when the delay

modules in the interconnective structure behave as coordinatewise discrete-time sample-

and-hold systems triggered by independent Bernoulli processes. To avoid being pedantic in

stating synchronous stability properties separate from asynchronous robustness properties,

we proceed to use the term stability to refer to both. In particular, stability will refer to

the stochastic convergence of the state sequence produced using the asynchronous iteration

in (3.47), where the convergence is specifically of the sequence of random vectors. The syn-

chronous result is a the straightforward special case of the robustness property where the

delay probability parameter p is set to p = 1.

Definition 4.3.1 (Stability in r-th mean). Let T : RK → RK denote the system operator

associated with an interconnective structure. Then T is defined as being stable in r-th mean

if the sequence {vn : n ∈ N0} produced by the asynchronous protocol (3.47) satisfies

lim
n→∞

E [‖vn − v?‖r] = 0 (4.32)

for some state v? that is a fixed point of T , i.e. v? ∈ FT . When (4.32) holds it is written

succinctly as vn
r−→ v?.

A straightforward consequence that results from application of Jensen’s inequality to

(4.32) is that any system operator that is stable in r-th mean is also stable in t-th mean for

all t satisfying 1 ≤ t ≤ r [83]. Indeed, stability in the sense of (4.32) provides additional
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insight into the dynamics of stable asynchronous algorithms. In particular, convergence of

the state sequence {vn : n ∈ N0} in mean square (r = 2) implies both that a subsequence of

vn converges almost surely and that the state sequence itself converges in probability and

distribution. We note separately that convergence in r-th mean may or may not coincide

with convergence of the complete sequence almost surely. When a filtered system operator

Tf is stable in r-th mean, the original system operator T that Tf was derived from is also

stable in r-th mean if Tf is stable for a range of filter parameters that includes ρ = 1.

With formal definitions of stability and robustness in place, we remark that an asyn-

chronous algorithm can generally reduce its overall communication bandwidth by only per-

forming computation of the subsystems corresponding to the subset delays that trigger on

each iteration n. This property is desirable in distributed computing environments and is

readily exploited in Chapter 6 in the context of heterogeneous networks and uncoordinated

processing nodes. As a straightforward example, if T is an arbitrary nonlinear function

operating on each entry of v independently, then an efficient asynchronous implementation

of T only computes the subset of coordinates indicated by the ones in the matrix D(p) for

each n rather than computing all K and discarding the complement of that subset, as is

suggested by the form of the iteration in (3.47).

In anticipation of the analysis of filtered asynchronous algorithms implemented using the

stochastic update mechanism in (3.47), we next state a useful identity that will frequently

appear in our analysis. Specifically, for any value r ≥ 1, it follows that

E[‖vn − v?‖r] = pE[‖vn − v?‖r | D(p) = IK ] + (1− p)E[‖vn − v?‖r | D(p) = 0] (4.33)

= pE[‖Tf (ρ,vn−1)− v?‖r] + (1− p)E[‖vn−1 − v?‖r] (4.34)

where the first equality is due to the law of total expectation. The first term in (4.34) can

be appropriately modified when the filtered operator Tf is instead replaced by a different

system operator like Th. Finally, we define B(c, r) as the non-empty, closed Euclidean ball

or basin of radius r > 0 and center c ∈ RK given by

B(c, r) , {v ∈ RK : ‖c− v‖ ≤ r}. (4.35)
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4.3.2 | Dissipative system operators

The first category of system operators we address include those that are α-dissipative in

some manner. For each stability and robustness condition presented, the approach we take

is to ensure that a unique fixed-point exists or that a fixed point is unique when one has

been assumed to exist, and that the state sequence produced by the asynchronous algorithm

does, in fact, tend to the fixed-point under the given assumptions. Note that the existence

and uniqueness of a fixed-point is a property belonging to the system operator itself, and is

independent of any particular iteration or analysis used to establish it.

To begin, consider the class of system operators that are α-dissipative about a state v.

Note that this restriction does not preclude a system operator from being α-conic about

additional states for values of α ≥ 1 nor does it require continuity of a system operator

around any states other than v. This flexibility allows for the stability and robustness of an

interconnective structure to be understood when the associated system operator possesses

discontinuities and other similar behavior bounded away from v. The following two theorems

summarize stability and robustness properties for these system operators when v is and is

not a fixed-point, respectively.

Theorem 4.3.1 (Stability about a fixed-point; α < 1). Let T : RK → RK denote a system

operator that is α-dissipative about v? where v? is a fixed point of T . Then the filtered system

operator Tf associated with T is stable in mean square, i.e. vn 2−→ v?, provided ρ ∈ (0, 2
1+α2 ).

Furthermore, v? is the unique fixed point of T .

Proof: The average squared distance of the state sequence to any fixed point v? after

a single iteration is upper bounded according to

E
[
‖vn − v?‖2

]
= pE

[∥∥Tf (ρ,vn−1)− v?
∥∥2
]

+ (1− p)E
[∥∥vn−1 − v?

∥∥2
]

(4.36)

≤ pρ2E
[∥∥T (vn−1)− v?

∥∥2
]
+((1−p) + p|1−ρ|2)E

[∥∥vn−1 − v?
∥∥2
]
(4.37)

≤
(
pρ2α2 + 1− p+ p|1− ρ|2

)︸ ︷︷ ︸
φ(ρ)

E
[∥∥vn−1 − v?

∥∥2
]

(4.38)

where the equality is due to (4.26). Aggregating the assumptions on α and p, respectively
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from the assumed dissipativity and asynchronous processing protocol, and requiring the

function φ(ρ) in the single iteration inequality to satisfy φ(ρ) ∈ [0, 1), the range of acceptable

values for the filtering parameter ρ follow as


0 ≤ pρ2α2 + 1− p+ p|1− ρ|2 < 1

0 ≤ α < 1

0 < p ≤ 1

=⇒ ρ ∈
(

0,
2

1 + α2

)
. (4.39)

Proceeding with this restriction on ρ, iterating the inequality in (4.38) n times and then

taking a limit gives the desires stability result:

lim
n→∞

E
[
‖vn − v?‖2

]
≤

∥∥v0 − v?
∥∥2

lim
n→∞

φ(ρ)n (4.40)

= 0. (4.41)

It remains to be seen that v? is the unique fixed point of T ; we prove this next by producing

a contradiction. Let v? and u? denote two distinct fixed points of T . Then, using the

definition of a fixed point and (4.22) it follows that

‖u? − v?‖ = ‖T (v? + (u? − v?))− T (v?)‖ (4.42)

≤ α‖u? − v?‖ (4.43)

which provides a contradiction since α < 1, therefore v? = u? must be true.

Verifying the conditions stated in Theorem 4.3.1 can be troublesome in practice since

they involve both knowledge that a fixed-point exists as well as knowledge of the system

operator’s behavior around it. It is also possible to characterize the boundedness of the state

sequence produced by a system operator T that is α-dissipative about an arbitrary point

c ∈ RK that is not necessarily a fixed-point of T . Motivated by this, the following theorem

asserts that the state sequence produced by such an interconnective system will on average

be contained within a closed Euclidean ball centered at c after finite transient effects die off.

Theorem 4.3.2 (Finite-time entrapment; α < 1). Let T : RK → RK denote a system
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operator that is α-dissipative about an arbitrary point c that is not necessarily a fixed-point

of T . Then, for every ε > 0 there exists a finite integer N such that the asynchronous

implementation of the filtered system operator Tf associated with T produces a state sequence

{vn : n ∈ N0} satisfying

E [‖vn − c‖] ≤ ρ ‖T (c)− c‖
1− ρα− |1− ρ|

+ ε, n ≥ N, (4.44)

provided ρ ∈ (0, 2
1+α).

Proof: The average distance of the state sequence to the state c after a single iteration

is upper bounded by

E [‖vn − c‖] = pE
[∥∥Tf (ρ,vn−1)− c

∥∥]+ (1− p)E
[∥∥vn−1 − c

∥∥] (4.45)

≤ pρE
[∥∥T (vn−1)− T (c)

∥∥]+ p|1− ρ|E
[∥∥vn−1 − c

∥∥] (4.46)

+(1− p)E
[∥∥vn−1 − c

∥∥]+ pρ ‖T (c)− c‖

≤ (pρα+ p|1− ρ|+ (1− p))E
[∥∥vn−1 − c

∥∥]+ pρ ‖T (c)− c‖ (4.47)

where the first inequality is due to repeated application of the triangle inequality and the

second inequality makes use of the fact that T is α-dissipative at c. Iterating this inequality

n times yields an upper bound of the form

E [‖vn − c‖] ≤ φn(ρ)
∥∥v0 − c

∥∥+ pρ ‖T (c)− c‖

(
n−1∑
k=0

φk(ρ)

)
(4.48)

where φ(ρ) = pρα+p|1−ρ|+ (1−p) is convex, piece-wise linear, passes through (ρ, φ(ρ)) =

(0, 1), and has a global minimum at ρ = 1. It is straightforward to verify that φ(ρ) ∈ [0, 1)

provided that ρ ∈ (0, 2
1+α). We proceed by restricting the filtering parameter to this interval

in order to loosen the inequality (4.48) to

E [‖vn − c‖] ≤ φn(ρ)
∥∥v0 − c

∥∥+
ρ ‖T (c)− c‖

1− ρα− |1− ρ|
. (4.49)

Therefore, there will always exists a finite value of n sufficiently large to ensure that
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φn(ρ)
∥∥v0 − c

∥∥ < ε which concludes the proof.

The entrapment of the state sequence discussed in the previous theorem neither assumes

nor concludes anything about fixed points since in general fixed points of these system

operators may not exist. However, if c happens to be a fixed point of T then it is unique,

and Theorem 4.3.2 implies that the state sequence on average gets arbitrarily close to c in

finite-time. This result, of course, is consistent with Theorem 4.3.1 in the sense that the

radii achieved reduces to ε which may be made arbitrarily small by taking n large enough.

This type of agreement is consistent with many classical finite iteration convergence results.

Aside from studying dissipative system operators, Theorems 4.3.1 and 4.3.2 can be used to

assemble stability conditions for more general system operators since they inherently require

only local assumptions to be met. We shall return to them in this context in Section 4.3.4.

Next, we move on to synchronous and asynchronous algorithms produced by system

operators that are α-dissipative everywhere. As was mentioned earlier, the Banach fixed-

point theorem states that synchronously (p = 1) implementing such a system operator

without filtering (ρ = 1) produces a unique fixed point at a linear rate. The following

theorem extends this result into the asynchronous setting and suggests the use of the filtering

parameter to achieve better rates.

Theorem 4.3.3 (Stability in RK ; α < 1). Let T : RK → RK denote a system operator

that is α-dissipative everywhere. Then T has a unique fixed point v? and the filtered system

operator Tf associated with T is stable in mean square, i.e. vn 2−→ v?, provided ρ ∈ (0, 2
1+α2 ).

Proof: To begin, we prove the existence and then the uniqueness of the fixed point v?

for completeness. Recall that such facts are properties of T and not the iteration. To do

this, we combine two inequalities for the simple iteration vn = T (vn−1). The first inequality

follows from substituting v′ = vn and u′ = vn−1 into (4.23) and then iterating the inequality

n− 1 times:

‖vn − vn−1‖ ≤ α‖vn−1 − vn−2‖ (4.50)

≤ αn−1‖v1 − v0‖. (4.51)
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Let n and m denote two positive integers satisfying m < n. The second inequality follows

from repeated application of the triangle inequality to (4.23) to obtain

‖vn − vm‖ ≤
n−1∑
k=m

‖vk+1 − vk‖. (4.52)

Together the inequalities (4.51) and (4.52) imply

‖vn − vm‖ ≤

(
n−1∑
k=m

αk

)∥∥v1 − v0
∥∥ (4.53)

=
αm (1− αn−m)

1− α
∥∥v1 − v0

∥∥ (4.54)

from which it is straightforward to show that the sequence {vn : n ∈ N0} is Cauchy. Sub-

sequently, (4.54) establishes the existence of a limit point v? and that vn converges to it.

Moreover, the continuity of T implied by the α-conic everywhere assumption ensures that

T (v?) = T
(

lim
n→∞

vn
)

= lim
n→∞

T (vn) = lim
n→∞

vn+1 = v? (4.55)

thus v? is indeed a fixed point of T . The remainder of this theorem follows from Theo-

rem 4.3.1 since: (i) T has a fixed point v? and (ii) T being α-dissipative everywhere clearly

implies that T is α-dissipative about v?.

The next category of system operators we consider form the middle ground between the

system operators analyzed in Theorems 4.3.1 and 4.3.2 (α-dissipative about a point) and

the system operators analyzed in Theorem 4.3.3 (α-dissipative everywhere). Specifically, we

consider the class of system operators that are α-dissipative over a basin but not necessarily

elsewhere. For this case, stability and robustness properties follow if the initial state is

chosen inside the basin and if the center of the basin does not move too far under the

action of the system operator. These conditions are restated more formally in the following

theorem where the basin is specifically characterized in terms of a closed Euclidean ball.

More generally, the argument remains true for an open ball since the uniform continuity of

the system operator inherited from (4.22) is sufficient to extend it to the closure of the ball
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while retaining the same conic parameter α on the perimeter.

Theorem 4.3.4 (Stability in a basin; α < 1). Let T : RK → RK denote a system operator

that is α-dissipative about all v ∈ B(c, r). Then T has a unique fixed point v? in B(c, r) and

the filtered system operator Tf associated with T is stable in mean, i.e. vn 1−→ v?, provided

the initial element satisfies v0 ∈ B(c, r), the filtering parameter satisfies ρ ∈ (0, 1], and

‖c− T (c)‖
1− α

≤ r. (4.56)

Proof: The existence and uniqueness of v? is inherited from Theorem 4.3.3 since

(B(c, r), ‖ · ‖) is a complete metric space isomorphic to (RK , ‖ · ‖). We next prove that the

average state sequence initialized within the basin converges to it. To do this, consider first

the application of the filtered system operator Tf to a state v ∈ B(c, r):

‖Tf (ρ,v)− c‖ = ‖ρT (v) + (1− ρ)v − ρT (c) + ρT (c)− ρc− (1− ρ)c‖ (4.57)

≤ ρ (‖T (v)− T (c)‖+ ‖T (c)− c‖) + |1− ρ| ‖v − c‖ (4.58)

≤ (ρα+ |1− ρ|) r + ρ(1− α)r. (4.59)

Therefore, by restricting ρ to the interval (0, 1] we conclude that Tf (ρ,v) is also contained in

B(c, r). Then, using the fixed point v? and assuming v0 ∈ B(c, r) we obtain the inequality:

E [‖vn − v?‖] = pE
[∥∥Tf (ρ,vn−1)− v?

∥∥]+ (1− p)E
[∥∥vn−1 − v?

∥∥] (4.60)

≤ (pρα+ p|1− ρ|+ 1− p)︸ ︷︷ ︸
φ(ρ)

E
[∥∥vn−1 − v?

∥∥] (4.61)

where φ(ρ) is in the interval (0, 1) as long a ρ ∈ (0, 2
1+α). Taking the intersection of the

intervals identified for ρ provides the range ρ ∈ (0, 1]. Proceeding with this, it follows that

lim
n→∞

E [‖vn − v?‖] ≤
∥∥v0 − v?

∥∥ lim
n→∞

φn(ρ) (4.62)

= 0 (4.63)

which concludes the proof that vn 1−→ v?.
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The argument used in the proof of the previous theorem is reminiscent of the argument

used in the proof of Theorem 4.3.3 if we interpret RK as a Euclidean ball with an arbitrar-

ily large radius. From this perspective, the upper bound in (4.56) can be selected to be

arbitrarily large meaning the location of the initial state becomes irrelevant. Certifying the

basin condition in Theorem 4.3.4 requires only a single application of the system operator.

If c = 0, then this condition reduces to an upper bound on the operator norm of the system

operator. For realizations of interconnecting networks, this condition is simply a bound on

the singular values of the realization.

Beyond situations similar to the proof of Theorem 4.3.4, the application of Theorem 4.3.3

is useful in some additional contexts. One such context, formalized in the next theorem,

pertains to general system operators that are not necessarily α-conic themselves but be-

come so after some finite number of self-compositions. We consider this setup using a direct

and synchronous implementation of the original system operator since the stability of asyn-

chronous and filtered implementations of the composite operator follow immediately from

Theorem 4.3.3.

Theorem 4.3.5 (Stability for composition; α < 1). Let T : RK → RK denote a system

operator. If there exists a finite integer m ∈ N such that Tm = T ◦ Tm−1 is α-dissipative

everywhere, then T has a unique fixed point v? and the state sequence generated by vn =

T (vn−1), for n ∈ N, converges to it.

Proof: Since Tm is assumed to be α-dissipative everywhere, we conclude that Tm has a

unique fixed point u? by direct application of Theorem 4.3.3. We next prove that u? is also

a fixed point of T and that u? = v?. Indeed, since Tm satisfies the functional translation

property it follows that

Tm ◦ T (u?) = T ◦ Tm(u?) = T (u?). (4.64)

Hence, by the uniqueness of the fixed point of Tm we have that u? = T (u?) and therefore

by definition v? = u?.

We conclude this proof by showing that the state sequence tends to v? and that v? is
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unique. For each integer i satisfying 0 ≤ i ≤ m − 1, the α-dissipative everywhere system

operator Tm generates a subsequence of the sequence {vn : n ∈ N0} produced by vn =

T (vn−1) consisting of the states {vmp+i : p ∈ N0}, which is further illustrated by the relation

vmp+i = Tm ◦ Tm ◦ · · · ◦ Tm︸ ︷︷ ︸
p compositions

◦T i(v0), p ≥ 0, (4.65)

where T 0 is the identity operator and v0 is the initial state. Said another way, the state

sequence {vn : n ∈ N0} consists of the interleaved elements generated from m synchronous

implementations of Tm with respective initial states T i(v0), i = 0, 1, . . . ,m− 1. Therefore,

by Theorem 4.3.3 with ρ = p = 1 it follows that

lim
p→∞

∥∥vmp+i − v?
∥∥2

= 0, i = 0, 1, . . . ,m− 1. (4.66)

Observe that this argument is precisely proving that each channel in the polyphase decom-

position of the sequence vn converges to the same element. Thus, utilizing the fact that

this convergence is independent of i, it is straightforward to conclude that the fixed point is

unique.

The provision that composite system operators be α-conic everywhere does not imply

that the original system operators are, nor does it imply that they are continuous in any

sense. As a straightforward example of the former, consider the scalar operator T : R → R

given by T (v) = e−v. This operator is passive on the positive reals but does not satisfy the

α-conic condition in (4.22) for any finite value of α. On the other hand, the twice composed

operator T ◦ T (v) = e−e
−v does with α = 1

e and has a unique fixed point of v? ≈ 0.5671.

4.3.3 | Passive system operators

A key category of interconnective systems we address include those whose system operators

are passive everywhere. In contrast to the α-dissipative counterparts analyzed in the previous

subsection, stability and robustness conditions for passive-everywhere system operators face

a variety of important issues. The scalar operator T : R→ R given by T (v) = −v illustrates
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one such issue: although T has a singleton fixed-point set FT = {0}, any state sequence

initialized with v0 6= 0 will oscillate forever and thus T cannot be stable or robust in the sense

of (4.32). For canonical-form interconnective structures that have been transformed into

scattering form, the functional realization of the interconnecting network as an orthogonal

matrix cannot suffer from this issue since it cannot have eigenvalues of −1. The family

of scalar operators given by T (v) = v + a for any non-zero value of a illustrates a second

issue: the fixed-point set FT is empty. In light of this, we proceed in this subsection to

consider only those passive everywhere system operators that have non-empty fixed-point

sets, or equivalently that are associated with well-defined CCSPs. Before analyzing the

stability and robustness of passive everywhere system operators under this assumption, we

first examine the uniqueness of their fixed points.

The fixed-point set associated with a passive everywhere system operator is, in general,

a convex set. This assertion is justified as follows. Let T denote such an operator and let

u? and v? denote two distinct fixed points. Observe that the inequality

‖u? − v?‖ ≤ ‖u? − T (γv? + (1− γ)u?)‖+ ‖T (γv? + (1− γ)u?)− v?‖ (4.67)

≤ ‖γ (u? − v?)‖+ ‖(1− γ) (u? − v?)‖ (4.68)

≤ ‖u? − v?‖ (4.69)

holds with equality for any γ in the interval [0, 1]. Passivity of the system operator T is

specifically used to obtain the second inequality from the first and the implication of the

overall equality after use of the triangle inequality is that the elements T (γv? + (1− γ)u?)

and γv? + (1 − γ)u? are on the line segment connecting u? to v? and subsequently that

γv? + (1 − γ)u? ∈ FT . Hence, this proves that FT is a convex set, which, of course, does

not preclude it from being empty.

We next analyze the stability and robustness properties associated with asynchronous

algorithms that correspond to implementing filtered passive-everywhere system operators.

To separate the effects of the filter parameter from the stochastic dynamics attributed to the

asynchronous delay modules, we proceed by characterizing the update mechanism described

in (3.47) by breaking the iteration into two stages: (i) the deterministic application of the
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(1)
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If then takes the state:

(1) provided that 
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(3) provided that

(a) Achievable states using  for
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(2)

(4)

(5)

(6)
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If then takes the state:

(1) with probabiity

(3) with probabiity

(4) with probabiity

(5) with probabiity

(b) Possible outcomes according to the asynchronous protocol  

Figure 4-4: An illustration of (a) the states achievable by application of Tf and (b) the possible
outcomes of vn for an arbitrary vn−1 according to the stochastic dynamics of (3.47) for a system
operator T satisfying the conditions in Theorem 4.3.6.

filtered system operator Tf (ρ, ·) to vn−1, and (ii) the stochastic combination of vn−1 and

Tf (ρ,vn−1) governed by the random matrix D(p). To avoid cluttering notation in doing

this, the previous state vn−1 will simply be denoted as v in the ensuing discussion and

accompanying illustrations.

In discussing the role of the filtering parameter in stage (i), we proceed by specializing

the characterization of the squared distance of the filtered system operator Tf (ρ, ·) to a

fixed-point of the original system operator T as a function of the filtering parameter ρ

derived in Section 4.2.3 to the case where T is passive everywhere. To assist in visualizing

this discussion, we provide an example in R2 in Figure 4-4(a) where we have additionally

assumed the “worst case” outcome ‖T (v)−v?‖2 = ‖v−v?‖2 = r. By restricting the filtering

parameter ρ to the open unit interval (0, 1), it is straightforward to conclude that the state

Tf (ρ,v) is strictly closer to v than T (v) is. The size of this distance can be arbitrarily small

since T (v) an v can be arbitrarily close together on the boundary of B(v?, r). Algebraically,

this observation is justified by the derivation of (4.26).
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Focusing next on the dynamics of stage (ii), we proceed to enumerate all possible out-

comes that the state vn can take, and for each outcome we determine the likelihood that it

occurs based upon the coordinatewise stochastic combination of the states v and Tf (ρ,v).

Continuing the two-dimensional example in Figure 4-4(a), these outcomes and their associ-

ated likelihoods are provided in Figure 4-4(b). In the general case, the state vn can take any

state corresponding to one of the 2K corners of a K-orthotope defined using v and Tf (ρ,v)

as opposite corners, i.e. the hyperrectangle constructed as the Cartesian product of the K

intervals [ai, bi] where ai = min{vi, Tf,i(ρ,v)} and bi = max{vi, Tf,i(ρ,v)}. Intuitively, each

corner represents one of the 2K ways that i of K asynchronous delay modules can trigger

for i inthe range 0 ≤ i ≤ K. This characterization is exhaustive since

K∑
i=0

C(K, i)pi(1− p)K−i = 1 (4.70)

where the number C(K, i) is the binomial coefficient corresponding to the total number

of ways i of K delay elements can trigger. Referring again to Figure 4-4(b), the elements

labeled (1), (3), (4), and (5) correspond to the four possible outcomes of vn for a fixed value

of ρ. The line segments with endpoints labeled (1)-(2), (1)-(6), and (1)-(7) correspond to

the continuum of possible outcomes as ρ varies between 0 and 1.

From the discussion in this section, it is straightforward to conclude that a subset of pos-

sible outcomes for vn are strictly further from the fixed-point v? than either v or Tf (ρ,v) are.

Referring again to Figure 4-4(b), the outcome labeled (4) and the continuum of outcomes

corresponding to the line segment with endpoints (4)-(6) are examples of this. In general,

these outcomes cannot be avoided by simply restricting the range of filter parameters fur-

ther. The following theorem, however, ensures that filtered system operators are stable in

mean square so long as their filtering parameters are chosen in the open unit interval.

Theorem 4.3.6 (Stability in RK ; α = 1). Let T : RK → RK denote a system operator that

is passive everywhere with non-empty fixed-point set FT . Then the filtered system operator

Tf associated with T is stable in mean square, i.e. vn 2−→ v? for some v? ∈ FT , provided

ρ ∈ (0, 1).
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A formal proof of Theorem 4.3.6 is deferred to Appendix A. Note, however, that stability

and robustness in r-th mean of T is not implied by Theorem 4.3.6 for any value of r since

the range of filter parameters does not include ρ = 1. This is consistent with the issues

discussed earlier for system operators akin to T (v) = −v.

Moving beyond simple first-order filtering of delay modules to strengthen the stability

and robustness of asynchronous algorithms, the numerical continuation schemes discussed

in Section 4.2.2 can also be used to solve for fixed-points of a passive everywhere system

operator T . To see this, consider the adaptive system operator Ta defined by

Ta(ρ,v) = ρT (v). (4.71)

This particular adaptive operator corresponds to selecting T (0) to be the everywhere-zero

operator in Definition 4.2.3. One approach is to then use a traditional continuation method

where the interval [0, 1] is discretized and we solve for a fixed point of Ta for increasing values

of the homotopy parameter ρ on that interval, where the fixed point from the previous value

of ρ is used as a warm start to solving for a fixed point of the next. A second approach

is to use the fact that the operator Ta(ρ, ·) is itself ρ-dissipative everywhere for ρ < 1. By

application of Theorem 4.3.3, the adaptive system operator Ta is stable in mean square,

and, therefore, asynchronously implementing it will result in a fixed point. However, the

fixed point obtained is not necessarily a fixed point of T , but under reasonable assumptions

it can be made arbitrarily close to the fixed point of T by selecting ρ arbitrarily close to 1.

4.3.4 | Expansive system operators

The next category of interconnective systems we address include those whose system op-

erators are α-expansive everywhere with non-empty, convex fixed-point sets. When these

system operators additionally satisfy a conic mixing property about their fixed-point sets,

then a filtering parameter may be judiciously chosen so that the filtered implementation of

the asynchronous algorithm is effectively dissipative everywhere. By doing this, a stability

and robustness theorem similar to the one for dissipative everywhere systems in Theo-

rem 4.3.3 can be obtained. The required mixing property and its consequences on stability
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and robustness are stated formally in the following theorem.

Theorem 4.3.7 (Conic mixing; α > 1). Let T : RK → RK denote a system operator that

is α-expansive everywhere and whose fixed-point set FT is non-empty and convex. If T

additionally satisfies the conic mixing property

sup
v 6∈FT

〈T (v)− v?,v − v?〉
‖T (v)− v?‖ ‖v − v?‖

≤ γ (4.72)

for all v? ∈ FT and some γ ∈ [−1, 1) such that αγ < 1, then the filtered system operator Tf

associated with T is stable in mean square, i.e. vn 2−→ v? for some v? ∈ FT , provided

ρ ∈
(

0,
2(1− αγ)

1 + α2 − 2αγ

)
. (4.73)

Proof: The average squared distance of the state vn to any fixed-point v? after a single

iteration is upper bounded by

E
[
‖vn − v?‖2

]
= pE

[∥∥Tf (ρ,vn−1)− v?
∥∥2
]

+ (1− p)E
[∥∥vn−1 − v?

∥∥2
]

(4.74)

= pρ2E
[∥∥T (vn−1)−T (v?)

∥∥2
]
+
(
1−p+p(1−ρ)2

)
E
[∥∥vn−1−v?

∥∥2
]

(4.75)

+2pρ(1− ρ)E
[〈
T (vn−1)− v?,vn−1 − v?

〉]
≤

(
pρ2α2 + 1− p+ p(1− ρ)2 + 2pαγρ(1− ρ)

)︸ ︷︷ ︸
φ(ρ)

E
[∥∥vn−1 − v?

∥∥2
]
(4.76)

where the second equality is due to the identity ‖v +u‖2 = 〈v +u,v +u〉 = ‖v‖2 + ‖u‖2 +

2〈v,u〉. Iterating this inequality n times yields

E
[
‖vn − v?‖2

]
≤ φ(ρ)n

∥∥v0 − v?
∥∥2 (4.77)

where v0 is the arbitrarily selected, deterministic initial state and φ(ρ) is a convex quadratic

function in ρ of the form

φ(ρ) = p
(
1 + α2 − 2αγ

)
ρ2 − 2p (1− αγ) ρ+ 1. (4.78)
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We next prove that φ(ρ) ∈ (0, 1) for ρ satisfying (4.73). The lower bound for φ(ρ) follows

from basic properties of quadratic forms, in particular the fact that φ(ρ) is guaranteed to

be strictly positive everywhere since, by assumption that γ < 1, it cannot have a real root.

By solving d
dρφ(ρ) = 0 for ρ we find that the minimum of φ(ρ) occurs at ρ? = (1−αγ)

1+α2−2αγ

corresponding to the midpoint of the interval in (4.73). We derive an upper bound for ρ

such that φ(ρ) is strictly upper bounded by unity by reducing the expression in (4.78) by

subtracting constants and dividing through by pρ > 0. This results in the condition

ρ(1 + α2 − 2αγ) < 2(1− αγ) (4.79)

from which we obtain the upper limit of the interval in (4.73). By symmetry, the lower

bound for ρ is easily shown to be 0. Therefore, utilizing the fact φ(ρ) ∈ (0, 1) and taking a

limit of the inequality established in (4.77), we obtain the result

lim
n→∞

E
[
‖vn − v?‖2

]
≤

∥∥v0 − v?
∥∥2

lim
n→∞

φ(ρ)n (4.80)

= 0 (4.81)

as desired and hence we have shown that vn 2−→ v? thus concluding the proof.

The relationship previously discussed between Theorem 4.3.6 and Figure 4-4 is essentially

the same as the relationship between Theorem 4.3.7 and Figure 4-5 with two main caveats.

The first caveat is that the restriction of the filtering parameters is to different intervals.

More specifically, restricting the filtering parameter to the open interval (0, 1) in (4.73) is

analogous to restricting the filtering parameter to the open interval (0, 1) in Theorem 4.3.6

since the basic strategy in both cases is to ensure that the squared distance between the state

Tf (ρ,v) and the fixed-point v? is strictly smaller than the squared distance between the state

v and v?. Referring to Figure 4-5, the state labeled (3) corresponds to the state Tf (ρ,v) for

ρ = 2(1−αγ)
1+α2−2αγ

and is equidistant to the fixed point with v. The second caveat is that there

is a mixing property required of system operators in Theorem 4.3.7. The condition that the

conic mixing parameter satisfy γ < 1 implies that Tf (ρ,v) and v cannot be arbitrarily close
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Figure 4-5: An illustration of (a) the states achievable by application of Tf and (b) the possible
outcomes of vn for an arbitrary vn−1 according to the stochastic dynamics of (3.47) for a system
operator T satisfying the conditions in Theorem 4.3.7.

together on the perimeter of the basin B(v?, r) in Figure 4-5. There is not an analogous

condition for passive system operators. Consequently, the state sequence converges linearly

to a fixed point and the optimal filtering parameter in the sense of provable convergence rates

is ρ? = 1−αγ
1+α2−2αγ

. The analogous choice of the filtering parameter in Figure 4-4 is ρ? = 1
2 . In

the respective contexts of Figures 4-4 and 4-5, the optimal filtering parameters correspond

to selecting the state Tf (ρ,v) which minimizes the squared distance ‖Tf (ρ,v)− v?‖2.

To conclude this subsection, we briefly comment on that the class of system operators

satisfying the conic mixing property (4.72) are distinct from the class of system operators

that are chaotic, as one would expect. Specifically, a system operator T is defined as being

chaotic if the state sequence produced using a synchronous protocol, e.g. with p = 1, satisfies

three criteria: (i) hypersensitivity to initial conditions, (ii) topological mixing, and (iii) dense

periodic orbits. While system operators that are α-expansive everywhere generally satisfy

condition (i), this is not sufficient to be chaotic. For example, the scalar operator T : R→ R

given by T (v) = −1.1v satisfies both condition (i) and the conditions of Theorem 4.3.7 but

is not chaotic. For this example, hypersensitivity to initial conditions is easily verified by
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Figure 4-6: An illustration of the possible domains consistent with the system operator discussed
in Section 4.3.4 in R2 demonstrating the utility of Theorems 4.3.2 and 4.3.4 in assembling stability
conditions for α-expansive system operators.

defining the state sequences {vn : n ∈ N0} and {un : n ∈ N0} respectively initialized by v0

and u0 = v0 + δ for some δ 6= 0 and observing that

vn = (−1.1)nv0 and un = (−1.1)n
(
v0 + δ

)
(4.82)

hence the distance ‖vn − un‖ = (1.1)n|δ| can be made arbitrarily large by selecting n ∈ N

appropriately. While Theorem 4.3.7 requires mixing in the sense of (4.72), topological

mixing is a stronger condition since the state sequence is required to be hypercyclic about

a point, i.e. the state sequence must be dense in its phase space. Theorem 4.3.7 also makes

no requirement similar to condition (iii).

4.3.5 | Local stability and robustness properties

Consistent with the remarks preceding Theorem 4.3.2, interconnective structures with α-

conic system operators can generally satisfy the local condition (4.22) about many different

states with different values of α for each. The stability and robustness of these structures

can be understood by collecting together many different local stability and robustness con-

ditions and aggregating their consequences onto one another. Local stability and robustness

conditions include those in Theorems 4.3.1, 4.3.2, and 4.3.4.

As a concrete example of analyzing an expansive system operator, consider a system
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operator T : RK → RK that is known to be α-expansive about at least one state and

additionally satisfies the following properties:

(i) T is αw-dissipative about wc where wc 6= T (wc) (Theorem 4.3.2);

(ii) T is αv-dissipative about all v ∈ B(vc, rv) for a radius rv satisfying ‖vc − T (vc)‖ ≤

(1− αv)rv (Theorem 4.3.4);

(iii) T is αu-dissipative about all u ∈ B(uc, ru) for a radius ru satisfying ‖uc − T (uc)‖ ≤

(1− αu)ru (Theorem 4.3.4).

An illustration of the domain of a system operator with dimensionality K = 2 and that

is consistent with these properties is provided in Figure 4-6. Referring to the figure, from

property (i) it follows that within a finite number of iterations a state sequence will enter

the basin B(wc, rw + ε) for any ε > 0. Combining the consequences from properties (ii) and

(iii), scenario (a) depicts the case where the intersection of B(uc, ru) and B(vc, rv) is non-

empty and therefore any state sequence that enters either basin will converge to the unique

fixed point v? = u? in mean (provided ρ is appropriately selected). Scenario (b) depicts the

complementary case where the intersection of the two basins is empty and, therefore, T has

at least two distinct fixed points. Furthermore, if a state sequence enters either basin, then

it will converge in mean to the unique fixed point inside that basin.

4.4 | Solving SCSPs using convex, tree-based algorithms

In this section, we develop some general purpose processing instructions related to solving

SCSPs and the optimization problem in (4.21), and we discuss a straightforward procedure

for arranging these instructions into various greedy algorithms. The general strategy is to

associated a tree graph with each problem so that the algorithms are interpretable as learn-

ing the topology of the tree by starting at the root node and seeking to uncover the furthest

leaf node. As such, the algorithms are naturally suited to distributed and parallel comput-

ing environments since the processing performed to uncover each node can be performed

independent of the processing used to uncover nodes in the same generation of the tree. To

avoid confusion with previous nomenclature, we restrict our use of the word node in this

section to mean the vertex of a graph and reserve the term vertex to mean the corner or
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extreme point of a polytope.

Originally presented in [84], the basic connection between an SCSP and the associated

tree follows from defining the set S to describe the root node. Children of the root node

correspond to coordinates of the elements in S that can be set to zero by producing new

feasible elements. Upon receiving these elements, children then determine using the same

rule if they have children of their own, but where they can only produce new elements that

remain zero in all coordinates that have already been set to zero. The process then repeats

itself where various ways of traversing the tree correspond to different algorithms in the

same spirit. The processing instructions defined in this section are specifically designed to

enforce this behavior so that the structure of the tree relates to the sparsity of the elements

produced by each node in two ways: (i) the number of non-zero entries of each element

produced by a node decreases with each successive generation of the tree, and (ii) siblings

of the same parent node produce sets of feasible elements with different sparsity patterns.

However, nodes with different parents may produce elements with the same sparsity pattern.

4.4.1 | Initializing the root node

Recall that trees are defined as graphs where any pair of nodes is connected by exactly one

path. To initialize the algorithms under design, the root of the tree is established by defining

a set P consisting of M distinct elements drawn from the feasible set S in (4.19), i.e. the

set P takes the form

P =
{
v1, . . . ,vM : vm ∈ S,m = 1, . . . ,M, and vm 6= vn, for m 6= n

}
(4.83)

where each element vm is allowed to be dense. To facilitate a geometric interpretation of the

class of algorithms, note that sets of the form (4.83) can be thought of as encoding the vertex

representation of a particular polytope embedded inside S and consisting of a continuum of

feasible elements. In particular, P describes a closed and convex polytope corresponding to

the convex hull of the elements forming its description as demonstrated by

convhull (P) =

{
M∑
m=1

αmv
m ∈ S :

M∑
m=1

αm = 1, αm ≥ 0, for m = 1, . . . ,M

}
. (4.84)
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For problems where the feasible set S has a natural expression through half-space represen-

tations, i.e. through a finite collection of linear equality and inequality constraints, standard

vertex enumeration algorithms can be used to generate P [85]. Alternatively, convex opti-

mization problems such as linear programs designed with random or systematically chosen

cost functions can target and obtain well-spread vertices of S or feasible elements with

other desirable properties. As will become evident shortly, greedy algorithms formed using

the processing instructions developed in this section are unable to obtain sparse solutions

contained within S that are not included in the convex hull of P2.

A pertinent question at this stage involves how the number M in (4.83) should be

selected. To answer this question, we point to a result in [86] that says the following: let a

polytope in anN -dimensional space with ν vertices achieve a maximum number of obtainable

facets F . Then, the corresponding dual polytope maximizes the number of vertices for a fixed

number of facets where ν is on the order of F b
N
2 c. This fact, consistent with the complexity

of basis exchange algorithms in linear programming, suggests enumerating the vertices in S

is computationally intractable. We defer further comments to the later discussion.

4.4.2 | Incremental sparsity: processing instructions

We are now prepared to define the processing instructions used to form algorithms in the

presented class. In particular, after receiving a convex polytope P in vertex representation

from a parent node (or initialization for the root node), the processing performed by each

node in the tree corresponds to some instantiation of the following three subroutines: (i)

unveilChildren, (ii) vanishCoordinate, and (iii) reduceComplexity. In this subsec-

tion, the responsibility of each subroutine to the overall iteration is explained, and example

pseudocode is provided for each. To assist with doing this, we will use the terminology that

a node vanishes coordinate d if the result of its processing is a new polytope P ′ consisting

entirely of elements that satisfy the following property:

vd = 0, v ∈ convhull
(
P ′
)
. (4.85)

2This fact does not include algorithms which successfully transform leaf nodes into parent nodes by draw-
ing additional elements from S, as described in the section on the processing instruction unveilChildren.
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Pseudocode 4.4.1 Example pseudocode for the subroutine unveilChildren that is used
to determine the set I describing the potential children a given node can produce using the
set of feasible solutions P.
function unveilChildren(P)
I ←

{
d ∈ {1, . . . ,K} : ∃v+,v− ∈ P s.t. v+

d > 0 and v−d < 0
}

end function

Consequently, every node in the tree will satisfy the following property: for every element

v ∈ convhull(P ′), vi = 0 for all coordinates i that have been vanished along the unique path

starting from the root node and ending at the node that produced P ′. Moreover, every node

in the g-th generation of the tree receives a set of feasible elements from their parent where

each element satisfies ‖v‖0 ≤ K − g. This observation provides a straightforward stopping

criterion for solving an SCSP for a prespecified sparsity parameter t in (4.20).

unveilChildren

Toward uncovering the structure of the tree, the first processing instruction we define allows

a node to determine which, if any, children it can produce. To do this, nodes are equipped

with a subroutine named unveilChildren that identifies which, if any, coordinates can

be vanished in the sense of (4.85) by further processing the polytope P received from that

nodes parent. A simple sufficient condition for a particular node to vanish coordinate d is

that the received polytope P contain at least one element v+ whose d-th entry is strictly

positive and at least one element v− whose d-th entry is strictly negative. If this condition

is met, the node is said to be able to produce child d. Let I ⊆ {∅, 1, . . . ,K} denote the set

of all children that a given node can produce, i.e. |I| is the maximum number of children

that node can produce. The quantity |I| can assist in determining whether trees or subtrees

should be searched depth or breadth first. Pseudocode 4.4.1 provides an example of the

subroutine unveilChildren where the index set I is produced for a given polytope P on

the basis of the sufficient condition above. From this perspective, nodes are classified as

leaves if they cannot generate any children, i.e. if their index set I is empty.

The objective of an SCSP in the context of the tree graph is to identify a t-length path

starting from the root node and traversing down the tree. This suggests straightforward

stopping rules for algorithms using the subroutine unveilChildren to include criteria such
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Pseudocode 4.4.2 Example pseudocode for the subroutine which generates the set P ′
using elements of the set P by vanishing coordinate d according to (4.86) with L = 2.

function vanishCoordinate(P, d)
for each v+ ∈ P with v+

d > 0 do
for each v− ∈ P with v−d < 0 do

P ′ ←
(

v+
d

v+
d −v

−
d

)
v+ +

(
−v−d

v+
d −v

−
d

)
v−

end for
end for

end function

as the identification of either the longest or a sufficiently long path starting from the root

node and ending at a leaf. The process of transforming a leaf node into one with children,

which we shall refer to as subtree exploration, is sometimes possible by drawing additional

elements from the set S. To do this in practice, however, relies on the computational

complexity associated with generating new elements from S. One potential strategy for

doing this in practice is to solve a convex optimization problem where the cost function

is strategically chosen to target the sign of a particular coordinate while simultaneously

imposing additional constraints to ensure the coordinates already vanished along the direct

path from the leaf node to the root remain zero. If S is easily described using half-space

representation, this strategy reduces to simply solving a linear programming problem.

vanishCoordinate

The next processing instruction we define allows a given node to produce a new polytope

P ′ consisting of elements in S that all have their d-th coordinate vanished starting with the

polytope P received from that nodes parent. To carry out this task, nodes are equipped

with a subroutine named vanishCoordinate. To ensure elements in the convex hull of

P ′ maintain feasibility according to (4.19) while simultaneously satisfying (4.85), we will

rely on straightforward properties of convexity. Specifically, consider the following basic

property that says a convex combination of L elements v1, . . . ,vL taken from P produces a

new element v′ that is also an element of P as is demonstrated by

v′ =

L∑
l=1

αlv
l ∈ P for

L∑
l=1

αl = 1, αl ≥ 0. (4.86)
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node 2
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(a) An example of a partially unveiled tree graph (b) A cross section of the polytope 

embeddings

Figure 4-7: An illustration depicting (a) three generations of a partially unveiled tree and (b) a
cross-section of the polytope embeddings corresponding to the nodes S, “root node”, “node 6”, “node
2”, and “node 3” on the highlighted walk.

It is straightforward to verify that the conditions required for the coordinate d to be an

element of the set I are sufficient for a set of linear combination coefficients {α1, . . . , αL}

to exist satisfying (4.86) for at least one collection of L elements vl in P. Any such set of

coefficients is sufficient to systematically produce elements v′ of P ′.

Pseudocode 4.4.2 provides an example of the subroutine vanishCoordinate. This

particular example corresponds to using (4.86) with L = 2 and provides expressions for the

weights α1 and α2. In addition, (4.86) can be used to verify that all coordinates previously

vanished while generating the set P remain zero valued during the the process of generating

P ′ and that the property P ′ ⊆ P is satisfied since v+
d > 0 > v−d , i.e. P

′ is embedded within

P. From the perspective of solving nonlinear systems of equations by iteratively applying

projection operators, as mentioned in the discussion surrounding (4.1), the processing in-

struction vanishCoordinate is easily interpretable as a projection operator since applying

it repeatedly to the same set will not yield any additional elements.

Figure 4-7(a) illustrates the first three generations of a partially unveiled tree. Referring

to the figure, the four polytopes labeled P,P6, P2, and P3 indicate sets of elements that

are generated along the highlighted path involving the nodes labeled “root node”, “node 6”,

“node 2”, and “node 3”, respectively. A cross-section of these polytopes demonstrating the

embedding property P3 ⊆ P2 ⊆ P6 ⊆ P ⊆ S is also provided in Figure 4-7(b). The walk

starting from “root node” and proceeding to “node 2” to “ node 3” to “node 6” results in a

set of elements with sparse vertices that have the same sparsity pattern as those produced
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by the highlighted path. This observation underscores the redundancy that can occur when

selecting which nodes to vanish during an implementation of an algorithm and underlies the

computational difficulty of the problem.

reduceComplexity

In response to the amount of computation required to enumerate all vertices that can be used

to describe a general convex polytope, the next processing instruction allows nodes to reduce

their computation at the expense of approximation. To do this, each node is equipped with

a subroutine reduceComplexity that trades off between the thoroughness of a search

and complexity, thereby allowing algorithms to remain tractable. More concretely, the

complexity associated with Pseudocode 4.4.2 is often high, especially for problems with long

root-to-leaf distances. To see this, let P denote the polytope received by a node and let

M+
d denote the number of elements v ∈ P whose d-th entry is strictly positive and let

M−d denote the number of elements v ∈ P whose d-th entry is strictly negative for some

d ∈ I. Also, let P ′ denote the result of vanishing coordinate d using the example subroutine

vanishCoordinate. The cardinality of P ′ is M ′ and corresponds to

M ′d = M+
d M

−
d (4.87)

possibly repeated vertices. It immediately follows that the total number of vertices generated

by a node in the g-th generation of the tree is on the order of M2g where M is the number

of elements used to define the root. By limiting the number of vertices used to describe the

embedded polytope P ′ while vanishing coordinate d, the problem of tree traversal remains

computationally tractable. This is explicitly at the expense of excluding regions of the

polytope P in forming P ′ where a maximally sparse solution may reside.

An example of the subroutine reduceComplexity is provided in Pseudocode 4.4.2 to

control the amount of computation performed at each node. The example is specifically set

up to work by by limiting the total number of vertices used that satisfy vd > 0 and vd < 0

to M̂+
d < M+

d and M̂−d < M−d , respectively. In our experience with several examples, the

number of unique vertices generated by vanishCoordinate is smaller than M ′d, especially
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Pseudocode 4.4.3 Example psuedocode describing a function that reduces the overall
computational complexity required in vanishing the d-th coordinate according to vanish-
Coordinate.
function reduceComplexity(P, d)
P ′ ← at most M̂+

d unique vertices from P that satisfy vd > 0

P ′ ← at most M̂−d unique vertices from P that satisfy vd < 0
end function

in later generations of the tree. This heuristic may help guide the dynamic selection of M̂+
d

and M̂−d for a particular problem.

4.4.3 | Tree-search protocols

Structure from the description of the set S can often be used to inform the decision about

how an algorithm should be directed to explore the tree using the processing instructions

defined in the previous subsection. In this subsection, we discuss some important factors in

determining how the algorithm selects which branches of the tree to search and in what or-

der. For example, a key decision involves choosing the tree traversal protocol and is informed

by balancing how quickly solutions of a predetermined sparsity level are to be sought after

against the thoroughness that the initial polytope P is to be searched within. In the com-

puter science literature, much work has focused on the development of efficient depth-first

and breadth-first tree search protocols for similar problems [87]. Deciding which protocol

to use, however, is typically obfuscated at the outset since we do not know the topology of

the tree in the present context. In considering breadth-first searches, an important factor

relates to the rate at which the trees width grows. For example, if Wg denotes the width

of a tree at generation g, i.e. the total number of nodes across generation g in a complete

unveiling of the tree, then Wg is bounded using the number of nodes in generation g − 1

according to

Wg ≤Wg−1(K − g + 1) (4.88)

where W0 = 1. The details of particular problem classes may provide some form of side in-

formation that restricts the expansion rate of the trees width making breadth-first protocols

seem more computationally attractive than originally implied by (4.88).

In considering depth-first search protocols, the availability of side information or other
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Pseudocode 4.4.4 Example pseudocode describing a how to select a single-path pre-walk
during runtime by selecting which coordinate to vanish accoridng to the number of possible
sparse vertices produced.
function selectCoordinate(P, I)
d′ ← arg max

d∈I
|{v ∈ P : vd > 0}| · |{v ∈ P : vd < 0}|

end function

heuristics can often be used to choose between a predetermined coordinate vanishing order

or the use of a run-time protocol for selecting coordinates to vanish. As an example of the

former, the indices of magnitude sorted 1-norm relaxations to (4.21) may result in solutions

of higher sparsity or, equivalently, the earlier unveiling of deeper leaves. As an example

of the latter, pseudocode for a depth-first search protocol is provided in Pseudocode 4.4.4

where the subroutine selectCoordinate chooses an elimination order in real time that

uses no heuristics or side information but aims to select coordinates that when vanished

using vanishCoordinate produce embedded polytopes P ′ that contain the most possible

elements.

4.4.4 | Subtree exploration

It is sometimes possible to employ techniques that are agnostic to the specific problem at

hand in order to restart or extend a tree once a leaf node has been found. More generally,

these same techniques can be used to identify if more children can be produced than those

that can be identified using unveilChildren. We refer to these techniques as subtree

exploration techniques and, in this subsection, present two examples of how they can easily be

incorporated into the design of greedy algorithms by augmenting the processing instructions

previously defined. When these techniques are applied once a leaf node has been found

or after there are no remaining nodes with unexplored children, they provide direction

in generating algorithms that are recurrent in their exploration of the tree rather than

single application. For example, one such technique that was mentioned earlier involves

transforming a leaf node into a parent node by drawing additional elements from S. The

success of this approach depends on the amount of computation associated with generating

elements from S with additional structure imposed on them.

Another subtree exploration technique that can be used to both trim branches and
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identify unexplored children involves merging the polytopes produced by two nodes that

satisfy a certain relationship, and then ending the exploration down one of their paths. This

approach is similar to graph algorithms in the branch-cut style. In particular, let node n1

in generation g have received polytope Pn1 from its parent and let node n2 denote a second

node in the same generation having received polytope Pn2 from a different parent. Further,

assume the collection of vanished coordinates from node n1 to the root is the same as those

from node n2 to the root. Then, we can terminate either node and take the union of the

two polytopes as Pn1∪n2 where

Pn1∪n2 = {v ∈ S : v ∈ Pn1 or v ∈ Pn2} . (4.89)

This polytope is then assigned to either node n1 or node n2 and processing continues down

the path of that node, and the exploration down the other node is discontinued. For example,

this subtree exploration technique can be used by merging the nodes labeled “node 3” and

“node 6” in the third generation of the tree in Figure 4-7(a). This procedure is equivalent

to searching for potential children nodes inside regions that are generally larger than the

union of the convex hull of the individual polytopes Pn1 and Pn2 since (Pn1 ∪ Pn2) ⊆

convhull(Pn1∪n2).

4.5 | Numerical experiments

In this section, the results from several numerical experiments are presented to illustrate

further the algorithms for solving CCSPs and SCSPs developed in this chapter. In the con-

text of solving CCSPs, synchronous and asynchronous scattering algorithms corresponding

to filtered implementations of scattering-form interconnective structures are presented to

demonstrate the theoretical and practical agreement of the stability and robustness condi-

tions derived in Section 4.3. The particular interconnective structures chosen in this section

correspond to system operators that are not accounted for by the examples presented in

Chapter 6. The basic setup for these numerical experiments is as follows:

(i) for the particular CCSP at hand, write the problem in interconnective form and then
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generate the system operator T associated with it;

(ii) identify a fixed-point v? ∈ FT of the system operator found in step (i);

(iii) implement the structure by generating state sequences {vn : n ∈ N0} using filtered

system operators Tf for various probability values p in the iteration (3.47) and filtering

parameter ρ = 1
2 , and track the size of vn − v?; and

(iv) repeat step (iii) for many trials where the initial state v0 is suitably chosen at random

for each trial and average the results.

The convergence results of the synchronous and asynchronous scattering algorithms pro-

duced by following the procedure above are presented in the first two subsections below as

a function of “equivalent (normalized) iterations,” which corresponds to an iteration count

summarizing the total amount of computation performed. Specifically, a single equivalent

iteration under this count corresponds to K scalar delay modules triggering and can be

approximated as 1
p iterations of (3.47) where each asynchronous delay module triggers with

probability p according to the stochastic matrix D(p).

In the context of solving SCSPs, the processing instructions in Section 4.4 are paired

with a depth-first tree-search protocol to form an algorithm in the style of a synchronous

runloop. This algorithm is then used to design a frequency-selective filter with a sparse

impulse response in the final subsection below. The impulse response obtained by this

method is then compared with alternative impulse responses obtained using conventional

sparse filter design methods from the literature.

4.5.1 | Stability and robustness of passive everywhere system operators

The first numerical experiment we discuss corresponds to solving the CCSP associated with

an interconnective structure with a passive everywhere system operator whose representa-

tion as a fixed-point problem in (4.15) and (4.16) uses a coordinate-wise absolute value

function for the memoryless nonlinearity m(·). For interconnecting networks generated in

a certain way, this particular interconnective structure was shown in [88] to be in the same

interconnective equivalence class as the optimality conditions associated with linear pro-
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Figure 4-8: Numerical convergence results for a filtered implementation of the passive everywhere
system operator in (4.90) with filter parameter ρ = 0.5. The depicted results were obtained by
averaging over 1000 trials for various values of the stochastic parameter p and dimension sizes
k = 50 (left) and k = 100 (right). The initial system state v0 is randomly selected on the boundary
of B(v?, 104) for each trial.

gramming problems. In Chapter 5, we use the quadratic conservation principle inherent to

CCSPs to elaborate on this link and to extend the connection to more general classes of

optimization problems. In this subsection, we consider a different subset of these CCSPs

where Theorem 4.3.6 summarizes the conditions relevant to the stability and robustness of

the processing system.

Let T : RK → RK denote the system operator associated with an orthogonal-form inter-

connective structure as described above, i.e. the system operator T takes the form

T (v) = Q|v|+ f (4.90)

where Q : RK → RK is a randomly generated orthogonal matrix obtained by first drawing

a K ×K matrix from a Gaussian ensemble and then projecting it to the nearest orthogonal

matrix in the Frobenius norm sense, and where f ∈ RK is a Gaussian random vector.

Closed form projection operators and efficient numerical methods for performing the matrix

projection used to obtain Q are discussed in [89]. In implementing algorithms derived from

(4.90), the state sequences vn are generated using filtered realizations of the system operator

where the filter parameter ρ is selected to be one half.

The numerical convergence results for this experiment averaged over 1000 trials for prob-

lems with dimension sizes K = 50 and K = 100 and asynchronous delay probabilities

p = 0.2, 0.4, 0.6, 08, 1.0 are provided in Figure 4-8. Referring to the trends observed in the
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figure, the state sequences converge to their fixed-points at an approximately linear rate

initially and then slow to a sublinear trend once they reach a sufficiently nearby basin to

the fixed-point. This trend is consistent with the comments in the proof of Theorem 4.3.6

in Appendix A. Consistent with the theorem, the synchronous algorithm corresponding

to p = 1 exhibits monotone convergence. Finally, we comment that the synchronous and

asynchronous algorithms in this subsection where the identity function replaces the absolute

value function provide ways to solve linear systems of the form (I−Q)v = f without explic-

itly decomposing or inverting (I−Q) or Q. By proper selection of the vector f , asynchronous

algorithms for determining certain eigenvectors and eigenvalues of Q are provided.

4.5.2 | Stability and robustness of exponential system operators

In the discussion following the proof of Theorem 4.3.5, it was shown that the scalar operator

T (v) = e−v is not α-conic for any finite value of α, but the composed function T ◦ T is

with coefficient α = 1
e . The second numerical experiment we discuss corresponds to solving

the CCSP associated with an interconnective structure with a system operator that is the

multidimensional generalization of this operator. In particular, the experiment described

next illustrates numerically that a synchronous and direct implementation of a system op-

erator satisfying the conditions in Theorem 4.3.5 extends to asynchronous and unfiltered

implementations too. This observation is also consistent with the remark that asynchronous

algorithms formed by composing dissipative system operators are stable and robust in the

sense of Theorem 4.3.3.

Let T : RK → RK denote the system operator associated with an orthogonal-form inter-

connective structure as described above, i.e. the system operator T takes the form

T (v) = e−Qv + f (4.91)

where Q : RK → RK is an orthogonal matrix with eigenvalues bounded away from −1,

f ∈ RK is drawn from a Gaussian vector distribution, and the exponential is computed

coordinatewise. The matrix Q is generated by drawing a K × K matrix from a Gaussian

ensemble and then computing the Cayley transform of its skew-symmetric portion.
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Figure 4-9: Numerical convergence results for a filtered implementation of the transcendental
system operator in (4.91) with filter parameter ρ = 1.0. The depicted results were obtained by
averaging over 1000 trials for various values of stochastic parameter p and dimension sizes k = 100
(left) and k = 50 (right).

The numerical convergence results for this experiment averaged over 1000 trials for prob-

lems with dimension sizes K = 50 and K = 100 and asynchronous delay probabilities

p = 0.25, 0.5, 0.75, 1.0 are provided in Figure 4-9. Referring to the trends observed in the

figure, the state sequences converge to their fixed-points at an approximately linear rate after

the initial transient effects wear off. Note that the observed rates appear to be independent

of the delay probability p. Similar to the comments in the previous subsection, we remark in

closing that the asynchronous algorithms associated with the fixed-point problem described

in this subsection provide ways to solve transcendental exponential equations that have no

analytic solutions, i.e. whose solutions cannot be expressed in closed form as polynomial

equations.

4.5.3 | Convex, tree based sparse filter design algorithms

The design of sparse impulse responses for linear and time-invariant filtering systems is com-

putationally difficult in general but leads to many practical advantages including reduced

hardware area and power consumption on very-large scale integrated (VLSI) systems. Intu-

itively, the difficulty in the design problem stems from the combinatoric nature of sparsity

patterns rather than the design of the filter tap values after having chosen a particular

sparsity pattern. Formulated using the SCSP setup, common design specifications that

are easily expressed in half-space representation typically do not meet the constraint qual-

ifications that compressive sensing algorithms rely upon to equation 1-norm and 0-norm
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minimization problems. Many design procedures have been proposed that have a similar

flavor to those in compressive sensing, e.g. greedy algorithms that iteratively solve weighted

1-norm linear programs [90]. The formulation of these design problems using non-convex

optimization problem statements has also been explored and used to generate sparse impulse

responses for a limited number of constraint types [91]. More broadly, alternative formula-

tions that rely on convexity principles have been used to assemble projection onto convex

sets style algorithms where initial designs are successively refined until a design satisfies each

constraint. These methods often result in final designs that satisfy all of the constraints but

are not explicitly optimal with regard to any metric [66,67].

The setup for a sparse filter design problem is described next. Let h[n] denote an impulse

response defined over the support [0, 2N ]. Furthermore, let Ωpb and Ωsb denote the respective

passband and stopband intervals given by

Ωpb = {ωi ∈ R : |ωi| ≤ ωpb, 1 ≤ i ≤ I} (4.92)

and

Ωsb = {ωi ∈ R : ωsb ≤ |ωi| ≤ π, 1 ≤ i ≤ I} (4.93)

where the passband and stopband edges ωpb and ωsb satisfy 0 < ωpb < ωsb < π, and the

integer I is chosen to be large enough that the frequency axis is sufficiently sampled with

respect to the size of the filter support. Over these intervals, frequency-domain attenuation

constraints are imposed so that a candidate impulse response is said to be feasible if it’s

Fourier transform amplitudes deviate no more than δpb and δsb from the ideal amplitude

response over the passband and stopband intervals, respectively. Let D(ω) denote the ideal

amplitude response and, for the example in this subsection, be defined as unity on the

interval Ωpb and zero on the interval Ωsb. The definition of the feasible set S in (4.19) is
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Algorithm 4.1 A single-path, depth-first algorithm with randomized vertex reduction and
a run-time order selection subroutine.
I ← unveilChildren(P)

while I 6= ∅ do
d← selectCoordinate(P, I)
P ← reduceComplexity(P, d)
P ← vanishCoordinate(P, d)
I ← unveilChildren(P)

end while

written in terms of a zero-phase impulse response according to

S = {v ∈ RN : |T (ω,v)−D (ω)| ≤ δpb, ω ∈ Ωpb, (4.94)

|T (ω,v)−D (ω)| ≤ δsb, ω ∈ Ωsb} (4.95)

where

T (ω,v) =
N∑
k=1

vk cos (ω (k − 1)) (4.96)

and v1 = h[0] and vk = 2h[k − 1] for 2 ≤ k ≤ N . The design example presented so far

can easily be modified to describe other classes of filters and to incorporate many additional

design constraints. For example, the half-space representation of many common filter de-

sign constraints is shown in [66] to be a closed and convex set. The values of the design

specifications for the example in this subsection are chosen to be the same as those in [92]

to allow for comparison and are: passband cutoff frequency ωpb = 0.20π, stopband cutoff

frequency ωsb = 0.25π, passband ripple δpb = 0.01 (linear scale), stopband ripple δsb = 0.1

(linear scale), and support parameter N = 31.

Pseudocode for an example sparse filter design algorithm is provided in Algorithm 4.1 by

assembling the processing instructions developed in Section 4.4 into a runloop. Note that

the processing instructions are guided by the single-path depth-first coordinate selection

procedure that is described by the subroutine selectCoordinate in Pseudocode 4.4.4.

To apply Algorithm 4.1 to the sparse filter design problem, the root node is equipped with

an initial polytope P populated using M = 500 vertices drawn from S where each vertex

corresponds to a non-sparse filter that meets the design specifications. These initial elements

are, in particular, selected by solving a sequence of linear programs using a basis exchange
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0

0.1

0.2

An element of the final polytope obtained using Algorithm 4.1.

Figure 4-10: An impulse response corresponding to one sparse solution generated using Algo-
rithm 4.1. Zero valued coefficients are marked with red x’s.

method where the coefficients of the objective vector are drawn uniformly at random from

the interval [−1, 1]. To retain tractability, the subroutine reduceComplexity is applied

in each iteration with parameters M̂+ = M̂− = 500, i.e. the polytope P generated by

each node cannot exceed 250, 000 elements at any stage. As described, the algorithm does

not make any attempt at subtree exploration, i.e. no additional processing is used to draw

additional samples to transform a leaf node into a parent node. Therefore, the algorithm

naturally terminates upon the discovery of a leaf.

A randomly selected element belonging to the leaf node discovered by running Algo-

rithm 4.1 has been transformed into an impulse response h[n] and is depicted in Figure 4-

10. This particular solution has an equal sparsity level to the solution generated in [92] by

solving a sequence of linear programming problems but has a different sparsity pattern. The

length of the walk from the root node to the leaf node for the solution depicted is 15 and

directly relates to the sparsity seen in the impulse response. Variations and extensions to

Algorithm 4.1 follow in a straightforward way, e.g. by switching to differnet order selection

rules depending on the current sparsity level or pattern. Of course, a natural alternative is

to select the fixed ordering before runtime corresponding to the solution to the 1-norm relax-

ation of (4.21). In comparing this path selection rule with the one used above for many trials

and different specifications, we comment that the rule in Pseudocode 4.4.4 tends to result

in sparser filters. The well-known fact that the 1-norm solution does not degrade gracefully

in the frequency-domain with respect to the specifications in part validates this observa-

tion. By using subtree extension techniques and other variations of Algorithm 4.1, impulse

responses of different sparsity levels and patterns than the one depicted in Figure 4-10 are

obtainable.
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Chapter 5

Scattering structures for solving

optimization problems

There are a variety of places where mathematical optimization problems manifest them-

selves in signal processing applications, including as design tools for optimal parameter

selection and as processing stages in the signal chain itself [93]. The goal of this chapter is

to unite these applications by developing a class of signal processing systems whose equi-

librium states or steady-state variable values satisfy a variational property, and, therefore,

have an interpretation as solutions to associated optimization problems. Drawing upon the

interconnective framework and the capability of scattering algorithms to solve a wide range

of CCSPs, the tools developed in this chapter more broadly facilitate the design and imple-

mentation of asynchronous, distributed optimization algorithms realized as scattering-form

signal processing systems, and therefore provide straightforward methods for solving a broad

class of convex and non-convex optimization problems.

This chapter begins with a review of some known conditions relating the stationarity

principles underlying a class of optimization problems and the orthogonality principles per-

taining to conservative vector spaces. Using these conditions, a primal and dual pair of

optimization problems are proposed whose joint feasibility conditions serve as sufficient con-

ditions for stationarity of the associated problems. The interconnective description of the

stationarity conditions is shown to reduce to a CCSP, and the results in Chapter 4 suggest
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a variety of structures and sufficient conditions for stabilization under which the primal and

dual optimization problems can be solved asynchronously and simultaneously.

To allow scattering-form signal processing systems to be assembled from inspection of

optimization problem statements, several constitutive modules are derived that correspond

to common feasibility constraints and objective functions, and straightforward procedures

are provided for deriving additional modules. The scattering algorithms that result from

attaching these modules to centralized or decentralized interconnecting networks specifically

operate by passing around algorithm variables that are linear combinations of the primal

and dual decision variables, and the scattering coordinate transforms describe these combi-

nations. A numerical method for decentralizing the interconnecting networks in a system’s

interconnective description is presented, and an interpretation is discussed of the solutions

produced by scattering algorithms that have been terminated early. To conclude the chap-

ter, connections are made between the proposed class of scattering algorithms and existing

methods from the optimization literature, and we find that while scattering algorithms

are distinct, they are also in the same interconnective equivalence class as many of their

gradient-based and proximal counterparts.

5.1 | A class of conservative optimization problems

In this section, a class of conservative optimization problems is defined whose structure is

consistent with the class of problems discussed in [88, 94]. The formulation of this class is

motivated by connections between stationarity and orthogonality principles in conservative

vector spaces, and these connections allow for variational interpretations of signal processing

systems organized into canonical form. Optimization problems in the presented class will

generally be described in two equivalent ways. The first description, referred to as canonical

form, is suited to the characterization of the stationarity conditions. As the naming conven-

tion suggests, the interconnective description of the stationarity conditions associated with

problems written this way is a canonical-form structure. The second description, referred to

as reduced form, only exists for a subset of problems written in canonical form and is useful

in making connections with common optimization problem classes.
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The strategy we follow in this section to define the class of conservative optimization

problems is specifically to define canonical and reduced forms of a primal optimization

problem as special cases of the general form

minimize
(x1,...,xM )

Q(x) (5.1)

s.t. f(x) ∈ VA (5.2)

where Q denotes the primal cost functional, x denotes the decision vector, f denotes a

vector-valued function defined on x, and VA denotes a vector space. Similarly, we define the

canonical and reduced forms of the corresponding “dual” optimization problem as special

cases of the general form

maximize
(x1,...,xM )

−R(x) (5.3)

s.t. g(x) ∈ VB. (5.4)

where R denotes the dual cost functional, g denotes a vector-valued function defined on

x, and VB denotes a vector space that is orthogonal to VA. As will be explained shortly,

the stationarity conditions impose a set of relationships between the functions f , g, Q, and

R so that the primal and dual feasibility conditions (5.2) and (5.4) collectively serve as

sufficient conditions for stationarity of the cost functionals (5.1) and (5.3) about any small

perturbations of the shared decision vector x for which f(x) and g(x) remain feasible, i.e. for

which f(x) remains in the vector space VA and g(x) remains in the vector space VB.

The interconnective description of the primal and dual feasibility conditions can be

described as a canonical-form signal processing system where the relationships required

between f , g, Q, and R are enforced using constitutive modules and the orthogonal subspaces

VA and VB are generated using interconnecting networks. The interconnective structures

depicted in Figure 5-1 illustrate this. Specifically, the structure in (b) corresponds to the

special case of the general canonical-form structure in (a) where the constitutive module F

imposes the conditions a = f(x) and b = g(x) for appropriately chosen functions f and g,

and the interconnecting network enforces that a and b belong to orthogonal subspaces.
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(a) A general canonical-form structure

Constitute module

(b) Canonical-form structure for stationarity conditions

Constitute module Interconnecting network Interconnecting network

Figure 5-1: Canonical-form structures illustrating the notation used to state the stationarity
principle. (a) A general canonical-form structure. (b) The specific form of the stationarity conditions.

5.1.1 | A stationarity principle for orthogonal vector spaces

In this subsection, we review the particular set of stationarity conditions that pertain to

the pair of optimization problems described by (5.1) through (5.2) and (5.3) through (5.4),

where the conditions enforce the vector-valued functions f and g to give rise to a stationarity

principle involving the cost functionals Q and R whenever the functions f and g evaluate to

vectors in orthogonal vector spaces. A general discussion of the relationship between these

conditions and their role surrounding the concepts of stationary content and co-content in

electrical network theory, as originally presented in references such as [9,95], is omitted here

and can be found in [11, Theorem 5.1].

To begin, consider the inner product space (RN , 〈·, ·〉) where 〈·, ·〉 denotes the standard

inner product and let VA ⊆ RN and VB ⊆ RN denote two orthogonal vector spaces. The

subspaces VA and VB are not required to uniquely decompose RN but must satisfy pairwise

orthogonality between their elements as demonstrated by

〈a,b〉 = 0, a ∈ VA,b ∈ VB. (5.5)

With this setting established, we proceed to discuss the roles played by the functions f

and g and functionals Q and R while listing their requisite assumptions. First, let f : RM →

RN and g : RM → RN denote functions whose respective Jacobians are assumed to exist at

certain points. Writing this out to make the notation clear, let Jf : RM → RN denote the
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Jacobian of the function f evaluated at one such point x? ∈ RM according to

Jf (x?) =
(
∇fT1 (x?), ∇fT2 (x?), . . . , ∇fTN (x?)

)
(5.6)

where the notation fn(x?) indicates the n-th entry of f evaluated at x?, and where the

gradient ∇fn(x?) is given by

∇fn(x?) =

(
∂fn
∂x1

(x?),
∂fn
∂x2

(x?), . . . ,
∂fn
∂xM

(x?)

)
, n = 1, . . . , N. (5.7)

Similarly, let Jg : RM → RN denote the Jacobian of the function g evaluated at the point

x? ∈ RM according to

Jg(x
?) =

(
∇gT1 (x?), ∇gT2 (x?), . . . , ∇gTN (x?)

)
(5.8)

where the notation gn(x?) indicates the n-th entry of g evaluated at x?, and where the

gradient ∇gn(x?) is given by

∇gn(x?) =

(
∂gn
∂x1

(x?),
∂gn
∂x2

(x?), . . . ,
∂gn
∂xM

(x?)

)
, n = 1, . . . , N. (5.9)

The stationarity principle will be stated in terms of the functionals Q : RM → R and

R : RM → R, and these functionals will each be decomposed as the sum of several functionals

that the stationarity conditions will be written in terms of. In particular, the functional Q

is decomposed into the sum of N functionals Qn : RM → R, for n = 1, . . . , N , according to

Q(x) =

N∑
n=1

Qn(x). (5.10)

Similarly, the functional R is decomposed into the sum of N functionals Rn : RM → R, for

n = 1, . . . , N , according to

R(x) =
N∑
n=1

Rn(x). (5.11)

To state the stationarity principle, the following relationships are imposed between the
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functions f and g and the functionals Qn and Rn, for n = 1, . . . , N :

∇Qn (x) = gn (x)∇fn (x) , n = 1, . . . , N (5.12)

∇Rn (x) = fn (x)∇gn (x) , n = 1, . . . , N (5.13)

Qn (x) +Rn (x) = fn (x) gn (x) , n = 1, . . . , N. (5.14)

The following theorem summarizes the stationarity principle that arises due to any ele-

ment x? ∈ RM for which f(x?) evaluates to a vector in VA and g(x?) evaluates to a vector

in VB. It is precisely at such elements x? that a stationarity principle holds, and is an

immediate consequence of the relationships between the functions and functionals described

by (5.12) through (5.14). In the statement of the theorem, the notation Duf(x) is used to

indicate the standard definition of a directional derivative of the function f evaluated at

the point x in the direction u, and this directional derivative Duf(x) can be related to the

Jacobian of f evaluated at x using the notation defined above according to

Duf(x) = Jf (x)u. (5.15)

Theorem 5.1.1. [Baran’s stationarity principle [11]]. This theorem pertains to two orthog-

onal subspaces VA ⊆ RN and VB ⊆ RN and two functions f : RM → RN and g : RM → RN ,

as well as a point x? for which f(x?) ∈ VA and g(x?) ∈ VB, and for which Jf (x?) and Jg(x?)

exist. At any such point, the total content Q is stationary with respect to small variations

taken in any direction u for which Duf(x?) ∈ VA. Likewise, the total co-content R is sta-

tionary with respect to small variations taken in any direction w for which Dwg(x?) ∈ VB.

Furthermore, Q(x?) = R(x?) at any such point.

An argument that essentially proves this theorem in the context of the the interconnec-

tive description of the feasibility conditions associated with the canonical-form primal and

dual conservative optimization problems is provided in Section 5.1.3. An interpretation of

this theorem is also provided in Section 5.1.5 for the reduced-form problem descriptions de-

veloped in Section 5.1.4 to assist with connecting the stationarity principle with alternative

descriptions of optimality conditions such as the KKT conditions discussed in Section 2.5.1.
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5.1.2 | Notational conventions for describing the stationarity conditions

The purpose of this subsection is to clearly define the notational conventions that will be used

to address the individual features of the canonical-form description of the primal and dual

conservative optimization problems defined in the next subsection. This notation will also

assist with addressing the individual constitutive modules and interconnects that are critical

to designing distributed and asynchrnous scattering algorithms from the interconnective

description of the joint primal and dual feasibility conditions associated with the problem at

hand. To state this notation formally, we turn to the terminal vector partitioning schemes

outlined by (3.9) through (3.11) and (3.32), which we proceed to restate in the present

context for clarity.

In particular, to assist with addressing the individual components of the feasibility con-

ditions associated with canonical-form primal problems, we shall refer to subvectors of the

shared decision vector x of the form

(x1, . . . ,xN ) = (x
(CR)
1 , . . . , x

(CR)
K ) (5.16)

as well as subvectors of the primal decision vector a of the form

(a1, . . . ,aN ) = (a
(CR)
1 , . . . , a

(CR)
K ) (5.17)

= (a
(LI)
1 , . . . , a

(LI)
L ) (5.18)

where each of the subvectors x
(CR)
k and a

(CR)
k , for k = 1, . . .K, and a

(LI)
l , for l = 1, . . . L,

additionally satisfies

a
(CR)
k = fk(x

(CR)
k ), k = 1, . . . ,K (5.19)

a
(LI)
l = (a

(i)
l ,a

(o)
l ), l = 1, . . . , L (5.20)

and where the functions fk : RN
(CR)
k → RN

(CR)
k , for k = 1, . . . ,K, map the shared decision

subvector x(CR)
k to the primal decision subvector a(CR)

k . Similarly, to assist with addressing

the individual components of the feasibility conditions associated with canonical dual prob-
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Constitute module Constitute moduleConstitute module Interconnect 1 Interconnect 2

Constitute module Constitute module

Figure 5-2: The canonical-form structure in Figure 5-1(b) illustrating the notation used to address
individual features of the stationarity conditions for canonical-form primal and dual conservative
optimization problems.

lems, we shall refer to the subvectors of x in (5.16) as well as subvectors of the dual decision

vector b of the form

(b1, . . .bN ) = (b
(CR)
1 , . . . , b

(CR)
K ) (5.21)

= (b
(LI)
1 , . . . , b

(LI)
L ) (5.22)

where each of the subvectors x(CR)
k and b

(CR)
k , for k = 1, . . . ,K, and b

(LI)
l , for l = 1, . . . , L,

additionally satisfies

b
(CR)
k = gk(x

(CR)
k ), k = 1, . . . ,K (5.23)

b
(LI)
l = (b

(i)
l ,b

(o)
l ), l = 1, . . . , L (5.24)

and where the functions gk : RN
(CR)
k → RN

(CR)
k , for k = 1, . . . ,K, map the shared decision

subvector x(CR)
k to the dual decision subvector b(CR)

k .

An example interconnective structure illustrating the notational conventions presented

above is depicted in Figure 5-2 with K = 5 constitutive modules and L = 2 interconnects.

This particular structure can equivalently be described using the structure in Figure 5-1(b)

where the functions f and g are constructed by stacking the individual functions fk and gk

according to f = (f1, . . . , f5) and g = (g1, . . . , g5).

To assist with addressing a term of the cost function associated with each constitutive

module, the primal objective function will be separated into the sum of K functionals
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Qk : RN
(CR)
k → R , for k = 1, . . . ,K, and, similarly, the dual objective function will be

separated into the sum of K functionals Rk : RN
(CR)
k → R, for k = 1, . . . ,K. Specifically,

the following conditions are required to hold between the functions fk and gk in (5.19) and

(5.23) and the functionals Qk and Rk for optimization problems written in canonical form:

∇Qk(x
(CR)
k ) = JTfk(x

(CR)
k )gk(x

(CR)
k ), k = 1, . . . ,K (5.25)

∇Rk(x
(CR)
k ) = JTgk(x

(CR)
k )fk(x

(CR)
k ), k = 1, . . . ,K (5.26)

Qk(x
(CR)
k ) +Rk(x

(CR)
k ) = 〈fk(x

(CR)
k ), gk(x

(CR)
k )〉, k = 1, . . . ,K (5.27)

where the size of the inner products in (5.27) is implied by the length of its arguments.

To avoid being pedantic in the remainder of this chapter, we do not state these conditions

explicitly but assume they hold and freely reference them in the course of proving various

properties whenever the notation fk, gk, Qk, and Rk is used.

5.1.3 | Canonical-form problems

Consistent with the strategy presented at the beginning of this section, the canonical-form

description of primal and dual conservative optimization problems is defined in this sub-

section as a special case of the problems (5.1)-(5.2) and (5.3)-(5.4). Once these problem

definitions have been established, the notational conventions outlined in the previous sub-

section are used to justify that the joint primal and dual feasibility conditions are in fact

sufficient conditions for stationarity of the associated cost functions with respect to all feasi-

ble perturbations of the decision variables. With the claim of stationarity justified, the issue

of a duality gap is discussed and we find that no duality gap exists between the canonical-

form primal and dual cost functions for any solution x? to the joint feasibility conditions.

Before proceeding onwards, we note that convexity of the canonical-form cost functions

and feasible sets is not explicitly required by the analysis used to establish the stationar-

ity and strong duality results in this subsection. As will be discussed in Section 5.1.5, the

strong duality principle presented in this subsection is consistent with well-established du-

ality principles for convex problems, and connections to this follow from the relationship
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between canonical-form and reduced-form problem descriptions. The role of convexity in

the context of canonical-form problems is explored in detail in Section 5.2.3.

Drawing on the notational conventions and conditions discussed in the previous subsec-

tion, we are prepared to define the canonical-form description of a conservative optimization

problem. Specifically, a primal conservative optimization problem is formally described in

canonical form according to

minimize
(x1,...,xN )
(a1,...,aN )

K∑
k=1

Qk(x
(CR)
k ) (5.28)

s.t. a
(CR)
k = fk(x

(CR)
k ), k = 1, . . . ,K (5.29)

Ala
(i)
l = a

(o)
l , l = 1, . . . , L (5.30)

where Al : RN
(i)
l → RN

(o)
l , for l = 1, . . . L, denotes a matrix for each l. For primal con-

servative optimization problems written in canonical form, we associate a conservative dual

optimization problem with it. The dual optimization problem is formally described in canon-

ical form according to

maximize
(x1,...,xN )
(b1,...,bN )

−
K∑
k=1

Rk(x
(CR)
k ) (5.31)

s.t. b
(CR)
k = gk(x

(CR)
k ), k = 1, . . . ,K (5.32)

b
(i)
l = −ATl b

(o)
l , l = 1, . . . , L (5.33)

where the matrices Al, for l = 1, . . . , L, are the same as the matrices in (5.30).

Equipped with the canonical-form problem definitions (5.28) through (5.30) and (5.31)

through (5.33), the joint feasibility conditions (5.29) through (5.30) and (5.32) through

(5.33) are sufficient conditions for stationarity of the objective functionals (5.28) and (5.31)

with respect to small perturbations of the vector of shared decision variables x for which

the vectors a = f(x) and b = g(x) remain feasible. The remainder of this section is spent

proving this claim since the design of scattering algorithms to solve the joint feasibility

conditions associated with a pair of primal and dual conservative optimization problems is
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motivated primarily by this fact. The outline of the proof is as follows: first, we define two

vector spaces through the respective linear constraints (5.30) and (5.33) and show that they

are orthogonal subspaces of RN . Next, using the orthogonality of these subspaces, we prove

that the conditions (5.25) through (5.27) give rise to a stationarity property using (5.28)

through (5.29) and (5.31) through (5.32) from the canonical-form problem definitions.

Let VA denote the vector subspace of RN that consists of all configurations of the primal

decision vector a that are consistent with the linear constraints in (5.30). Using the variable

ordering described in (5.20), the vector space VA is written as

VA = range





I
N

(i)
1

· · · 0

A1 · · · 0

...
. . .

...

0 · · · I
N

(i)
L

0 · · · AL




. (5.34)

Similarly, let VB denote the vector subspace of RN that consists of all configurations of the

dual decision vector b that are consistent with the linear constraints in (5.33). Using the

variable ordering described in (5.24), the vector space VB is written as

VB = range





−AT1 · · · 0

I
N

(o)
1

· · · 0

...
. . .

...

0 · · · −ATL

0 · · · I
N

(o)
L




. (5.35)

By inspection of these vector space descriptions and direct application of the rank-nullity

theorem [34, Theorem 3.4], we obtain that the sum of dimensionalities of the vector spaces

in (5.34) and (5.35) satisfy

N = N
(i)
1 + · · ·+N

(i)
L︸ ︷︷ ︸

dim(VA)

+ N
(o)
1 + · · ·+N

(o)
L︸ ︷︷ ︸

dim(VB)

(5.36)
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independent of the values taken by the matrices Al. Therefore, as will become important

to our analysis later, the vector spaces VA and VB uniquely decompose RN according to

RN = VA ⊕ VB.

We next verify that the skew-symmetric relationships between the matrices Al and −ATl ,

for l = 1, . . . , L, appearing in the primal and dual linear feasibility constraints (5.30) and

(5.33) is sufficient to imply that the vector spaces VA and VB form an orthogonal direct

sum decomposition of RN . To do this, let a ∈ VA and b ∈ VB. Substituting this into

the pairwise orthogonality condition (5.5) and utilizing the interconnect subvector notation

yields

〈a,b〉 =
L∑
l=1

〈a(LI)
l ,b

(LI)
l 〉 (5.37)

=
L∑
l=1

〈 a
(i)
l

a
(o)
l

 ,
 b

(i)
l

b
(o)
l

〉 (5.38)

=
L∑
l=1

(
〈a(i)
l ,b

(i)
l 〉+ 〈a(o)

l ,b
(o)
l 〉
)

(5.39)

=

L∑
l=1

(
〈a(i)
l ,−A

T
l b

(o)
l 〉+ 〈Ala

(i)
l ,b

(o)
l 〉
)

(5.40)

= 0 (5.41)

as desired. Note that the final equality above follows from application of the definition of

an adjoint, thereby meaning the vector spaces VA and VB will always be orthogonal to one

another independent of the choice of matrices Al, for l = 1, . . . , L.

With orthogonality between the vector subspaces VA and VB established, we are prepared

to prove the stationarity principle for conservative optimization problems written in canoni-

cal form. Specifically, we first show that for any element x? ∈ RN for which a = f(x?) ∈ VA

and b = g(x?) ∈ VB, the primal objective functional (5.28) is stationary about any small

perturbation in a direction for which (5.30) remains satisfied. To see this, let u ∈ RN de-

note any direction such that Duf(x?) = Jf (x?)u ∈ VA. Then, at the point x? the primal
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objective function Q : RN → R can be written succinctly as

Q(x) =
K∑
k=1

Qk(x
(CR)
k ) (5.42)

and satisfies the stationarity condition

DuQ(x?) = (∇Q1(x
?(CR)
1 ), . . . ,∇QK(x

?(CR)
K ))Tu (5.43)

=
K∑
k=1

〈∇Qk(x
?(CR)
k ),u

(CR)
k 〉 (5.44)

=
K∑
k=1

〈JTfk(x
?(CR)
k )gk(x

?(CR)
k ),u

(CR)
k 〉 (5.45)

=
K∑
k=1

〈gk(x
?(CR)
k ), Jfk(x

?(CR)
k )u

(CR)
k 〉 (5.46)

= 〈g(x?)︸ ︷︷ ︸
∈VB

, Jf (x?)u︸ ︷︷ ︸
∈VA

〉 (5.47)

= 0 (5.48)

as desired, where the third equality follows immediately from from substituting the rela-

tionships described in (5.25) and the final equality follows from the fact that VA and VB are

orthogonal subspaces.

The canonical-form description of conservative primal and dual optimization problems,

and the relationship of this description to the stationarity conditions in particular, possess

many symmetries that can be exploited for various reasons. In fact, the roles played by f

and g and by Q and R can be swapped without breaking any of the relationships required

to hold since asymmetrical conditions are not imposed between these objects. Using this

symmetry, the analysis above also proves that the dual objective function will be stationarity

to perturbations for which the dual solution remains feasible. For completeness, we present

this argument in its entirety next.

Continuing on, we show that for the same element x? ∈ RN for which the stationarity

of the primal cost functional Q was shown above, i.e. for which a = f(x?) ∈ VA and

b = g(x?) ∈ VB, the dual objective functional (5.31) is also stationary about any small

perturbation in a direction for which (5.33) remains satisfied. To see this, let w ∈ RN
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denote any direction such that Dwg(x?) = Jg(x
?)w ∈ VB. Then, at the point x? the dual

objective function R : RN → R can be written succinctly as

R(x) =
K∑
k=1

Rk(x
(CR)
k ) (5.49)

and satisfies the stationarity condition

DwR(x?) = (∇R1(x
?(CR)
1 ), . . . ,∇RK(x

?(CR)
K ))Tw (5.50)

=
K∑
k=1

〈∇Rk(x
?(CR)
k ),w

(CR)
k 〉 (5.51)

=
K∑
k=1

〈JTgk(x
?(CR)
k )fk(x

?(CR)
k ),w

(CR)
k 〉 (5.52)

=
K∑
k=1

〈fk(x
?(CR)
k ), Jgk(x

?(CR)
k )w

(CR)
k 〉 (5.53)

= 〈f(x?)︸ ︷︷ ︸
∈VA

, Jg(x
?)w︸ ︷︷ ︸

∈VB

〉 (5.54)

= 0 (5.55)

as desired, where the third equality follows immediately from from substituting the relation-

ships in (5.26) and the final equality follows from the fact that VA and VB are orthogonal

subspaces.

To summarize the stationarity result implied by the the primal and dual feasibility

conditions thus far, the analysis in (5.43) through (5.48) and (5.50) through (5.55) justifies

the claim that any solution x? that produces a primal decision vector a and dual decision

vector b that satisfy the primal and dual feasibility conditions is itself a stationary point

of both the primal and dual objective functionals, where stationarity is specifically meant

in all directions that maintain feasibility, i.e. for which the linear constraints (5.30) and

(5.33) remain satisfied. Subsequently, the collective feasibility constraints described by (5.29)

through (5.30) and (5.32) through (5.33) will be referred to in the remainder of the thesis

as the joint feasibility or stationarity conditions. Consider the interconnective structure in

Figure 5-1(b). Any elements (a?,b?) consistent with the stationarity conditions depicted by

the structure can be associated with a solution to primal and dual optimization problems
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with cost functions consistent with the functions f and g.

Before concluding this subsection, we address the issue of a duality gap between the

primal and dual objective functionals (5.42) and (5.49). To do this, consider any element

x? ∈ RN for which a = f(x?) ∈ VA and b = g(x?) ∈ VB, i.e. x? denotes a solution to the

stationarity conditions. Then, from the relationships in (5.27), the sum of the canonical

primal and dual objectives at any such solution satisfies

Q(x?) +R(x?) =
K∑
k=1

(
Qk(x

?(CR)
k ) +Rk(x

?(CR)
k )

)
(5.56)

=
K∑
k=1

〈fk(x
?(CR)
k ), gk(x

?(CR)
k )〉 (5.57)

= 〈f(x?)︸ ︷︷ ︸
∈VA

, g(x?)︸ ︷︷ ︸
∈VB

〉 (5.58)

= 0 (5.59)

where we again have used the fact that VA and VB are orthogonal subspaces. In conclusion,

we have shown that for any feasible solution there is no duality gap between the primal

and dual objective functionals since Q(x?) = −R(x?). Moreover, from the symmetry in the

relationships (5.25) through (5.27) and the skew-symmetry in the linear equality constraints

(5.30) and (5.33), it is straightforward to verify that generating the dual problem associated

with the dual problem associated with an original primal problem returns the original primal

problem, i.e. the dual of the dual is the primal.

5.1.4 | Reduced-form problems

In this subsection, the reduced-form description of a particular subset of conservative opti-

mization problems written in canonical form is defined. The goal in establishing a reduced-

form description is to be able to make connections with common classes of optimization

problems where the decision variables in the primal and dual problems are different. The

basic idea in defining the reduced-form description is to simplify a canonical-form descrip-

tion by selecting the functions f and g and the functionals Q and R so that the explicit

dependence on the shared decision vector x can be replaced by a direct dependence of the
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primal problem on the primal decision vector a and a direct dependence of the dual problem

on the dual decision vector b. When reduced-form problem descriptions exist, they allow

straightforward connections to be made between conservative duality as in Theorem 5.1.1

and Lagrangian duality, as will be discussed in Section 5.1.5.

For primal optimization problems written in canonical form, the existence of a reduced-

form description depends on whether the parametric representation of the behavior of a

set of K functionals Q̂k : RN
(CR)
k → R, for k = 1, . . . ,K, exists such that the set of all

elements generated by concatenating Qk(x
(CR)
k ) and fk(x

(CR)
k ) into a vector for each value

of x
(CR)
k ∈ RN

(CR)
k is equal to the behavior of Q̂k as a function of the primal decision

subvector a(CR)
k = fk(x

(CR)
k ) for each value of k. Stated more formally, the k-th set-valued

relationship required for a reduced-form primal description to exist is


 Qk(x

(CR)
k )

fk(x
(CR)
k )

 ∈ RN
(CR)
k +1 : x

(CR)
k ∈ RN

(CR)
k


=


 Q̂k(a

(CR)
k )

a
(CR)
k

 ∈ RN
(CR)
k +1 : a

(CR)
k ∈ Ak

 (5.60)

for an appropriately defined domain Ak ⊆ RN
(CR)
k . When the condition in (5.60) holds for

each k, k = 1, . . . ,K, then the reduced-form description of the associated canonical-form

primal problem is written according to

minimize
(a1,...,aN )

K∑
k=1

Q̂k(a
(CR)
k ) (5.61)

s.t. a
(CR)
k ∈ Ak, k = 1, . . . ,K (5.62)

Ala
(i)
l = a

(o)
l , l = 1, . . . , L (5.63)

where the matrices Al, for l = 1, . . . , L, are the same as the matrices appearing in the

canonical-form primal problem.

Similarly, for dual optimization problems written in canonical form, the existence of a

reduced-form description depends on whether the parametric representation of the behavior
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of a set of K functionals R̂k : RN
(CR)
k → R, for k = 1, . . . ,K, exists such that the set of all

elements generated by concatenating Rk(x
(CR)
k ) and gk(x

(CR)
k ) into a vector for each value

of x(CR)
k ∈ RN

(CR)
k is equal to the behavior of R̂k as a function of the dual decision subvector

b
(CR)
k = gk(x

(CR)
k ) for each value of k. Stated more formally, the k-th set-valued relationship

required for a reduced-form dual description to exist is


 Rk(x

(CR)
k )

gk(x
(CR)
k )

 ∈ RN
(CR)
k +1 : x

(CR)
k ∈ RN

(CR)
k


=


 R̂k(b

(CR)
k )

b
(CR)
k

 ∈ RN
(CR)
k +1 : b

(CR)
k ∈ Bk

 (5.64)

for an appropriately defined domain Bk ⊆ RN
(CR)
k . When the condition in (5.64) holds for

each k, k = 1, . . . ,K, then the reduced-form description of the associated canonical-form

dual problem is written according to

maximize
(b1,...,bN )

−
K∑
k=1

R̂k(b
(CR)
k ) (5.65)

s.t. b
(CR)
k ∈ Bk, k = 1, . . . ,K (5.66)

b
(i)
l = −ATl b

(o)
l , l = 1, . . . , L (5.67)

where the matrices Al, for l = 1, . . . , L, are the same as the matrices appearing in the

canonical dual problem. When they exist, the sum of the reduced-form mapping objects Q̂k

and R̂k are respectively referred to as the reduced-form primal and dual cost functions.

Before concluding this subsection, we make two important remarks. First, in contrast

with the conditions in (5.25) through (5.26) describing the relationships between canonical-

form mapping objects, the conditions (5.60) and (5.64) do not require the reduced-form cost

functions to be differentiable with respect to the primal and dual decision variables. This

observation will play an important role in designing scattering algorithms to solve optimiza-

tion problems with non-smooth cost functions. Second, the requirements in the set-valued

relationships (5.60) and (5.64) are symmetric in many ways. Despite these symmetries,
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the existence of a reduced-form description of a primal problem is not necessary or suffi-

cient for the canonical-form dual problem to have a reduced-form description, nor does the

canonical-form dual problem having a reduced-form description imply whether or not the

canonical-form problem does. In the interest of making connections and solving common

classes of optimization problems appearing in the signal processing community, the focus in

the remainder of this chapter is on canonical-form primal problems that have reduced-form

descriptions regardless of whether or not the associated conservative dual problems do.

5.1.5 | Reduced-form interpretation of Theorem 5.1.1

For problems with reduced-form descriptions, the stationarity principle in Theorem 5.1.1

can often be interpreted directly in terms of the components of a reduced-form problem

description, rather than requiring interpretation through a combination of the problem’s

canonical-form description and the stationarity conditions relating the mapping objects f , g,

Q, and R. The purpose of this subsection is to present this interpretation, thereby allowing

straightforward connections to other well-known optimality conditions. Although many

of the coming arguments can be extended to handle non-differentiable reduced-form cost

functions, we proceed assuming these cost functions are differentiable with respect to their

arguments to avoid technical digressions. For example, straightforward use of subdifferential

operators can be used to extend the results in this subsection for general convex reduced-

form problems since ∂Q̂ and ∂R̂ are well-defined. In addition, for the purpose of clarity,

we proceed without the subvector notation since the primary focus in this subsection is to

interpret the mapping objects rather than interpret their arguments.

Recall that reduced-form primal problems satisfy the set constraint in (5.60), meaning

the canonical-form cost function Q(x) is equal to Q̂(f(x)) for every value of x. Therefore,

applying the same linear operator ∇x to each expression gives the following relationships

∇xQ(x) = ∇xQ̂(f(x)) (5.68)

= Jf (x)T∇f Q̂(f(x)) (5.69)

= Jf (x)T g(x) (5.70)
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where the final equality follows from substitution of the relationship in (5.25). Assuming

further that the Jacobian of f with respect to x is non-singular, we have that this relationship

reduces to the expression

∇f Q̂(f(x)) = g(x) (5.71)

or equivalently that the dual variables are generated according to

b = ∇aQ̂(a). (5.72)

This result essentially says the corresponding constitutive module has an (a,b) relationship

where b is the (sub)gradient of the reduced-form primal objective function, and suggests

how to design constitutive modules to solve a particular optimization problem.

Using symmetry between the constraints (5.60) and (5.64) and symmetry in the relation-

ships (5.25) and (5.26), the same analysis holds for dual conservative optimization problems

with reduced-form descriptions. Therefore, the resulting relationship is that the recued-form

cost function R̂ is related to the functions f and g according to

∇gR̂(g(x)) = f(x) (5.73)

or equivalently that the primal variables are generated according to

a = ∇bR̂(b). (5.74)

As we will see in Section 5.3, a variety of constitutive modules used to describe differentiable

and non-differentiable, convex reduced-form primal cost functions can be generated by set-

ting the dual decision variables b equal to the subderivative of the reduced-form primal cost

function Q̂. Formalizing this fact requires additional assumptions to be made in order to

apply an appropriate notion of a chain rule [96]. As an alternative to this approach, we

proceed in this thesis to work with the parametric version of the stationarity conditions

relying simply on straightforward differential relationships and variational calculations.
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5.2 | Scattering-form description of the stationarity conditions

Motivated by the close relationship between feasibility and stationarity established in the

previous section, we proceed in this section to focus on determining stationary points of

conservative optimization problems by recasting the associated primal and dual feasibility

conditions as a CCSP. The key connection making this possible is the observation that the

quadratic form representing the conservation principle inherent to the stationarity condi-

tions, which also underlies the orthogonality of the vector spaces VA and VB used to establish

the stationarity principle, is isomorphic to the quadratic form representing the conservation

principle associated with the vector space W used in the description of an interconnecting

network for a CCSP in (4.12). Essentially the same observation was used in Section 3.4.4

to derive the scattering coordinate transform between canonical and orthogonal form inter-

connective structures with maximal partition decompositions.

To solve a prespecified pair of primal and dual conservative optimization problems writ-

ten in either canonical or reduced form, the general strategy we use in this thesis is to:

(i) create a CCSP by performing a scattering coordinate transform to the canonical-form

interconnective description of the joint feasibility conditions,

(ii) solve the corresponding CCSP using synchronous or asynchronous scattering algo-

rithms, potentially informed by the stability and robustness conditions developed in

Chapter 4, and

(iii) put the solution obtained through the inverse scattering transform to obtain a station-

ary point of both the original primal and dual optimization problems.

The mechanics associated with solving the CCSP using scattering algorithms in step (ii), in

particular the connection between scattering-form structures and their associated CCSPs,

has already been discussed in Chapter 4. In this section, the focus is on the mechanics

associated with carrying out steps (i) and (iii). Specifically, we discuss the procedure used

to transform the stationarity conditions into scattering-form, and then develop some al-

gebraic reduction techniques that are able to reduce the associated system operator from

being passive everywhere to dissipative everywhere in some cases. To facilitate assembling
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scattering-form structures directly from optimization problem statements, the general ap-

proach to designing the constitutive modules and interconnects is presented and an illustra-

tive example of the strategy is provided. To conclude the section, the role of convexity in the

present context is discussed where the focus is on the effect convexity has on the stability

of scattering-form structures and on the existence of functional realizations of the modules

and interconnects appearing in the structures.

5.2.1 | Transforming the stationarity conditions into a CCSP

To describe the stationarity conditions associated with a pair of primal and dual conservative

optimization problems as a scattering-form interconnective structure, we first organize the

conditions into a canonical-form structure and then apply the scattering coordinate trans-

form derived in Section 3.4.4. Referring to the notation in (3.59) and (3.63), a canonical-form

description of the joint feasibility conditions (5.29) through (5.30) and (5.32) through (5.33)

is achieved by organizing the primal and dual decision vectors a and b according to the

following variable assignments:

a
(c)
1 = (a

(i)
1 , . . . , a

(i)
L ) (5.75)

b
(c)
1 = (b

(i)
1 , . . . , b

(i)
L ) (5.76)

a
(c)
2 = (a

(o)
1 , . . . , a

(o)
L ) (5.77)

b
(c)
2 = (b

(o)
1 , . . . , b

(o)
L ) (5.78)

where the dimensions associated with the description of the stationarity conditions are re-

lated to the dimensions associated with the canonical-form interconnective structure accord-

ing to N = R(c) + L(c) where R(c) and L(c) are given by

R(c) = N
(i)
1 + · · ·+N

(i)
L (5.79)

L(c) = N
(o)
1 + · · ·+N

(o)
L . (5.80)

To compete the canonical-form description of the stationarity conditions, we need only to

state the canonical interconnecting networkW (c) and constitutive relation F (c). With regard
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to the interconnecting network, the vector space is generated according to (3.63) where the

R(c) × L(c)-dimensional matrix A is given by

A =


A1 · · · 0

...
. . .

...

0 · · · AL

 (5.81)

where the submatrices Al are the same as the matrices appearing in (5.30) and (5.33).

The canonical constitutive relation F (c) is formed by aggregating the individual constitutive

relations Fk derived using the parametric functions fk and gk according to

F (c) = F1 × · · · × FK (5.82)

where the k-th constitutive module is described using the relation Fk and can be generated

by sweeping the parametric variable x
(CR)
k as

Fk =


 fk(x

(CR)
k )

gk(x
(CR)
k )

 ∈ R2N
(CR)
k : x

(CR)
k ∈ RN

(CR)
k

 , k = 1, . . . ,K. (5.83)

Recall that the primal and dual objective functionalsQk and Rk do not appear in the station-

arity conditions except implicitly through the conditions (5.25) through (5.27) and therefore

do not explicitly appear in the canonical-form description of the feasibility conditions either.

It is a straightforward exercise to verify that the interconnective description of the sta-

tionarity conditions provided above does in fact satisfy the requirements of a canonical-form

structure. For example, the fact that the canonical-form interconnecting network is con-

servative with regard to the canonical-form organization O(c) in (3.65) was implicitly used

to prove the stationarity principle for conservative optimization problems written in either

canonical or reduced forms. In the notation of the canonical comparison space, the analysis

in (5.37) through (5.41) essentially justifies the condition (3.70) where the vector subspaces

VA and VB correspond to the conjugate subspaces and the conjugate maps M (c)
A and M (c)

B

are the same as those in (3.68) and (3.69), respectively.
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To provide the scattering-form description of the stationarity conditions, we next apply

the scattering coordinate transform from Section 3.4.4 to the canonical-form description of

the problem where we assume without loss of generality that the canonical coordinate matrix

M (c) is the identity matrix. Indeed, the scattering-form description is immediately obtained

by applying the variable transform in (3.88) and then reflecting that transformation to W (c)

and F (c). For the purpose of solving conservative optimization problems, we proceed to write

this transformation in terms of the decision variables a and b. Specifically, the transformed

or scattering variables c and d are defined according to the 2× 2 scattering transforms

 cn

dn

 = Mn

 an

bn

 , n = 1, . . . , N (5.84)

where the matrix M (i) in (3.90) takes the place of Mn if (an,bn) appears in (a
(c)
1 ,b

(c)
1 )

and the matrix M (o) in (3.91) takes the place of Mn if (an,bn) appears in (a
(c)
2 ,b

(c)
2 ). Said

another way, the matrixM (i) is used when the primal variable an correspond to input to the

interconnecting network and the matrix M (o) is used otherwise. Consistent with the input-

output configuration P in (3.85), when a realization of the scattering-form description of the

stationarity conditions exists, we associate a solution (c?,d?) ∈ R2N to the corresponding

CCSP as a solution to the nonlinear system of equations

d? = Gc? (5.85)

c? = m(d?) (5.86)

where the orthogonal matrix G and memoryless nonlinearity m are, in particular, the real-

izations of the scattering-form interconnecting network W (s) and constitutive module F (s).

In the sequel, we shall refer to the (5.85) and (5.86) as the transformed stationarity condi-

tions and the variables c and d as the transformed or scattering variables. A closed-form

expression for the matrix G, which is always guaranteed to exist, is provided shortly. We

defer stating the conditions under which a realization of the form (5.85) and (5.86) exists to

the end of this subsection.
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In anticipation of designing and assembling constitutive modules to directly produce

scattering-form interconnective structures from inspection of a conservative optimization

problem statement, we proceed to define some additional coordinate transform matrices that

directly transform the constitutive modules and interconnects used in the interconnective

description of the untransformed stationarity conditions. In particular, for the interconnect

subvectors a(LI)
l and b

(LI)
l , we define the l-th scattering transform matrixM (LI)

l : R2N
(LI)
l →

R2N
(LI)
l according to

 c
(LI)
l

d
(LI)
l

 = M
(LI)
l

 a
(LI)
l

b
(LI)
l

 , l = 1, . . . , L. (5.87)

Similarly, for the constitutive module subvectors a(CR)
k and b

(CR)
k , we define the k-th scat-

tering transform matrix M (CR)
k : R2N

(CR)
k → R2N

(CR)
k according to

 c
(CR)
k

d
(CR)
k

 = M
(CR)
k

 a
(CR)
k

b
(CR)
k

 , k = 1, . . . ,K. (5.88)

The numerical entries in the scattering matricesM (LI)
l andM (CR)

k are completely determined

by the entries of the N 2 × 2-dimensional matrices Mn in (5.84). Using this notation, an

equivalent description of the transformed stationarity conditions (5.85) through (5.86) using

the subvector partitioning schemes in (5.87) and (5.88) is given by

d
?(LI)
l = Glc

?(LI)
l , l = 1, . . . , L (5.89)

c
?(CR)
k = mk(d

?(CR)
k ), k = 1, . . . ,K. (5.90)

The equivalence between these two formulations of the transformed stationarity conditions

follows from two observations. First, from the block-diagonal structure of A in (5.81), it

follows that the transformed interconnect can take advantage of this block-diagonal structure

in W (c). By combining the result in (3.94) with the subvector ordering in (5.87), it is

182 / 282



Chapter 5. Scattering structures for solving optimization problems

straightforward to verify that

Gl =

IN(LI)
l

+

 0 −ATl

Al 0



IN(LI)

l

+

 0 ATl

−Al 0



−1

, l = 1, . . . L. (5.91)

Second, the direct product decomposition of the constitutive module F (c) in (5.82) implies

that the memoryless nonlinearity m is also decomposable into K mutually independent

functions mk.

A pertinent question at this point deals with understanding conditions under which

the matrices Gl and memoryless nonlinearities mk are well-defined, thereby certifying that a

functional realization of the interconnective structure describing the transformed stationarity

conditions exists. To address this, we state several conditions using the scattering matrices

M
(LI)
l and M (CR)

k defined above. Specifically, the orthogonal matrices Gl, for l = 1, . . . , L,

are well-defined as long as the following conditions hold:


M

(LI)
l



a
(i)
l

Ala
(i)
l

−ATl b
(o)
l

b
(o)
l


∈ R2N

(LI)
l :

 a
(i)
l

b
(o)
l

 ∈ RN
(LI)
l


=


 c

(LI)
l

Glc
(LI)
l

 ∈ R2N
(LI)
l : c

(LI)
l ∈ RN

(LI)
l

 , l = 1, . . . , L. (5.92)

As was previously mentioned, these conditions will always be met. Similarly, the memoryless

nonlinearities mk, for k = 1, . . . ,K, in (5.90) are well-defined as long as the following

conditions hold:

M (CR)
k

 fk(x
(CR)
k )

gk(x
(CR)
k )

 ∈ R2N
(CR)
k : x

(CR)
k ∈ RN

(CR)
k


=


 mk(d

(CR)
k )

d
(CR)
k

 ∈ R2N
(CR)
k : d

(CR)
k ∈ RN

(CR)
k

 , k = 1, . . . ,K. (5.93)

183 / 282



5.2. Scattering-form description of the stationarity conditions

Unfortunately, the existence of the functions mk cannot always be guaranteed. Since the

ability to solve the transformed stationarity conditions by implementing a scattering algo-

rithm hinges solely on their existence, we solve for these functions corresponding to many

objective functions and feasibility conditions that frequently appear in optimization prob-

lems of interest to the signal processing community in Section 5.3. To provide guidance in

this task, we first discuss the role convexity of the objective function plays in generating

these functions in Section 5.2.3.

When a functional realization of the scattering-form structure describing the transformed

stationarity conditions exists, the methods for solving CCSPs developed in Chapter 4 can

be used to solve them. Once a solution (c?,d?) is identified, taking the inverse scattering

coordinate transform provides a stationary point a? and b? of the primal and dual optimiza-

tion problems, respectively. In fact, solving the CCSP described by (5.89) through (5.90)

not only solves the original primal and dual optimization problems, but may provide a so-

lution to any optimization problem corresponding to an interconnect invariant coordinate

transform of the canonical-form description of the stationarity conditions.

5.2.2 | A modular approach to designing scattering-form structures

Consistent with the general strategy discussed at the beginning of this section, the goal

of this subsection is to present a modular approach to designing scattering-form structures

from inspection of an optimization problem statement, where the structure describes the

transformed stationarity conditions associated with the problem. To facilitate doing this,

the general form of constitutive modules and interconnects in canonical and scattering co-

ordinates are defined by relating features of an optimization problem with functions used in

the implementation of a scattering algorithm. By connecting these modules together, signal

processing structures in scattering form can be assembled so that fixed-points of the struc-

ture correspond to solutions of the optimization problem to within a change of coordinates.

Certain constitutive modules can be eliminated using straightforward algebra, resulting in

scattering structures with fewer variables and whose corresponding system operator can be

reduced from passive everywhere to dissipative everywhere in some cases. Solutions to the

CCSP associated with the smaller structure are related to solutions to the CCSP associated
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with the original structure through a closed-form expression. Therefore, the smaller struc-

tures can solve conservative optimization problems as well. To conclude this subsection, an

example illustrating the modular design of an interconnective structure corresponding to a

classic regression problem in signal processing is provided. This example highlights the ease

by which distributed, asynchronous scattering algorithms for solving optimization problems

in the presented class can be assembled, and also illustrates the flexibility in moving between

closely related optimization problems by simply changing a small number of the modules.

The first module we define corresponds to an interconnect and describes the linear con-

straints appearing in a primal optimization problem; a complete description of this module

is provided in the top row of Figure 5-3. Interconnects defined in this way are implemented

using the matrices Gl in (5.92) and operate on the scattering variables c(LI)
l and d

(LI)
l . The

second module we define corresponds to a constitutive module and describes the cost func-

tion and set constraints appearing in a primal optimization problem; a complete description

of this module is provided in the bottom row of Figure 5-3. The functional realizations of

constitutive modules do not always exist for particular cost functions and constraint sets,

but when they do they are implemented using the memoryless nonlinearities mk in (5.93)

and depend on the specific scattering transform used to produce the relationship between

the transformed variables c(CR)
k and d

(CR)
k . Motivated by the importance of these modules

existing, the primary focus of Section 5.3 is to derive example modules of this type.

The general procedure for connecting constitutive modules and interconnects together to

form the scattering-form description of the transformed stationarity conditions associated

with a conservative optimization problem is illustrated in Figure 5-4. In particular, the

interconnective structure depicted in Figure 5-4(c) provides a complete description of the

transformed stationarity conditions associated with the primal problem statement in (a)

whose stationarity conditions are depicted as a canonical-form interconnective structure in

(b). Referring to Figure 5-4(c), the individual interconnects are denoted in aggregate by the

interconnect labeled G and the individual constitutive modules are denoted using a generic

memoryless nonlinearity labeled m(·) and a second constitutive module labeled “source”.

The distinction in assigning the constitutive modules to either the source element or the

function m(·) can be made using the following definition.
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Definition 5.2.1 (Source modules). The functional realization of a constitutive module

denoted by m : RK → RK is said to be a source provided that it has the algebraic form

m(v) = Sv + e (5.94)

where S : RK → RK is a linear, passive everywhere map and e ∈ RK is a constant.

With the definition of a source module in place, we next show that the scattering form

structure in Figure 5-4(c) can be reduced to the scattering-form structure in (d) by alge-

braically eliminating the source module from the structure. Indeed, interconnective struc-

tures after such transformations have been applied will be referred to as being source-free.

Let the scattering variables c and d depicted in the interconnective structure in Figure 5-

4(c) be partitioned according to

 d(m)

d(S)

 =

 Gmm GmS

GSm GSS


︸ ︷︷ ︸

G

 c(m)

c(S)

 . (5.95)

where the realization of the constitutive relation module corresponding to c(S) and d(S) is a

source element of the form c(S) = Sd(S) + e. After some straightforward manipulations, we

obtain that the elements of the source-free interconnective structure in Figure 5-4(d) can be

written in terms of (5.95) as

d(m) = (Gmm +GmS (I − SGSS)−1 SGSm)︸ ︷︷ ︸
H

c(m) +GmS (I − SGSS)−1 e︸ ︷︷ ︸
f

. (5.96)

The linear map denoted by H in (5.96) is passive everywhere. This point follows directly

from substituting the constitutive relationship c(S) = Sd(S)+e and (5.95) into the definition

of α-connicity and utilizing the fact that the squared 2-norm is separable over its entries

into the sum of squared 2-norms. As such, the source-free interconnective structure in

Figure 5-4(d) is also a scattering-form structure and therefore has an associated CCSP.

Given a solution (c?(m),d?(m)) to the CCSP associated with the source-free interconnec-

tive structure defined above, a solution (c?,d?) to the CCSP associated with the original
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(b)

CR

module 1

CR

module 2

CR

module 3

(a) (c)

Figure 5-5: An illustration of (a) a shorthand graphical representation of the stationarity condi-
tions using reduced-form primal components, (b) the full graphical representation of the stationarity
conditions, and (c) the transformed stationarity conditions associated with several different regular-
ization problems.

interconnective structure can be recovered by concatenating c?(S) to c?(m) and d?(S) to d?(m)

where d?(S) can be generated by

d?(S) = (I −GSSS)−1 (GSmc
?(m) +Gsse) (5.97)

and c?(S) can be generated by c?(S) = Sd?(S) + e. As will often be the case, the equivalence

between solutions to the CCSPs described by the interconnective structures in Figures 5-4(c)

and (d) is particularly useful when the constitutive functionm(·) is α-dissipative everywhere.

When this occurs, the system operator associated with the interconnective structure in (c) is

passive everywhere while the system operator associated with the source-free interconnective

structure in (d) is α-dissipative everywhere. In terms of solving the CCSPs, the stability

and robustness properties of the structures in (c) and (d) are summarized by Theorems 4.3.6

and 4.3.3, respectively. Note that solving the problem described by the structure in (c) by

asynchronously implementing the system requires the use of filtered delay modules while

solving the problem described by the structure in (d) does not.

We next present an example of the modular design process used to assemble canonical-

form and scattering-form structures from an optimization problem statement. Consider the

standard non-negative least squares (NNLS) problem given by

minimize
x

λ
2‖Bx− y‖22

s.t. x ≥ 0
(5.98)
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where B is a coefficient matrix and y is a vector of measurements. Written in reduced form,

the corresponding primal (P) and dual (D) conservative problems are given by

(P)

minimize
a

λ
2‖a

(CR)
3 ‖22

s.t. Ba
(CR)
1 − a

(CR)
2 = a

(CR)
3

a
(CR)
2 = y

a
(CR)
1 ≥ 0

(D)

maximize
b

− 1
2λ‖b

(CR)
3 ‖22 − yTb

(CR)
2

s.t. −BTb
(CR)
3 = b

(CR)
1

b
(CR)
3 = b

(CR)
2

b
(CR)
1 ≤ 0

(5.99)

where the primal decision vectors (a
(CR)
1 ,a

(CR)
2 ,a

(CR)
3 ) correspond to the vectors (x,y, Bx−

y). Observe that while the problem formulations in (5.98) and (5.99)(P) are clearly equiv-

alent, they are not the same problem. The stationarity conditions associated with the con-

servative formulation are depicted as a canonical-form interconnective structure in Figure 5-

5(a)-(b) where the constitutive relation modules are unspecified. Note that the structures

in (a) and (b) are equivalent to one another, where the structure in (b) additionally shows

the portion of the stationarity conditions implied by the dual feasibility constraints that

correspond to the primal feasibility conditions depicted in (a). The scattering-form struc-

ture corresponding to the transformed stationarity conditions is depicted in Figure 5-5(c).

An asynchronous, distributed scattering algorithm for solving both primal and dual prob-

lems correspond to implementing the scattering-form structure by inserting delay elements

to break the delay-free loops in (c). The details in doing this, in particular for effectively

distributing the computation in a variety of settings, is discussed in Chapter 6.

We conclude this subsection and the example presented above with two remarks. First,

as will be discussed later, source-free structures for the NNLS problem can be constructed

by eliminating all variables except those related to module 1. Second, by modifying the

memoryless nonlinearities associated with the constitutive modules, the stationarity condi-

tions can be appropriately modified to solve a variety of related problems including variants

of least squares such as unconstrained and bounded-value, regularization problems such as

basis pursuit denoising, ridge regression, total variation, the Dantzig selection, maximum

likelihood and MAP estimation in exponential families, and training of support vector ma-

chines. The modules required for these modifications are derived in the next section.
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5.2.3 | The role of convexity

A celebrated result in convex analysis states that if an unconstrained convex function has

a stationary point then that point is a global minimizer, and the collection of all such

minimizers forms a convex set [40]. Moreover, if the function is strictly convex, then the

minimizer is unique. In this subsection, the role of convexity is explored in the context

of obtaining well-defined functional realizations of the constitutive modules used in the

implementation of a scattering algorithm. The main result is that convexity of the reduced-

form primal cost function is sufficient but not necessary for these functions to exist, and,

moreover, that convexity implies they are α-conic with parameters α no larger than unity.

Consider the general form of the constitutive module depicted in Figure 5-3 where we

proceed without the subvector notation for clarity. The scattering coordinate transforms

M (i) and M (o) are applied to the relations describing the primal and dual decision variables

a and b depending on whether a corresponds to an input or output of the interconnect-

ing network that the constitutive module is attached to, respectively. Using the standard

assignments a = f(x) and b = g(x), the scattering variables c and d are related to one

another using the transform M (i) when a denotes an output of the module according to

 c

d

 =

 I −I

I I


︸ ︷︷ ︸

M(i)

 f(x)

g(x)

 . (5.100)

The functional mapping from d to c, when it exists, can thus be expressed as

c = (f − g)(f + g)−1(d). (5.101)

Similarly, the scattering variables c and d are related to the functions f and g when a

denotes an input to the module and the coordinate transform M (o) is used according to

 c

d

 =

 −I I

I I


︸ ︷︷ ︸

M(o)

 f(x)

g(x)

 . (5.102)
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The functional mapping from d to c for this case, when it exists, can be expressed as

c = (g − f)(f + g)−1(d). (5.103)

There is a symmetry between the expressions (5.101) and (5.103), and arguments for the

existence of these functional relationships rely solely on the invertibility of d = (f + g)(x).

Therefore, the existence of one function is sufficient for the existence of the other, so we pro-

ceed by focusing the discussion to the existence and properties of the function in (5.101) with

the understanding that a similar treatment for the function in (5.103) follows analogously.

Drawing on the reduced-form interpretation of the stationarity conditions in Section 5.1.5,

the relation between the variables a and b used to define a constitutive module reduces to

the subdifferential relationship b = ∂Q̂(a) where the reduced-form cost function Q̂ subsumes

the set constraint A by taking values of infinity for any value of a 6∈ A. For this case, the

function in (5.101) can be written as

c = (I − ∂Q̂)(I + ∂Q̂)−1(d). (5.104)

A sufficient condition for invertibility of the mapping d = (I + ∂Q̂)(x) is convexity of the

reduced-form cost function Q̂. For example, in the case where c and d are scalar-valued

variables, the function I+∂Q̂ is composed of the sum of a strictly increasing function and a

non-decreasing relation, and is subsequently invertible since it is itself a strictly increasing

function. It is clear in this case that the term ∂Q̂ is not required to be non-decreasing for the

relationship to be invertible, hence convexity of Q̂ is a sufficient but not necessary condition.

The argument used to extend this result to the multi-dimensional setting is similar to the

argument in the scalar case. Indeed, from convexity of Q̂, a well-known result in convex

analysis is that the relation ∂Q̂(x) is monotone, i.e. ∂Q̂ satisfies the condition

〈∂Q̂(x)− ∂Q̂(y),x− y〉 ≥ 0, x,y ∈ RN , (5.105)

thus the operator I + ∂Q̂ is strongly monotone since it is the sum of a monotone and a

strongly monotone function. Invertibility of I + ∂Q̂ then follows from application of the
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theorem of Browder-Minty on monotone operators [40]. Moreover, the operator (I + ∂Q̂)−1

appears in many optimization algorithms and is the so-called proximal operator associated

with the function Q̂. Connections between proximal operators and algorithms and scattering

operators and algorithms are made in Section 5.6.3.

Having established that convexity of the reduced-form cost function Q̂ is sufficient for the

functional realization of the associated constitutive module in a scattering-form structure

to be well-defined, we proceed to justify that the functional realization is, in the worst case,

passive everywhere. Recall that the value of α corresponding to an α-conic operator of the

form T = T1◦T2 is given by the product of the values of α for the individual operators T1 and

T2 when both operators are α-conic themselves. For the form of the functional realization

in (5.104), the operator T1 = (I − ∂Q̂) and T2 = (I + ∂Q̂)−1. The value of α satisfied by

the operator T1 is upper bounded by 1, which follows from straightforward properties of

Lipschitz functions and monotone operators. The value of α satisfied by the operator T2

is also 1, and this fact follows from well-known results about the Lipschitz continuity of

proximal operators [97]. Therefore, the functional realization in (5.104) is α-conic with a

value of α no larger than one for convex reduced-form cost functions Q̂.

5.3 | Constitutive modules

To assist with assembling scattering algorithms for solving conservative optimization prob-

lems by connecting basic modules together by inspection of an optimization problem state-

ment, we present a general strategy in this section for deriving constitutive modules per-

taining to particular cost functions and feasibility constraints and then proceed to generate

several example modules by following it. Referring to the general form of a constitutive

module in the bottom row of Figure 5-3, the goal in doing this is specifically to relate the

reduced-form primal components Q̂ and A in column three to the functional realization

of the module m in column five. To do this, we first describe a procedure to go from a

functional realization to the reduced-form primal components followed by a complementary

procedure to go from the reduced-form primal components to the functional realization.

Defining modules by using the latter procedure is not generally a well-posed task.
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For the purpose of clarity in the coming presentation, we proceed without the sub-

vector notation used in Figure 5-3 since the primary objects of interest in this context

are the mapping objects themselves rather than their arguments. Furthermore, the coor-

dinate transforms referenced throughout this section are specifically scattering coordinate

transforms and relate canonical-form and scattering-form interconnective structures. The

modules appearing in this section, which may be used to solve a broad class of convex and

non-convex conservative optimization problems, as well as several others are listed in a table

in Appendix B for convenience.

5.3.1 | General strategies for deriving constitutive modules

Consider first the task of determining the reduced-form primal components Q̂ and A from

a prespecified function m relating the scattering variables in the transformed stationarity

conditions according to c = m(d). The following steps outline the general approach we take

to determining these components:

(i) Generate the set-valued relations forming the correspondence between the canonical

decision variables a and b by applying the inverse scattering transform to the relation

forming the correspondence between the transformed variables c and d. This can be

done, for example, by applying the inverse matrix [M
(CR)
k ]−1 to each of the set-valued

relationships appearing in (5.93) and assigning the relationships a = fk(x
(CR)
k ) and

b = gk(x
(CR)
k ).

(ii) Determine the canonical functions f(x) and g(x) and the functionals Q(x) and R(x)

that are consistent with the set-valued relationships generated in step (i) and that also

satisfy the stationarity conditions (5.25) through (5.27).

(iii) Determine the reduced-form primal components Q̂(a) and A that satisfy the set-valued

relationship in (5.60) using the function f(x) and functional Q(x) found in step (ii).

A sufficient condition for the functions f(x) and g(x) identified in step (ii) to exist is Lipschitz

continuity of the function m. The task associated with finding them is equivalent to a

so-called function chase or curve parameterization and can readily make use of standard

methods from differential geometry. As was mentioned previously, the task associated with
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step (iii) cannot always be accomplished since the reduced-form components do not generally

exist. Furthermore, when the reduced-form dual components R̂(b) and B are also desired

and exist, they may be found in the same manner as step (iii) using (5.64) and the functions

g(x) and R(x) from step (ii).

Consider next the complementary task of defining a constitutive relation module by

starting with reduced-form primal components Q̂ and A and ending with a scattering func-

tion m satisfying c = m(d). The following steps outline the general approach we take to

determining these functions:

(i) Determine the canonical-form primal components Q(x) and f(x) that satisfy the set-

valued relationship in (5.60) using the provided components Q̂ and A.

(ii) Determine the canonical-form dual components R(x) and g(x) that are consistent with

the function f(x) and functional Q(x) found in step (i) and satisfy the stationarity

conditions (5.25) (5.27).

(iii) Generate the set-valued relation constraining the scattering variables d and c by first

generating the set-valued relation constraining the canonical variables a = f(x) and

b = g(x) according to (5.93).

(iv) Determine a functional relationship mapping the scattering vector d to c. When a

differentiable realization is known to exist, this may be done by solving for the primitive

function of the expression in (5.101) or (5.103).

Aside from the previous connection between the objective function Q determined in step

(i) and the function m sought after in step (iv), the relation generated in step (iii) may

not have a functional realization for the desired input-output configuration. For a complete

description of a constitutive module, the instructions for step (iv) need to be repeated for

each scattering coordinate transform of interest. In the next subsection, we primarily follow

the second strategy above since we are interested in all of the functions m associated with

particular reduced-form objective functions and constraints.
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5.3.2 | Example constitutive modules

Guided by the strategies for deriving constitutive modules discussed in the previous subsec-

tion, some example modules are derived in this subsection and commentary is presented on

useful analytic and numerical tools that can be used to derive a variety of additional mod-

ules. A recurring theme throughout this process is to take advantage of various symmetries,

both in terms of the canonical-form and reduced-form problem descriptions as well as in

the stationarity conditions, to produce several constitutive modules at once. The modules

derived in this section are used in Chapter 6 to solve various optimization problems arising

in signal processing contexts by attaching the modules to the interconnect described in the

top row of Figure 5-3 using asynchronous delay elements to break delay-free loops, possibly

after eliminating source modules.

The first module we define, which will be used to generate several related modules

through straightforward transformations, is associated with reduced-form components that

have the following behavior: a primal decision variable a is constrained to a closed interval

and does not contribute to the primal cost function while the dual decision variable b is

unconstrained and contributes to the dual cost function through a piece-wise linear function.

Indeed, to restrict the primal decision variable a = f(x) to a simple closed interval [l, u] ⊂ R

for arbitrary constants l and u satisfying l ≤ u, we define the scalar-valued function f : R→

R according to

f(x) =


u, x > u

u−l
2 sin

(
π
u−lx + π

2 −
πu
u−l

)
+ u+l

2 , l ≤ x ≤ u

l, x < l

. (5.106)

Similarly, to allow the dual decision variable b = g(x) to be unconstrained, we define the

function g : R→ R according to

g(x) =


(x− u)2, x > u

0, l ≤ x ≤ u

−(x− l)2, x < l

. (5.107)
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With these canonical functions in place, it is straightforward to verify that a valid choice of

canonical-form primal and dual objective functions consistent with the stationarity condi-

tions (5.25) and (5.26) is

Q(x) = 0 (5.108)

R(x) =


u(x− u)2, x > u

0, l ≤ x ≤ u

−l(x− l)2, x < l

. (5.109)

The example module consistent with the description above is provided in the top row of

Figure 5-6 where the functional realizations in column five correspond to having solved for

c as a function of d for the scattering coordinate transforms listed. Note that the quadratic

nature of R does not imply a quadratic form of R̂ since R̂ only depends on x through g.

The reduced-form components listed in columns three and four were generated by solving

(5.60) and (5.64). Referring still to Figure 5-6, the two modules listed in the second and

third rows respectively correspond to constraining the primal decision variable to left-closed

and right-closed intervals and may be obtained by proper manipulation of the two-sided

inequality. Specifically, the module in the middle row is obtained by selecting l = 0 and

taking u to infinity while the module in the bottom row is obtained by selecting u = 0

and taking l to negative infinity. Modules for arbitrary single-sided inequalities follow from

a similar treatment of l and u. Referring to the function f in (5.106), the selection of a

sinusoid over the interval l ≤ x ≤ u is not critical to the reduced-form components, i.e. any

function that is antisymmetric about l+u
2 and appropriately maintains continuity of f and

its first derivative over this interval results in essentially the same module. Subsequently,

in presenting the remaining modules we will often omit the particular functions f and g

for brevity with an understanding that they may all be defined over such invariant regions

using standard parameterization tools such as Hermite interpolation polynomials.

Beyond imposing inequality constraints on primal and dual decision variables, many

additional example modules of interest follow immediately from the selection of f and g in

(5.106) and (5.107). The next category of modules we develop are associated with reduced-
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Graph symbol Canonical behavior
Reduced-form

primal components

Reduced-form

dual components
Realization connicity

passive 

everywhere

passive 

everywhere

passive 

everywhere

Figure 5-6: Example constitutive modules that are associated with reduced-form primal and dual
components that have zero-valued cost functions and enforce inequality constraints.

form components satisfying the following behavior: a decision variable in one reduced-form

problem is set to a fixed-value while the decision variable in the dual problem is linearly

penalized and vice versa. Modules of this type will play an important role in optimization

problems for which data in the form of a measurement vector is to be incorporated into the

problem statement. The first module of this type is completely determined using (5.106)

and (5.107) by selecting a degenerate interval [l, u] = [ρ, ρ] for some ρ ∈ R. We summarize

the effect of this selection on the canonical functions and objective functions according to

f(x) = ρ

g(x) =


(x− ρ)2, x ≥ ρ

−(x− ρ)2, x < ρ


=⇒


Q(x) = 0

R(x) =


ρ(x− ρ)2, x ≥ ρ

−ρ(x− ρ)2, x < ρ

. (5.110)

An example module consistent with the description above and the module that, by symmetry,

swaps the roles of the primal and dual decision variables are illustrated in Figure 5-7. Note

that the functional realizations of the modules are precisely in a form that is a source module.

We proceed to establish some example modules that have norm and norm-like reduced-

form primal objective functions. Once again, we begin by drawing upon another symmetry
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Graph symbol Canonical behavior
Reduced-form

primal components

Reduced-form
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Figure 5-7: Example constitutive modules that are associated with reduced-form primal and dual
components satisfying the structural conditions of source modules.

of the two-sided inequality module defined using (5.106) and (5.107) to establish a module

with a scaled absolute value function as its reduced-form primal objective. Indeed, by

selecting −l = u = ρ and swapping the roles of f and g, we have effectively transformed the

two-sided inequality module into a weighted 1-norm module. The result of carrying out this

transformation is depicted in the top row of Figure 5-8. A similar module, provided in the

middle row, illustrates a common approximation to the 1-norm that corresponds to using a

quadratic approximation near 0 so that the module’s reduced-form objective function Q̂ is

differentiable everywhere. To establish p-norm modules with p > 1, we write the canonical

relationship a = f(x) and b = g(x) directly as b = sgn(a)|a|p−1. Generally speaking,

explicitly writing c as a function of d for this relationship is difficult analytically. However,

it is straightforward to produce an approximation via a table lookup for arbitrary values of

p. The module associated with p = 2, for which the relationship reduces to a linear system

of implicit equations, is depicted in the bottom row of Figure 5-8 where we have additionally

parameterized the module so that the quadratic penalty can be scaled differently for positive

and negative values of a.

The final norm-related example module we derive corresponds to a canonical-form primal

cost function Q : RK → R given by Q(x) = 1
2x

TAx where A is without loss of generality

a symmetric matrix that is also assumed not to have any eigenvalues of −1. By selecting

f(x) = x and g(x) = ∇Q(x), we can immediately solve the condition (5.101) to obtain a

functional realization m : RK → RK that produces the scattering variable c as a function of
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Graph symbol Canonical behavior
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Figure 5-8: Example constitutive modules that are associated with reduced-form primal and dual
components that have norm and norm-like cost functions with unconstrained domains.

the scattering variable d and takes the form

m(d) = (I −A) (I +A)−1 d. (5.111)

The particular functional realization in (5.111) corresponds to a scattering coordinate trans-

form consistent with the decision vector a = f(x) being an output of the interconnecting

network and an input to the constitutive module. A similar expression for alternative co-

ordinate transforms can be obtained by following the same steps above. The following

proposition summarizes the system operator properties for (5.111) as they pertain to spec-

tral properties of the matrix A.

Proposition 5.3.1 (α-conicity of quadratic objective functions and definiteness). Let A

denote a symmetric K×K-dimensional matrix without eigenvalues of −1. Then the function

m : RK → RK in (5.111) is α-conic everywhere and is categorized as:

(i) α-dissipative everywhere if and only if A is positive definite;

(ii) passive everywhere if and only if A is positive semidefinite;

(iii) α-expansive otherwise.

Proof. We proceed to use the condition (4.23) and the fact that m is linear to reduce solving

for the value of α to solving for an operator norm. Let u ∈ RK denote a non-zero vector
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Graph symbol Canonical behavior
Reduced-form

primal components
Realization connicity
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passive 

about 

Figure 5-9: Example constitutive modules that are associated with reduced-form primal com-
ponents that have non-convex cost functions and unconstrained domains. The reduced-form dual
components for these modules do not exist.

and set v = (IK +A)−1u. Then,

‖m‖ = sup
u6=0

‖m(u)‖
‖u‖

= sup
u6=0

‖(IK −A)(IK +A)−1u‖
‖u‖

= sup
v 6=0

‖(IK −A)v‖
‖(IK +A)v‖

(5.112)

which is consistent with α being non-negative. Substituting the inner-product notation for

the 2-norm, we obtain

‖m‖2 = sup
v 6=0

√
‖v‖2 − vT (AT +A)v + ‖Av‖2
‖v‖2 + vT (AT +A)v + ‖Av‖2

=

√
1− inf

v 6=0

2vTAv

‖(IK +A)v‖2
. (5.113)

Since ‖(IK + A)v‖2 > 0 for all v 6= 0 the value of ‖m‖ is determined by the sign of

infv 6=0 v
TAv as required. The conditions in (i) - (iii) follow immediately.

The next group of example constitutive modules we derive correspond to non-convex

reduced-form primal objective functions. The two modules we define are similar to one

another and are useful in statistical regularization problems where insensitivity to outliers

is desired. To derive these modules, we begin with the desired reduced-form primal cost

function Q̂(a) using the free parameter ρ > 1 to parameterize the cost function according
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to

Q̂(a) =


ρ
2 , |a| > ρ

1
2a

2, |a| < 1

1
2(1−ρ)a

2 − sgn(a) ρ
1−ρa + ρ

2(1−ρ) , 1 < |a| ≤ ρ

. (5.114)

Using the second procedure discussed in the previous subsection to derive the module, the

function m mapping the scattering vector d to c for both coordinate transforms M (i) and

M (o) is provided in column four of the top row of Figure 5-9, and these functions are well-

defined as long as ρ > 2. This module additionally serves as the first example module

presented with a well-defined realization but for which the reduced-form dual components

do not exist, i.e. for which the dual cost function R̂ cannot be written as a function of the

dual decision vector b = g(x) while simultaneously satisfying the condition in (5.64). To

demonstrate an example module that is generated via table lookup, consider a trigonometric

approximation of the reduced-form objective function (5.114) generated by selecting a =

f(x) = x and b = g(x) where g is given by

g(x) =


0, |x| > ρ

sin
(
π
2x
)
, |x| < 1

sgn(x)
2

(
cos
(

π
ρ−1(1− sgn(x)x)

)
+ 1
)
, 1 ≤ |x| ≤ ρ

. (5.115)

Note that (5.115) is an approximation of the derivative of (5.114). A constitutive module

associated with this description is illustrated in the bottom row of Figure 5-9 where the

functional realizations in column four are generated numerically by evaluating (5.93) for

x ∈ [−5, 5] with ρ = 3.5 and also result in valid functions as long as ρ > 2.

We conclude this section by discussing the canonical-form description of two modules

associated with nonlinear constraints between primal decision variables where the module

does not contribute to the primal objective function. The first module, illustrated in Fig-

ure 5-10(a), enforces the relationship a2 = h(a1) between the primal decision variables a1

and a2 where h : R→ R is an arbitrary, twice differentiable nonlinearity. The second mod-

ule, illustrated in Figure 5-10(b), enforces the multiplicative relationship a3 = a2a1 between
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(a) canonical nonlinear relationship (b) canonical multiplicative constraint

Figure 5-10: Example constitutive modules that are associated with nonlinear canonical-form and
reduced-form constraints.

the primal decision variables a1, a2, and a3. For both of these modules, an analytic descrip-

tion between the transformed variables c and d is currently unknown but can be generated

numerically for use in practice as previously discussed.

5.4 | Decentralizing interconnecting networks using quadratic

coupling modules

In this section, we develop a general purpose method for decentralizing interconnecting

networks where the basic approach is to split the interconnecting network into many pieces,

and to connect these pieces together by introducing auxiliary variables that communicate

through quadratic coupling constitutive modules. These particular constitutive modules

are designed with a free parameter that, when interpreted as the adaptive parameter in an

adaptive signal processing system, suggest a numerical continuation scheme to be applied

during the implementation of the structure in the scattering coordinate system. The details

associated with setting up and executing scattering algorithms using the continuation scheme

and quadratic coupling modules developed in this section are presented in Section 6.1.1.

To elaborate on the approach, let A denote a matrix that corresponds to, for example, the

aggregate realization of all primal linear constraints in an optimization problem statement

or the matrix that realizes an independent block of those constraints. In contexts where

the rows, columns, or subblocks of A are formed using geographically distributed data sets,

the method in this section enables the design and implementation of scattering algorithms

where the subcomputation associated with executing or manipulating A are not required to

be performed on any one of the individual computing resources available. This includes the
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Figure 5-11: An illustration of the constitutive module that is used decentralize linear equations.

computation associated with forming the scattering-form interconnect matrix G associated

with A. The approach is specifically to allow arbitrary blocks of A to be assigned to different

processors so that the processors can be coupled together using the quadratic coupling

constitutive module where agreement in satisfying the overall linear constraints is achieved

by driving the adaptive parameter to zero. When the adaptive parameter is non-zero, the

module acts as a quadratic penalty on the disagreement and has a dissipative everywhere

functional realization in the transformed coordinate system.

We begin by deriving the quadratic coupling module consistent with the action described

above. To accommodate coupling together subblocks of A of arbitrary dimensions, we define

the module to couple together a single scalar variable from two neighboring interconnects.

Coupling vectors is then accomplished from repeated application of the module. Indeed,

consider the canonical functions f : R2 → R2 and g : R2 → R2 given by

f(x) = (x1, x1 + ρx2) (5.116)

g(x) = (ρx1 − x2, x2). (5.117)

where the free parameter ρ ≥ 0 will play the role of the adaptive parameter. By solving

the stationarity conditions (5.25) and (5.26), we obtain that the canonical-form primal and

dual objective functionals Q : R× R→ R and R : R× R→ R are equal to one another and

take the sum-of-squares form

Q(x1,x2) = R(x1,x2) (5.118)

=
1

2
ρx2

1 +
1

2
ρx2

2. (5.119)
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Next, we make the standard variable assignments: a = f(x) and b = g(x). The relationships

between the primal and dual decision variables are depicted in Figure 5-11 on the left.

Using these variable assignments and solving for the reduced-form canonical components

Q̂ : R× R→ R and A ⊆ R2 in (5.60), we find that

Q̂ (a1,a2) =
1

2
ρa2

1 +
1

2ρ
(a1 − a2)2, a ∈ A = R2 (5.120)

Observe that following the same procedure to this point but having chosen ρ = 0 results

in everywhere zero canonical and reduced form primal objective functions and the set A

constrains a1 = a2 as desired. Similarly, solving (5.64) for the reduced-form dual components

R̂ : R× R→ R and B ⊆ R2 yields

R̂ (b1,b2) =
1

2
ρb2

2 +
1

2ρ
(b1 + b2)2, b ∈ B = R2. (5.121)

Finally, we apply the scattering coordinate transforms associated with the variable a1 being

an input and the variable a2 being an output of the module under design, i.e. a1 and a2

are respectively the outputs and inputs of the interconnecting network, and then solve for

the functional realization of the module that produces the transformed vector c from the

transformed vector c. In particular, the coordinate transformation is provided in Figure 5-11

in the center and the resulting function is given by

 c1

c2

 =
1

(1 + ρ)2 + 1

 ρ2 −2

2 ρ2


 d1

d2

 (5.122)

and is depicted graphically on the right of the figure. It is straightforward to verify by

substituting (5.122) into the definition of a function being α-conic everywhere that (5.122)

is α-dissipative everywhere for ρ > 0 and passive everywhere for ρ = 0. As the reduced form

primal objective function alludes to, the interpretation of the module for non-zero values of

the parameter ρ motivates referring to this module as a quadratic coupling module.

Consider a primal optimization problem statement whose aggregate linear constraints

are of the form Ax = y. We discuss the partitioning of A first by row and then by column.
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For either case, the general approach is to assign a local copy of some of the variables

on neighboring processors and then to use the quadratic coupling module to ensure that

the copies on different machines agree in steady state. Figure 5-12(a) depicts the general

scheme associated with row partitioning the matrix A into M blocks A(r)
m for m = 1, . . . ,M .

Referring to the figure, the constraints are distributed according to the notation

A(r)
m x = y(r)

m , m = 1, . . . ,M (5.123)

x = vm m = 1, . . . ,M − 1 (5.124)

x−wm = 0 m = 2, . . . ,M (5.125)

where a copy of the vector x is private on each interconnect, y
(r)
m is the subvector of y

corresponding to the rows of A in A
(r)
m , and vm and wm are vector sequences with the

same number of entries as x. The quadratic coupling modules labeled Q̂(vm,wm+1) for

m = 1, . . . ,M − 1 are distributed between interconnects as indicated by the figure. Observe

that setting ρ = 0 enforces the aggregate equality constraints to be met with the same value

of x at each interconnect. Figure 5-12(b) depicts the general scheme associated with column

partitioning the matrix A into M blocks A(c)
m , for m = 1, . . . ,M . Referring to the figure,

the constraints are distributed according to the notation

A(c)
m x(c)

m = zm, m = 1, . . . ,M (5.126)
M∑
m=1

vm = y (5.127)

where x
(c)
m is the subvector of x corresponding to the columns of A in A(c)

m and zm and vm

are vector sequences with the same number of entries as y. The quadratic coupling modules

labeled Q̂(zm,vm) for m = 1, . . . ,M are distributed between interconnects as indicated

by the figure where an additional interconnect has been used to enforce (5.127). Observe

that setting ρ = 0 enforces the aggregate equality constraints to be met. Of course, row

and column partitionings may be combined by applying the decomposition in (b) to any

interconnect in (a) and vice versa. For both partitioning schemes, the overall precompute
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(a) Decentralizing linear equality constraints by row partitioning

(b) Decentralizing linear equality constraints by column partitioning

Stationarity conditions for decentralized linear systems of equations

Figure 5-12: An illustration of the use of the quadratic coupling module in decentralizing linear
systems of equations. (a) By row partitioning a matrix. (b) By column partitioning a matrix.

associated with realizing the interconnect for any submatrix of A according to (5.91) may

be significantly reduced using this scheme since the Cayley transform of a much smaller

matrix is required. The overall precompute associated with generating the Cayley transform

of the bottom interconnect in (b) requires very little computation since the linear system

corresponds to concatenated identity matrices.

Consider the scattering-form structure produced by decentralizing A using the quadratic

coupling module defined above and then performing the scattering coordinate transform.

The associated continuation scheme refers to dynamically changing the realization of each

quadratic coupling module during runtime by incrementally decreasing ρ to zero in (5.122).

From the stability and robustness results in Chapter 4, when the other constitutive modules

in the graph are dissipative everywhere, the transformed variables converge linearly to a

fixed-point if ρ > 0. However, this fixed-point corresponds to a primal objective function

consisting of the original cost function in addition to the sum of the quadratic coupling

penalties described by (5.120). By setting ρ = 0, a fixed-point of the system corresponds

to a solution to the original problem. Allowing the system to initially process with small

ρ provides fast convergence to a neighborhood near the desired solution where sublinear
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convergence is guaranteed for ρ = 0 when the delay modules are appropriately filtered.

5.5 | Early termination of scattering algorithms

So far in this chapter, we have defined the class of conservative optimization problems and de-

veloped a modular approach to designing scattering algorithms to solve them. In particular,

the approach involves assembling and implementing a signal processing system in scattering-

form whose fixed-points correspond to solutions to the transformed stationarity conditions

associated with the primal and dual optimization problems at hand. As such, questions

pertaining to the convergence of the scattering algorithms are immediately resolved using

the stability and robustness conditions derived in Section 4.3 for general implementations of

interconnective structures in the context of solving CCSPs. In this section, we discuss the

relationship between the intermediary values taken by the scattering algorithm’s variables

and the values taken by the corresponding decision variables as the algorithm converges to

a solution. Said another way, the focus in this section is on interpreting the partial solution

obtained when a scattering algorithm is terminated early.

To illustrate the relationships mentioned above in the context of an example, we continue

with the non-negative least squares problem in (5.99). Referring to the canonical-form

description of the stationarity conditions in Figure 5-5(a), the constitutive modules are

assigned as follows:

module 1: the second row of Figure 5-6 with scattering transform M (i),

module 2: the first row of Figure 5-7 with scattering transform M (i),

module 3: the third row of Figure 5-8 with scattering transform M (o).

With these assignments, the scattering algorithm corresponds to asynchronously implement-

ing the listed realizations after delays have been inserted between the constitutive modules

and interconnecting networks. Results from implementing this structure for an instantiation

of the problem are provided in Figure 5-13 where the asynchronous delay parameter p was

chosen to be 1 to remove the influence of the stochastic dynamics of the system from the

present discussion, i.e. the scattering algorithm was implemented synchronously. Referring

to the figure, the sequences of scattering vectors cn and dn denote the values the algorithm
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Figure 5-13: Illustration of the stability for a synchronous algorithm for solving a non-negative
least squares problem demonstrating the behavior of the reduced-form primal and dual objective
functions as well as the canonical and transformed system variables.

variables take at each iteration and the sequences an and bn of canonical vectors denote the

corresponding values taken by the primal and dual decision vectors. Observe that cn and

dn monotonically converge to their respective fixed-points, as expected.

The first observation we call attention to is that monotonicity of the scattering variables

to their respective fixed-points does not necessarily imply monotonicity in any form of the

decision variables to theirs. This observation is demonstrated by the trends in the top two

plots in Figure 5-13. For the non-negative least squares problem, the modules associated with

the primal decision variables a(CR)
2 and a

(CR)
3 are sources and therefore can be algebraically

eliminated using (5.95) through (5.96). Doing so results in an implementation with only

scattering variables corresponding to the first module. Monotonicity of the decision variables

and the primal and dual cost values for such source-free structures is also not guaranteed.

The second observation we call attention to is that monotonicity of the scattering vari-

ables does not necessarily imply monotonicity of the canonical-form or reduced-form primal

and dual cost functions. This observation is demonstrated by the trends in the bottommost

plot in Figure 5-13. This feature is in contrast with steepest-descent like algorithms where

the primal cost function is non-increasing with the iteration count for appropriately chosen

step sizes. Furthermore, the scalar-valued sequences Q̂(an) and R̂(bn) do not necessarily

upper or lower bound one another as a function of n, as may be found with primal-dual

algorithms relying on Lagrangian duality. Similar to these methods, the fact that Q̂(an) can
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take values lower than Q̂(a?) is due to the strong relationship imposed between feasibility

and stationarity. Specifically, the duality principle invoked here ensures that if Q̂(an) is less

than Q̂(a?), then an must be infeasible, i.e. does not satisfy the primal feasibility conditions.

5.6 | Connections with existing optimization methods

In this section, connections between the class of scattering algorithms developed in this chap-

ter and existing algorithm classes in the optimization literature are presented. These connec-

tions are specifically made between scattering algorithms and a variety of steepest-descent

and proximal methods, including the stochastic gradient descent and ADMM algorithms

discussed in Section 2.5.2. In particular, connections are made by identifying correspon-

dences between the stationarity conditions each algorithm class is designed to solve, and we

focus on this basis for comparison since it allows for a large number of specific algorithms

belonging to these classes to be handled at once. The key result in this section is that

the interconnective description of steepest-descent, proximal, and scattering algorithms all

belong to the same interconnective equivalence class. Therefore, these algorithms can all

be generated using the modular framework developed in this chapter by starting with the

same interconnective description of the stationarity conditions associated with a problem,

where the different algorithms correspond to applying different coordinate transforms before

inserting memory to produce well-defined iterations.

5.6.1 | Interconnective description of reduced-form stationarity conditions

The purpose of this subsection is to describe the notation that will be used to make the

connections discussed above. In casting the stationarity conditions associated with common

optimization problems as fixed-point problems, recall that the interconnective description of

the reduced-form stationarity conditions corresponds to the coupling of an interconnecting

network and constitutive modules where the interconnecting network describes the linear

feasibility conditions and the constitutive modules characterize the cost functions and non-

linear set-valued feasibility constraints. In particular, the constitutive modules are described

through the set constraint F acting on the entire collection of primal and dual decision
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variables a and b, where the direct product decomposition F = F1 × · · · × FK corresponds

to defining individual constitutive modules for each separable term in the cost function,

i.e. the constraint Fk couples the variables (a
(CR)
k ,b

(CR)
k ) for k = 1, . . . ,K. From a given

optimization problem written in reduced-form, the set constraint Fk is defined using an

intermediary functional pk : RN
(CR)
k → R that is equal to the cost term Q̂k associated with

the variables a(CR)
k over the feasible set Ak and is equal to infinity elsewhere. For example,

if a
(CR)
k is constrained to the set Ak ⊆ RN

(CR)
k with cost function Q̂k(a

(CR)
k ), then the

functional pk is given by

pk(a
(CR)
k ) =


Q̂k(a

(CR)
k ), a

(CR)
k ∈ Ak

∞, otherwise
. (5.128)

For this setup, the individual constitutive modules Fk are generated using the intermediary

functions pk according to

Fk =


 a

(CR)
k

b
(CR)
k

 ∈ R2N
(CR)
k : b

(CR)
k = ∂pk(a

(CR)
k )

 , k = 1, . . . ,K. (5.129)

The stationarity conditions are completed by writing the linear feasibility conditions as a

vector space constraint in exactly the same way as presented in Section 5.1.

5.6.2 | Steepest descent algorithms

Steepest descent algorithms form a common class of first-order optimization methods for

finding local and global extrema of smooth functions, and generally work by iteratively

moving in directions loosely aligned with the negative of the gradient of the function. For

example, consider the problem of minimizing an unconstrained, convex, differential func-

tional Q : RN → R formulated as

minimize
x

Q(x) . (5.130)
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The standard gradient-descent algorithm associated with solving the first-order optimality

condition ∇Q(x) = 0 is given by

xn+1 = xn − ρ∇Q(xn), n ∈ N (5.131)

where ρ is a step size parameter and can be selected to ensure convergence of the sequence

xn to a solution x?. Toward making connections between this iteration and the scattering

algorithms in this thesis, we proceed by recasting (5.130) into a form that resembles a

conservative optimization problem according to

minimize
x, z

Q(z)

s.t. x = z.

(5.132)

The purpose of reformulating unconstrained problems as constrained problems is to assist

with defining the portion of the interconnective description of the stationarity conditions

associated with the interconnecting network, and the choice between assigning the cost

function to x or z in (5.132) is non-essential. In this case, the formulations in (5.130) and

(5.132) are clearly equivalent to one another in the sense that their solution sets are equal.

An interconnective description of the stationarity conditions associated with the con-

strained problem (5.132) is provided in Figure 5-14(a). The interconnecting network en-

forces the constraints a
(CR)
1 − a

(CR)
2 = 0 and b

(CR)
1 + b

(CR)
2 = 0, which we recast as the

vector space constraint



a
(CR)
1

b
(CR)
1

a
(CR)
2

b
(CR)
2


∈ range





I 0

0 −I

I 0

0 I




. (5.133)

The constitutive modules F1 and F2 can be defined using the general approach described
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Equivalent interconnective structures related to the gradient descent algorithm

(a) Stationarity conditions

delay

(b) Transformed stationarity conditions for the

Gradient descent algorithm

Figure 5-14: Interconnective structures illustrating the coordinate transform used to obtain
gradient-descent algorithms from the stationarity conditions associated with (5.132).

in Section 5.6.1 where the relevant intermediary functionals are given by

p1(a
(CR)
1 ) = 0 (5.134)

p2(a
(CR)
2 ) = Q(a

(CR)
2 ). (5.135)

Note that the constitutive module F1 formed using (5.134) corresponds to the module in

the second row of Figure 5-7.

The scattering algorithm for (5.132) is formed by applying the scattering coordinate

transform to the interconnective description of the problem’s stationarity conditions and

then inserting memory into the resulting structure. To connect the scattering algorithm to

the gradient-descent algorithm, we next perform a coordinate transform to the interconnec-

tive description of the stationarity conditions associated with the problem (5.132) to obtain

an interconnective structure resembling the gradient-descent algorithm. In particular, the

gradient-descent coordinate transform MGD is provided in the following expression:



c
(CR)
1

d
(CR)
1

c
(CR)
2

d
(CR)
2


=



I 0 0 0

I ρI 0 0

0 0 I 0

0 0 0 I


︸ ︷︷ ︸

,MGD



a
(CR)
1

b
(CR)
1

a
(CR)
2

b
(CR)
2


. (5.136)

The interconnective structure corresponding to this coordinate transform is depicted in
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Figure 5-14(b), from which the iteration in (5.131) can be obtained by assigning the variable

x = c
(CR)
1 and inserting a delay module as illustrated in the figure. To see this more clearly,

we first transform the interconnecting network associated with (5.132) by the coordinate

matrix MGD as



c
(CR)
1

c
(CR)
1

d
(CR)
1

d
(CR)
2


∈ range





I 0 0 0

0 0 0 I

0 I 0 0

0 0 I 0


︸ ︷︷ ︸
input-output config.



I 0 0 0

I ρI 0 0

0 0 I 0

0 0 0 I


︸ ︷︷ ︸

MGD



I 0

0 −I

I 0

0 I


︸ ︷︷ ︸
W for (5.132)


(5.137)

∈ range





I 0

0 I

I −ρI

I 0




(5.138)

where the input-output configuration has been appropriately selected to be consistent with

the standard notation of the c and d variables respectively denoting inputs and outputs

of the interconnecting network. Reflecting the coordinate transform onto the constitutive

modules yields functional realizations of the modules given by

c
(CR)
1 = d

(CR)
1 (5.139)

c
(CR)
2 = ∇Q(d

(CR)
2 ), (5.140)

and completes the derivation of the transformed interconnective structure used to define

(5.131) as desired. The action of the coordinate transform MGD on the first constitutive

module is not arbitrary. In fact, this particular transform is shown in the next section to

be closely related to the proximal operator associated with an indicator function defined

on the dual decision vector b
(CR)
1 . The action of the coordinate transform MGD on the

second constitutive module is to simply rearrange the system variables to use the gradient

operator ∇Q(·) in a way that is consistent with the chosen input-output configuration. The
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stochastic gradient descent algorithm discussed in Section 2.5.2 corresponds to implementing

the interconnective structure in Figure 5-14(b) using an asynchronous delay module.

A variety of steepest descent methods that are closely related to the gradient-descent

iteration have been designed to handle various modifications of the problem (5.130) where

the feasible set includes linear equality and inequality constraints [98]. For example, consider

the modified problem

minimize
x

Q(x)

s.t. Ax ≤ b.
(5.141)

The class of projected gradient-descent methods can be used to solve problems of this form,

and these methods can be derived using the same procedure as the gradient-descent iteration

for unconstrained problems with the following modifications. The variable assignment for the

interconnective description of the stationarity conditions becomes (a
(CR)
1 ,a

(CR)
2 ) = (x, Ax)

and the constitutive modules are formed using the intermediary functionals

p1(a
(CR)
1 ) = Q(a

(CR)
1 ) (5.142)

p2(a
(CR)
2 ) =


0, a

(CR)
2 ≤ b

∞, otherwise
. (5.143)

The interconnecting network is modified to incorporate the matrix A according to



a
(CR)
1

b
(CR)
1

a
(CR)
2

b
(CR)
2


∈ range





I 0

0 −AT

A 0

0 I




(5.144)

and the coordinate transform and input-output configuration are chosen to preserve the

first module and apply the proximal transform defined in the next subsection to the second

module, similar to how the first module in the unconstrained gradient-descent algorithm

was transformed to obtain the iteration in (5.131).
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5.6.3 | Proximal algorithms

Proximal methods are commonly used for solving non-smooth, convex optimization problems

where gradient-descent methods may not apply due to the lack of a well-defined derivative

of the cost function. Proximal algorithms are generally distinct from their gradient-based

counterparts in the sense that they iterate proximal operators rather than, for example,

derivatives or subgradients [46]. This feature is similar to the scattering algorithms estab-

lished in this thesis where the functions composing the transformed stationarity conditions

are often related to subderivatives through scattering coordinate transformations.

Mathematically, a proximal algorithm for minimizing a convex function Q : RN → R ∪

{∞} takes the general form

xn+1 = proxρQ(xn), n ∈ N (5.145)

where ρ is the so-called scaling parameter, Q is allowed to be non-differentiable and take

values of infinity, and the scaled proximal operator proxρQ : RN → RN is an operator defined

according to the expression

proxρQ(x) , arg min
v
Q(v) +

1

2ρ
‖v − x‖2. (5.146)

By allowing Q to take values of infinity, it is straightforward to express equality and in-

equality constraints in the cost function. Despite the fact that evaluating the definition

of a proximal operator involves solving an optimization problem involving the original cost

function to be minimized, closed-form expressions for many functions Q commonly used in

practice are known [99]. Convergence analysis for proximal algorithms often relies on prop-

erties of monotone and firmly non-expansive operators in a similar way to how the stability

of a system operator in this thesis relies on α-connicitiy and passivity properties [47].

To begin, we first show that the scaled proximal operator defined by (5.146) corresponds

to a functional realization of the transformed behavior of the gradient or subderivative

of the function Q. This is analogous to the characterization of scattering operators in

Section 5.2.3 using reduced-form, convex cost functions. In particular, the scaled proximal
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Transformed behavior
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Figure 5-15: Transformed behaviors illustrating the relationship between subderivatives and prox-
imal operators using the proximal coordinate transform in (5.147).

operator proxρQ(·) is related to the (sub)differential relation ∂Q according to

 proxρQ(y)

y

 =

 I 0

I ρI


︸ ︷︷ ︸

,Mprox

 x

∂Q(x)

 . (5.147)

Proving that this relationship holds requires the relationship y = (I+ρ∂Q)(proxρQ(y)) to be

true. To show this, let z? = proxρQ(y) and consider the function g(z) = Q(z) + 1
2ρ‖z−y‖2.

The condition ∂g(z?) = 0 then yields the constraint ρ∂Q(z?) +z? = y which is precisely the

relationship in (5.147). We discuss this relationship further using an example next.

Four example scalar-valued proximal operators demonstrating the relationship (5.147)

with ρ = 1 are provided in Figure 5-15. The subdifferential relation in the first example

is specifically the special case of the relationship between the primal and dual decision

variables for the scaled absolute value cost function in the second column of the first row

of Figure 5-8 with the choices a = x and b = ∂Q(x) and with ρ = 1. Recall that this

relationship coincides with the subdifferential relation corresponding to the absolute value

function given in (2-1), also with ρ = 1. The functional realization of the scaled proximal
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Equivalent interconnective structures related to the Iterative Soft Thresholding Algorithm

(a) Stationarity conditions

delay

(b) Transformed stationarity conditions and

the Iterative Soft Thresholding Algorithm

Figure 5-16: Interconnective structures illustrating the coordinate transform used to obtain the
Iterative Soft Thresholding Algorithm from the stationarity conditions associated with (5.149).

operator for this example is the so-called soft thresholding operator and is given by

proxρ|·|(x) =


0, |x| ≤ ρ

x− ρsgn(x), |x| > ρ

. (5.148)

The soft-thresholding operator is also depicted in the third column of Figure 2-1. The rela-

tionship in (5.147) suggests one way that proximal operators can be generated numerically

for a given function Q and forms the key observation used to relate proximal algorithms

with the class scattering algorithms discussed in this chapter.

To illustrate the difference between the coordinate transforms used to produce proximal

algorithms and the scattering coordinate transforms used to produce scattering algorithms,

consider the example of a non-smooth optimization problem given by

minimize
x

‖x‖1

s.t. Ax = y.
(5.149)

The standard proximal algorithm associated with solving this problem is the so-called iter-

ative soft thresholding algorithm (ISTA) and corresponds to the iteration [100]

xn+1 = proxρ|·|(x
n + ρAT (y −Axn)), n ∈ N0 (5.150)

where ρ serves to assist with the stability of the iteration.
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An interconnective description of the stationarity conditions associated with (5.149)

is provided in Figure 5-16(a). The formal description of this problem as a conservative

optimization problem and the scattering algorithm produced by appropriately transform-

ing the problem’s stationarity conditions is presented in Section 6.1.2. The intent in this

subsection is to connect the proximal algorithm for solving this problem to the problem’s

stationarity conditions, and to do so using interconnective equivalence classes. Referring to

Figure 5-16(a), the interconnecting network enforces the constraints Aa(CR)
1 − a

(CR)
2 = 0

and b
(CR)
1 +ATb

(CR)
2 = 0, which we recast as the vector space constraint



a
(CR)
1

b
(CR)
1

a
(CR)
2

b
(CR)
2


∈ range





I 0

0 −AT

A 0

0 I




. (5.151)

The constitutive modules F1 and F2 can be defined using the general approach described

in Section 5.6.1 where the relevant intermediary functionals are given by

p1(a
(CR)
1 ) = ‖a(CR)

1 ‖1 (5.152)

p2(a
(CR)
2 ) =


0, a

(CR)
2 = y

∞, otherwise
. (5.153)

We next perform a proximal coordinate transform to the interconnective description of

the stationarity conditions associated with the problem (5.149) to obtain an interconnective

structure resembling the ISTA algorithm. In particular, we apply Mprox to the first con-

stitutive module and a similar characterization of the proximal coordinate transform to the

second constitutive module. This coordinate transform is described by



c
(CR)
1

d
(CR)
1

c
(CR)
2

d
(CR)
2


=



I 0 0 0

I ρI 0 0

0 0 −I 0

0 0 I I





a
(CR)
1

b
(CR)
1

a
(CR)
2

b
(CR)
2


. (5.154)
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The result of applying this coordinate transform is depicted in Figure 5-16(b) from which

the iteration in (5.150) can be obtained by assigning the variable x = c
(CR)
1 and inserting

a delay module as illustrated in the figure. To see this, we apply the coordinate transform

(5.154) to the interconnecting network according to



c
(CR)
1

c
(CR)
2

d
(CR)
1

d
(CR)
2


∈ range





I 0 0 0

0 0 0 I

0 I 0 0

0 0 I 0


︸ ︷︷ ︸
input-output config.



I 0 0 0

I ρI 0 0

0 0 −I 0

0 0 I I


︸ ︷︷ ︸

M in (5.154)



I 0

0 −AT

A 0

0 I


︸ ︷︷ ︸
W for (5.149)


(5.155)

∈ range





I 0

A I

I −ρAT

−A 0




(5.156)

where the input-output configuration has been appropriately selected to be consistent with

the standard notation of the c and d variables respectively denoting inputs and outputs

of the interconnecting network. Reflecting the coordinate transform onto the constitutive

modules yields a functional realization of the first constitutive module given by (5.148).

Observe that the scattering decision vector d(CR)
1 produced by the proximal coordinate

transform in (5.154) and the scattering coordinate transform in (3.90) are the same. There-

fore, the argument presented in Section 5.2.3 showing that the realization of transformed

constitutive modules for convex cost functions is well-defined also holds for the realization

of the proximal function generated according to Mprox when the cost function Q is convex.

The treatment in this subsection used to obtain the proximal algorithm for (5.149) did not

use anything specific to the 1-norm cost function. We end this subsection by commenting

that, as a result, general proximal algorithms can also be produced using this coordinate

transform and will also be in the same interconnective equivalence class as the scattering

algorithm produced by coupling together the modules in Section 5.3.
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5.6.4 | Alternating Direction Method of Multipliers

A common class of optimization problems and an associated class of proximal methods

were introduced in Section 2.5.2, where problems in the general form of (2.37) are solved

using various instantiations of the ADMM iteration in (2.39). A key feature of the ADMM

algorithm is the ability to jointly optimize over multiple non-smooth objective functions

while maintaining the computational advantages of Gauss-Seidel like iterations. To elaborate

on this further, consider the class of optimization problems that can be formulated as

minimize
x

f(x) + g(x) (5.157)

where the cost functions f : RN → R∪ {∞} and g : RN → R∪ {∞} are convex and allowed

to take values of infinity. This problem setup is equivalent to the class of problems described

by (2.37) since, for example, selecting g to take the form in the second column of Figure 5-15

is sufficient to enforce equality and inequality constraints. The ADMM iteration used to

solve problems in the present class notationally simplifies from the form of the iteration

presented in (2.39) by using proximal operators to the iteration

xn+1 = proxρf (zn − πn) (5.158)

zn+1 = proxρg(x
n+1 + πn) (5.159)

πn+1 = πn + ρ(xn+1 − zn+1). (5.160)

The quadratic penalty term in the definition of a proximal operator naturally accounts for the

augmented Lagrangian that the ADMM algorithm is derived from. In the remainder of this

subsection, we show that the ADMM algorithm above can be generated by transforming

the stationarity conditions associated with a reformulation of (5.157) and then inserting

memory into the resulting structure to break delay-free loops. In this sense, the key result

in this subsection is that the ADMM algorithm is in the same interconnective equivalence

class as the scattering algorithm for the problem where the ADMM coordinate transform

corresponds to selecting a coordinate transform that is not Dp-invariant.
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Toward making connections between the iteration in (5.158) through (5.160) and the

scattering algorithms in this thesis, we proceed by recasting (5.157) into a form that resem-

bles a conservative optimization problem according to

minimize
x,z

f(x) + g(z)

s.t. x− z = 0

(5.161)

where a solution to either (5.157) or (5.161) clearly solves both problems. An interconnective

description of the stationarity conditions associated with (5.161) is provided in Figure 5-17(a)

where the variables a = (a
(CR)
1 ,a

(CR)
2 ,a

(CR)
3 ) correspond to (x,0, z). The interconnecting

network enforces the constraints a(CR)
1 −a

(CR)
2 −a

(CR)
2 = 0, b(CR)

1 +b
(CR)
2 = 0 and b

(CR)
2 −

b
(CR)
3 = 0, which we recast as the vector space constraint



a
(CR)
1

b
(CR)
1

a
(CR)
2

b
(CR)
2

a
(CR)
3

b
(CR)
3


∈ range





I 0 0

0 −I 0

I 0 −I

0 I 0

0 0 I

0 I 0




. (5.162)

The constitutive modules can be formed by using the general approach described in the

introduction to this section where the relevant intermediary functionals are given by

p1(a
(CR)
1 ) = f(a

(CR)
1 ) (5.163)

p2(a
(CR)
2 ) =


0, a

(CR)
2 = 0

∞, otherwise
(5.164)

p3(a
(CR)
3 ) = g(a

(CR)
3 ). (5.165)

The scattering algorithm for (5.161) is formed by applying the scattering coordinate

transform to the interconnective description of the problem’s stationarity conditions and

then inserting memory into the resulting structure. To connect the scattering algorithm
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to the ADMM algorithm, we next perform a different coordinate transform to produce an

interconnective structure resembling the ADMM iteration. In particular, the coordinate

transform is described by the coordinate matrix MADMM in the expression



c
(CR)
1

d
(CR)
1

c
(CR)
2

d
(CR)
2

c
(CR)
3

d
(CR)
3


=



I 0 0 0 0 0

0 ρI 0 0 I 0

0 0 I 0 0 0

0 0 I I 0 0

0 0 0 0 I 0

I 0 0 0 0 ρI


︸ ︷︷ ︸

MADMM



a
(CR)
1

b
(CR)
1

a
(CR)
2

b
(CR)
2

a
(CR)
3

b
(CR)
3


. (5.166)

The result of applying this coordinate transform is depicted in Figure 5-17(b) from which the

iteration in (5.158) through (5.160) can be obtained by assigning the variables x = c
(CR)
1 ,

π = c
(CR)
2 , and z = c

(CR)
3 and inserting delay modules as illustrated in the figure. To see

this, we first transform the interconnecting network by the coordinate matrix MADMM as



c
(CR)
1

c
(CR)
2

c
(CR)
3

d
(CR)
1

d
(CR)
2

d
(CR)
3


∈ range





I 0 0 0 0 0

0 0 0 I 0 0

0 0 0 0 I 0

0 I 0 0 0 0

0 0 I 0 0 0

0 0 0 0 0 I


︸ ︷︷ ︸

Input-output config.



I 0 0 0 0 0

0 ρI 0 0 I 0

0 0 I I 0 0

0 0 0 I 0 0

0 0 0 0 I 0

I 0 0 0 0 ρI


︸ ︷︷ ︸

MADMM



I 0 0

0 −I 0

I 0 −I

0 I 0

0 0 I

0 I 0


︸ ︷︷ ︸

W for (5.161)



(5.167)

∈ range





I 0 0

0 I 0

0 0 I

0 −ρI I

I I −I

I ρI 0




(5.168)
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Equivalent interconnective structures related to the Alternating Direction Method of Multipliers Algorithm

(a) Stationarity conditions (b) Transformed stationarity conditions and

the Alternating Direction Method of Multipliers Algorithm

delay

delay

Figure 5-17: Interconnective structures illustrating the coordinate transform used to obtain the
Alternating Direction Method of Multipliers Algorithm from the stationarity conditions associated
with (5.161).

where the input-output configuration has been appropriately selected to be consistent with

the standard notation of the c and d variables respectively denoting inputs and outputs

of the interconnecting network. Reflecting the coordinate transform onto the constitutive

modules yields functional realizations as depicted in the figure.

Note that the effect of the coordinate transform in (5.166) on the partition decompo-

sition of the system is that the second constitutive module is transformed independent of

the first and third modules to produce the functional realization c
(CR)
2 = d

(CR)
2 while the

first and third constitutive modules get mixed together. We next justify that the coordi-

nate transform does in fact produce the proximal operators associated with the functions

f and g despite not using the coordinate matrix Mprox directly on those modules. To see

this, let (a
(CR)
1 ,b

(CR)
1 a

(CR)
3 ,b

(CR)
3 ) = (x, ∂f(x), z, ∂g(z)) and (c

(CR)
1 ,d

(CR)
1 c

(CR)
3 ,d

(CR)
3 ) =

(proxρf (u),u, proxρg(v),v). Using this notation, the coordinate transform in (5.167) applied

to the first and third modules is equivalent to the smaller coordinate transform



proxρf (u)

u

proxρg(v)

v


=



I 0 0 0

0 ρI I 0

0 0 I 0

I 0 0 ρI





x

∂f(x)

z

∂g(z)


. (5.169)

Note that this particular formulation still does not make use of Mprox twice except in the

sense of an alternating cross term. The conditions in (5.169) are equivalent to the the system
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of equations

u = ∂f(proxρf (u)) + proxρg(v) (5.170)

v = ∂g(proxρg(v)) + proxρf (u). (5.171)

These equations are generally not consistent with the definition of a proximal operator except

in the case that proxρg(v) = proxρf (u). Said another way, (5.169) is a valid representation

of the proximal operators so long as x = z. This condition is guaranteed at a solution to

the stationarity conditions since it is equivalent to the constraint x− z = 0 in (5.161).

5.6.5 | Forward-Backward algorithms

Another common class of optimization algorithms we make connections to pertain to solving

unconstrained convex optimization problems of the form

minimize
x

f(x) + g(x) (5.172)

where the cost functions f and g are convex and allowed to take values of infinity, and

where the function g is also required to be differentiable. The class of forward-backward

splitting algorithms attempt to determine solutions x? by producing sequences of vectors xn

according to variations of the basic iteration

xn+1 = proxρf︸ ︷︷ ︸
backward step

(xn − ρ∇g(xn)︸ ︷︷ ︸
forward step

), (5.173)

where convergence of the iteration can be guaranteed for appropriate selection rules of the

step-size parameter ρ [99, Proposition 10.4]. The forward-backward algorithm in (5.173)

encapsulates many algorithms previously discussed in this section. For example, the iteration

in (5.173) reduces to the gradient-descent algorithm in (5.131) if the cost term f = 0 and

reduces to the proximal minimization algorithm in (5.145) if the cost term g = 0. Note that

the ADMM algorithm can also be used to solve problems described by (5.172).

Consider the special case of the cost function in (5.172) where the terms f and g are

224 / 282



Chapter 5. Scattering structures for solving optimization problems

equal, and thus both differentiable. Substituting the relationship that proxρf = (I+ρ∇f)−1,

the forward-backward iteration simplifies to the form

xn+1 = (I + ρ∇f)−1(I − ρ∇f)(xn). (5.174)

Comparing (5.174) to the functional realization in (5.104) used to execute a scattering algo-

rithm, the scattering operator is interpretable as simultaneously applying the forward and

backward steps of the update in (5.173), except with the backward step being enforced before

the forward step and with the input being the scattering variable d rather than the primal

decision variable a. It is straightforward to verify that the scattering and forward-backward

operators are not related through linear behavioral transformations, thus scattering algo-

rithms are not generally in the same interconnective equivalence class as forward-backward

algorithms, though the two are closely related in the sense described above.

5.6.6 | Comments on alternative coordinate transforms

The key point emphasized by the connections presented in this section is that steepest-

descent and proximal algorithms are closely related to scattering algorithms in straightfor-

ward and fundamental ways. In particular, algorithms belonging to these classes can all be

produced by starting with the same interconnective description of the stationarity condi-

tions associated with an optimization problem and inserting memory into the interconnec-

tive structure after performing different coordinate transforms. This observation suggests

additional opportunity in designing alternative coordinate transform matrices beyond those

discussed in this thesis to produce algorithm classes tailored to certain computing envi-

ronments. Understanding how coordinate matrices can be designed so that the resulting

algorithms have desirable properties forms an important direction for future research. In

the remainder of this section, we summarize some of the desirable properties the class of

scattering algorithms possess in the context of solving large-scale optimization problems

using decentralized signal processing systems, and we provide comments on directions of

potentially interesting future developments.

The interconnective description of many real world systems satisfies the requirements
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of a canonical-form structure, e.g. systems involving electrical, biological, chemical, finan-

cial, and transport networks. In the context of manipulating canonical-form interconnective

structures, the scattering coordinate transforms used in this thesis were chosen specifically

to preserve maximal partition decompositions. As a consequence, the locality of the indi-

vidual subsystems composing the structure is preserved in the transformation, and this fact

applies to both the locality of the interconnecting networks and constitutive modules. In

the context of variational properties exhibited by canonical-form structures, this separability

is instrumental to the modular design of fully asynchronous and uncoordinated scattering

algorithms for solving optimization problems using the same topology or underlying graph

associated with the problem at hand. In deriving the ADMM algorithm, for example, the

main differentiating feature between it and proximal algorithms is that the coordinate trans-

form MADMM does not preserve the locality or separability of the partition decomposition,

but still results in distributable algorithms that are known to possess desirable convergence

properties [45]. The alternating cross term between the first and third constitutive modules

constrained the associated primal and dual variables to be equal to one another by relying

on the constraints imposed by the interconnecting network. This type of strategy could be

applied to the scattering coordinate transform as well for problem classes where these types

of relationships exist.

Another important property scattering coordinate transforms provide is that the inter-

connecting networks are realized by orthogonal matrices which are perfectly conditioned

and passive everywhere. In addition, the interplay between convexity and the scattering

transform provides the ability to use local, independent certificates to certify global stabil-

ity and robustness properties of the system. For example, convexity of reduced-form cost

functions provide well-defined functional realizations of the constitutive modules, and these

functions are passive everywhere in the worst case. As such, convergence guarantees for

scattering algorithms follow immediately without relying on problem dependent tuning or

step-size parameters. In addition, the convergence for many strictly convex problems result

in modules with contractive functional realizations, resulting in linear convergence of the

scattering algorithm, meaning tuning or step-size parameters are unnecessary but can be

used to improve the rate of convergence.
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Examples of interconnective

structures and scattering algorithms

The formal methods in this thesis for designing and implementing large-scale signal pro-

cessing systems are naturally-suited to solving broad classes of fixed-point and optimization

problems, and the interconnective framework provides a straightforward way to take advan-

tage of a variety of computing resources in doing so. For example, by describing solutions

to a problem as the behavior of a signal processing system, the interconnective description

of the system focuses on issues of separability and robustness that are closely related to

issues of distributability and synchronization in many distributed and embedded computing

environments. The implementation of the system is then able take advantage of the partic-

ular strengths of the individual computing resources that are available, and this motivates

a concrete discussion of these strengths in distributed and embedded contexts.

In this chapter, several scattering algorithms are presented using the modules from Chap-

ter 5 to solve common classes of fixed-point and optimization problems appearing in signal

processing applications, and the details associated with implementing these scattering sys-

tems as distributed and embedded signal processing systems are also presented. Specifically,

scattering algorithms implemented as web services are formed by organizing the associated

interconnective structures into relational databases so that the implementations inherit the

scalability and security of the particular databases used. In addition, two embedded systems
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architectures are discussed that take advantage of the stability of interconnective structures

to reduce inefficiencies associated with synchronization and communication by desynchro-

nizing individual processors and simplifying the handshaking protocols used to communicate

between processors. The chapter concludes with a brief summary of the contributions of the

thesis as well as indicates some directions for future research.

6.1 | Example scattering algorithms

In this section, scattering algorithms are presented for solving a variety of constraint sat-

isfaction and optimization problems of interest to the signal processing community. The

general approach we take to discussing these algorithms is to first present the scattering al-

gorithms for solving linear systems of equations using a decentralized network of processors.

These decentralization techniques can then be applied to further separate the linear system of

equations appearing in the stationarity conditions of a given optimization problem. For each

class of optimization problems considered in this section, the general form of the Lagrangian

primal and dual problems are stated. Then, the equivalent reduced-form conservative pri-

mal and dual problems are stated and the associated canonical-form and scattering-form

interconnective structures respectively describing the untransformed and transformed sta-

tionarity conditions are derived. Numerical results demonstrating the convergence of the

scattering algorithms presented in this section are provided where the results are generated

by implementing the algorithms as distributed and embedded signal processing systems.

The specific details associated with implementing these algorithms are provided in the two

sections that follow.

The scattering algorithms formed using the modular framework developed in this thesis

appear to be novel. As such, the examples presented in this section have specifically been

chosen to highlight the stationarity conditions and iterations, both synchronous and asyn-

chronous, for well-known signal processing problems. From this perspective, these examples

serve as concluding remarks for the thesis, and suggest future work in two directions. The

first direction involves making connections between scattering and existing optimization al-

gorithms beyond those discussed in Section 5.6 by identifying correspondences between the
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iterations used to solve a problem and the duality principles used to establish the two iter-

ations. The second direction, discussed in Section 5.3, pertains to the procedure associated

with producing additional modules and involves designing modules to target problems out-

side the scope of those that can be addressed using the modules derived in this thesis. The

modules listed in Appendix B can be used to solve a large class of convex and non-convex

problems, as demonstrated by the examples in this section.

6.1.1 | Decentralized scattering algorithms for solving linear equations

Numerical linear algebra subroutines provide a powerful set of tools with which to perform

computations involving matrices and vectors. The ability to solve linear systems of equations

is fundamental to many fields, and solving equations of the form

Ax = y (6.1)

using a decentralized network of processors is important in signal processing applications

where the coefficient matrix A is either too large to be stored or manipulated by a single

processor in the network or cannot be assembled using centralized means for other reasons,

e.g. the privacy and security of medical and personal data. In Section 5.4, the stationarity

conditions associated with decentralizing linear equations were derived where the coefficient

matrix was not required to satisfy any particular spectral properties or possess any spe-

cial structure. The general strategy was to partition the matrix A into blocks of arbitrary

size and assign each block to a different processor. Then, each block was taken through

a scattering transform and certain of the processors were coupled together using quadratic

coupling modules, as in Figure 5-11, operating on auxiliary variables introduced on those

processors that are connected. This strategy is illustrated in Figure 5-12. The quadratic

coupling module carries with it an adaptive or homotopy parameter that suggests a numer-

ical scheme for slowly adapting the processing system in the transformed domain from an

initial well-behaved system to the desired system. In this subsection, we present the inter-

connective description of the transformed stationarity conditions associated with separately

partitioning the coefficient matrix A by column and by row and present some numerical
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results corresponding to implementing the slowly-adapting system. The ability to parti-

tion the coefficient matrix A into arbitrarily-sized subblocks follows immediately from this

presentation by applying row partitioning to the column partitioning scheme or vice versa.

The interconnective structure illustrating the transformed stationarity conditions as-

sociated with partitioning the coefficient matrix A in (6.1) into a total of M mutually-

exclusive and collectively-exhaustive groups of its rows is depicted in Figure 6-1, where the

notation and variable ordering correspond to the formulation of this problem in (5.123)

through (5.125). Similarly, the interconnective structure illustrating the transformed sta-

tionarity conditions associated with partitioning A into a total ofM mutually-exclusive and

collectively-exhaustive groups of its columns is depicted in Figure 6-2, where the notation

and variable ordering correspond to the formulation of this problem in (5.126) and (5.127).

Referring to the interconnective structures depicted in both figures, the interprocessor struc-

tures depict the functional realization of the quadratic coupling module in Figure 5-11, where

the parameter α = 1
(1+ρ)2+1

and the intraprocessor structures depict the transformed sta-

tionarity conditions that are private to each processor and make use of the constitutive

relation modules in Figure 5-7. Numerical convergence results for the state sequence of

primal decision variables xn for asynchronous implementations of the transformed station-

arity conditions are also provided for three of M = 2500 virtual processors used to solve a

decentralized linear problem where the coefficient matrix A has about 1.5 billion non-zero

entries. The implementations used filtered asynchronous delay elements with the filtering

parameter ρ = 1
2 and delay probability p = 1

2 . Also provided in the numerical results is

the schedule of the quadratic coupling parameter ρqc. We note that for non-zero values of

this parameter the system variables converge linearly, which manifests itself through the ob-

served linear convergence of xn. The matrix GM+1 used in the column partitioning example

is only non-zero in less than 0.1% of its entries for the depicted problem size. An explicit

form for GM+1 is also provided as an alternative to generating it using (5.91).

The ability to solve linear equations is critical to solving the transformed stationarity

conditions associated with any conservative optimization problem since the matrices associ-

ated with the canonical-form interconnecting network are used to generate the orthogonal

subspaces that the stationarity condition was derived from. Referring to the intraprocessor
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Chapter 6. Examples of interconnective structures and scattering algorithms

portion of the transformed stationarity conditions for both row and column partitionings of

the coefficient matrix, an objective function can be defined on each entry or copy of the deci-

sion vector x by simply replacing the identity function used to generate c(CR)
1 from d

(CR)
1 on

each processor with the function corresponding to the desired cost term. Using straightfor-

ward manipulations and module replacements such as this, all of interconnective structures

used to depict transformed stationarity conditions in the remainder of this section can be

decentralized using the approach in this section, or for already decentralized structures the

individual interconnects can be further decentralized. However, to avoid overly complicated

notation that might obscure the simplicity of the algorithms for solving various optimiza-

tion problems arising in signal processing contexts, we state the transformed stationarity

conditions using centralized formulations with an understanding that decentralizing those

formulations is straightforward using the techniques in this subsection.

6.1.2 | Linear programs

The problem of minimizing a linear cost function subject to linear equality and inequality

constraints is referred to as a linear program and appears in a variety of signal processing

applications such as optimum filter and array design [101], sparse signal recovery [3], spectral

estimation [102], and error correction in transform coding [103]. The Lagrangian primal and

dual formulations of a linear program are written in standard form according to

(LP)

minimize
x

qTx

s.t. Ax ≤ r

x ≥ 0

(LD)

maximize
y

rTy

s.t. ATy ≥ q

y ≥ 0

(6.2)

where the vectors of primal and dual decision variables are respectively denoted x and y,

the primal cost vector is denoted q, the primal inequality vector is denoted r, and the linear

coefficient matrix is denoted A. As is widely known, the feasible set of a linear program is a

convex polytope in the non-negative orthant, and solutions to a linear program are always

on the boundary of this set. Basis exchange algorithms, a typical approach to solving linear

programs, iteratively update a single solution by traversing the vertices of the feasible set
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Figure 6-3: The interconnective structures used to solve linear programs in standard form. (a) The
stationarity conditions in a canonical-form structure. (b) The transformed stationarity conditions
in a scattering-form structure.

until the cost function cannot be decreased further. Alternatively, interior point and barrier

methods identify a solution by moving through the interior of the feasible set until settling

at a vertex corresponding to a solution [104].

The standard form of the linear program (6.2)(LP) can be reformulated in accordance

with the notation used to describe conservative optimization problems. In particular, the

reduced-form primal (P) and corresponding dual (D) problems are written according to

(P)

minimize
a

qTa
(CR)
1

s.t. Aa
(CR)
1 = a

(CR)
2

a
(CR)
1 ≥ 0

a
(CR)
2 ≤ r

(D)

maximize
b

−rTb(CR)
2

s.t. −ATb(CR)
2 = b

(CR)
1

b
(CR)
1 ≤ q

b
(CR)
2 ≥ 0

(6.3)

where the primal decision variables (a
(CR)
1 ,a

(CR)
2 ) correspond to (x, Ax). Observe that the

conservative dual problem, as discussed in Section 5.1.5, can be reduced using straightfor-

ward manipulations into the form of the Lagrangian dual problem (LD). An interconnective

description of the stationarity conditions associated with a linear program is provided in Fig-

ure 6-3(a). An equivalent description of the transformed stationarity conditions formulated

as a scattering-form interconnective structure is illustrated in Figure 6-3(b). Referring to

the transformed structure, the matrix G is generated from the coefficient matrix A according
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Chapter 6. Examples of interconnective structures and scattering algorithms

to (5.91) and the constitutive modules are implemented using the functions

c
(CR)
1 = |d(CR)

1 − q| − q (6.4)

c
(CR)
2 = |d(CR)

2 − r| − r. (6.5)

Note that the expression in (6.4) combines the second module in Figure 5-7 with the first

module in Figure 5-8, and the expression in (6.5) combines the third module in Figure 5-

6 with the first module in Figure 5-7. Synchronous and asynchronous algorithms then

correspond to implementing the interconnective structure representing the transformed sta-

tionarity conditions after inserting a valid configuration of state and selecting a protocol

for state exchange, as was discussed in Section 3.3. The system operator associated with

these implementations is passive everywhere, hence convergence is guaranteed when the de-

lay modules are filtered with an appropriately chosen filtering parameter as is discussed in

Theorem 4.3.6.

A variety of problems appearing in signal processing contexts and elsewhere that are

naturally described using nonlinear features have been shown to be equivalent to linear

programming problems. In response to this, many transformations and manipulations have

been developed to assist in recasting an initial problem description into the standard form of

(6.2), e.g. see [105, Ch. 6]. Drawing upon the modular tools developed in this thesis, these

same manipulations can be applied, and then corresponding algorithms can be generated,

by casting the problem’s stationarity conditions into the interconnective structures provided

in Figure 6-3. Alternatively, specialized algorithms can be assembled for these problems by

using modules that directly represent the nonlinear features.

For example, a common approach used to generate a sparse solution to an underdeter-

mined linear system of equations satisfying certain spectral properties is to solve the basis

pursuit problem [3] given by

minimize
x

‖x‖1

s.t. Ax = r.
(6.6)

Rather than reformulating this problem to have a linear cost function by introducing auxil-
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iary variables and constraints, an algorithm can be designed through the modular framework

developed in this thesis by using an appropriate constitutive module to account for the non-

linear behavior of the objective function. The interconnective structures associated with

doing so are depicted along the top of Figure 6-4. Referring to the transformed stationarity

conditions, the matrix G is generated from the coefficient matrix A according to (5.91) and

the constitutive modules are implemented using the functions

c
(CR)
1 =


−d(CR)

1 , |d(CR)
1 | ≤ 1

d
(CR)
1 − 2sgn(d

(CR)
1 ), |d(CR)

1 | > 1

(6.7)

c
(CR)
2 = d

(CR)
2 − 2r. (6.8)

Note that the expression in (6.7) is the first module in Figure 5-8, and the expression in

(6.8) is the first module in Figure 5-7. Numerical convergence results and the intermediary

values taken by the primal objective function as well as the final solution obtained for both

synchronous and asynchronous implementations of the transformed stationarity conditions

are also provided. Both implementations used filtered delay elements with parameter ρ = 1
2

and the asynchronous implementation used a delay probability of p = 3
4 .

As a second example, consider the problem of designing a minimax optimal, Type I

impulse response [35]. As is well-known, this design problem can be written as a linear

programming problem according to either of the following equivalent formulations:

minimize
h

max
ω∈Ω
|T (ω,h)− d|

minimize
δ,h

δ

s.t. |T (ω,h)− d|,≤ δ, ω ∈ Ω

(6.9)

where the vector of impulse response values is denoted h, Ω is a discretized set of frequency

values in [0, π] that the desired frequency response amplitude d is defined over, the maximum

deviation of the designed frequency response from d on Ω is denoted δ, and the linear

operator T (ω,h) is from (4.96). The interconnective structures used to solve this problem are

depicted on the bottom of Figure 6-4. Referring to the transformed stationarity conditions,

the matrix G is generated from the coefficient matrix appearing in the stationarity conditions
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frequency 

specs

Parks-McClellan filter design

Figure 6-4: Example structures used to generate algorithms for solving two linear programs.

using (5.91) and the constitutive modules are implemented using the functions

c
(CR)
1 = d

(CR)
1 (6.10)

c
(CR)
2 = d

(CR)
2 − 2 (6.11)

c
(CR)
3 =

∣∣∣∣∣∣∣d(CR)
3 +

 −d
d


∣∣∣∣∣∣∣+

 −d
d

 . (6.12)
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Note that the expression in (6.10) is the second module in Figure 5-7 with ρ = 0, the

expression in (6.11) is the second module in Figure 5-7 with ρ = 1, and the expression in

(6.12) combines the third module in Figure 5-6 with the first module in Figure 5-7. Numerical

convergence results and the intermediary values taken by the primal objective function as

well as the final solution obtained for both synchronous and asynchronous implementations

of the transformed stationarity conditions are also provided. The implementations used

filtered delay elements with parameter ρ = 1
2 and the asynchronous implementation used

delay probability p = 3
4 . Additional scattering algorithms that are consistent with coupling

constitutive modules together to represent the transformed stationarity conditions associated

with the Chebyshev center problem and to perform error correction decoding in transform

coding applications can be found in [88] and [106], respectively.

6.1.3 | Quadratic programs

The problem of minimizing a quadratic cost function subject to linear equality and inequality

constraints is referred to as a quadratic program and appears in a variety of signal processing

applications such as sparse signal recovery [107], robust Kalman filtering [93], and variants

of least squares including non-negative and bounded value [108]. The Lagrangian primal

and dual formulations of a quadratic program are written in standard form according to

(QP)
minimize

x

1
2x

TBx + qTx

s.t. Ax ≤ r
(QD)

maximize
y

−1
2(y − q)TAB−1AT (y − q)− rTy

s.t. y ≥ 0

(6.13)

where the vectors of primal and dual decision variables are respectively denoted x and y,

the coefficient matrix used to define the quadratic cost term is denoted B, the primal cost

vector is denoted q, the primal inequality vector is denoted r, and the linear coefficient

matrix is denoted A. In writing the dual problem above, we also assume that the quadratic

cost matrix B is positive definite for simplicity, thus the problem (QP) is strictly convex and

the objective function in (QD) is well-defined. Common algorithms for solving quadratic

programs typically make use of interior point or active set techniques. When the inequality

constraints all hold with equality, a closed form solution to (6.13)(QP) is possible by directly
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Figure 6-5: The interconnective structures used to solve quadratic programs in standard form.
(a) The stationarity conditions in a canonical-form structure. (b) The transformed stationarity
conditions in a scattering-form structure.

solving the KKT conditions since they reduce to a linear system of equations. A quadratic

program where B is indefinite is an NP-hard problem, even if B only has a single negative

eigenvalue [109].

The standard form of the quadratic program (6.13)(QP) can be reformulated in accor-

dance with the notation used to describe conservative optimization problems. In particular,

the reduced-form primal (P) and corresponding dual (D) problems are written according to

(P)

minimize
a

1
2a

(CR)T
1 Ba

(CR)
1 + qTa

(CR)
1

s.t. Aa
(CR)
1 = a

(CR)
2

a
(CR)
2 ≤ r

(D)

maximize
b

−1
2(b

(CR)
1 − q)TB−1(b

(CR)
1 − q)− rTb

(CR)
2

s.t. −ATb(CR)
2 = b

(CR)
1

b
(CR)
2 ≥ 0

(6.14)

where the primal decision variables (a
(CR)
1 ,a

(CR)
2 ) correspond to (x, Ax). Observe that the

conservative dual problem can be reduced using straightforward manipulations into the form

of the Lagrangian dual problem (QD). An interconnective description of the stationarity

conditions associated with a quadratic program is provided in Figure 6-5(a). An equiva-

lent description of the transformed stationarity conditions formulated as a scattering-form

interconnective structure is illustrated in Figure 6-5(b). Referring to the transformed struc-

ture, the matrix G is generated from the coefficient matrix A according to (5.91) and the
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constitutive modules are implemented using the functions

c
(CR)
1 = (I −B)(I +B)−1(d

(CR)
1 − q)− q (6.15)

c
(CR)
2 = |d(CR)

2 − r| − r. (6.16)

Note that the expression in (6.15) combines the module established by (5.111) with the

second module in Figure 5-7, and the expression in (6.16) combines the third module in

Figure 5-6 with the first module in Figure 5-7. Synchronous and asynchronous algorithms

then correspond to implementing the interconnective structure representing the transformed

stationarity conditions after inserting a valid configuration of state and selecting a protocol

for state exchange, as was discussed in Section 3.3. The conic properties of a system operator

associated with a quadratic program will generally depend upon the spectral properties of

the quadratic cost matrix B. For example, the first constitutive module implemented using

(6.15) is α-conic with a value of α that is summarized by Proposition 5.3.1. If B is positive

semidefinite then the system operator corresponding to the overall interconnective system

is passive everywhere, thus convergence is guaranteed when the delay modules are filtered

with an appropriately chosen filtering parameter as is discussed in Theorem 4.3.6.

Quadratic programs appear in many signal processing applications, e.g., through vari-

ous forms of regularization used in solving ill-conditioned linear inverse problems including

Tikhonov regularization, Wiener filtering, total variation denoising in image processing, and

the regularization of beamforming patterns [108]. In addition, the basis pursuit problem has

been extended using straightforward regularization in the sparse signal recovery context to

handle the case where the measurement vector r is noisy and Ax is only required to be close

to r. To enforce this approximation, the basis pursuit denoising problem is formulated by

minimize
x

1
2‖Ax− r‖22 + λ‖x‖1 (6.17)

where λ is a tuning parameter that balances the absolute size of the solution with the desired

agreement of Ax and r.

The interconnective structures associated with solving the problem in (6.17) are depicted
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Figure 6-6: Example structures used to generate algorithms for solving two quadratic programs.

along the top of Figure 6-7. Referring to the transformed stationarity conditions, the matrix

G is generated from the coefficient matrix A according to (5.91) and the constitutive modules

are implemented using the functions

c
(CR)
1 =


−d(CR)

1 , |d(CR)
1 | ≤ λ

d
(CR)
1 − 2λsgn(d

(CR)
1 ), |d(CR)

1 | > λ

(6.18)

c
(CR)
2 = −r. (6.19)
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Note that the expression in (6.18) is the first module in Figure 5-8 with ρ = λ, and the

expression in (6.19) combines the second module in Figure 5-7 with the third module in

Figure 5-8. Numerical convergence results and the intermediary values taken by the primal

objective function as well as the final solution obtained for both synchronous and asyn-

chronous implementations of the transformed stationarity conditions are also provided. Both

implementations used filtered delay elements with parameter ρ = 1
2 and the asynchronous

implementation used a delay probability of p = 0.75.

As a second example of a quadratic programming problem, consider the problem of

determining an optimal linear classifier given a set of labeled training data that is known

to be linearly separable. A popular approach to solving this problem is to train a support

vector machine by solving the quadratic program

minimize
x,b

1

2
‖x‖22

s.t. yn(a(n)x + b) ≥ 1, n = 1, . . . , N

(6.20)

where the binary vector of labels is denoted y and uses values ±1 to distinguish between two

classes, the normal to the hyperplane under design is denoted x and has an offset denoted

b, and the n-th feature vector is denoted a(n) [110].

The interconnective structures illustrating the transformed and untransformed stationar-

ity conditions associated with (6.20) are depicted in Figure 6-7 where the notation Ã denotes

a matrix whose n-th row corresponds to yna(n). Referring to the transformed conditions, the

matrix G is generated from the coefficient matrix appearing in the stationarity conditions

using (5.91) and the constitutive modules are implemented using the functions

c
(CR)
1 = 0 (6.21)

c
(CR)
2 = d

(CR)
2 (6.22)

c
(CR)
3 = −|d(CR)

3 − 1| − 1. (6.23)

Note that the expression in (6.21) is the third module in Figure 5-8 with ρ+ = ρ− = 1, the

expression in (6.22) is the second module in Figure 5-7 with ρ = 0, and the expression in
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(6.23) was derived as a special case of the first module in Figure 5-6. Numerical conver-

gence results and the intermediary values taken by the primal objective function as well as

the final solution obtained for both synchronous and asynchronous implementations of the

transformed stationarity conditions are also provided. Both implementations used filtered

delay elements with parameter ρ = 1
2 and the asynchronous implementation used a delay

probability of p = 0.75. When the training data set is not linearly separable, a soft-margin

support vector machine can be formulated in solved in a straightforward way by adding one

additional constitutive relation module and augmenting the linear system to reflect the soft-

margin variables. A scattering algorithm based on a different formulation of the stationarity

conditions for solving the support vector machine problem using decentralized processing

nodes arranged into ring graphs can be found in [111].

6.1.4 | Nonconvex approximation problems

Signal approximation problems appear in many signal processing applications, including

some of the applications discussed in the previous two subsections. Generally speaking, the

problem of identifying the optimal approximation of a signal r as a linear combination of

other signals arranged into the columns of a matrix A can be determined by solving an

optimization problem of the form

minimize
x

∑
i

p(ei)

s.t. Ax− r = e

(6.24)

where the function p : R → R determines the sense in which the approximation is optimal.

More concretely, selecting a meaningful approximation penalty function p to assign a cost

to the disagreement between the approximation of r by Ax is especially important when r

is not in the range of A, meaning an inverse or pseudoinverse cannot be used to recover x?

and the formulation (6.24) is warranted. In the context of regression problems, the columns

of A are the regressors and the vector Ax? is the optimal regression of r. The basis pursuit

denoising problem (6.17) with λ = 0 is a standard least squares regression problem where

the penalty function p is convex quadratic. In statistical estimation contexts, the problem
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Non-convex robust regression

(a) Stationarity conditions (b) Transformed stationarity conditions

Figure 6-7: Example interconnective structures used to solve nonconvex regression problems.

(6.24) is interpreted as estimating a vector x where the vector r was generated as a noisy

version of Ax and p penalizes the size of the noise.

Selecting a convex penalty function p corresponds to penalizing large noise or error values

greater than smaller ones, and the discussion in Section 5.2.3 ensures that the functional

realization of the transformed constitutive module for convex penalty functions will exist.

When the noise or errors in r consist of a few outliers, it may be desirable to discard them

in the approximation so as not to overfit to a particular vector r. However, penalizing large

errors with no cost would result in solutions that form poor approximations, so a balance

must be reached. To do this, a non-convex penalty function can be designed that increasingly

penalizes small errors and assigns a constant penalty to any error above a certain threshold.

In line with this, the constitutive modules defined in Figure 5-9 have this behavior where

the small errors are penalized quadratically, and the transformed stationarity conditions

associated with the problem (6.24) are illustrated in Figure 5-9 using the module in the top

row.

Referring to the transformed stationarity conditions, the matrix G is generated from the

coefficient matrix A according to (5.91) and the constitutive modules are implemented using
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the functions

c
(CR)
1 = d

(CR)
1 (6.25)

c
(CR)
2 = m(d

(CR)
2 − r)− r (6.26)

where m is given by the fourth column in Figure 5-9. Numerical convergence results and

the intermediary values taken by the primal objective function as well as the final residual

or approximation error obtained for both synchronous and asynchronous implementations

of the transformed stationarity conditions are also provided. Observe that the residual is

essentially uniformly distributed with a few outliers. Both implementations used filtered

delay elements with parameter ρ = 1
2 and the asynchronous implementation used a delay

probability of p = 3
4 . Note that by changing the function in (6.25) to correspond to a regu-

larization penalty on x we can obtain a broad range of non-convex regularization problems

from the signal approximation problem formulated in (6.24).

6.2 | Scattering algorithms implemented as web services

The assignment of processing instructions and distribution of state are perhaps two of the

most important tasks in effectively distributing an algorithm, especially onto heterogeneous

networks of processors. In response to this observation, the authors in [51] advocate for

design patterns in which an algorithm is first specified using a declarative language and

second, after selecting a protocol for distributing and exchanging state, implemented on

processors using imperative languages. Consistent with this approach, the interconnective

framework, in particular the state-free design of signal processing structures by connecting

constitutive modules and interconnecting networks together, can be interpreted as one such

declarative language for which the issues related to distributing state have already been

addressed. When paired with asynchronous communication protocols for state or memory

exchange between processors, such as the communication protocol in Definition 3.3.1, the

resulting algorithms can be viewed as ensembles of distributable, asynchronous programs

realized as signal processing systems.
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In this section, we discuss the implementation of scattering algorithms as web services

by organizing scattering-form interconnective structures into processing tasks that can be

stored and served using databases. In what follows, we use the term node to refer to any

processing resource that is able to access the database and execute the received instructions,

e.g. nodes may correspond to virtual or physical processors. A key benefit to designing signal

processing systems as web services is that properties of the database can be used to generate

scalable implementations in the sense that the processing tasks can be dynamically assigned

to processing nodes where the availability, synchronization, and guaranteed response time

of any particular node is unnecessary. For the purpose of illustration, the focus in this

section is to describe the web-service implementation that appears in [106]. This service,

which suggests opportunity in designing future signal processing systems in a similar way,

is publicly available at http://optimization.spconservation.org and will be referred

to herein as “O-SPC” [112]. As opposed to requiring specialized servers, the philosophy

behind O-SPC is to make use of a commodity database back-end as a central resource

for exchanging state, as might be used to serve data for websites with large numbers of

concurrent users. Subsequently, the implementations in this section inherit the scalability,

resilience, and security of these database systems.

By focusing on the connection between databases as storage systems and asynchronous

delay modules in interconnective structures, the implementations described in this section

can effectively make use of a variety of available computing resources while being able to

adapt to a variety of distributed computing issues. For example, the implementations are

able to adapt in real-time to changing processing demands, time-varying network congestion,

resource outages, and similar disturbances that occur in heterogeneous networks that lack

continuous connectivity. Also, the algorithms that fit into this framework do not require the

network to have failure recovery mechanisms or only fully functional processing nodes, as is

common in realistic models of the Internet.

6.2.1 | Database organizations of interconnective structures

As was discussed previously, solving a large class of convex and nonconvex optimization

problems can be recast as solving a fixed-point problem described as a CCSP where the
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Figure 6-8: Left: the distributed signal processing system utilized by O-SPC to solve optimiza-
tion problems whose transformed stationarity conditions are organized into the depicted source-free
structure using the modular framework. Right: a qualitative description of the organization scheme
of the processing instructions and the signals to be processed into a generic database.

overall goal is specifically to identify a solution (c?,d?) to a nonlinear system of equations

taking the form

c? = m(d?) and d? = Hc? + f . (6.27)

Figure 6-8 illustrates the interconnective description of (6.27) into a generic key-value store,

i.e. a non-relational database, for implementation on a distributed system similar to the

one depicted on the top of the left pane. Implementations of this distributed system are

paired with a communication or state exchange protocol consisting of the processing nodes

asynchronously accessing the database to retrieve a subset of the processing instructions and

the associated signals to be processed, processing these signals, and asynchronously writing

the results back into the database. This operating principle can be viewed as a form of

object-oriented signal processing where the objects contain data in the form of the signals

to be processed and methods in the form of the processing instructions.

The O-SPC service provides an interactive dashboard interface through which problem

descriptions can be provided and metaparameters for the problem can be set. This input

is then used to generate a corresponding uniform resource locator (URL) through which

processing nodes can attach to the problem instance to perform computation. For devices

with integrated cameras, a quick response (QR) code is also dynamically generated. In terms
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Screen Captures from O-SPC

Distributed Solver Command Center

Worker Info

Problem Type: NNLS

ID: -JvKH2Qa1o2GH8h_x2tK

Workers Connected: 24

Worker Status: ComputingWorker QR

Worker URL: http://optimization.SPConservation.org/#/dist/distWork.html?NNLS?-JvKH2Qa1o2GH8h_x2tK

Worker Controls

Figure 6-9: Screen captures from O-SPC illustrate the global controller and computed solution
of a non-negative least squares problem obtained using 24 distributed processing nodes (referred to
as workers) implementing an iterative filtered solver with parameter ρ = 0.5. A breakdown of the
workers computational platform allocation and individual contributions to the overall solution is
also depicted.

of using a variety of available computing resources, any computational resource equipped

with network access and a basic JavaScript engine can be utilized as a processing node by

O-SPC. For example, a heterogeneous set of processing nodes might include modern web

browsers on mobile, tablet and desktop machines as well as special-purpose JavaScript-

enabled embedded systems [113,114].

Screen captures from the O-SPC application interface are provided in Figure 6-9 for

the non-negative least squares problem (5.99) and depict the dashboard through which the

distributed processing nodes can be controlled. The particular solution depicted in Figure 6-9

was obtained using 24 processing nodes and analytics regarding the computational platforms

of the nodes as well as their individual contributions to the overall optimization progress

are provided via dynamically-generated graphs.

The centralized data store that O-SPC in particular is built upon is Firebase [115]. O-

SPC utilizes this service primarily as a high-performance back-end for asynchronous state

transfer between browser-based clients, e.g. as opposed to as a centralized resource for coor-

dinating data processing as with [116]. In this sense, O-SPC represents an example of how

the interconnective framework can be used to create a performant system operating in the

somewhat extreme case where all numerical computation is executed by the extremities of

the computing graph. The considerations about O-SPC described in this section would sim-
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ilarly apply to developing web-based optimization services using alternative key-value store

systems, e.g. MongoDB [117] or Redis [118], or any number of relational database systems.

In each of these cases, the processing instructions would be able to draw upon the particular

strengths of the data store being utilized.

6.2.2 | Processing instructions for distributed implementations

In this subsection, the processing instructions used to execute the distributed system dis-

cussed in the previous subsection are developed to obtain a solution (c?,d?) to (6.27) once

a problem instance has been organized into a database as demonstrated by Figure 6-8. In

discussing these processing instructions, we shall refer to an iterative implementation as a

list of processing instructions that directly produce new state values to be asynchronously

written into the database and overwrite the values currently stored there. This is in contrast

to an incremental implementation, which is discussed in the following subsection, where the

processing instructions produce an increment to be added to the state values currently in

the data store. We comment upfront that the specific form of the implementations, both it-

erative and incremental, presented in this section differ from their actual implementation on

O-SPC in that they have been adapted here for the purpose of clarity rather than computa-

tional efficiency. For the purpose of illustration, we additionally assume that the memoryless

nonlinearity m(·) in (6.27) operates coordinatewise on its argument; this assumption holds

for most of the modules derived in Chapter 5. The modifications needed to handle general

nonlinearities follow in a straightforward way where the separability of m(·) is a consequence

of the separability implied by an associated partition decomposition.

The processing instructions and corresponding initialization procedures associated with

filtered and unfiltered versions of a distributed, iterative implementation are summarized

in Algorithm 6.1. Specifically, each processing node, independent of any and all other

processing nodes, performs the following steps until a suitable stopping criterion is met in

order to implement the filtered version of the iterative implementation:

(1) generate a random integer j ∈ {1, . . . ,K} corresponding to the state variables cj and

dj to be processed;
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Algorithm 6.1 The initialization procedure for individual processing nodes and the cor-
responding processing instructions associated with filtered and unfiltered versions of an
iterative implementation.

Processing node initialization procedure:
(1) Read metadata from the database
(2) Set flags for asynchronous database access
(3) Listen for the start processing signal

Processing instructions for Filtered and Unfiltered versions of an Iterative
implementation:

(1) Select a random integer j ∈ {1, . . . ,K}
(2) Request "c" and "varj" from the database and remain idle until they are received
(3) Compute dj ← fj + 〈h(r)

j , c〉
(4) Compute cj ← ρmj(dj) + (1− ρ)cj
(5) Send the update cj to "c" in the database
(6) Go to (1)

(2) read from the database the current state of the vector c as well as the object varj

consisting of a characterization of the nonlinearity mj labeled m, the value of fj labeled

f, and the row vector h(r)
j corresponding to the j-th row of H labeled Hrow;

(3) generate the intermediary state value dj according to

dj ← h
(j)
1 c1 + · · ·+ h

(j)
K cK + fj ; (6.28)

(4) generate the new state value cj according to

cj ← ρmj (dj) + (1− ρ)cj (6.29)

where the filter parameter ρ is a metaparameter obtained during the initialization

phase;

(5) asynchronously write the new state value cj into the j-th position of c in the database.

Note that the state vector d is not required to be explicitly stored by the database to

execute either version of the iterative implementation. Once the partial solution c? has

been identified, the remainder of the full solution can be generated using (6.27) thereby

effectively solving the optimization or constraint satisfaction problem. Referring again to

Algorithm 6.1, the processing instructions for an unfiltered realization of the iterative im-
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plementation correspond to modifying the instructions above by setting ρ = 1 in (6.29).

We call special attention to the fact that the processing instructions above and the

uncoordinated communication protocol used by processing nodes to access the database

system make no attempt to regulate global task allocation nor to enforce concurrency rules

of any form. Specifically, the data requests and updates are respectively executed using

asynchronous read and write operations with no explicitly specified concept of precedent

or preference between the various processing nodes. Specifically, the data requests and

updates are respectively executed using asynchronous read and write operations with no

concept of precedent or preference between the various processing nodes. For example, if

multiple nodes request data associated with the same state variable cj and each experience

a different latency (and thus each possibly retrieves different state vectors c), then the

database records the updates in the order they are received independent of the order of

the read operations. The stability and robustness analysis performed in Chapter 4 is in

agreement with this protocol by augmenting the system operator to include a noise source

introduced at the input to the state elements.

Referring to Figure 6-8, the database where state is transferred and interconnective

structures are stored might simultaneously contain numerous active problem instances. This

includes the possibility of many unrelated problems or several related problems where, for

example, the interconnecting network is the same but the constitutive relation modules are

different. The latter might be warranted in settings where the solution to numerous instances

of the same problem with different tuning parameters or regularization terms is desired.

Processing nodes can be added or removed from any problem instance at any time, including

changing between problems, without causing any failures or necessitating coordination since

nodes are never assigned responsibility for any particular share of the workload. In this sense,

O-SPC is well-suited for computing environments where processing nodes have other primary

tasks or are frequently interrupted or reboot. Another advantage to using the presented

approach to implement large-scale optimization algorithms in practice is the ability to update

the portion of the database, and by extension the interconnective structure as well, associated

with measurements and observations as new data becomes available. The response of the

distributed system is to naturally transform the state of the database associated with the
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current solution toward the new fixed-point or invariant state corresponding to the new

solution. Consequently, the distributed processing instructions summarized by Algorithm 6.1

are sufficient to solve a broad class of optimization problems over delay or disruption tolerant

networks and do not rely on the availability or synchronization of any particular processing

nodes.

6.2.3 | Processing instructions for non-distributed implementations

The toolset in O-SPC also provides support for iterative and incremental implementations

of the scattering algorithms associated with (6.27) as non-distributed systems. These non-

distributed implementations are formed by organizing and implementing the interconnective

description of the problem using a single-threaded JavaScript engine as the sole processing

node. This computing environment is essentially mathematically equivalent to parallel and

distributed computing environments with dedicated and synchronized processing resources.

For example, if the processing nodes in a distributed system all communicate with each other

and coordinate their computations at every time instance, the processing system progresses

at the rate of the slowest processor and communication link in the same fashion a non-

distributed system would by progressing after an entire iteration has completed. Compared

to the distributed implementations discussed in the previous subsection, highly synchronized

distributed systems can be carefully tuned to produce a significant acceleration in absolute

convergence time and decrease in overall communication bandwidth as compared to the

setting discussed previously. This is possible in part by the ability of the highly synchro-

nized system to assigning collectively-exhaustive subsets of the objects stored in compute

in Figure 6-8 to the available processing nodes during the initialization phase. Then, the

only communication required for implementing the algorithm involves the state vector c and

possibly the state vector d. In the remainder of this subsection, we define the processing

instructions for use in non-distributed settings which include by proxy highly-synchronized

and distributed systems as well.

The interconnective structures describing the iterative and incremental implementations

of an asynchronous scattering algorithm are depicted in Figure 6-10. More formally, the
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state

(a) Non-distributed Iterative (b) Non-distributed Incremental

state

state

Figure 6-10: The interconnective structures associated with the (a) iterative and (b) incremental
non-distributed implementations. Filtered realizations correspond to simply replacing the depicted
state elements with filtered state elements.

processing used to directly produce the state sequence {dn ∈ RK : n ∈ N0} given by

dn = D(p)
(
Hm

(
dn−1

)
+ f
)

+ (IK −D(p))dn−1, n ∈ N, (6.30)

corresponds to an iterative implementation and instructions are provided as an interconnec-

tive structure in Figure 6-10(a) where D(p) is the stochastic matrix from Definition 3.3.1

that models the coordinate-wise discrete-time sample-and-hold state elements triggered by

discrete-time Bernoulli processes. Reorganizing this iteration and modifying the initial con-

ditions such that the first difference of the signals rather than the signals themselves are

being processed as mentioned earlier in the chapter on CCSPs results in an incremental

implementation where the state sequence cn is generated according to cn = m(dn−1) and

the state sequence dn is generated according to

dn = dn−1 +HD(p)
(
m
(
dn−1

)
− cn−1

)
, n ∈ N. (6.31)

The system initialization procedure and corresponding processing instructions for these

non-distributed implementations and their filtered counterparts are summarized in Algo-

rithm 6.2. These processing instructions in particular form the basis for the embedded

implementations discussed in the next section.

Screen captures from the non-distributed O-SPC application interface are provided in

Figure 6-11 for a LASSO or basis pursuit denoising problem, which differs from the non-

negative least squares problem discussed in Section 5.2 by changing a single constitutive
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Algorithm 6.2 The procedures for system initialization and processing associated with
four non-distributed implementations.
Implementation type: Iterative and Iterative Filtered
Processing node initialization:

(1) d0 ← 0

Processing instructions:
(1) Compute cn ← m(dn−1)

(2) Compute dn ← D(p)(ρ(Hcn + f) + (1− ρ)dn−1) + (IK −D(p))dn−1

Implementation type: Incremental and Incremental Filtered
Processing node initialization:

(1) d−1 = d0 ← f

Processing instructions:
(1) Compute cn ← m(dn−1)

(2) Compute dn ← dn−1 + ρH(cn − cn−1) + (1− ρ)(dn−1 − dn−2)

Local Solver Settings
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Figure 6-11: Screen captures from the O-SPC application interface illustrate the solution to a
LASSO or basis pursuit denoising problem [3] obtained by running an incremental filtered solver
with filter parameter ρ = 0.5 and asynchronous delay probability p = 0.25.

module. Through this interface, the type of implementation, value of the filtering param-

eter, and value of the asynchronous delay probability p may be dynamically selected. The

particular solution depicted corresponds to an incremental filtered implementation with fil-

tering parameter ρ = 0.5 and delay probability p = 0.25. Extensions of the incremental im-

plementations to the distributed setting follow in a straightforward way when the database

storing the signals to be processed possesses increment operations in addition to the write

operations available in [115].
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6.3 | Scattering algorithms implemented as embedded systems

Asynchronous designs in the context of embedded and hardware systems have experienced

continuously growing interest throughout the last two decades, especially as engineers tackle

the broad range of challenging trends that have arisen during the current “late-Moore”

era [119]. In the field of semiconductor design, the asynchronous design paradigm specifi-

cally refers to the blending of synchronous and asynchronous modules through handshaking

networks in order to communicate and synchronize data exchanges between the modules.

Asynchronous designs are typically modular and extensible with on-demand operation and

straightforward power management control [120]. These advantages help designers to ad-

dress increasing process variability, power and thermal bottlenecks, high fault rates, de-

teriorated performance due to aging, and scalability in densely packed integrated circuits

as processes technologies continue to shrink. Cryptographic applications such as the abil-

ity to uniquely identify individual devices are enabled by the lack of a coherent power or

electromagnetic emission signature due to the asynchronous nature of these systems.

In this section, we discuss some of the key concerns related to the design of hardware

architectures as they pertain to the design and implementation of scattering algorithms real-

ized as embedded signal processing systems. In particular, we first review the foundations of

communication protocols and handshaking networks that are important to the performance

of two types of embedded systems: multi-synchronous and Globally-Asynchronous Locally-

Synchronous (GALS) systems. Multi-synchronous systems distribute a globally shared clock

to each module so that the individual modules can subsample the clock to optimize for power

and performance [121] while GALS like systems allow each module to possess their own clock,

thereby allowing each module to independently optimize for power and performance [122].

After discussing the relevant background, the focus turns to how the stability and robust-

ness properties of interconnective structures and scattering algorithms can be used to inform

design choices in the hardware design process. To discuss this, we illustrate the key points

using two hardware architectures that take advantage of these properties to reduce their

overall communication overheard in terms of performance and hardware complexity.
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6.3.1 | Foundations of handshaking networks and communication protocols

Asynchronous hardware systems are typically assembled by connecting a basic set of com-

ponents or modules together where the modules exchange data with one another through

a handshaking network. Handshaking networks consist of a collection of communication

channels going between the modules that need to exchange data, and, generally speaking,

there are two key parameters to consider in the design of each channel: (i) a communication

protocol, and (ii) a data encoding scheme. The communication protocol is used to commu-

nicate request and acknowledgment messages between the sending and receiving modules,

and typically consist of two- or four-phase message exchanges. Two modules connected by

an asynchronous channel must also agree upon an encoding scheme so that their exchanged

signal waveforms can be correctly interpreted. For the purpose of discussing embedded

computing systems in this thesis, we focus only on the communication protocol and assume

standard data encoding schemes can be used. Once these parameters have been selected, an

asynchronous channel between two modules can be pipelined to increase the communication

efficiency between the modules.

To implement a large and asynchronous embedded system, there are two additional

issues to consider and are commonly referred to as synchronization and arbitration. The

issue of synchronization deals with how two modules running at different clock rates choose

to transfer data to one another and can be dealt with, for example, by using standard rate

conversion systems to align the two clock domains, thereby avoiding setup time violations

that may result in metastable operations or outright communication failure. The issue of

arbitration deals with how multiple modules compete with one another for shared resources

like access to centralized memory. This particular issue is generally solved by using some

form of locking or mutex control where the processors who are not granted access remain

idle until the shared resource becomes available again. For many types of processing tasks,

inefficiencies attributed to arbitration form a major component of the total inefficiency

of an implementation. Common solutions to reducing the penalties associated with power

consumption on battery-operated devices is to power down idle modules during these periods.

For the purpose of embedded signal processing systems in this thesis, we focus only on rules
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for arbitration and assume a variety of standard data synchronization schemes can readily

be used between modules.

6.3.2 | Hardware architectures for embedded scattering algorithms

In this subsection, we discuss the two hardware architectures depicted in Figure 6-12 for

asynchronously implementing the scattering algorithms used to solve (6.27). The key fea-

tures underlying the architectures permit multiple processors to efficiently contribute to the

overall task without excessively coordinating the shared memory resources. This is possible

since each processor in the architectures is not required to exchange data with the other

processors by certain times. Also, processors are able to continuously perform computation

without waiting for send, receive, or acknowledge signals, thus the processors do not need

to remain idle at any time. This also eliminates inefficiencies when some of the processors

can perform computation faster than others, e.g. when some processors have other primary

tasks. In this sense, the implementation benefits of GALS-like systems can be achieved

by multi-synchronous systems by relying on the simple communication protocols allowed

between modules that result from the use of a global clock.

The approach to achieving the computational efficiencies discussed above is to partition

the matrix H in (6.27) onto various processors since multiplying by the full matrix H might

otherwise be a computationally and memory intensive part of an iteration, especially if H

is too large to fit into the available low-latency memory. The algorithmic mapping of the

problem in (6.27) onto the two presented architectures is schematically illustrated in the

top row of Figure 6-12. Selecting between the two hardware architectures then boils down

to issues related to problem size and whether an iterative or incremental implementation

of the scattering algorithm is desired. Referring to the two partitioning schemes in the top

row of the figure, the schemes labeled (a) and (b) highlight the assignment of matrix-vector

product computations for row and column partitioning of the matrix H onto a total of K

processors. Specifically, each processor in scheme (a) requires much more hardware than

in scheme (b) due to the need to access and compute with the full vector c. To facilitate

solving optimization problems with large numbers of decision variables, we proceed focused

on scheme (b).
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The matrix partitioning formulation described by scheme (b) is well-suited to imple-

menting an incremental implementation as indicated previously in Figure 6.2(b). From the

perspective of hardware design, incremental subcomputations in the asynchronous paradigm

can be implicitly handled by the coordination logic between the memory module and the

individual processors thus simplifying the control logic needed in their interface. Taking

advantage of this, the hardware architectures in Figure 6-12 do not require a complex com-

munication protocol or sophisticated arbitration rules. Referring again to Figure 6-12, each

processor implements the processing instructions provided for each of the architectures. The

state vector c is stored in globally accessible system memory implemented using, for example,

registers for Architecture 1 and Static Random Access Memory (SRAM) for Architecture 2

depending on the size of the problem. The control logic for both architectures is to use the

depicted multiplexers to implement the mapping implied by scheme (b) by cycling through

to produce the K increments whose summation forms z
(CR)
k , for k = 1, . . . ,K, in any way

that is collectively exhaustive, i.e. produces each increment of each subvector of z after a

reasonable number of iterations.

6.4 | Summary, conclusions, and future directions

In this thesis, an interconnective framework for describing and manipulating behavioral

models of large-scale, decentralized signal processing systems was developed, with emphasis

on the stability, robustness, and variational properties of these systems. The framework was

also used to establish a class of distributed, asynchronous algorithms, referred to as scat-

tering algorithms, for solving fixed-point and optimization problems. These algorithms are

realizable as signal processing systems by connecting basic modules together in a plug-and-

play fashion, where mean-square convergence for convex optimization problems is guaranteed

without requiring problem-specific tuning or step-size parameters. In this section, we sum-

marize the main contributions of this thesis and review some of the directions for future

research that naturally arose during their development.

The interconnective description of a signal processing system was defined in Chapter 3

with a focus on aspects of connectivity and separability that are pertinent to assembling
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and implementing large-scale systems. In particular, interconnective systems are formed

by attaching constitutive modules and interconnecting networks together, and canonical

and scattering classes of systems were defined by using interconnecting networks that obey

certain conservation principles. Correspondences between the organizations of intercon-

nective systems with fundamentally related behaviors led to the establishment of inter-

connective equivalence classes, and these correspondences were used to define coordinate

transforms between canonical-form and scattering-form systems. Procedures for generat-

ing synchronous and asynchronous algorithms from these equivalence classes were provided

where these procedures specifically had to deal with issues of computability, delay-free loop

reduction, precedence, and scheduling.

The primary goal of Chapter 4 was to explore the stability and robustness of synchronous

and asynchronous implementations of interconnective systems, and of scattering algorithms

in particular. Equilibrium states of scattering-form systems were connected with solutions

to a broad class of fixed-point and constraint satisfaction problems, and local conditions on

the individual modules that are easy to certify in practice were derived so that synchronously

or asynchronously implementing the system produces a sequence of system states that tends

toward solutions to these problems. By allowing for first-order filtering of the delay modules

in scattering systems, the stability and robustness properties were shown to strengthen and

the class of problems that can be solved by implementing these systems was expanded. In

the context of solving convex optimization problems, these conditions ensure mean-square

convergence of scattering algorithms without the use of problem-specific parameters.

Variational properties of conservative vector spaces were used in Chapter 5 to link

canonical-form signal processing systems with stationarity conditions underlying a broad

class of convex and non-convex optimization problems. Drawing upon the correspondences

established in Chapter 3, variational interpretations of canonical-form systems were used

to derive constitutive modules pertaining to cost functions and constraints appearing in

common optimization problems, and the modules were then modified so that they could be

implemented in equivalent scattering-form systems to solve the associated problems. These

modules were then used to realize asynchronous, distributed optimization algorithms as ro-

bust large-scale signal processing systems, and connections between these algorithms and
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their existing gradient-based and proximal counterparts were made. Examples of the mod-

ular approach to designing these systems were presented in Chapter 6 in the context of

solving optimization problems by implementing signal processing systems as real-time web

services and decentralized processor networks.

Several directions for future research naturally arose during the development of the con-

tributions outlined above. A recurring and important theme that was emphasized through-

out the thesis was that the organization of a system for which a useful property manifests

itself is not necessarily the only organization that can take advantage of that property in

practice. More broadly, the interconnective description of a signal processing system allows

a straightforward way to identify connections between systems with closely related behaviors

as well as design implementations in different coordinate systems where certain properties

are more advantageous. This idea is exemplified by both the proximal and scattering opti-

mization algorithms discussed in this thesis. In light of this, the interconnective model of a

system was informally extended in Chapter 3 to handle signal models and their acquisition

systems too. This extension suggests opportunity in understanding various properties of sig-

nal acquisition systems or in designing acquisition systems in different coordinate systems

that are useful in some context.

The discussion of stability and robustness in Chapter 4 for expansive everywhere sys-

tem operators relied on the system operator exhibiting some amount of natural rotation

and an appropriate amount of filtering. Scattering-form structures produced by perform-

ing scattering coordinate transforms to canonical-form structures possess interconnecting

networks realized by orthogonal matrices that are actually special orthogonal, thus they

always exhibit some rotation in the sense that the matrices cannot have eigenvalues of −1.

In addition, expansive everywhere system operators typically correspond to optimization

problems which have non-convex cost functions, such as with the example in Section 6.1.4.

These observations together suggest two important directions for future research. First,

there may be a class of expansive operators that preserve this rotation so that convergence

can be guaranteed using theorems like Theorem 4.3.7. Second, understanding what non-

convex cost functions these expansive operators correspond to could lead to a useful class

of non-convex cost functions that can be used as surrogates for non-convex relaxations of

261 / 282



6.4. Summary, conclusions, and future directions

non-convex problems, rather than relying on convex functions to produce convex relaxations

of non-convex problems.

In Chapter 5, the parametric representation of the stationarity conditions allows for a

strong duality principle to hold without the direct assumption of convexity. This suggests

investigating the limits to which the non-parametric interpretation of these conditions can

be used to design the functions used in (5.25) through (5.27). In particular, the parametric

representation provides a fairy straightforward method to tackle writing the stationarity

conditions for non-convex optimization problems to which coordinate transforms beyond the

scattering ones may be useful in producing iterative algorithms. Finally, the constitutive

modules derived in this thesis form only a small subset of those needed to tackle important

and interesting large-scale optimization problems in practice, and, of course, this suggests

deriving them for these problems using the strategies discussed in Section 5.3.
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Appendix A

Stability and robustness of passive

everywhere system operators

In this appendix, we provide a proof of Theorem 4.3.6 which summarizes the stability and

robustness properties of synchronous and asynchronous implementations of interconnective

systems with associated passive everywhere system operators. The theorem, stated in terms

of the filtered system operator Tf , is restated below for convenience.

Theorem A.0.1 (Stability in RK ; α = 1). Let T : RK → RK denote a system operator that

is passive everywhere with non-empty fixed-point set FT . Then the filtered system operator

Tf associated with T is stable in mean square, i.e. vn 2−→ v? for some v? ∈ FT , provided

ρ ∈ (0, 1).

Before proving the theorem we collect together two anticipatory lemmata.

Lemma A.0.1. Let {ak : k ∈ N} denote a bounded, non-negative sequence of real-valued

scalars which additionally satisfy limk→∞ kak > 0, then
∑

k∈N ak =∞.

Proof: Let a = lim supk→∞ kak > 0 and define {bl : l ∈ I}, with I ⊆ N, as a subse-

quence of {kak : k ∈ N} such that bl → a. The existence of such a convergent subsequence

is guaranteed, for example, by Theorem 3.17 in [33]. The claim then follows directly from
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the inequality

∑
k∈N

ak ≥
∑
l∈I

lal
l

=
∑
l∈I

bl
l

=∞ (A.1)

which is due to the subsequence definition and is tight (for partial sums) when I = N.

Lemma A.0.2. Let T : RK → RK denote a passive everywhere system operator with a

non-empty fixed-point set FT and define f : R× R→ R as the scalar valued function

f(l,u) , inf
l≤‖v−v?‖2≤u

v?∈FT

‖v − T (v)‖2 . (A.2)

Then, f(l,u) > 0 for every pair of scalars (l,u) satisfying u > l > 0.

Proof: This result is a direct consequence of the fact that T is continuous system

operator and the objective function in (A.2) is defined over a non-empty compact set which

does not contain any fixed-points of T .

We now prove the main result in Theorem 4.3.6.

Proof: Observe that the sequence of scalars E[‖vn− v?‖2] for n ≥ 0 is non-increasing:

E
[
‖vn − v?‖2

]
= pE

[∥∥Tf (ρ,vn−1)− v?
∥∥2
]

+ (1− p)E
[∥∥vn−1 − v?

∥∥2
]

(A.3)

= pρE
[∥∥T (vn−1)− v?

∥∥2
]

+ p(1− ρ)E
[∥∥vn−1 − v?

∥∥2
]

(A.4)

−pρ(1− ρ)E
[∥∥T (vn−1)− vn−1

∥∥2
]

+ pE
[∥∥vn−1 − v?

∥∥2
]

≤ E
[∥∥vn−1 − v?

∥∥2
]
− pρ(1− ρ)E

[∥∥T (vn−1
)
− vn−1

∥∥2
]

(A.5)

where the second equality is due to (4.26) and the linearity of the expectation operator.

Iterating this inequality n times results in the inequality

E
[
‖vn − v?‖2

]
≤

∥∥v0 − v?
∥∥2 − pρ(1− ρ)

n−1∑
m=0

E
[
‖T (vm)− vm‖2

]
(A.6)

and so we conclude that the sequence E[‖vn−v?‖2] for n ≥ 0 is bounded above by ‖v0−v?‖2.
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Rearranging terms, utilizing the assumption that ρ is restricted to the open unit interval,

and loosening the inequality results in

n−1∑
m=0

E
[
‖T (vm)− vm‖2

]
≤ 1

pρ(1− ρ)

∥∥v0 − v?
∥∥2
. (A.7)

We conclude that the sequence vn − T (vn) → 0 in mean square, which further implies

that vn → T (vn) in probability, by taking a limit (note the upper bound is independent

of n) and applying the contrapositive to Lemma A.0.1. The rate of this convergence also

follows from Lemma A.0.1 and is o
(

1
n

)
, i.e. strictly faster than a 1

n sequence. We now

show by contradiction that vn → v? for some v? ∈ FT in mean square. Suppose that

c = limn→∞ E[‖vn − v?‖2] for some scalar c > 0. Note that the limit does indeed exist

in part due to the monotone and bounded properties of the sequence E[‖vn − v?‖2]. By

application of the law of iterated expectation, we obtain the following inequality:

E
[
‖vn − v?‖2

]
= E

[
‖vn − v?‖2 | ‖vn − v?‖2 ≥ c

2

]
P
(
‖vn − v?‖2 ≥ c

2

)
(A.8)

+E
[
‖vn − v?‖2 | ‖vn − v?‖2 < c

2

]
P
(
‖vn − v?‖2 < c

2

)
≤

∥∥v0 − v?
∥∥2 P

(
‖vn − v?‖2 ≥ c

2

)
+
c

2

(
1− P

(
‖vn − v?‖2 ≥ c

2

))
(A.9)

where the upper bound for the term E[‖vn − v?‖2 | ‖vn − v?‖2 ≥ c
2 ] is from (A.6). Taking

n large enough and rearranging terms yields

0 <
c
2

‖v0 − v?‖2 − c
2

≤ P
(
‖vn − v?‖2 ≥ c

2

)
. (A.10)

By application of Lemma A.0.2 we are able to immediately conclude that

P
(
‖vn − v?‖2 ≥ c

2

)
≤ P

(
‖vn − T (vn)‖2 ≥ f

( c
2
, ‖v0 − v?‖2

))
(A.11)

since by the definition of the function f in (A.2) the event ‖vn − v?‖2 ≥ c
2 implies ‖vn −

T (vn)‖2 ≥ f( c2 , ‖v
0 − v?‖2). We then extend the chain of inequalities (A.10)-(A.11) by
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applying Markov’s inequality [83] to (A.11) and obtain

0 <
c
2

‖v0 − v?‖2 − c
2

≤ P
(
‖vn − v?‖2 ≥ c

2

)
≤

E
[
‖vn − T (vn)‖2

]
f
(
c
2 , ‖v0 − v?‖2

) . (A.12)

Taking a limit produces a contradiction since we have already proven that the term E[‖vn−

T (vn)‖2] goes to zero, therefore the scalar c must be zero, i.e.

lim
n→∞

E
[
‖vn − v?‖2

]
= c (A.13)

= 0. (A.14)

This concludes the proof that the sequence of states produced using the passive-everywhere

filtered system operator Tf converges to an element of FT in the mean square sense.
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Appendix B

List of example constitutive relation

modules

In this appendix, we provide a concise list of the modules derived in Chapter 5 for use in

directly assembling asynchronous processing systems to solve the transformed stationarity

conditions (5.89)-(5.90). The general form used to define an interconnect and constitutive

relation module is depicted in Figure B-1. Specific instances of the constitutive relation

modules are then depicted in Figures B-2-B-4. Consistent with the general form of a consti-

tutive module, we state the following for each when they exist: the behavior in the canonical

coordinate system, the reduced-form primal and dual optimization components, the realiza-

tion as a map for the coordinate transformations M (i) in (3.90) and M (o) in (3.91), and the

α-conicity properties of the realizations.

Graph symbol Canonical behavior
Reduced-form

primal components

Reduced-form

dual components
Realization connicity

passive 

everywhere

case by case

Figure B-1: The general form of the interconnect and constitutive relation modules.
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Epilogue

One of the extraordinary things about Al Oppenheim is his ability to mentor students by
starting with a simple research question aimed at pushing the boundaries of signal processing
and ending with fundamental insights in relatively well-developed and mature areas of the
field. For example, the story of my master’s thesis began with Al posing the question “What
can quantum tunneling inspire about signal processing?” and ended with transforms and
spectral techniques tailored to handling exponential signals. Examples similar to this are
quite common in DSPG, and are in-line with the group’s research mantra of “solutions in
search of problems.” The story of this thesis also continues along the same thread.

In the fall of 2013, upon returning from a summer internship at Texas Instruments where
I was working under the guidance of Arthur Redfern to develop automated methods for
device sizing, Al made a suggestion during a conversation about identifying interesting thesis
directions that would end up drastically shaping the remainder of my graduate experience at
MIT. The suggestion was simple: to consider taking Prof. Luca Daniel’s course on numerical
methods. Two notable things happened as a result of taking Al’s advice. First, I began a
deep dive into the world of large-scale iterative methods for solving linear and non-linear
problems, and this particular area and its unique set of challenges would end up providing
the motivating context for the thesis. Second, and most important, I met my future wife.

My time that semester was (disproportionately) split between primarily three things:
playing in the research sandbox, taking two numerical methods courses, and being a teaching
assistant for the graduate level signal processing course 6.341. The research questions that
were on my mind first thing in the morning most days that semester dealt with approximate
signal processing concepts and how a framework would look to develop algorithms in the
spirit of “good enough is good enough.” The teaching assistantship involved a mixture of
traditional tasks like leading recitation sections, making problem set and exam questions,
holding office hours, etc., as well as less well-defined tasks such as pushing the capabilities
of the edX platform in developing online course content and brainstorming ways to leverage
online and in-class clicker technology to enhance the learning experience for students. The
projects on edX involved working closely with Tom Baran and those interactions helped
form a meaningful friendship and collaboration that would later result in him agreeing
to co-advise the thesis. For example, brainstorming with Tom at the white board about
possible “mistakes” students could make using graphical signal-flow editors and issues of
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computability in polyphase structures with delay-free loops led to the paper [17] and also
sparked my interest in the representational power of behavioral descriptions.

The spring semester of 2014 was spent focused entirely on research, although a variety
of interesting distractions wouldn’t allow the direction of that research to become too fo-
cused. A former DSPG member, Petros Boufounos, was lecturing a course on information
acquisition and processing, which inspired me to look into ways of combining sparse sig-
nal recovery algorithms with approximate signal processing concepts in the context of the
compressed sensing paradigm. Regular research meetings with Al about optimization-free
methods for sparse filter design and clever uses of convexity principles led to the develop-
ment of a class of greedy algorithms and eventually the paper [84]. An interesting seminar
on distributed computing models diverted my efforts toward yet another direction, and that
investigation resulted in a precursor to the interconnective description in this thesis, al-
though the purpose at that time was to design low complexity approximations to a system
to improve distributability. As the semester was winding down, a different direction arose
from a group meeting I led on the relationships between orthogonality and biorthogonality
principles. That direction quickly turned into the approximate methods for solving linear
problems appearing in [89] and later helped shed light on properties of certain scattering
systems in the thesis. In full disclosure, a non-research related distraction named Chu also
became an important person in the story that semester as well.

Through regular meetings with Tom at the Muddy Charles Pub that academic year, I
began to develop an interest in his thesis work. In a particular conversation at the Muddy
about conservation principles and conserved quantities in steepest-descent algorithms, Tom
and I unearthed the idea of rotating the behaviors of certain features in these algorithms
such as integrators, which are difficult to implement using discrete-time systems and whose
discrete-time approximations result in numerical instabilities, so that they become well-
behaved functional relationships. This idea and the conversations that followed led to the
pair of papers [94, 111] and formed the cornerstone of the idea behind the scattering algo-
rithms in this thesis. In fact, before heading off to Texas Instruments for another internship
that summer, Tom and I spent a week in the Dominican Republic where many important
details in those papers were ironed out while lounging poolside.

The summer of 2014 was spent working with Arthur in the area of high-performance
computing with applications to quantitative trading and machine learning. Since it wasn’t
clear that the stock trading portion of the project would accommodate my retirement by
summer’s end, I spent the majority of nights and weekends working out the asynchronous
and incremental capabilities of the optimization algorithms. By mid-summer, I began to
work on web-based JavaScript implementations for some toy-sized example problems that
would later, in collaboration with Tom, turn into the paper [106]. The summer progressed
with my then-girlfriend Chu visiting Dallas, and ended with my return to Cambridge holding
a notebook full of research questions aimed at better understanding the benefits of designing
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optimization algorithms as signal processing systems with conservation principles.

In the fall semester of 2014, my research progress initially slowed as I ramped into the
role of lead instructor for an industry-only beta-version of the edX course 6.341x. Work-
ing alongside Al, Tom, and a team from MITx, I learned many valuable lessons related to
teaching and online education, and even picked up some video editing skills along the way.
This experience also taught me some important time and resource management lessons, es-
pecially in the context of working with groups of people scattered around the globe. On
the research front, another rendezvous at the Muddy with Tom led to an interesting philo-
sophical discussion of what a coordinate-free model of a signal processing system would look
like. This idea persisted to distract me from the courses I was taking for the remainder
of the semester. Although the absolute amount of time I could dedicate to research was
limited, the progress I made that semester was significant in organizing my thoughts on
how a coordinate-free perspective could be useful in designing and realizing fixed-point and
optimization algorithms realized as distributed and asynchronous signal processing systems.
The key elements to this progress came from studying distributed computing models, and
understanding how the strengths of different signal processing platforms can be utilized in
both centralized and decentralized settings.

The following spring semester saw a return to research motion (not necessarily progress),
and my interest in the subject of variational calculus led to many intriguing research meetings
about the sense in which physical systems such as bowling balls rolling down hills are optimal.
Toward the end of the semester, a number of personal matters arose that began to affect
my daily ability to make progress. During this period, I could not have asked for better or
more supportive friends and mentors than Al and Tom, and with their assistance I prepared
to spend the summer at home with family. Throughout the summer, research progress
formed a healthy distraction from otherwise consuming issues, and this progress manifested
itself in the areas of convergence analysis for asynchronous scattering algorithms and the
development of the large-scale web-service available in [112].

By the time the fall 2015 semester rolled around, I found myself in a familiar position
as a teaching assistant for 6.341. The two key goals this time around were to leverage the
online tools and experiences from previous semesters to enhance the residential version of
the course in a flipped classroom mode and to get the platform into a stable operating
mode since this would be Al’s final semester lecturing the course, and the online material
developed over the past few years would transfer into Jim Ward’s hands moving forward.
The two key research tasks I focused my energy on that semester involved identifying how
the scattering algorithms fit into the space of existing optimization methods and compiling
the initial semblances of a thesis draft. The first task was accelerated by advice from
Prof. Pablo Parrilo, which led to the coordinate transforms used to connect the scattering
algorithms and their gradient-based and proximal counterparts. This connection also helped
to identify additional benefits to the framework since these existing algorithm classes can
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also be designed in modular and distributable ways with minimal adjustment as well.
The start of the spring 2016 semester brought with it the beginning of an intense writing

and revision period. With insightful feedback and commentary from my thesis committee,
the level of discourse in the thesis continued to improve. Presenting various aspects of the
research at ICASSP in Shanghai led to many intriguing conversations about the interplay
between asynchronous architectures and algorithms and the benefits afforded by a signal-
flow perspective. In particular, a discussion with Prof. Stephen Boyd helped identify several
contexts where properties of scattering algorithms are desirable within the distributed opti-
mization community. Upon returning to MIT and having been exposed to excellent research
talks during the two years I served on the student subcommittee for faculty search, I spent
the final days before the defense putting together a presentation that would hopefully ap-
peal to a broad audience while simultaneously providing enough detail and rigor for signal
processing and optimization experts. In parallel to thesis work, and with no small amount
of careful planning and coordination, Chu and I were able to solve the classic two-body
problem by securing full-time positions at Texas Instruments for that coming summer. In
fact, before the semester got too far underway, on the first of March, Chu, the girl whose
project group I was assigned to at the last minute in Luca’s numerical methods class several
semesters ago, and I got married.

It has become customary in DSPG for students to include a six-word summary of their
journey through graduate school somewhere in their thesis. In thinking about my experiences
at MIT, there is one common thread to all facets which I’d like to put forward as commentary
to future graduate students (who somehow happen to read this):

Distractions, not directions, lead to progress.

As my story above illustrates, both personal and professional distractions can help in un-
derstanding which paths we should ultimately take and what parts of life matter the most.
Distractions come in many forms, and repeatedly being distracted by the same thing may
very well be a sign of what you’re passionate about pursuing. Extending this to graduate life,
I’d highly recommend discussing your distractions and ideas with collaborators and friends
over a beer. You never know what insights and inspirations will arise. And finally, continue
taking classes long after meeting the minimum coursework requirements. You never know
what distractions you’ll find or which distractions you’ll meet.
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