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Knowledge-Based
Signal Processing

“Knowledge-based signal processing”—a term
used to describe systems that tightly integrate
artificial intelligence (AI) and signal process-
ing—attempts to combine techniques from the
two disciplines more imaginatively than in the

past. Researchers in the signal processing com-.

munity, in particular, are increasingly becoming
aware that combining the architecture and
methodology of AI with more traditional tools
and techniques can lead to significant advances.

Previous Hybrid SP-AI Systems

The primary motivation for developing
knowledge-based signal processing systems is
the anticipated advantage from combining Al
capabilities—symbol manipulation and knowl-
edge representation—with the numerical and
mathematical tools of signal processing. Of
course, many systems already exist that incorpo-
rate and exploit principles from both fields,
such as the Hearsay-II speech understanding
system developed at Carnegie-Mellon Universi-
ty, the Surveillance Integration Automation
Project (SIAP) system developed at Systems
Control, Inc., of Palo Alto, Calif., and various
image understanding systems. In general, any
system that has a signal as its input and gener-
ates symbolic information as its output (or con-
versely, as in speech synthesis from text) must
perform both signal processing and symbol
manipulation.
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Important limitations result from the way ex-
isting hybrid systems combine signal and symbol
processing, however, and these limitations stem
not from fundamental technical considerations
but from historical, sociological, and manage-
ment considerations. Previous efforts to merge
Al and signal processing did not realize the full
potential of the interaction because they tended
to divide the signal processing and Al compo-
nents of a problem along convenient but some-
what superficial lines. Past approaches to com-
bining signal processing and Al have attempted
to break down problems into separate signal
processing and artificial intelligence compo-
nents. In general, a large problem such as auto-
matic surveillance or speech recognition must
be partitioned into a number of smaller sub-
problems before it becomes tractable. Because
separate communities have traditionally been
responsible for advances in each field, the sig-
nal/symbol distinction is customarily selected as
a convenient and well-defined dimension along
which to factor large problems. This choice
leads to an architecture in which the signal pro-
cessing is localized in one set of subsystems, the
symbol processing in another. The coupling be-
tween the two processors is typically weak, mir-
roring the coupling between the communities
that developed them.

The specific manner in which the separate
signal and symbol processing components inter-
act is a related limitation. The most common
paradigm is that of a signal processing front end
that extracts features of an input signal and sub-
mits the results to a symbolic inference unit for
further processing. In such a system, the infor-
mation flow between the signal processing and
symbol processing subsystems is typically unidi-
rectional. The SIAP project, an attempt to use
Al techniques to synthesize information from a
variety of surveillance sources, illustrates the
problems that can arise when a system is orga-
nized this way. Over the course of its develop-
ment, SIAP went through three different incar-
nations, distinguishable by the three different
signal processing front ends used. In the first
version of the system, the signal processing took
the form of an experienced human signal inter-
preter who manually fed to the symbol process-
ing subsystem synthetic test data that had the
same kinds of features the front end would or-
dinarily generate. In the next stage, a human
interpreter scanned real acoustic data and pro-
vided the required signal characterizations. In
the final version, the Signal Imagery and Man-
agement System (SIMS), independently devel-
oped at Bolt, Beranek, and Newman, Cam-
bridge, Mass., replaced the human interpreter
and provided a completely automated path
from raw acoustic data to final interpretation.

The development of SIAP proceeded smooth-
ly from the first stage, the synthetic scenarios, to
the second stage, the use of manually tran-
scribed data. When initially connected to SIMS,
however, performance degraded considerably.
The reasons were obvious. In manually tran-
scribed data there were usually 40 to 50 signal
events detected in each time interval. SIMS, on
the other hand, typically provided about 300
signal events in the same time interval. Clearly,
the human signal processors were doing consid-
erably more than providing objective character-
izations of the data. By relying on their expe-
rience, and by interpreting as they were pro-
cessing, they were able to filter out 70% to
80% of what otherwise would have been called
“events” in the data. Adjustments to the Al ex-
pertise in SIAP later enabled it to overcome
some of the initial difficulties.

As the SIAP example illustrates, however, di-
viding a large problem into its “signal process-
ing” and “artificial intelligence” components
and addressing them separately may lead to un-
satisfactory results. The prevalence of this ap-
proach stems, in part, from the adversarial rela-
tionship historically existing between the signal
processing and Al communities. Selecting an
approach to solving a signal interpretation
problem has usually been phrased in either/or
terms—rely principally either on sophisticated
signal processing methods or on artificial intelli-
gence techniques to provide most of the system
capability. Indeed, the Defense Advanced Re-
search Projects Agency (DARPA) speech under-
standing project was widely criticized for em-
phasizing the importance of syntactic and
semantic (that is, symbol) processing at the ex-
pense of acoustic-phonetic (that is, signal) analy-
sis. Provided that the techniques from the two
disciplines can be effectively merged—and we
think they can—there seems to be no funda-
mental reason to make such a drastic choice.

Comparisons Between Signal Processing
and Artificial Intelligence

Although the need for more efficient interac-
tion between signal processing and artificial in-
telligence is apparent, the exact form such inter-
action should take is not clear. Some basic
difficulties are that signal processing systems
traditionally work with numerical signals while
Al systems are oriented more toward symbolic
information and that the two disciplines exploit
different kinds of knowledge about a task. Solv-
ing a signal processing problem usually involves
formulating it in a way that makes the required
solution mathematically apparent. A typical Al
approach, on the other hand, identifies effective
heuristics by focusing on how a human would
solve the problem. The architectural styles of
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VUS errors are more objectionable perceptual-
ly. Signal processing applications in which sig-
nificant nonnumeric information is available
about the signals being processed could also
benefit from improved symbol manipulation ca-
pability. In some pitch detection and speech en-
hancement/restoration problems, for example,
the text of the spoken utterance is available.
This information can be very useful to a human
who is performing manual pitch marking or lis-
tening to degraded speech, and it is likely that
automatic systems could exploit it as well. In
particular, an estimate of the number and order
of voiced, unvoiced, and silent intervals might
be derived from the speech text and used to
guide VUS classification.

Knowledge Representation

Signal processing algorithms are typically
based on mathematical models; the algorithms
used in Al systems more often have a heuristic
motivation. One manifestation of this is the dif-
ference in approaches to knowledge represen-
tation.

Signal processing system design is frequently
dominated by a concern for run-time efficiency.
As a result, a signal processing program is re-
garded primarily as a detailed specification of
the sequence of operations involved in perform-
ing some computation. Program authors con-
struct these specifications by applying their sig-
nal processing knowledge and insight to the task
of accomplishing the desired goal, given some
set of constraints and objectives. An important
characteristic of the design process is that the
relevant signal processing knowledge is identi-
fied and applied by the program author. The
program itself contains only an indirect and im-
plicit representation of the author’s knowledge,
in the form of the final algorithm.

In contrast, the problem of explicit knowl-
edge representation is one of the most impor-
tant and central areas of research within AI. In
this field, a program is viewed not only as a
specification of a computation, but also as a re-
pository for the body of knowledge on which
the computation is based. Indeed, one of the
benefits that often accompanies the develop-
ment of large knowledge-based systems such as
PROSPECTOR, a mineral exploration system
developed by D. Duda and P. Hart of SRI Inter-
national, or MYCIN, a medical diagnosis system
developed at Stanford University by E. Short-
liffe, is the organization and formalization of
the body of domain knowledge on which the
program is based. Furthermore, Al programs
are often intended to solve a variety of similar
problems within some domain, rather than just
one specific problem. The subset of knowledge

appropriate in any particular situation is identi-
fied and applied not by the program author, but
by the program itself.

Although there are many signal processing al-
gorithms—the fast Fourier transform (FFT), for
example—that can clearly be characterized as
totally mathematical, it is far more usual to find
algorithms motivated by both mathematical and
heuristic considerations. This commonly occurs
when a mathematically motivated algorithm is
modified to correct deficiencies that first appear
when it is tested on real data. The problem of
pitch detection again provides a good example.

The development of a pitch detector typically
begins with a mathematical model of periodic
waveforms that suggests a way of measuring
their period. Some of the measurements that
have been used are the distances between the
local extrema or zero-crossings of the time sig-
nal, the distances between autocorrelation or
cepstral peaks, and the distances between peaks
of the power spectrum. An algorithm based on
such a model is tested on actual speech, noticed
to work “most of the time,” and perhaps modi-
fied to correct observed shortcomings. Unlike
the initial formulation, these modifications are
usually not motivated by a mathematical model
of speech, but are introduced to handle real-
world situations whose existence is suggested by
the algorithm designer’s experience. Typical of
problems often handled in this way are pitch
doubling and halving and hysteresis in detecting
voiced-unvoiced transitions.

A second class of heuristically motivated sig-
nal processing algorithms are those in which the
basic functionality to be implemented is defined
in terms of the performance of a trained human
expert, such as in geophysical signal interpreta-
tion, digital filter design (including choice of fil-
ter structure), target tracking, and satellite im-
age interpretation. The tools that have been
developed within Al for acquiring, represent-
ing, and applying expert knowledge appear to
be particularly relevant in such applications.

Control Structures

The difference in knowledge representation
between signal processing and Al programs cor-
responds to a difference in the kinds of pro-
gram control structures that are used. While a
typical signal processing program is a detailed
prescription, explicitly specifying a sequence of
operations, control flow in many Al programs is
specified indirectly, in terms of a strategy rather
than a detailed script. A control strategy speci-
fies how to decide what to do at any given stage
of processing, rather than spelling out what to
do. Control strategy for a rule-based diagnosis
system such as MYCIN might specify: “When
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the two disciplines also differ greatly. Signal
processing programs tend to be relatively small,
with algorithm design often dominated by con-
siderations of run-time efficiency. Large Al sys-
tems, on the other hand, are among the most
complicated programs written, and considerable
effort is directed toward designing software that
is easy to develop and maintain.

These differences suggest that close and ef-
fective interaction between Al and signal pro-
cessing must begin with a clear understanding
of the relationships between them and of the
relative merits of each approach. Attempting to
contrast the two along a number of basic dimen-
sions—information representation, knowledge
representation, control structures, data model-
ing, and the treatment of uncertainty in deci-
sion making—will help clarify the potential con-
tributions each discipline can make to a
“knowledge-based” signal processing system. It
will also suggest specific ways advanced signal
processing applications can benefit from in-
creased collaboration with Al

Information Represeniation

The ways in which discrete-time signals are
represented in typical signal processing and Al
programs provide a good illustration of the dif-
ferences between the numerical and symbolic
techniques.

Mathematically, a one-dimensional discrete-
time signal might be defined as a real-valued
function on some set of integers. As functions,
two signals are equal if they take on the same
value at each point of their domain. A signal
that is the output of a sine-wave generator, for
example, is equal to the signal that results from
passing the output of a cosine-wave generator
of the same frequency through a quarter-cycle
delay. If only the numerical values of their sam-
ples are observed, there is no way to distinguish
between the two signals.

In general, all signal processing algorithms

are based on the concept of signal equality. This
observation has been exploited in the design of
SPL, a general-purpose, signal processing lan-
guage developed by G. Kopec. In SPL, signals
defined on finite intervals are characterized in
terms of two basic operations, length and fetch.
The length operation returns the length of the
interval on which the signal is defined; the fetch
returns the value of a specified sample. These
operations are intended to provide a sufficient
framework for building a powerful, general sig-
nal processing programming system.

A typical symbolic approach to signal repre-
sentation, on the other hand, would augment
these observable attributes to include explicit in-
formation about how the signal was created.
Such information would allow a sine wave to be
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distinguished from a phase-shifted cosine wave,
even when the two signals were mathematically
equal as functions. These additional signal oper-
ations return information about the actual histo-
ry of the signal; they are not estimation opera-
tors that decide whether the signal could have
been created by a sine or cosine generator.

Thus the numerical approach to signal repre-
sentation deals with the signals themselves, as
abstract, mathematical functions; the symbolic
approach deals with symbolic descriptions of
signals. Because, in general, a given mathemat-
ical signal may be described in a variety of ways,
a descriptive signal representation may result in
an element of ambiguity. On the other hand, a
description of how a signal was created repre-
sents a richer sort of information than does
knowledge of its sample values. An “intelligent,”
interactive signal processing system, which
avoids redundant computation by maintaining a
data base of signals that it has computed, is a
simple example of an application for descriptive
signal representation. Whenever the user or a
program requests a signal, the data base is ex-
amined to see whether it contains a signal de-
scription equivalent to that of the requested sig-
nal. If an equivalent description is found, the
corresponding signal is returned. Otherwise, an
appropriate procedure is invoked to create the
desired signal and install it in the data base. In
subsequent requests for the signal (or a signal
that is recognizably equivalent to it) the stored
value will simply be returned. Obviously, for
such a signal cache to be useful, it must cost less,
on the average, to locate an equivalent signal
description than to numerically compute a sig-
nal value.

Although numerical and symbolic techniques
are usually associated with different classes of
problems, many signal processing applications
require both kinds of capability, as in the prob-
lem of speech pitch detection. The voiced/un-
voiced/silence (VUS) classification, which is nor-
mally considered part of the speech pitch
detection task, is an instance of a computation
that produces symbolic output; but the estima-
tion of specific pitch values for voiced regions is
a numerical process. (The fact that a zero pitch
value is often used to represent unvoiced speech
does not change the fact that VUS classification
is fundamentally a symbolic reasoning process.)

The more difficult aspect of pitch detection
appears to be the symbolic VUS classification
task. VUS classification accuracy tends to de-
grade more rapidly than numerical pitch accu-
racy in the presence of background noise. More-
over, in many applications VUS classification
accuracy is the stronger determinant of overall
system acceptability. This is true in speech
bandwidth compression, for example, where
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there is a choice for the next rule to try, use the
one that is most likely to contradict the current
hypothesis.”

With programs that use a control strategy
rather than a fixed control regimen, the specific
sequence of operations that occurs during any
execution of the program is not predetermined;
rather it depends on the details of the problem
being solved. Consequently, the program can
adapt its processing to the characteristics of the
input data. The arsenal of available operators
might include some that are very effective for
certain classes of input but totally inappropriate
tor others. By always choosing the best alterna-
tive operator, the system can perform well over
a diverse input space. Furthermore, applying
each operator only when there are specific rea-
sons to believe it will be effective makes it feasi-
ble to accommodate a larger range of inputs
than if each operator were applied in every situ-
ation. The availability of alternative operators
may also contribute to increased robustness in
the presence of noise or other anomalies in the
data. The acoustic-phonetic analysis of speech is
one particularly attractive application for such a
control strategy. A basic problem in phonetic
analysis is that no small set of acoustic measure-
ments is appropriate for uniformly describing
all possible speech sounds. Furthermore, a giv-
en phoneme may have a variety of different
acoustic manifestations, depending on contextu-
al factors such as phonetic environment, speak-
ing rate, and stress. Nevertheless, it is likely that
any single realization of a particular sound can
be identified on the basis of a small subset of the
whole collection of possible features. This is ex-
actly the kind of situation in which context-de-
pendent operator selection is likely to be
advantageous.

Using a control strategy rather than a fixed
script also helps maintain a separation between
the static “competence” aspects of a system
(what it knows, as reflected in the arsenal of
available operators) and the dynamic “pefor-
mance” aspects (how it applies that knowledge,
as reflected in the rules for operator selection).
If this distinction is maintained, at least during
system development, the functional adequacy of
a system can be established before its run-time
efficiency is optimized.

Data Modeling

Signal processing and Al use different kinds
of models in data interpretation problems.
Typically, raw data are obtained by “viewing”
the “real world” through a transducer of some
sort. The process of interpretation involves
building a model of the data, of the transducer
that generated the data, or of the underlying
system. Signal processing models typically refer
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to the data, while AI models refer to the under-
lying system or transducer that generated the
data.

The way each discipline approaches problems
in image interpretation illustrates the differ-
ence. Digital image processing focuses on the
image as a two-dimensional array of samples.
This perspective is clearly apparent in tradition-
al approaches to tasks such as image enhance-
ment, restoration, and coding. Similarly, signal
processing approaches to image analysis and
scene classification are based on pattern recog-
nition, using features (edge orientation, texture)
measured directly from the image. Yet the de-
scription of a given object is strongly affected by
a variety of nonintrinsic factors such as a view-
point, occlusion by other objects, and orienta-
tion. This is a fundamental problem for such
iconic approaches.

A significant portion of the AI work in image
understanding, on the other hand, has focused
not on the images themselves but on creating
symbolic structural descriptions of the three-di-
mensional objects that generated the images.
One motivation for this approach is that human
visual reasoning appears to be done in terms of
inferred three-dimensional object structure
rather than immediate two-dimensional appear-
ance. A second motivation is that the descrip-
tion of an object in terms of its three-dimension-
al structure is independent of contextual factors
like those mentioned above. Thus, tasks such as
object detection should be easier using symbolic
scene descriptions rather than image features.

To assess the relative merits of these two ap-
proaches, we must balance the cost of obtaining
a three-dimensional object description with the
difficulty of obtaining an adequate characteriza-
tion of all possible two-dimensional image mani-
testations of each object. In highly constrained
contexts, image processing approaches appear
to be significantly more cost-effective at present.
This balance is likely to change, however, as the
need for more general and robust image analy-
sis systems grows and VLSI technology becomes
more readily available.

Identitying the advantages and limitations of
signal processing and Al approaches to image
modeling is relatively easy because the problem
has received serious attention from both disci-
plines. Other aspects of image processing, such
as enhancement and restoration, have been ex-
haustively studied by those in the signal process-
ing field but have received little attention from
the Al community. Since there is a growing con-
sensus that substantial additional progress in
these areas is unlikely to come from signal pro-
cessing alone, investigating the possible applica-
tion of Al techniques to these tasks seems to be
a direction with considerable potential.
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Signal modeling problems involving sound
could also benefit from the application of Al
techniques developed in vision research. A com-
putational model of hearing, analogous to cur-
rent computational models of vision, might
form the basis for new techniques of sound lo-
calization, sound classification, and speaker sep-
aration. As in vision research directed at prob-
lems such as stereopsis (for example, the work
of D. Marr and T. Poggio at M.I.'T.), an impor-
tant aspect of the development of a computa-
tional hearing model would be identifying an
appropriate class of primitive features for de-
scribing sound structures. Such primitives
would be analogous to the “intrinsic images” (H.
Barrow and J. Tenenbaum, SRI International)
and “2.5-dimensional sketches” (D. Marr,
M.I.T.) of early vision research.

Uncertainty in Decision Making

In signal processing, decision making in the
face of uncertainty is usually formalized in prob-
abilistic terms. Typical approaches to detection
and estimation, for example, involve supplying
a priori information in the form of multivariate
conditional probabilities. If a large number of
variables are involved, reliably estimating these
probabilities can be difficult and may require
analysis of a vast amount of data. The probabil-
ity estimation problem is particularly acute in
the case of infrequent events. It has been a
source of difficulty, for example, with speech
recognition systems like the one under develop-
ment at IBM that are based on stochastic
models.

Knowledge-based Al systems, on the other
hand, typically embody a subjective concept of
uncertainty rather than an objective, prob-
abilistic one. Experts providing the knowledge
base for a program such as PROSPECTOR or
MYCIN, for example, are asked to supply the
strengths of the inference rules that link the hy-
pothesis with relevant evidence. Effectively, the
knowledge and judgment of the expert, accu-
mulated through experience, are substituted for
unknown conditional probability functions. A
major problem with this subjective approach is
the possibility of inconsistency in the assignment
of likelihoods.

When adequate probability estimates are
available, a formal statistical technique is usually
the method of choice. However, since there are
many situations in which adequate data are not
available, statistics alone is not a general practi-
cal methodology for dealing with uncertainty.
When formal methods are impractical or only
partially applicable, signal processing research-
ers typically resort to various ad hoc decision-
making procedures. Compared with approaches
based on objective probability alone, subjective

techniques are practical over a much larger class
of problems. Furthermore, compared with var-
ious combinations of probability and ad hoc deci-
sion-making methods, they provide a more uni-
form and formal methodology for dealing with
uncertainty.
—Gary E. Kopec, Alan V. Oppenheim,
Randall Davis
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