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Abstract

Existing theory yields useful performance criteria and processing techniques for acous-
tic pressure-sensor arrays. Acoustic vector-sensor arrays, which measure particle ve-
locity and pressure, offer significant potential but require fundamental changes to
algorithms and performance assessment.

This thesis develops new analysis and processing techniques for acoustic vector-
sensor arrays. First, the thesis establishes performance metrics suitable for vector-
sensor processing. Two novel performance bounds define optimality and explore the
limits of vector-sensor capabilities. Second, the thesis designs non-adaptive array
weights that perform well when interference is weak. Obtained using convex op-
timization, these weights substantially improve conventional processing and remain
robust to modeling errors. Third, the thesis develops subspace techniques that enable
near-optimal adaptive processing. Subspace processing reduces the problem dimen-
sion, improving convergence or shortening training time.
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Chapter 1

Introduction

Because they are often reliable, easy to analyze, and straightforward to process, pres-

sure sensor arrays have dominated sonar for decades. Recent advances in sensor qual-

ity and miniaturization have stirred interest in more complex devices, those that mea-

sure velocity or acceleration in addition to pressure. Each of these “vector-sensors”

provides several measurements, offering significant potential and fresh challenges.

Examining the use of vector-sensor arrays in passive sonar reveals the promise such

arrays offer to the field of undersea surveillance.1

1.1 Passive Sonar Background

The principles that have historically driven passive sonar research are the same ones

behind this work. Therefore, understanding the motivation for this research requires

some background in passive sonar. This section provides a brief introduction to

passive sonar and pressure-sensor arrays.

Passive sonar, which quietly listens for emitted sound, is effective at undersea

surveillance for three reasons. First, sonar operates over great distances. Sound

waves sometimes travel thousands of miles underwater. Electromagnetic waves, by

contrast, generally travel short distances in saltwater before being absorbed. Second,

emitted sound is exploitable. Machinery produces characteristic sounds which aid in

1This background material on sonar and vector-sensors is also covered in [1].
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the detection, localization, and classification of vessels. Third, passive sonar is covert.

Passive sonar systems are difficult to detect because they emit no energy. Active

sonar, by contrast, emits energy which adversaries could use for counter-detection

and avoidance.

The most common sensor employed for sonar is the hydrophone. A hydrophone

measures only pressure, essentially forming an underwater microphone. Sound waves

passing over a hydrophone introduce changes in pressure that are measured and used

for detection. Omnidirectional hydrophones are common because their construc-

tion, maintenance, and analysis is well-understood. Decades of experience with hy-

drophones show they survive well in the corrosive ocean environment and are effective

when assembled into arrays.

The most common array configuration is the uniformly spaced linear array. Linear

arrays are often fixed to the side of a ship, mounted on the sea floor, or towed behind

a moving vessel. When a vessel travels in a straight line, drag pulls a towed array into

an approximately linear shape. The exact location and orientation of each sensor is

usually unknown or subject to modeling errors.

1.2 Acoustic Vector-Sensors

Increasing the information measured by a sensor generally improves its performance.

With acoustic measurements, particle velocity provides additional information about

the direction of sound arrival. Acoustic vector-sensors each contain one omnidirec-

tional hydrophone measuring pressure and three orthogonal geophones measuring the

components of particle velocity.2 Figure 1.2.1 illustrates a three-dimensional vector-

sensor. The geophone in the figure contains a suspended coil which slides along the

axis of a fixed magnet. Sound passing along the axis of the geophone vibrates the

coil and induces a current. The induced current provides a measurement of velocity

component along the geophone axis.

2Although velocity sensors are common, many vector-sensors equivalently use accelerometers,
directional hydrophones, or pressure-gradient sensors.

14



Figure 1.2.1: Notional diagram of a vector-sensor

Although geological vector-sensors have existed for decades, recent advances in

geophone design have increased their utility for sonar applications. Because vector-

sensors include directional information, they have the potential to improve the per-

formance of passive sonar systems.

1.3 Vector-Sensor Processing

Vector-sensor measurements provide more information than pressure-sensor measure-

ments. Using this additional information to improve performance is the role of vector-

sensor processing. This subsection illustrates the primary benefit of vector-sensor pro-

cessing: resolving ambiguous pressure-sensor measurements. Similar, more detailed

analyses are provided in [1, 2, 3, 4].

The benefit of vector-sensors is first apparent when comparing a three-dimensional

vector-sensor to an omnidirectional pressure-sensor. By definition, the response of

the omnidirectional pressure sensor is equal in all directions. But because the vector-

sensor also measures particle velocity, a three-dimensional vector, it yields information

about the direction of a sound source. Put another way, all directions are ambiguous

to the pressure-sensor, but no directions are ambiguous to the vector-sensor. This lack

15
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Figure 1.3.1: Example vector-sensor response patterns

of ambiguity means a single vector-sensor is inherently directional. Vector-sensors are

also tunable: linear combinations of the four elements forms a “pseudo-sensor” with

many different response patterns [3]. A few of these patterns are shown in Figure

1.3.1. By choosing appropriate weights, these patterns are easily rotated to emphasize

or null any arbitrary direction.

The same behavior extends to arrays of vector-sensors. Compare a uniformly

spaced linear array composed of N vector-sensors to one composed of N omnidirec-

tional pressure-sensors. Example directional responses or “beampatterns” for both

array types are shown in Figure 1.3.2. Both arrays have N = 10 elements at frequency

f = 5/7fd, where fd is the design frequency (the frequency at which the inter-element

spacing is one-half wavelength). By choosing weights and linearly combining array

elements, the top and bottom plots are “steered” to π/2 and −π/4, respectively. The

response of a linear pressure-sensor array (PSA) is symmetric about rotation around

the array axis. This is evident in the symmetric PSA beampattern: arrivals from op-
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posite sides of the array yield identical pressure measurements. Changing the weights

applied to each element alters the beampattern, but the response is always symmet-

ric. The PSA beampattern always exhibits an ambiguous peak, or “backlobe,” in

the direction opposite the desired steering angle. In contrast, the vector-sensor array

(VSA) utilizes unambiguous measurements from each sensor to reduce the backlobe.

The level of backlobe reduction is determined by the choice of weights. In the top plot

of Figure 1.3.2, the VSA backlobe is driven near zero; in the bottom plot of Figure

1.3.2, it is reduced by 6 dB.

Directional information makes VSA processing fundamentally different from PSA

processing. Pressure-sensor processing exploits phase or time-delay measurements to

resolve signals and reject noise. Vector-sensors provide little additional phase infor-

mation because the sensor components are co-located; the directional components

yield mostly gain information. VSA processing must exploit both gain and phase

measurements to be effective.

1.4 Problem Statement

The additional measurements provided by vector-sensor arrays offer benefits and chal-

lenges. As the previous section shows, vector-sensor arrays are more versatile than

arrays of only pressure-sensors. Exploiting this versatility raises a number of ques-

tions addressed in this work. These questions fall into two broad categories that serve

to organize the research:

1. How well can a vector-sensor array do? How can the vector-sensor array

“performance improvement” be quantified? By how much can vector-sensors

potentially improve performance?

2. How can a vector-sensor array do well? How can vector-sensor arrays

achieve good performance in practice? Without a priori information, what

vector-sensor processing is best? How can vector-sensor processing adapt to

incorporate new data? How can the computational cost required to process

vector-sensor arrays be reduced?

18



Research suggests that existing results do not resolve these questions. Although

vector-sensor array processing seems to be a straightforward extension to pressure-

sensor array processing, it requires fundamental changes to analyses and algorithms.

The remainder of this section highlights the difficulty of answering the above

questions with current approaches. Questions in the first category require metrics

and bounds to quantify vector-sensor performance. Questions in the second category

subdivide according to the two fields of array processing. The first field is nonadaptive

processing, where the sensors are combined linearly using fixed weights. The second

field is adaptive processing, where weights are allowed to change based upon observed

data.

1.4.1 Performance Metrics and Limits

Two performance dimensions commonly used to quantify and bound improvements in

array processing are array resolution and gain/directivity. The next two paragraphs

briefly show that VSA improvements are not expressed along these performance di-

mensions.

Either beamwidth or angle estimation error is typically used to quantify array reso-

lution. Figure 1.3.2 reveals that the VSA and PSA beamwidths are almost exactly the

same. A wide class of beampatterns, including those in [3, 4], relies on pattern multi-

plication (see [5, §2.8]). The width of such beampatterns is virtually unchanged from

that of a pressure-sensor array [1, §2.1]. Another metric that quantifies array resolu-

tion is the root mean squared error (RMSE) resulting from direction-of-arrival (DOA)

estimation. Improving array resolution lowers the RMSE. Bounds on the RMSE are

often derived and compared to the actual error of common direction-of-arrival algo-

rithms; for vector-sensor arrays this analysis appears in [1, 2, 4, 6]. Representative

plots are shown in Figure 1.4.1, derived from [1, §3.2] for the case of a single nar-

rowband source in white noise and a N = 13 element, mismatched, linear VSA. The

moderate mismatch scenario includes zero-mean Gaussian position, rotation, gain,

and phase errors; the direction-of-arrival algorithm is a conventional beamscan tech-

nique. A detailed description of the parameters, algorithm, and bound is in [1]. Two
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observations are clear from the figure: 1) the actual algorithm RMSE does not de-

crease significantly with a vector-sensor array, and 2) the lower bound indicates that

only a modest improvement is possible. A key consideration is that vector-sensors in-

crease the number of measurements from N to 4N , but simply increasing the number

of pressure-sensors to 4N (keeping the same inter-element spacing) yields a smaller

beamwidth and a lower RMSE. Unlike increasing the number of pressure-sensors, how-

ever, using vector-sensors achieves improvement without altering the physical length

of an array.

Vector-sensor arrays evidently do not substantially improve resolution, but re-

search further reveals that VSAs do not improve directivity more than PSAs with

comparable numbers of components. The directivity of vector-sensor arrays, pre-

sented in [7], is at most 6 dB higher than pressure-sensor arrays. As with array

resolution this improvement is no better than that achieved by simply increasing the

number of pressure-sensors from N to 4N .

Because the benefits of vector-sensors are not reflected in measures such as resolu-

tion or directivity (considering the increased number of components), new measures

are necessary to quantify VSA performance. Although existing bounds are useful for

analyzing vector-sensor array configuration [6] and robustness [1], alternative bounds

are required to understand how much improvement VSAs offer along the new perfor-

mance dimensions.

1.4.2 Nonadaptive VSA Processing

Some of the most powerful nonadaptive processing techniques become difficult or

impossible with vector-sensor arrays. Designing fixed weights for nonadaptive pro-

cessing involves multiple objectives. Three of the most useful objectives are narrow

beamwidth, low sidelobe level, and low sensitivity to modeling errors. Analytical

methods enable joint optimization of the PSA beamwidth and sidelobe level, but

these methods do not apply to VSAs. As a result, VSA beampatterns are often

designed using alternative criteria.
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Many existing approaches are similar to [3, 4] and effectively choose weights to

maximize gain against some postulated noise field (see Section 4.2). One formulation

of this problem is the mathematical program

minimize wHR̃w

subject to wHv0 = 1
(1.4.1)

for some postulated covariance matrix R̃ and signal replica v0. Choices for the pos-

tulated covariance matrix are often combinations of isotropic noise, white noise, and

point sources. The resulting weights may have a simple closed form, and pattern

multiplication may allow for spatial tapering. For instance, choosing

R̃ = vbv
H
b + σ2I, (1.4.2)

with vb being a signal replica directed at the backlobe, gives “point null” beampat-

terns as shown in the top plot of Figure 1.4.2. Applying a 25 dB Taylor spatial taper

([5, §3.4.3]) to the weights yields the beampatterns shown in the bottom plot.

For a vector-sensor array, optimizing the important objectives of narrow beamwidth,

low sidelobe level, and low sensitivity requires new techniques. Because existing tech-

niques do not explicitly optimize over these objectives, the resulting weights are sub-

optimal with respect to each objective. For instance, the beampatterns in Figure

1.4.2 leave room for improvements in mainlobe width, sidelobe level, and robustness.

Techniques that optimize these objectives are widely used for PSA processing, so

equivalent techniques for VSA processing are important to develop.

1.4.3 Adaptive VSA Processing

A key problem in adaptive vector-sensor array processing is high dimensionality.

Vector-sensor array data is four times the dimension of pressure-sensor array data

because of the additional velocity measurements. This high dimension complicates

adaptive processing in two ways.
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Figure 1.4.2: VSA beampatterns with “point nulls” and diagonal loading
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First, it makes parameter estimation more difficult. Adaptive processing often

requires estimating the second-order moments of the data, i.e. the covariance matrix.

Logic similar to [8] quickly reveals the scope of this problem. The number of indepen-

dent observations, or “snapshots,” available is determined by the stationarity of the

environment and the length of the array. The environment is effectively stationary if

sources move less than a beamwidth during observation. The broadside beamwidths

of vector and pressure-sensor arrays are almost the same, ∆θ ≈ 2/N . Recall that N

is the number of vector-sensors; the total number of measurements is 4N for a 3-D

vector-sensor array. For an array of length L at the design frequency with wavelength

λ, N = 2L/λ. The worst case (shortest) stationarity time is then given by a broadside

source at range R moving tangentially at speed v:

∆Tstat ≈ ∆θ ·R/v

= λR/(Lv). (1.4.3)

The time required to preserve accurate phase estimates for a single snapshot is ap-

proximately 8× the maximum travel time of sound waves across the array. This travel

time is longest at array endfire, where it is

∆Tsnap ≈ 8L/c (1.4.4)

for sound wave propagation speed c. The approximate number of snapshots available,

Kavail, is then

Kavail ≈ ∆Tstat/∆Tsnap

= λcR/(8vL2) (1.4.5)

The number of snapshots desired is determined by the dimension of the sample co-

variance matrix; a common rule-of-thumb is to use more than two or three times the

dimension for a well-estimated matrix [9]. Using fewer snapshots produces weights

that are not robust and are sensitive to noise. Assuming an optimistic factor of two
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times the data dimension, the number of snapshots desired, Kdes, for a VSA and PSA

are

Kdes,PSA ≈ 2 ·N

= 4L/λ (1.4.6)

Kdes,VSA ≈ 2 · 4N

= 16L/λ. (1.4.7)

A typical scenario with R = 10 km, v = 20 knots, and f = 200 Hz yields the curves

shown in Figure 1.4.3. These curves illustrate a fundamental adaptive processing

problem: the number of available snapshots is usually far fewer than desired. The

problem is worse for vector-sensor arrays because of the higher dimension. As indi-

cated on the plot, covariance matrices are poorly estimated for vector-sensor arrays

longer than about 11.5λ, or N > 23. The same problem exists for pressure-sensor ar-
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rays, but at longer lengths (18.2λ, or N > 36). Adaptive VSA processing techniques

must combat this snapshot deficiency to be effective in practice.

High dimensional vector-sensor data complicates adaptive processing a second way

by increasing the computational requirements. A typical adaptive processing opera-

tion, the singular value decomposition of a covariance matrix, generally takes O(N3)

floating point operations. A vector-sensor array, then, increases the computational

burden by a factor of roughly 43 = 64.

Current approaches for high-dimensional adaptive array processing fall into three

categories. The first category augments the covariance matrix to make it well-

conditioned. Fixed and variable diagonal loading as covered in [10] and [11] take this

approach. The second category performs adaptive beamforming in reduced-dimension

linear subspaces. Many techniques fall in this category, including some suggested in

[4]. The third category utilizes additional information to improve the covariance ma-

trix estimate. One such technique is “Physically Constrained Maximum-Likelihood

(PCML)” estimation [12]. The problem of high-dimension is more pronounced with

vector-sensor arrays, so existing and new techniques must be closely examined.

1.5 Key Findings

This thesis includes several novel contributions to the field of array processing. It

establishes the limits of VSA performance and describes practical techniques that

approach these limits. Organized by chapter, the most significant contributions are:

Ch 2: A thorough exploration of vector-sensor array fundamentals. One

key finding in this area is that many useful properties are not exhibited by

vector-sensor arrays. Another key finding is a real expression for the VSA

beampattern.

Ch 3: Two performance bounds on a critical VSA capability: resolving

pressure ambiguities. These bounds relate ambiguity resolution to the com-

mon problems of detection and estimation. Key findings include showing that

26



1) the bounds, although fundamentally different, both depend on the same sim-

ple quantity, and 2) good performance is theoretically possible in most cases.

Ch 4: The design of robust, fixed weights with excellent performance char-

acteristics. Key findings include the “Minimum Sensitivity” criterion, an al-

gorithm for designing robust weights, and a demonstration of improved perfor-

mance.

Ch 5: The derivation of optimum subspaces that enable or improve adap-

tive processing. Key findings include 1) the optimality criterion of “inner

product preservation,” 2) the derivation of eigenbeam subspaces as least-squares

designs, and 3) a demonstration of significant performance improvement.

Several of the contributions listed above are summarized at the end of the thesis in

Section 6.1, Figure 6.1.1.

1.6 Sensor and Environment Model

This entire document assumes the same sensor and environment model to simplify

discussion.3 Each section explicitly notes any departures from or extensions to this

common model. The subsequent analysis assumes the following sensor model:

1. Co-located sensor components. The hydrophone and three geophones of each

vector-sensor are located at the same point and observing the same state. In

practice, this requires the component spacing to be small compared with the

minimum wavelength.

2. Point sensors. Each vector-sensor is modeled as a single point. In practice,

this requires the sensor dimensions to be small compared with the minimum

wavelength.

3The same sensor, environment, and plane wave models are also covered in [1].
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3. Geophones with cosine response. The signal response of each geophone is pro-

portional to the cosine of the angle between the geophone axis and the source.

Cosine geophone response results from measuring velocity along only one axis.

4. Orthogonal geophones. The axes of the three geophones are orthogonal. This is

true in practice when each vector-sensor is a static unit.

The thesis also assumes the following environment model:

1. Free-space environment. Sound waves travel in a quiescent, homogeneous,

isotropic fluid wholespace. This implies direct-path propagation only.

2. Narrowband signals. The signal is analyzed at a single frequency. This means

the signal is sufficiently band-limited to allow narrowband processing in the

frequency domain. Passive sonar systems typically operate over a wide, many-

octave bandwidth; narrowband signals may be obtained by computing the dis-

crete Fourier transform of the measurements and processing each frequency bin.

3. Plane wave propagation. The sound waves are planar at each sensor and across

the array. This implies the unit vector from each sensor to the source is the

same, regardless of the sensor location. Sound waves are approximately planar

when the source is beyond the Fresnel range [8].

The underlying assumptions and notation are similar to those in [2, 6, 13] although

this document has a different objective.

1.7 Plane Wave Measurement Model

Under the assumptions in Section 1.6, consider a plane wave parameterized by az-

imuth ϕ ∈ [0, 2π) and elevation ψ ∈ [−π/2, π/2] impinging on an array of N vector

sensors. The remainder of the thesis assumes a right-handed coordinate system with

ϕ = 0 as forward endfire, ϕ = π/2 as port broadside, ψ = 0 as zero elevation, and

ψ = π/2 as upward. The parameters ϕ and ψ are sometimes grouped into the vector

Θ for notational convenience. Without loss of generality, assume the geophone axes
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are parallel to the axes of the coordinate system. If this is not the case, the data from

each vector sensor can be rotated to match the coordinate axes. The unit vector,

u = [cosϕ cosψ, sinϕ cosψ, sinψ]T , (1.7.1)

points from the origin to the source (or, opposite the direction of the wave propaga-

tion). The following derivations touch only briefly on direct-path acoustic propaga-

tion. For a much more detailed study of ocean acoustics, see [14].

Under common conditions, the components of velocity relate linearly to pressure.

Assuming an inviscid homogeneous fluid, the Navier-Stokes equations become the

Euler equations
∂v

∂t
+ vT∇v = −∇p

ρ
(1.7.2)

where v is fluid velocity, ρ is density, and p is pressure. For acoustic propagation

this equation is linearized, neglecting the convective acceleration term vT∇v. With

a plane wave, the pressure p relates across time t and position x through the sound

speed c:

p(x, t) = f

(
uTx

c
+ t

)
(1.7.3)

∴ ∇p =
u

c
· ∂p
∂t
. (1.7.4)

Substituting Equation 1.7.4 into the Euler equations in 1.7.2 shows that under weak

initial conditions the pressure and fluid velocity obey the plane wave impedance

relation

v = − u

ρc
p. (1.7.5)

Because the geophones are aligned with the coordinate axes, they simply measure the

components of the velocity vector v. The resulting linear relationship between the

pressure and each component of the fluid velocity greatly simplifies the analysis of

vector-sensor array performance.

The linear relationship in Equation 1.7.5 enables expressing the velocity measure-
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Figure 1.7.1: Vector-sensor measurements, scaled to common units

ments in terms of pressure and the source unit vector. Returning to the array of N

vector-sensors, the plane wave measurement of the nth vector-sensor in phasor form

is

ejk0(r
T
nu)

 1

−u/ρc

 (1.7.6)

where rn is the position of the sensor and

k0 ,
2π

λ
(1.7.7)

is the wavenumber for a wavelength λ. The term outside the vector is the wave phase

delay, which factors out because of Equation 1.7.5. Only the gain difference between

the pressure sensors and geophones is important. For convenience, this thesis chooses

a normalization that absorbs that gain difference into the pressure term:

ejk0(r
T
nu)

η
u

 . (1.7.8)

Although this choice of normalization seems arbitrary, it results in simpler expressions

later and is similar to the notation used in [2, 6, 13]. 4 Also note that this choice of

normalization requires a factor of (ρc)−2 when comparing beam estimates in units of

absolute power.

4The η defined here is not exactly the same as the one used in [2, 6, 13].
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The remainder of this thesis uses the gain factor η = 1 in all derivations unless

otherwise stated. In most cases, the results are easily extended to arbitrary η, some-

times by inspection. The choice of η = 1 for analysis has an important practical

motivation involving the trade-off between left/right resolution and white noise array

gain or sensitivity. Although the pressure-sensor often has higher gain (η > 1) for

actual vector-sensor arrays, the array data is easily normalized to common units as

shown in Figure 1.7.1. Normalizing the units produces two results: 1) a slight loss

of array gain because of the increased geophone noise, and 2) an improved ability to

resolve ambiguities. Vector-sensor arrays are generally chosen for their ambiguity res-

olution, so (2) takes precedent. Put another way, using the η = 1 data normalization

strengthens ambiguity resolution at the possible expense of white noise gain.
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Chapter 2

Elements of Vector-Sensor Array

Processing

Any field, no matter how well organized, possesses a set of fundamentals that must

be understood before moving into advanced topics. The field of acoustic vector-

sensor array processing is built from elements common to all array processing and

elements specific to vector-sensor arrays. The source [5] reviews the former; this

chapter introduces some of the latter. Most of the concepts introduced in this chapter

are new to the literature and, although simple, have profound consequences.

2.1 Vector-Sensor Array Beampattern

One of the most fundamental differences between vector-sensor arrays and pressure-

sensor arrays is the structure of the beampattern. Building on the plane wave mea-

surement model provided in Section 1.7, this section provides an expression for the

beampattern of an arbitrary vector-sensor array with arbitrary element weighting. It

then simplifies this expression for the case of a uniform linear vector-sensor array. The

symmetry of the uniform linear array leads to the use of conjugate symmetric weights,

a real beampattern, and a reflection symmetry relating beams in one quadrant to the

other three quadrants.
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2.1.1 General Complex Beampattern Expression

The most general case for a vector-sensor beampattern is an arbitrary array with an

arbitrary, complex element weighting. Beginning with the measurement of a single

vector-sensor in Equation 1.7.8, the beampattern of an N -element vector-sensor array

is the weighted sum

y(Θ) =
N∑

n=1

wH
n vn(Θ) (2.1.1)

where

vn(Θ) , ejk0 r
T
nu(Θ)

 1

u(Θ)

 (2.1.2)

is the measurement of the nth vector-sensor and wn are the weights. Recall from

Section 1.7 that rn is the position of the nth vector-sensor, k0 is the wavenumber,

and u(Θ) is the unit vector directed toward Θ. Without knowledge of any sensor

positions or constraints on the weights, Equation 2.1.1 cannot be simplified further.

It is generally a complex valued expression that is difficult to analyze partly because

the unit vector, u, appears both inside and outside the complex exponential. The

beampattern at any point is a linear combination of the weights, so defining the array

measurement and weight vectors,

v(Θ) ,
[
vT
1 (Θ) vT

2 (Θ) · · · vT
N(Θ)

]T
(2.1.3)

w ,
[
wT

1 wT
2 · · · wT

N

]T
, (2.1.4)

enables writing Equation 2.1.1 as a compact inner product:

y(Θ) = wHv(Θ). (2.1.5)

Sampling the beampattern at a set of M points, {Θ1,Θ2, . . . ,ΘM}, corresponds to

the linear transformation

y∗ = VHw, (2.1.6)
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with

V , [ v(Θ1) v(Θ2) · · · v(ΘM) ] (2.1.7)

y , [ y(Θ1) y(Θ2) · · · y(ΘM) ]T . (2.1.8)

This linear transformation is valid for any arbitrary vector-sensor array; its real coun-

terpart is derived in the next section and forms the foundation of beampattern design

via convex optimization in Chapter 4.

2.1.2 Simplifications Exploiting Symmetry

For a linear vector-sensor array with elements symmetric about the origin, a series of

simplifications to Equation 2.1.1 is possible. These simplifications allow 1) conjugate

symmetry that reduces the number of variables from 8N to 3N and 2) quadrant

symmetry that reduces the design burden by a factor of four. This thesis discusses

signals in the x-y plane, but the results extend easily to the 3-D case. When dealing

with signals in the horizontal plane, the vertical geophone contributes nothing and is

ignored. Because the array is linear and the position and direction vectors are in the

horizontal plane,

k0 r
T
nu(Θ) = dnk0 cosϕ (2.1.9)

where dn is the position of the element along the array. Ignoring the vertical geophone,

the measurement vector of a single vector-sensor is

vn(ϕ) = ejdnk0 cosϕ


1

cosϕ

sinϕ

 . (2.1.10)

Writing each weight vector in terms of magnitude and phase gives

wn ,
[
ane

jαn bne
jβn cne

jγn
]T
, (2.1.11)
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where an, αn, etc. are real. Substituting Equations 2.1.10 and 2.1.11 into Equation

2.1.1 yields

y(ϕ) =
N∑

n=1

ane
j(dnk0 cosϕ−αn)

+ bn cosϕ e
j(dnk0 cosϕ−βn)

+ cn sinϕ e
j(dnk0 cosϕ−γn). (2.1.12)

Because the element spacing is symmetric about the array center, 1) the vectors v(Θ)

are conjugate symmetric and 2) most problems involve only conjugate symmetric

weights (see Appendix A.2). The full-length (conjugate symmetric) weight vector, w,

is fully characterized by a half-length weight vector, w̃. Assuming an even number of

elements, the parameterization is

L , N

2
(2.1.13)

d̃l , dL+l (2.1.14)

w̃l ,
[
ãle

jα̃l b̃le
jβ̃l c̃le

jγ̃l
]T

(2.1.15)

wn =

 w̃n−L n > L

w̃∗
L−n+1 n ≤ L

(2.1.16)

for real variables ãl, α̃l, etc.. The beampattern in Equation 2.1.12 becomes a real

function when the weights are conjugate symmetric:

y(ϕ) =
L∑
l=1

2ãl cos(d̃lk0 cosϕ− α̃l)

+ 2b̃l cos(d̃lk0 cosϕ− β̃l) cosϕ

+ 2c̃l cos(d̃lk0 cosϕ− γ̃l) sinϕ. (2.1.17)

Note the similarity between the derivation above and the steps involved in FIR filter

design; this aspect of the vector-sensor beampattern is explored more in Section 2.3.

36



Using trigonometric identities, Equation 2.1.17 simplifies further:

y(ϕ) = 2
L∑
l=1

ãl cos(d̃lk0 cosϕ) cos α̃l + ãl sin(d̃lk0 cosϕ) sin α̃l

+ b̃l cos(d̃lk0 cosϕ) cos β̃l cosϕ+ b̃l sin(d̃lk0 cosϕ) sin β̃l cosϕ

+ c̃l cos(d̃lk0 cosϕ) cos γ̃l sinϕ+ c̃l sin(d̃lk0 cosϕ) sin γ̃l sinϕ

= 2
L∑
l=1

cos(d̃lk0 cosϕ)
[
ãl cos α̃l + b̃l cos β̃l cosϕ+ c̃l cos γ̃l sinϕ

]
+ sin(d̃lk0 cosϕ)

[
ãl sin α̃l + b̃l sin β̃l cosϕ+ c̃l sin γ̃l sinϕ

]

= 2
L∑
l=1

cos(d̃lk0 cosϕ)
[
ãRl + b̃Rl cosϕ+ c̃Rl sinϕ

]
+ sin(d̃lk0 cosϕ)

[
ãIl + b̃Il cosϕ+ c̃Il sinϕ

]
. (2.1.18)

The last step changes from a magnitude/phase parameterization to a real/imaginary

parameterization, using the superscripts R and I indicate the real and imaginary parts

of the weights. Four aspects of Equation 2.1.18 are worth noting. First, the conjugate

symmetry reduces the number of (real) variables from 6N to 3N . Second, for a linear

vector-sensor array with elements spaced uniformly, d units apart, d̃l = (l−1
2
)d. Third,

the mapping from the reduced variables in Equation 2.1.18 to the full, conjugate

symmetric weight is a linear transformation. Fourth, the derivation of Equation

2.1.18 assumes even N but is easily modified for odd N .

The beampattern in Equation 2.1.18 is a simple inner product, the real counterpart

to Equation 2.1.5. The single-sensor weight and measurement terms

vl(ϕ) , 2 ·

 cos(d̃lk0 cosϕ)

sin(d̃lk0 cosϕ)

⊗


1

cosϕ

sinϕ

 (2.1.19)

wl ,
[
ãRl b̃Rl c̃Rl ãIl b̃Il c̃Il

]T
(2.1.20)

are the real counterparts to Equations 2.1.10 and 2.1.11. Concatenating these terms
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yields the full array vectors

v(ϕ) ,
[
vT
1 (ϕ) vT

2 (ϕ) · · · vT
L(ϕ)

]T
(2.1.21)

w ,
[
wT

1 wT
2 · · · wT

L

]T
, (2.1.22)

which are the real counterparts to Equations 2.1.3 and 2.1.4. Writing Equation 2.1.18

as a real inner product gives

y(ϕ) = wTv(ϕ) (2.1.23)

y = V
T
w, (2.1.24)

the real counterparts to Equation 2.1.5 and 2.1.6, respectively.

Although the beampattern in Equation 2.1.18 cannot be simplified further without

restrictive assumptions, there is another way to exploit the symmetry of the array.

The even/odd symmetry of the cosine/sine functions allows any beampattern to be

“mirrored” easily to any of the four quadrants. A given beampattern is mirrored

across the array axis by changing

c̃Rl 7→ −c̃Rl
c̃Il 7→ −c̃Il

. (2.1.25)

This transformation negates the cross-axial component and yields the same response

as the original weight on the opposite side of the array. A similar transformation

allows cross-axial mirroring, or mirroring from forward to aft:

ãIl 7→ −ãIl
b̃Rl 7→ −b̃Rl
c̃Il 7→ −c̃Il

. (2.1.26)

In this case, the sign changes are a combination of conjugation and negation of the

axial component. Performing both axial and cross-axial mirroring, one beam is mir-
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Figure 2.1.1: A VSA beampattern is easily “mirrored” to any quadrant

rored to any of the four quadrants. Figure 2.1.1 provides an example beampattern

that is mirrored from one quadrant to the other three. The beampattern shown is

for a uniform linear vector-sensor array with N = 10, ϕ0 = −π/4, and f = 5/7fd.

In addition to being linear transformations, the mirroring operations only involve

sign changes. Mirroring allows efficient conventional beamforming because a single

quadrant of partial sums from each sensor type forms a full set of beams spanning all

quadrants with only sign changes. Mirroring also reduces the effort required to design

a set of beams by a factor of four.

2.2 Robustness and the Sensitivity Factor

The sensor and propagation models used in array processing often contain appreciable

errors, or “mismatch.” A significant source of mismatch is imperfection in the array

itself: the exact gains, phases, positions, and orientations of the sensors are unknown.

The “sensitivity factor” of a weight vector quantifies its robustness to these modeling
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errors. The (normalized) sensitivity factor of a VSA weight vector, w, is

ξ , vH
0 v0 wHw

= 2N wHw. (2.2.1)

For weights subject to a unity gain constraint, the Cauchy-Schwarz inequality implies

ξ ≥ 1. The sensitivity factor fully characterizes the deviation of a pressure-sensor

array beampattern under Gaussian errors (see [5, §2.6.3]). The relationship is more

complex for vector-sensor arrays ([15]), but ξ remains an effective surrogate measure

for the sensitivity of a weight vector to mismatch. Robustness generally decreases as ξ

increases, so constraining ξ to be small provides robustness in adaptive beamforming

[10]. Section 4.3.3 applies a similar technique to fixed weight design.

2.3 Properties of Linear Vector-Sensor Arrays

Because a pressure-sensor array is a subset of any vector-sensor array, it seems possible

that many useful properties of linear pressure-sensor arrays extend to vector-sensor

arrays. However, the additional complexity of vector-sensors makes it necessary to

re-examine these properties because many require modification or do not apply.

2.3.1 Local Fourier Transform Property

One useful property of linear pressure-sensor arrays is that the beampattern is simply

the discrete Fourier transform of the weights. This relationship enables using Fourier

transform properties and the tools of FIR filtering in design and analysis. The first

entry in Equation 2.1.10, corresponding to the pressure-sensor, is the complex expo-

nential of a Fourier transform vector. For the other components, however, the Fourier

transform relationship does not hold because of the sinϕ and cosϕ terms outside the

exponential.

Although the exact Fourier transform relationship is not valid for vector-sensor

arrays, a useful “local” Fourier transform property exists. A small region around any
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nominal point in a linear VSA beampattern behaves like a Fourier transform. The

gain of the directional sensors is approximately constant around the nominal angle.

Treating the directional sensors as constant introduces some error, ∆v(ϕ), into the

array manifold vectors. The error in the resulting beampattern is

|∆y(ϕ)| =
∣∣wH [∆v(ϕ)]

∣∣
≤ |w| |∆v(ϕ)|. (2.3.1)

The bound in Equation 2.3.1 arises from the Cauchy-Schwarz inequality and is not

necessarily tight. If the sensitivity factor is bounded, ξ ≤ α2, the magnitude of the

weight is bounded, |w| ≤ α/
√
2N . The error in the manifold vector comes only from

errors in the directional terms in Equation 2.1.18:

|∆v(ϕ)|2 = 4
L∑
l=1

cos2(d̃lk0 cosϕ)(∆ cosϕ)2 + cos2(d̃lk0 cosϕ)(∆ sinϕ)2

+ sin2(d̃lk0 cosϕ)(∆ cosϕ)2 + sin2(d̃lk0 cosϕ)(∆ sinϕ)2

= 2N · [(∆ cosϕ)2 + (∆ sinϕ)2]. (2.3.2)

Substituting the bound on |w| and the expression for |∆v(ϕ)| into Equation 2.3.1

gives

|∆y(ϕ)| ≤ α√
2N

√
2N · [(∆ cosϕ)2 + (∆ sinϕ)2]

= 2α sin

(
∆ϕ

2

)
(2.3.3)

≤ α · (∆ϕ). (2.3.4)

The last inequality is tight near the nominal angle. Equations 2.3.3 and 2.3.4 are

useful for two reasons. First, they prove that in a small region (∆ϕ much less than

a beamwidth) around any point, the beampattern approximately equals a weighted
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Fourier transform. Because the pressure-sensor beampattern is a Fourier transform,

the vector-sensor beampattern, around a given angle, behaves like a pressure-sensor

beampattern. Second, because the deviation of the pressure-sensor beampattern be-

tween two sample points is bounded, Equations 2.3.3 and 2.3.4 prove that the devi-

ation of the vector-sensor beampattern between two sample points is also bounded.

In Chapter 4, this bounded deviation allows a vector-sensor beampattern to be ap-

proximated by a finite set of points with negligible error.

2.3.2 No Modulation or “Steering” Property

The Fourier transform relationship between the weights and the beampattern for a

linear pressure-sensor array has many useful implications. One such implication is

that modulating the phase of the weights “steers” an arbitrary beampattern (viewed

in cosine-space) to any angle. The steered beampattern and the original beampattern

have the same shape in cosine-space. In practice, the steering property means that

only one real weight – a taper – designed at array broadside is sufficient to form

identical beams anywhere.

As useful as this property is for linear pressure-sensor arrays, it does not apply to

linear vector-sensor arrays. Like the Fourier transform relationship, the modulation

property takes a modified, weakened form with vector-sensor arrays. Separating the

vector-sensor measurements into phase and gain components reveals that 1) the phase

component exhibits a modulation property in cosine-space like a linear pressure-

sensor array, and 2) the gain component is rotated in angle-space by Euler rotations.

Although each rotation is a linear transformation of the weight (or equivalently, the

data), the gain and phase components cannot be separated by a linear system. Thus,

no linear transformation steers a vector-sensor array beampattern to an arbitrary

direction. Although the lack of a steering property means each beam must be designed

separately, the “mirroring” techniques illustrated in Figure 2.1.1 provide a useful way

to reduce the design burden.
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2.3.3 Non-Polynomial Beampattern

Another useful uniform, linear, PSA result associated with the Fourier transform

property is that the beampattern is a polynomial function of the variable

z = cos(dk0 cosϕ). This well-known result is easily seen from Equation 2.1.18 by

removing the directional elements, assuming real weights, and applying a Chebyshev

polynomial relation to each nested cosine term. The polynomial form of the uniform,

linear, PSA beampattern forms the foundation of many tools including Chebyshev,

Taylor, and Villeneuve tapers and the Parks-McClellan algorithm [5, §3.4 and 3.6].

Such tools apply polynomial factorizations or approximations to the beampattern in

z-space.

Unfortunately, the vector-sensor array beampattern does not have a similar poly-

nomial form. For a polynomial beampattern representation to be useful, it must be an

unconstrained polynomial in some real function z(ϕ). The following discussion sup-

presses the dependence of z on azimuth angle, ϕ, when convenient. The single-sensor

case illustrates why such a representation does not exist for vector-sensor arrays. Two

beampatterns possible with a single vector-sensor are those given by the axial and

cross-axial directional sensors:

y0(ϕ) = cosϕ (2.3.5)

y1(ϕ) = sinϕ. (2.3.6)

Assume that an unconstrained polynomial representation does exist for some function

z. Because a 2-D vector-sensor beampattern involves three weights, both beampat-

terns must correspond to unconstrained, quadratic polynomials in z, that is,

cosϕ = a0z
2 + b0z + c0 (2.3.7)

sinϕ = a1z
2 + b1z + c1 (2.3.8)

for some real coefficients a0, a1, b0, etc. Breaking the first equation into the a0 ̸= 0

and a0 = 0 (quadratic and linear) cases and solving, Equation 2.3.7 constrains the
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function z to lie in one of the two sets of functions

Q0 =

−b0 + s(ϕ)
√
b20 − 4a0(c0 − cosϕ)

2a0

∣∣∣∣∣ a0 ̸= 0, s2(ϕ) = 1,

b20 − 4a0c0 ≥ |4a0|

 (2.3.9)

L0 =

{
cosϕ− c0

b0

∣∣∣∣∣ a0 = 0

}
. (2.3.10)

The sign function s(ϕ) takes only values of ±1. To reconstruct both beampatterns,

any function is further constrained by Equation 2.3.8. The functions in L0 are even

and cannot construct the odd sine function via the composition in Equation 2.3.8.

For any function in Q0 to convey sign information about ϕ, the sign function s(ϕ)

must be odd. The form of z is thus restricted to a constant (even) part plus the odd

part involving s(ϕ). The even part of the z function must become identically zero

when substituted into Equation 2.3.8, leaving the requirement that

sinϕ ∝ s(ϕ)
√
1 + α cosϕ (2.3.11)

for some real coefficient α. For this to be true and continuous at the origin, α = −1

and

| sinϕ| ∝
√

1− cosϕ. (2.3.12)

Because this is clearly not true, no function in Q0 satisfies Equations 2.3.8, i.e. no z

function satisfies both Equations 2.3.7 and 2.3.8. Thus, no unconstrained polynomial

form exists for the single-sensor beampatterns in Equations 2.3.5 and 2.3.6. Further-

more, because these beampatterns are possible with any vector-sensor array, VSA

beampatterns generally do not have an unconstrained polynomial representation.

Although having a non-polynomial beampattern nullifies the polynomial-based

techniques listed above, it does not mean equivalent results are impossible with acous-

tic vector-sensor arrays. As Chapter 4 shows, equivalent beampatterns are achievable

with techniques not based on polynomial functions.
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2.3.4 Weights With Nonlinear Element-Wise Phase

Weights exhibiting linear element-wise phase are another useful implication of the

Fourier transform property of linear pressure-sensor arrays. The modulation property

makes real weights designed at array broadside sufficient for use at any cosine angle.

Real weights, when modulated to another cosine angle, become complex weights with

a linear element-wise phase progression.

Because every replica vector on the linear vector-sensor array manifold exhibits

a linear element-wise phase progression, it seems that the weights should necessarily

exhibit this property as well. To the contrary, Appendix A.2 suggests that vector-

sensor weights need not have linear element-wise phase. Chapter 4 proves the exis-

tence of such weights by example: many of the custom-designed weights have nonlin-

ear element-wise phase progressions. Although weights with nonlinear element-wise

phase stray from the concept of “spatial tapering,” they often perform well with

vector-sensor arrays. Depending on the design problem, forcing VSA weights to have

linear element-wise phase may sacrifice significant performance.

2.3.5 Nonlinear Physical Constraints

A final property of vector-sensor arrays that deserves clarification is the nonlinearity

of the physical constraints. The four measurements of a single vector-sensor are

somewhat redundant. The omnidirectional sensor measures the pressure field; the

directional sensors measure the gradient of the pressure field.

Although it seems that this redundancy should be easy to exploit, its nonlinear

nature leads to complications. Even in the simplest case of the single plane-wave

source, the measurements are related quadratically by power. For a single plane-

wave source, the sum of the power measured by the directional sensors equals the

total power measured by the omnidirectional sensor. With multiple sources, the

relationship becomes even more complex and nonlinear. Full exploitation of such

physical constraints requires nonlinear techniques such as [12].
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2.4 Spatially Spread Sources with Linear VSAs

It is common scientific practice to simplify problems by discretizing distributions:

point masses in physics, impulses and pure sinusoids in signal processing, and point

sources in acoustics. Although these approximations are often extremely accurate,

they are sometimes misleading. Modeling spatially distributed sounds as point sources

occasionally predicts performance that is unachievable in practice. To avoid such

a pitfall, this section derives integrals and approximations for 2-D spatially spread

sources as observed by a linear vector-sensor array. The 2-D vector-sensor array is

modeled for simplicity, but extending these results to 3-D is discussed where applica-

ble. Assuming all spatial processes are zero-mean Gaussian, the quantity of interest

is most generally the covariance between two sensors. Because a 2-D vector-sensor

measures three quantities, this covariance is size 3× 3 for a single pair and 3N × 3N

for an array of N sensors.

Figure 2.4.1 provides a notional comparison of point and spread sources. The

point source corresponds to the impulsive spatial distribution denoted by the gray

arrow in the top plot. The response of a vector-sensor array to this point source gives

the familiar beampattern shown in the bottom plot. The spatially spread source, by

contrast, corresponds to a uniform spatial distribution in cosine-space on the star-

board side of the array. The array response to both distributions exhibits sidelobe

structure because of the finite aperture and “backlobe” structure because of the pres-

sure ambiguity. The spread source integrates power over a range of angles, “filling-in”

nulls and widening the array response. The spatial spreading in Figure 2.4.1 is exag-

gerated to illustrate its effects on the array response; spatial distributions are often

more concentrated than the figure suggests.

2.4.1 General Integral Form

Although spatially spread sources are unexplored with linear vector-sensor arrays,

they are common with linear pressure-sensor arrays. Because a pressure-sensor array

is a subset of a vector-sensor array, this thesis carefully chooses a spatial spread-
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Figure 2.4.1: Notional response of a VSA to point and spread sources
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ing model consistent with the decades of vetted pressure-sensor work. This section

extends the model presented in [5, §8.9], analyzing an azimuthal distribution of un-

correlated, zero-mean, Gaussian sources. The distribution is specified in terms of

azimuthal cosine (rather than angle), keeping with convention, encouraging closed-

form expressions, and restricting the distribution to one side of the array. The results

are easily extended to two-sided distributions by expressing any two-sided distribu-

tion as the sum of two, one-sided distributions. Because the integrated sources are

uncorrelated, the covariance between two sensors is given by the single integral

r01 =

∫ +1

−1

ρ(u)v0(u)v
∗
1(u) du (2.4.1)

where u = cosϕ is the azimuthal cosine, ρ(u) is the spatial distribution of power, and

vi(u) are the responses of each sensor to a signal at u. When the two sensors are part

of a linear vector-sensor array, each response contains a gain term depending only on

direction and a phase term depending on both position and direction. If the sensor

position along the array axis is x and the gain of each sensor is gi(u), the response is

vi(u, x) , gi(u)e
jk0xu. (2.4.2)

The gain terms for the geophone elements are simply the azimuthal sine and cosine

expressed in terms of u. Using subscripts o, x, y for the omnidirectional, inline, and

cross-axial sensors, these gain terms are

go(u) = 1 (2.4.3)

gx(u) = u (2.4.4)

gy(u) = ±
√
1− u2. (2.4.5)

The sign of gy(u) changes depending on the side of the array. The remainder of this

section assumes gy(u) is positive, corresponding to a distribution on the port side of
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the array. Substituting Equation 2.4.2 into Equation 2.4.1 gives

r(x0, x1) =

∫ +1

−1

ρ(u)g0(u)g
∗
1(u)e

jk0x0ue−jk0x1u du

=

∫ +1

−1

ρ(u)g0(u)g
∗
1(u)e

jk0(x0−x1)u du (2.4.6)

Equation 2.4.6 is easily written in terms of the distance between the sensors, δ , x0 − x1,

and the composite gain function of the sensor pair, G01(u) , g0(u)g
∗
1(u):

r(δ) ,
∫ +1

−1

ρ(u)G01(u)e
jk0δu du. (2.4.7)

Extending the covariance function, r(δ), to 3-D vector-sensor arrays requires no addi-

tional work as the elevation terms fall outside the integral. The integral in Equation

2.4.7 is the windowed Fourier transform of ρ(u)G01(u), so a closed form seems possi-

ble. Unfortunately, the number and variety of gain functions make obtaining closed

forms for all integrals very difficult with a given spatial distribution. The exact

integral form in Equation 2.4.7 does, however, admit several useful and insightful

approximations.

2.4.2 Constant Gain Approximation

The simplest and most useful approximation to Equation 2.4.7 arises from the smooth

nature of the gain functions and the small width of typical spatial spreading. The

standard deviation of the distribution is usually small (less than 5% of cosine-space)

when modeling spatially spread sources. Over such a small range of u, the gain func-

tions are well-approximated as constant. This constant gain approximation yields a

simple but powerful model for vector-sensor spatial spreading using covariance matrix

tapers.

When the sensor gains are approximated as constant, incorporating spatial spread-

ing simply modulates the existing covariance function. Without loss of generality,
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assume the spatial distribution has mean u0 and is a shifted version of the zero-mean

distribution ρ0(u). Applying the constant gain approximation to Equation 2.4.7 at

u0 allows the gain terms to be taken outside the integral:

r(δ) ≈ g0(u0)g1(u0)

∫ +1

−1

ρ0(u− u0)e
jk0δu du. (2.4.8)

Equation 2.4.8 is simplified in two steps. The first step is extending the range of

the distribution to include the entire real line. The extended region u /∈ [−1,+1]

is referred to as “virtual” space because it does not correspond to real azimuthal

angles. It does, however, provide a natural extension for spatially spread sources at

array endfire, where the distribution extends into virtual space. The second step is

utilizing a Fourier transform property to simplify the integral. Translation in the

u domain corresponds to a phase shift in the δ domain. Applying both steps to

Equation 2.4.8 gives

r(δ) ≈ g0(u0)g1(u0)

∫ +∞

−∞
ρ0(u− u0)e

jk0δu du

= g0(u0)g1(u0)e
jk0δu0 · P0(k0δ), (2.4.9)

where

P0(k0δ) ,
∫ +∞

−∞
ρ0(u)e

jk0δu du (2.4.10)

is the Fourier transform of the distribution ρ0(u). Equation 2.4.9 is divided into two

terms. The first term is the original covariance function without spatial spreading.

The effects of spatial spreading appear as a modulation by the second term, P0(k0δ).

This modulating term, or “spread function,” is independent of the source location

given by the mean, u0. Because it is a Fourier integral, the spread function often

has a closed form. Two common and tractable choices for ρ0(u) are the uniform and

Gaussian distributions. These distributions and their associated spread functions are

summarized in the table
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ρ0(u) P0(k0δ)

Uniform

 1/(2σu
√
3) |u| ≤ σu

√
3

0 otherwise
sinc(k0δσu

√
3)

Gaussian
1√
2πσ2

u

exp

{
− u2

2σ2
u

}
exp{−(k0δσu)

2/2}

,

where sinc(·) is the unnormalized sinc function and σu is the standard deviation of

the distribution in cosine-space. Equation 2.4.9 reveals that 1) the effects of spa-

tial spreading are well-approximated by modulation and 2) the modulating spread

function does not depend on source location.

For an array of sensors, the constant gain approximation enables modeling spatial

spreading with covariance matrix tapers. Each entry of the covariance matrix (for

a single source) is Equation 2.4.9 evaluated at the correct inter-element distance.

Separating the terms of Equation 2.4.9 reveals that modulating the point source

covariance matrix, R, approximates the spatially spread covariance matrix, Rs:

Rs ≈ R⊙P. (2.4.11)

The modulation matrix, P, is given by the spread function and does not depend on

the contents of R. By linearity, any covariance matrix that is the sum of a (possibly

infinite) number of point sources is approximately “spread” by applying the same

modulation matrix. The matrix P is often referred to as a “covariance matrix taper”

because of its similarity to temporal or spatial tapering. The three components of

each vector-sensor are co-located, so the covariance matrix taper for a vector-sensor

is simply an extension of the taper for omnidirectional sensor,

P2D-VSA = PPSA ⊗ 13×3. (2.4.12)

For a 3-D VSA, the 3× 3 matrix of ones is replaced by a 4× 4 matrix of ones.
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Figure 2.4.2 reveals how accurately the constant gain approximation models uni-

form spatial spreading. The figure illustrates response patterns for an N = 10 ele-

ment, 2-D vector-sensor array at its design frequency. As shown in the figure, both

the constant gain approximation and the exact integral expand the point source and

“fill-in” the nulls in the response pattern. For a typical case with reasonably small

spreading away from array endfire, the approximation is almost indistinguishable from

the exact integral. In a more extreme case with large spreading near array endfire,

the errors introduced by the approximation are minor but visible. The approximation

is less accurate at endfire where the sensor gains may change rapidly with u. If the

“extreme” case were moved any closer to endfire, spreading would extend into virtual

space; the approximation would be useful but the exact integral would be undefined.

2.4.3 Second-Order Gain Approximation

The previous section applies a zeroth-order Taylor series approximation to the sensor

gains, i.e. the gains are approximated as constant. This section explores higher-

order approximations and develops a second-order approximation for uniform spatial

spreading. Higher-order approximations become increasingly accurate at the expense

of analytical simplicity. Any approximation greater than zero-order loses the simplic-

ity and power of the covariance matrix taper interpretation.

A closed form expression is first derived for any polynomial gain function. Con-

sider the nth-order gain function

Gn(u) , (u− u0)
n, (2.4.13)

which is a simple monomial in ũ , u− u0. Extending the integral into virtual space

transforms the covariance function (Equation 2.4.7) into

rn(δ) ,
∫ +∞

−∞
Gn(u)ρ(u)e

jk0δu du

=

∫ +∞

−∞
(u− u0)

n ρ0(u− u0)e
jk0δu du. (2.4.14)
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Figure 2.4.2: Constant gain approximation to uniform spatial spreading
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Equation 2.4.14 is an inverse Fourier transform, so 1) translation in one domain

corresponds to a phase shift in the other and 2) modulation by a monomial in one

domain corresponds to differentiation in the other. Applied in sequence to Equation

2.4.14, these properties yield the closed form

rn(δ) = ejk0δu0

∫ +∞

−∞
ũnρ0(ũ)e

jk0δũ dũ

= ejk0δu0j−nP
(n)
0 (k0δ), (2.4.15)

where P
(n)
0 is the nth derivative of P0 with respect to its argument. Any gain

function that is an nth-order polynomial is expressible as a linear combination of

G0(u), G1(u), . . . , Gn(u). It therefore has a closed form covariance function as a

linear combination of r0(δ), r1(δ), . . . , rn(δ).

For acoustic vector-sensors, a second-order Taylor series is a convenient approx-

imation to the gain functions because most terms are exact. Six composite gain

functions must be integrated to fill each 3× 3 block in the covariance matrix:

Goo(u) = 1 (2.4.16)

Gox(u) = u (2.4.17)

Gxx(u) = u2 (2.4.18)

Gyy(u) = 1− u2 (2.4.19)

Goy(u) =
√
1− u2 (2.4.20)

Gxy(u) = u
√
1− u2. (2.4.21)

A second-order Taylor series is exact for the first four terms. Over a small region of

u, the last two terms are well-approximated by second-order expansions about u0,

Goy(u) ≈
√

1− u20 −
u0√
1− u20

(u− u0)−
1/2

(1− u20)
3/2

(u− u0)
2 (2.4.22)

Gxy(u) ≈ u0

√
1− u20 +

1− 2u20√
1− u20

(u− u0) +
u0(2u

2
0 − 3)

2(1− u20)
3/2

(u− u0)
2. (2.4.23)
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Obtaining closed form covariance functions for this second-order approximation re-

quires the derivatives P
(n)
0 (z) for n = 1, 2. These derivatives are easily computed

for many distributions, but only uniform spreading is included here. For uniform

spreading of width ∆ , σu
√
3, Section 2.4.2 gives

P0(z) = j0(z∆). (2.4.24)

The zeroth-order spherical Bessel function, j0(·), is equivalent to the unnormalized

sinc function. Derivatives of the spherical Bessel functions are related through the

following recursion [16, 10.1.20]:

d

dz
jn(z) =

n

2n+ 1
jn−1(z)−

n+ 1

2n+ 1
jn+1(z). (2.4.25)

This recursion enables writing each P
(n)
0 (z) as a linear combination of the first n

spherical Bessel functions. Applying Equation 2.4.25 gives the first two derivatives,

j−1P
(1)
0 (z) = j−1 d

dz
j0(z∆)

= j∆j1(z∆) (2.4.26)

j−2P
(2)
0 (z) = j−2 d

2

dz2
j0(z∆)

= j−1 d

dz

[
j∆j1(z∆)

]
= ∆2

[
1

3
j0(z∆)− 2

3
j2(z∆)

]
. (2.4.27)

Substituting these derivatives into Equation 2.4.15 yields

r0(δ) = ejk0δu0 · j0(k0δ∆) (2.4.28)

r1(δ) = ejk0δu0 · j∆j1(k0δ∆) (2.4.29)

r2(δ) = ejk0δu0 ·∆2

[
1

3
j0(k0δ∆)− 2

3
j2(k0δ∆)

]
. (2.4.30)
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The gain functions in Equations 2.4.16-2.4.19, 2.4.22, and 2.4.23 are second-order

polynomials, so their covariance functions require only the first three rn(δ):

roo(δ) = r0(δ) (2.4.31)

rox(δ) = u0r0(δ) + r1(δ) (2.4.32)

rxx(δ) = u20r0(δ) + 2u0r1(δ) + r2(δ) (2.4.33)

ryy(δ) = (1− u20)r0(δ)− 2u0r1(δ)− r2(δ) (2.4.34)

roy(δ) ≈
√
1− u20 r0(δ)−

u0√
1− u20

r1(δ)−
1/2

(1− u20)
3/2
r2(δ) (2.4.35)

rxy(δ) ≈ u0

√
1− u20 r0(δ) +

1− 2u20√
1− u20

r1(δ) +
u0(2u

2
0 − 3)

2(1− u20)
3/2
r2(δ). (2.4.36)

Although it is not done here, substituting rn(δ) into these equations yields closed

forms in terms of the first three spherical Bessel functions.

The covariance functions obtained with the second-order approximation are more

accurate but more complex than those obtained with the constant gain approxima-

tion. The complexity of the second-order approximation is evident in the lengthy

covariance functions and the coupling of spreading width, ∆, and mean, u0. This

coupling makes a covariance matrix taper interpretation impossible and impedes anal-

ysis. The accuracy of the second-order approximation is shown in Figure 2.4.3 for the

same cases as Figure 2.4.2. Comparing the two figures reveals that the second-order

approximation introduces little error, even with large spreading at endfire where the

Taylor series is less accurate (see Section 2.4.2). For the purposes of this document,

the constant gain approximation is chosen hereafter for its simplicity, intuition, and

reasonable accuracy.
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Figure 2.4.3: Second-order approximation to uniform spatial spreading
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Chapter 3

Performance Limits of

Vector-Sensor Arrays

Section 1.4.1 demonstrates that the bounds commonly employed in pressure-sensor

array processing do not necessarily reflect the improvements offered by vector-sensors.

To understand this discrepancy and motivate alternative bounds, the following para-

graphs formalize the process by which existing bounds arose.

The first step in establishing a bound is identifying the relevant performance

dimension. This performance dimension is often revealed by the engineering problem

itself. Pressure-sensor arrays developed to localize sound, so a natural performance

dimension is angular resolution. Viewed another way, arrays of sensors are employed

to amplify sound from a specific direction, so another popular performance dimension

is array gain.

The second step toward a useful bound is choosing a scenario or model that accu-

rately represents the given performance dimension. Like a good scientific experiment,

the scenario should isolate the performance dimension as a dependent variable and

clearly define the independent variables. Useful scenarios often fall into two categories:

classification problems and estimation problems. For localization, the standard sce-

nario is estimating the direction-of-arrival of signals in noise; for gain, it is detecting

the presence of signals in noise.
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The third and final step is deciding the type of bound and applying it to the

chosen scenario. This decision depends on the goals of the researcher, the complexity

of the problem, the required strength or “tightness” of the bound, and the scenario

itself. Each bound has an analytical complexity associated with the derivation and a

computational complexity associated with its numerical evaluation.

The three-step process outlined above also helps establish useful performance

bounds for vector-sensor array processing. For the first step, Section 1.3 illustrates

that the relevant performance dimension for vector-sensor arrays is resolution of pres-

sure ambiguities. Sections 3.1 and 3.2 proceed through the second and third steps

to establish both a classification-based bound and an estimation-based bound. The

objective of this chapter is not an exhaustive treatise on vector-sensor performance

bounds; the objective is motivating the study of non-traditional problems that better

illustrate vector-sensor capabilities.

The key contribution of this chapter is a new theoretical foundation for vector-

sensor performance. The two performance bounds developed in this chapter are

distinct, but the conclusion is the same: linear vector-sensor arrays are theoretically

able to resolve left/right ambiguities very well from almost any direction, at any

frequency, and with any number of elements. The performance also seems to be

robust, not relying on point nulls or “supergain.”

3.1 Novel Classification-Based Bound

One useful scenario that highlights the vector-sensor array’s ability to resolve pressure

ambiguities is illustrated in Figure 3.1.1. In this scenario, a narrowband sound source

is positioned at one of two possible locations relative to a vector-sensor array. Both

locations are chosen to yield identical pressure measurements, e.g. the left and right

sides of a uniform linear array. Because these locations are ambiguous to a pressure-

sensor array, this model isolates the vector-sensor performance. Under this setup, the

array measures K independent observations of the source corrupted by additive noise
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Figure 3.1.1: Example right/left (binary) classification scenario

and/or interference. Each observation, x, is given by

x = xs + xn (3.1.1)

where xs and xn are the signal and noise measurements, respectively. To simplify

expressions, the observation column vectors are horizontally concatenated into the

4N ×K matrix X, which is also used to form the sample covariance matrix R̂:

X =
[
x1 x2 · · · xK

]
(3.1.2)

R̂ =
1

K
·XXH . (3.1.3)

The source is complex zero-mean Gaussian with known power σ2
s ; the noise is complex

zero-mean Gaussian with known covariance E{xnx
H
n } = Rn. The two hypotheses,

H0 and H1, have respective prior probabilities π0 and π1. The source replica vector

is either v0 or v1, respectively.

The above scenario is a binary hypothesis test because there are only two classes.
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For binary hypotheses, the log-likelihood ratio test

lnΛ(X) = ln pX|H(X|H1)− ln pX|H(X|H0)

‘H1’

≷
‘H0’

ln
π0
π1

(3.1.4)

minimizes, and thus bounds, the probability of error. Although this is a binary

hypothesis test, it is not the standard detection problem because there is no null

hypothesis in which the source is absent.

3.1.1 Derivation

Having formally stated the scenario and chosen the type of bound, the task is now to

derive an expression for the minimum probability of error. The procedure follows close

to [17], but modified here for the complex distributions and matrix measurements.

The derivation is in four steps: 1) forming the log-likelihood ratio test, 2) establishing

the characteristic functions of the test statistic under both hypotheses, 3) evaluat-

ing the cumulative distribution functions from the characteristic functions, and 4)

expressing the minimum probability of error in terms of the cumulative distribution

functions.

The first step is deriving an expression for the log-likelihood ratio test. Under

hypothesis Hi, i ∈ {0, 1}, the data matrix, X, is zero-mean complex Gaussian with

known covariance matrix

Ri = σ2
sviv

H
i +Rn. (3.1.5)

The probability density for X under Hi is a function of the sample covariance matrix

only,

pR̂|H(R̂|Hi) = |πRi|
−K · exp

[
−Ktr(R−1

i R̂)
]

(3.1.6)

where | · | denotes the matrix determinant. The log-likelihood function under Hi is

then

ln pR̂|H(R̂|Hi) = −K ln |πRi| −Ktr(R−1
i R̂), (3.1.7)
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resulting in the log-likelihood ratio

lnΛ(R̂) = K
[
− ln |πR1| − tr(R−1

1 R̂) + ln |πR0|+ tr(R−1
0 R̂)

]
= K ·

{
ln

|R0|
|R1|

+ tr
[
(R−1

0 −R−1
1 )R̂

]}
. (3.1.8)

Substituting this expression into Equation 3.1.4 yields the log-likelihood ratio test

K ·
{
ln

|R0|
|R1|

+ tr
[
(R−1

0 −R−1
1 )R̂

]} ‘H1’

≷
‘H0’

ln
π0
π1

K · tr
[
(R−1

0 −R−1
1 )R̂

] ‘H1’

≷
‘H0’

ln
π0
π1

−K · ln |R0|
|R1|

. (3.1.9)

The test is written more compactly after defining a few terms:

η , ln
π0
π1

−K · ln |R0|
|R1|

(3.1.10)

Q , R−1
0 −R−1

1 (3.1.11)

f(R̂) , K · tr
[
QR̂

]
(3.1.12)

f(R̂)

‘H1’

≷
‘H0’

η. (3.1.13)

In this form, the scalar function f(R̂) is the test statistic and η is the threshold.

The second step in the derivation finds the characteristic function of the test

statistic under each hypothesis. The characteristic function, ϕi(·), of the test statistic

under hypothesis Hi is given by the Fourier transform,

ϕi(ω) = E
{
e−jωf(R̂) | Hi

}
=

∫
|πRi|

−K · exp
{
−Ktr

[
R−1

i R̂
] }

· exp
{
−jω Ktr

[
QR̂

]}
dX

=

∫
|πRi|

−K · exp
{
−Ktr

[(
R−1

i + jωQ
)
R̂
]}

dX. (3.1.14)
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To find a closed form for this integral, the exponential involving R̂ is converted into

the form of a complex Gaussian density (Equation 3.1.6). Defining the covariance

matrix

Σ ,
(
R−1

i + jωQ
)−1

, (3.1.15)

the determinant becomes

|πRi| =
∣∣π (I+ jωRiQ) (I+ jωRiQ)−1Ri

∣∣
= |π (I+ jωRiQ)Σ|

= |I+ jωRiQ| · |πΣ|. (3.1.16)

Incorporating this result into the integral, Equation 3.1.14, obtains a closed form for

the characteristic function:

ϕi(ω) =

∫
|I+ jωRiQ|−K · |πΣ|−K exp

{
−Ktr

[
Σ−1R̂

]}
dX

= |I+ jωRiQ|−K ·
∫

|πΣ|−K exp
{
−Ktr

[
Σ−1R̂

]}
dX

= |I+ jωRiQ|−K . (3.1.17)

The characteristic function is now in closed form, but its use is still limited because

each evaluation involves the determinant of a potentially large matrix. Thankfully,

evaluating the determinant under both hypotheses is simplified through the use of a

generalized eigenvalue decomposition. Writing out the characteristic functions under

both hypotheses gives

ϕ1(ω) =
∣∣I+ jωR1(R

−1
0 −R−1

1 )
∣∣−K

=
∣∣I+ jω(R1R

−1
0 − I)

∣∣−K
(3.1.18)

ϕ0(ω) =
∣∣I+ jωR0(R

−1
0 −R−1

1 )
∣∣−K

=
∣∣I+ jω(I−R0R

−1
1 )

∣∣−K

=
∣∣I+ jω[I− (R1R

−1
0 )−1]

∣∣−K
. (3.1.19)
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Recalling that the determinant of a matrix is the product of its eigenvalues, both

characteristic functions are expressible in terms of λn, the eigenvalues of R1R
−1
0 :

ϕ1(ω) =

[∏
n

1 + jω(λn − 1)

]−K

(3.1.20)

ϕ0(ω) =

[∏
n

1 + jω(1− 1/λn)

]−K

. (3.1.21)

These λn are also known as the “generalized eigenvalues” of the pair (R1,R0). Equa-

tions 3.1.20 and 3.1.21 allow both characteristic functions to be evaluated easily from

a shared eigenvalue decomposition.

The third step in deriving a bound on the probability of error is evaluating the

cumulative distribution functions from their associated characteristic functions. The

cumulative distribution function of the test statistic, f(R̂), is related to the charac-

teristic function through the integral

P
{
f(R̂) < η|Hi

}
=

1

2
− 1

π

∫ ∞

0

1

ω
Im

{
ϕi(ω)e

jωη
}
dω (3.1.22)

as given in [18]. Numerical evaluation of the integral in Equation 3.1.22 is complicated

by the infinite upper limit. Equations 3.1.20 and 3.1.21, however, decrease rapidly

with ω. With L non-unity eigenvalues, the integrand decreases asymptotically like

w−(LK+1). Such a fast decay means that evaluating the integral in Equation 3.1.22

to high precision only requires a finite and reasonably small upper limit. Alterna-

tive approaches such as partial fraction expansion and saddle-point methods yield

higher precision, especially in the tails of the distribution, but are unnecessary for

this problem.1

The trivial last step in the derivation is expressing the probability of error in

terms of the cumulative distribution functions of the test statistic. For this binary

hypothesis test, the probability of error is determined by the weighted probability

of error under each hypothesis. The total error is easily written in terms of the

1All results shown are from numerical integration verified by partial fraction decomposition.
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cumulative distribution functions,

Pe = π0P {‘H1’|H0}+ π1P {‘H0’|H1}

= π0P
{
f(R̂) > η|H0

}
+ π1P

{
f(R̂) < η|H1

}
= π0

[
1− P

{
f(R̂) < η|H0

}]
+ π1P

{
f(R̂) < η|H1

}
(3.1.23)

where Pe is the probability of error. Summarizing the derivation, the minimum prob-

ability of error for the classification problem illustrated in Figure 3.1.1 is given by

Equation 3.1.23. This equation is evaluated with the help of Equation 3.1.22 applied

to Equations 3.1.20 and 3.1.21.

3.1.2 Analysis

The probability of error bound derived above involves many independent variables:

arrival angle, signal-to-noise ratio (SNR), frequency, number of sensors, noise distri-

bution, and the prior probabilities of each hypothesis. This subsection analyzes the

bound under one insightful scenario with white noise and equal prior probabilities.

In this subset of the parameter space, a simple formula illustrates the behavior of the

bound and reveals important properties of linear vector-sensor arrays.

With white noise and equal prior probabilities, the remaining independent vari-

ables are arrival angle, SNR, frequency, and number of sensors. Holding the latter two

variables constant at moderate values of f = 5/7fd and N = 10 sensors, the bound

is evaluated as a function of arrival angle, cosϕ, and array SNR, 2Nσ2
s . Contours of

the resulting image, shown in Figure 3.1.2, reveal the ability of a linear vector-sensor

array to resolve left/right ambiguities. The results are symmetric about broadside

and endfire, so only one quadrant is shown. The most apparent feature of Figure 3.1.2

is that the performance of the vector-sensor array is effectively uniform over a large

fraction of cosine-space. The SNR required to achieve a given probability of error

changes by less than 3 dB for most of the space (−0.9 ≤ cosϕ ≤ 0) but diverges at

endfire (−1 ≤ cosϕ ≤ −0.9). Another feature of Figure 3.1.2 is that a low probability
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Figure 3.1.2: Probability of error contours: f = 5
7
fd, N = 10

of error is achieved almost everywhere even with a moderate SNR. Specifically, less

than 10% probability of error is achieved over 90% of cosine-space for a very weak,

3 dB source.

The first question raised by the good left/right resolution in Figure 3.1.2 is how

the behavior scales with frequency or the number of sensors. Figure 3.1.3 displays the

same probability of error contours for a different scenario at f = 1/7fd and with only

N = 3 sensors. One might expect the performance to suffer because of the low spatial

resolution of such an array, but it appears unchanged from the original Figure 3.1.2.

Intuitively, the ability of vector-sensors to resolve pressure ambiguities depends only

on the directional sensors. The performance measured in the figures does not change

because the response of the directional sensors does not change with frequency or

number.

The concept of statistical divergence provides much more rigorous insight into the

classification bound. Loosely speaking, divergences measure the dissimilarity between
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Figure 3.1.3: Probability of error contours: f = 1
7
fd, N = 3

two distributions. In this case, divergences quantify the left/right information mea-

sured by the vector-sensor array. Intuitively, the more information provided by the

array, the lower the probability of error. One divergence that often arises in informa-

tion theory and binary hypothesis testing is the Kullback-Leibler (K-L) divergence

[19, §12.7 - 12.9]. The K-L divergence between two probability distributions, p0(x)

and p1(x), is

D(p0||p1) ,
∫ +∞

−∞
p0(x) ln

p0(x)

p1(x)
dx. (3.1.24)

The K-L divergence takes a simple form for the zero-mean, complex Gaussian distri-

butions considered here:

D(p0||p1) =
K

2

[
ln

|R1|
|R0|

+ tr
(
R−1

1 R0

)
− 4N

]
. (3.1.25)

Recall that K is the number of independent observations and N is the number of

vector-sensors. Under the weak condition that the noise is left/right symmetric (see
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Appendix A.1), the K-L divergence simplifies to

D(p0||p1) =
K

2

[
tr
(
R−1

1 R0

)
− 4N

]
(3.1.26)

because |R1| = |R0|. In this case, the K-L divergence is symmetric with respect to

its arguments, D(p0||p1) = D(p1||p0), and proportional to the J-divergence used in

[17]. For the case of white noise, Ri = I + σ2viv
H
i . Applying the matrix inversion

lemma to R−1
1 yields

D(p0||p1) =
K

2

{
tr

[(
I− v1v

H
1

1
σ2 + vH

1 v1

)(
I+ σ2v0v

H
0

)]
− 4N

}

=
K

2

{
tr

[
I+ σ2v0v

H
0 − v1v

H
1

1
σ2 + vH

1 v1

− σ2v1v
H
1 v0v

H
0

1
σ2 + vH

1 v1

]
− 4N

}

=
K

2

{
4N + 2Nσ2 − 2N

1
σ2 + 2N

− σ2

1
σ2 + 2N

|vH
1 v0|2 − 4N

}
. (3.1.27)

Recalling the work in [1, §2.2.2],

vH
1 v0 = 2N cos2 ϕ. (3.1.28)

Substituting into Equation 3.1.27 and collecting terms yields the simple expression

D(p0||p1) =
K

2

γ2

1 + γ

(
1− cos4 ϕ

)
(3.1.29)

where

γ , 2Nσ2 (3.1.30)

is the array SNR. The K-L divergence is a function of only cosine angle, array SNR,

and number of observations; it does not depend on frequency or number of sensors.

Just as each choice of independent variables has an associated probability of error,

each also has an associated divergence. Contours of the divergence, analogous to the

probability of error contours plotted in Figures 3.1.2 and 3.1.3, are given by curves
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Figure 3.1.4: Divergence contours: f = 5
7
fd, N = 10

of constant value, D:

D =
K

2

γ2

1 + γ

(
1− cos4 ϕ

)
. (3.1.31)

Parameterizing these curves as functions of cosϕ involves solving the quadratic Equa-

tion 3.1.31 for a positive γ to get

γ =
1

1− cos4 ϕ

D
K

+

√(
D

K

)2

+ 2
D

K
(1− cos4 ϕ)

 . (3.1.32)

A carefully chosen set of these divergence contours are shown in Figure 3.1.4. When

the number of observations is held constant, contours of equal divergence correspond

exactly to contours of equal error probability in Figures 3.1.2 and 3.1.3. A proof of this

conjecture is given in Appendix A.1. Although Equation 3.1.32 has a much simpler

form than the probability of error, it still captures the important aspects of left/right

resolution with vector-sensor arrays. Namely, it formally proves that the left/right

resolution is independent of both frequency and number of sensors and is uniform
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Figure 3.1.5: Probability of error contours: f = 5
7
fd, N = 10, ∆ ≈ 0.05

over most of cosine space.

The results shown above indicate that linear vector-sensor arrays are theoreti-

cally effective at determining left/right. However, to demonstrate that vector-sensor

performance is robust, i.e. not reliant on point nulls or “supergain”, the analysis is

repeated for spatially spread sources. Recalling the discussion of spatial spreading in

Section 2.4, a covariance matrix taper is used to approximate a uniformly distributed

source. Returning to the N = 10 element array at f = 5/7fd from Figure 3.1.2, the

same source is spread over 1/6 of a beamwidth (≈ 0.05 in cosine-space) to obtain Fig-

ure 3.1.5. Comparing the two figures reveals that distributing the source has a minor

effect on the left/right performance. Intuitively, the null that allows for left/right

performance is determined by the directional sensors and is already very wide (see

[1, Ch. 2]); therefore, it is relatively robust. The results in Figure 3.1.5 suggest that

vector-sensor left/right performance is robust in theory.
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Figure 3.2.1: Example right/left power estimation scenario

3.2 Novel Estimation-Based Bound

Although the classification bound derived in the Section 3.1 provides insight into the

left/right information measured by a linear vector-sensor array, it relies on the un-

realistic assumption that the source power is known. A more realistic passive sonar

scenario involves power estimation as illustrated in Figure 3.2.1. In this scenario,

the objective is estimating the powers of sources on either side of the array and the

power of the background noise. Both sources yield identical pressure measurements,

so any ability to resolve differences in power arises from the directional, vector-sensor

elements. Assuming zero-mean complex Gaussian distributions, the unknown, deter-

ministic parameters are the three powers {α0, α1, αn}; the known parameters are the

azimuth angles ±ϕ and noise covarianceRn. The derivation does not restrict the form

of the noise covariance, but the analysis focuses on white noise. As with the previous

problem, the K array measurements are summarized by the sample covariance matrix

R̂.

The estimation problem in Figure 3.2.1 is closely related to typical array process-

ing. Passive sonar systems often estimate power at many hypothesized directions

and frequencies, displaying these power estimates to trained technicians. The power
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distribution across angle and frequency is essentially a two-dimensional spectrogram,

so the results here are directly related to spectrogram estimation and periodograms

(see [5, 20]). Many aspects of this problem also relate to the rejection of interference

or jamming.

For the estimation problem in Figure 3.2.1, a number of performance bounds exist

[21]. They include the Chapman-Robbins or Barankin bound, Bhattacharyya bound,

and Cramér-Rao bound. For random, unknown parameters, others bounds exist

which include the Weiss-Weinstein, Ziv-Zakai, and Bayesian Cramér-Rao bounds.

The Cramér-Rao bound is chosen here because the goal is providing insight into a

novel problem, not obtaining the tightest and most complex bound. The Cramér-Rao

bound in this section shares only its name with those in [1, 2, 4, 6]; the underlying

problems, derivations, and results are fundamentally different. A good introduction to

the Cramér-Rao bound and its application to standard measures of array performance

is [5].

The Cramér-Rao bound for a parameter vector θ states that the error covariance

of any unbiased estimate θ̂ obeys

E{(θ̂ − θ)(θ̂ − θ)T} ≽ J(θ)−1, (3.2.1)

where J(θ) is the “Fisher information matrix.” Each entry of the Fisher information

matrix is given by

[J(θ)]ij = −E

{
∂2

∂θi∂θj
ln Λ(R̂)

}
. (3.2.2)

The matrix inequality above has several equivalent and intuitive interpretations

A ≽ B ⇔ A−B is positive semidefinite (3.2.3)

⇔ xTAx ≥ xTBx ∀x. (3.2.4)

A consequence of Equation 3.2.1 is that the error variance of a scalar estimate θ̂i is
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bounded by a diagonal element of the same inverse,

E{(θ̂i − θi)
2} ≥

[
J(θ)−1

]
ii
. (3.2.5)

For the estimation problem in this section, the vector of unknown parameters consists

of source and noise powers,

θ , [α0 α1 αn]
T . (3.2.6)

Using the Cramér-Rao bound, this section determines how much a signal on one side

of a vector-sensor array interferes with power estimation on the opposing side.

3.2.1 Derivation

This section derives a Cramér-Rao lower bound for the power estimation problem

outlined above. The derivation is carried out for an arbitrary noise covariance and is

much more compact than that of the classification bound in Section 3.1. This brevity

is partly because the resulting expression is not easily simplified even in special cases.

The Fisher information matrix is first derived element-by-element. The log-

likelihood function for zero-mean, complex Gaussian measurements is given in Equa-

tion 3.1.7. Entries of the associated Fisher information matrix, J(θ), have a very

simple form,

[J(θ)]ij = Ktr

(
R−1∂R

∂θi
R−1∂R

∂θj

)
. (3.2.7)

Because each term is scaled by the number of observations, K, this derivation focuses

on the single observation case without loss of generality. The covariance matrix, R,

is a function of the three unknown powers,

R = α0R0 + α1R1 + αnRn

= α0v0v
H
0 + α1v1v

H
1 + αnRn. (3.2.8)

From this linear combination, the necessary partial derivatives for the three unknown
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parameters are easy to compute

∂R

∂α0

= v0v
H
0 (3.2.9)

∂R

∂α1

= v1v
H
1 (3.2.10)

∂R

∂αn

= Rn. (3.2.11)

The (1, 2) term in the Fisher information matrix involves the two sources and is a

convenient place to begin:

[J(θ)]12 = tr
(
R−1v0v

H
0 R

−1v1v
H
1

)
= tr

(
vH
1 R

−1v0v
H
0 R

−1v1

)
=

∣∣vH
0 R

−1v1

∣∣2 . (3.2.12)

The first step above (and many steps to come) uses the identity tr(AB) = tr(BA).

Equation 3.2.12 extends to any term involving only the two sources. Moving to the

(1, 3) term involving one source and the noise,

[J(θ)]13 = tr
(
R−1v0v

H
0 R

−1Rn

)
= vH

0 R
−1RnR

−1v0. (3.2.13)

Equation 3.2.13 also extends to the other source. The diagonal, (3, 3) term involves

only the noise power:

[J(θ)]33 = tr
(
R−1RnR

−1Rn

)
. (3.2.14)

Unlike the other terms, Equation 3.2.14 is not easily simplified by eliminating the

matrix trace function.

Enough work exists now to write the full Fisher information matrix. The Fisher
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information matrix for this three-parameter case is best viewed in block form,

J(θ) =

 Jss Jsn

JT
sn Jnn

 , (3.2.15)

where Jss is the 2×2 matrix involving only the two sources, Jsn is the 2×1 vector in-

volving the sources and noise, and Jnn is a scalar involving only the noise. Condensing

the results derived in the previous paragraph,

Jss = (VHR−1V)⊙ (VHR−1V)∗ (3.2.16)

Jsn = diag
(
VHR−1RnR

−1V
)

(3.2.17)

Jnn = tr
(
R−1RnR

−1Rn

)
, (3.2.18)

where the diag(·) function extracts the main diagonal of a matrix as a column vector,

⊙ is the Hadamard or element-wise product, ∗ denotes conjugation, and

V , [v0 v1]. (3.2.19)

Each evaluation of the Fisher information matrix involves several matrix products

and a matrix inverse. Although the inverse is computed efficiently via the matrix

inversion lemma, the expressions are already in their most simplified analytical form.

3.2.2 Analysis

The derivation in the previous section is complete and compact, but it is not fully

satisfying for two reasons. First, its interpretation is not immediately clear. Each

choice of independent variables yields a matrix inequality that is not intuitive. Second,

its dependencies are not obvious. It is difficult to discern from the expressions how

the bound changes with frequency, number of sensors, etc. This section addresses

both points, providing a useful visualization of the bound and an approximation that

clarifies the dependencies.
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The first analysis problem is interpreting the bound. A clear interpretation re-

quires 1) reducing the large parameter space to a small region of interest, and 2)

obtaining an intuitive metric from the covariance matrix inequality. The following

paragraphs describe one interpretation of the Cramér-Rao bound and illustrate the

bound with several examples.

The large parameter space makes it difficult to interpret the Cramér-Rao bound.

However, examining a reduced parameter space delineates the a clear region of inter-

est. Assuming other parameters are fixed, the space of all three unknown parameters

{α0, α1, αn} provides a useful context for interpreting the bound. Symmetry in the

problem and practical considerations suggest there are only three distinct regions as

determined by the strength of the sources relative to the noise. In the first region,

both sources dominate the noise. This high-SNR region is uninteresting because 1)

sources of interest are often weak for passive sonar and 2) simple algorithms exist that

perform well in the absence of noise. In the second region, the noise dominates one

or more source. This region is equally uninteresting; reliably estimating the power

of such weak sources is extremely difficult. The third region includes most cases of

interest and is characterized by noise power on the same order as at least one source.

This region of interest is fully explored for the white noise case when αn ≈ 2Nα0

and α1 is swept from α1 ≪ α0 to α1 ≫ α0. The factor of 2N accounts for the array

gain. Under this scenario, the source α0 is treated as a “target” and α1 as a “jam-

mer.” The goal is resolving the true power of the target regardless of the jammer

power. The entire region of interest consists of only three regimes: the no jammer

regime (α1 ≪ α0), the weak jammer regime (α1 ≈ α0), and the strong jammer regime

(α1 ≫ α0).

Having reduced the parameter space to a reasonable size, the remaining difficulty

is interpreting the covariance matrix inequality. Keeping with the “target and jam-

mer” interpretation, the wanted parameter is the target power α0; the other powers,

{α1, αn}, are nuisance parameters. The error variance of the wanted parameter, α0,

is bounded below by the (1, 1) term of J(θ)−1 (see Equation 3.2.5). A useful quantity
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Figure 3.2.2: Left/right power estimation error: f = 5
7
fd, N = 10

that summarizes this variance is the normalized root mean square error (NRMSE),

NRMSE ,
√

var(α̂0)

α0

(3.2.20)

CRB(NRMSE) =
1

α0

√
[J(θ)−1]11 (3.2.21)

NRMSE ≥ CRB(NRMSE), (3.2.22)

where α̂0 is any unbiased estimate of α0 and CRB(·) denotes the Cramér-Rao bound.

Figure 3.2.2 plots curves of CRB(NRMSE) versus azimuth cosine for the three regimes.

The standard N = 10 element vector-sensor array at f = 5/7fd is used with K = 1,

Rn = I, α0 = 1/(2N), and αn = 1. A high CRB indicates that the jammer irrevo-

cably corrupts estimates of the target power. The most interesting aspect of Figure

3.2.2 is that, as with the classification bound derived in Section 3.1, the predicted

VSA performance is uniformly good over most of cosine space. Specifically, the CRB

changes by less than 3 dB over 90% of space (−0.9 ≤ cosϕ ≤ 0) but diverges at

endfire (−1 ≤ cosϕ ≤ −0.9). As with the classification bound in Section 3.1, good

performance is predicted almost everywhere with even a weak source.
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As with the classification bound, the results in Figure 3.2.2 do not change signif-

icantly with frequency or number of sensors. Figure 3.2.3 displays the same curves

for an array with much lower resolution: N = 3 and f = 1/7fd. Comparing Figure

3.2.2 to Figure 3.2.3 reveals negligible differences, suggesting again that the left/right

resolution is an inherent capability of the directional sensors and is almost unaffected

by their number or spacing. Furthermore, the Cramér-Rao bound is proportional to
√
K, so changing the number of observations only shifts the curves in log-space and

does not affect the conclusions.

The vector-sensor performance predicted by the bound also seems to be robust.

As is done for the classification bound in Figure 3.1.5, uniform spatial spreading is

introduced via a covariance matrix taper in Figure 3.2.4. Distributing the sources

increases the bound only slightly and does not change the conclusion that vector-

sensor performance is uniformly good over most of space. As with the classification

bound, the wide null placed by the directional sensors appears to provide robust

left/right discrimination without relying on “supergain.” Introducing a covariance

matrix taper requires modifying the derivation in Section 3.2.1. The bound is not

re-derived here for brevity and because the terms do not simplify beyond Equation

3.2.7.
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The second analysis problem is formalizing the dependencies of the Cramér-Rao

bound. Figures 3.2.2 and 3.2.3 suggest that VSA performance does not depend on the

number of sensors or the frequency. The following analysis proves this independence

in the strong jammer regime, α1 → ∞. The strong jammer regime is intuitively the

most difficult, reflecting the “worst-case” VSA performance. In the above limit,

R−1 ∂R

∂α1

→ 0, (3.2.23)

so the terms in the Fisher information matrix dealing with the jammer go to zero.

Thus, the jammer can be treated as deterministic and removed from the matrix (see

[5, Example 8.11.2]). The CRB(NRMSE) depends only on the (1, 1) term of J(θ)−1,

[
J(θ)−1

]
11

=

  (
vH
0 R

−1v0

)2
vH
0 R

−2v0

vH
0 R

−2v0 tr (R−2)

−1 
11

=
tr (R−2)

(vH
0 R

−1v0)
2
tr (R−2)− (vH

0 R
−2v0)

2

=

[(
vH
0 R

−1v0

)2 − (
vH
0 R

−2v0

)2
tr (R−2)

]−1

, (3.2.24)
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where K = 1 is assumed. Applying the matrix inversion lemma to R−1 simplifies

Equation 3.2.24. The white noise scenario with Rn = I, α0 = 1/(2N), and αn = 1

yields an intuitive and simple result. Writing the covariance matrix,

R = I+ [v0 v1]

 α0 0

0 α1

 [v0 v1]
H , (3.2.25)

the inverse is

R−1 = I− [v0 v1]

 1/α0 0

0 1/α1

+ [v0 v1]
H [v0 v1]

−1

[v0 v1]
H . (3.2.26)

Recall that the inner product vH
1 v0 is given in Equation 3.1.28. Taking the limit

α1 → ∞, substituting for α0, and using some algebra gives

R−1 = I− [v0 v1]

2N

 2 cos2 ϕ

cos2 ϕ 1

−1

[v0 v1]
H . (3.2.27)

Applying this inverse to the target replica vector yields a simple expression forR−1v0:

R−1v0 = v0 − [v0 v1]

2N

 2 cos2 ϕ

cos2 ϕ 1

−1  2N

2N cos2 ϕ



= v0 − [v0 v1]

 2 cos2 ϕ

cos2 ϕ 1

−1  1

cos2 ϕ



= v0 −
[v0 v1]

2− cos4 ϕ

 1 − cos2 ϕ

− cos2 ϕ 2

 1

cos2 ϕ



= v0 −
[v0 v1]

2− cos4 ϕ

 1− cos4 ϕ

cos2 ϕ


=

v0 − v1 cos
2 ϕ

2− cos4 ϕ
. (3.2.28)
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This expression yields two of the three terms required in Equation 3.2.24:

vH
0 R

−1v0 =
2N − 2N cos4 ϕ

2− cos4 ϕ

= 2N
1− cos4 ϕ

2− cos4 ϕ
(3.2.29)

vH
0 R

−2v0 =
2N − 4N cos4 ϕ+ 2N cos4 ϕ

(2− cos4 ϕ)2

= 2N
1− cos4 ϕ

(2− cos4 ϕ)2
. (3.2.30)

The remaining term, the trace of R−2, comes by inspection of the eigenvalues of

R−1. In the above limit, R−1 has one zero eigenvalue and one non-unity eigenvalue;

the remaining 4N − 2 eigenvalues are unity. The non-unity eigenvalue arises from

the noise combined with the component of the target orthogonal to v1 and is thus

[1 + (1− cos4 ϕ)]−1. The trace is therefore

tr
(
R−2

)
= (4N − 2) + (2− cos4 ϕ)−2

=
(4N − 2)(2− cos4 ϕ)2 + 1

(2− cos4 ϕ)2
. (3.2.31)

Substituting terms into Equation 3.2.24 gives

[
J(θ)−1

]
11

=

(2N)2
(1− cos4 ϕ)2

(2− cos4 ϕ)2
−

(2N)2 (1−cos4 ϕ)2

(2−cos4 ϕ)4

(4N−2)(2−cos4 ϕ)2+1
(2−cos4 ϕ)2

−1

=
(2− cos4 ϕ)2

(2N)2(1− cos4 ϕ)2
[
1− 1

(4N−2)(2−cos4 ϕ)2+1

] . (3.2.32)

Noticing that

1− 1

(4N − 2)(2− cos4 ϕ)2 + 1
≈ 1 (3.2.33)
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for even a small number of sensors, Equation 3.2.21 is well-approximated by

CRB(NRMSE) ≈ 2− cos4 ϕ

1− cos4 ϕ

= 1 +
1

1− cos4 ϕ
. (3.2.34)

Furthermore, the above approximation remains a valid lower bound because it is

always less than the CRB. Equation 3.2.34 is a key result, as it verifies analytically

that in the strong jammer regime, the normalized Cramér-Rao bound does not depend

on frequency and only very weakly on the number of sensors. It predicts with a high

degree of accuracy the “Strong Jammer” curves in Figures 3.2.2 and 3.2.3.

3.3 Conclusions and Intuition

This chapter isolates, measures, and bounds the VSA ability to discriminate signals

that are ambiguous with a PSA. Section 3.1 explores the problem of binary classi-

fication when the signal power is known; Section 3.2 explores the problem of joint

estimation when the powers are unknown. Although the two scenarios are distinct,

they lead to similar conclusions and provide intuition about VSA performance.

The results prove that theoretical VSA ambiguity resolution is 1) good everywhere

except array endfire and 2) independent of the number of sensors or the analysis

frequency. Generally, bounds only prove that good performance may be achievable.

However, the bounds developed in this chapter are tight. The classification-based

bound in Section 3.1 is constructive, i.e. its derivation involves a likelihood ratio test

which achieves the minimum probability of error. The estimation-based bound in

Section 3.2 is asymptotically tight. Maximum likelihood estimators for this type of

problem are asymptotically efficient ([5, §8.5]), approaching the Cramér-Rao bound as

the number of observations approaches infinity (K → ∞). Because both bounds are

tight, they prove that good performance is achievable under the scenarios described

in Sections 3.1 and 3.2.
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Shared elements of the analysis also provide intuition about linear VSA capabili-

ties. Equations 3.1.29 and 3.2.34 reveal that both performance bounds are a function

of the same quantity, the left/right rejection of a single vector-sensor:

ζ(ϕ) , cos4 ϕ. (3.3.1)

Ambiguity resolution stems from the directional ability of each vector-sensor, so the

behavior of one sensor provides intuition about the behavior of an array. Just as with

a single vector-sensor, the ability of a VSA to resolve pressure ambiguities

• Does not change with the analysis frequency

• Is good except near endfire (where ζ(ϕ) ≈ 1)

• Is robust (because left/right nulls are wide).

According to the same principle, the number of vector-sensors only affects left/right

performance through the array gain.
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Chapter 4

Fixed Weight Design for Uniform

Linear Vector-Sensor Arrays

Chapters 2 and 3 explore the properties and performance limits of vector-sensor ar-

rays. Chapter 3 predicts that vector-sensor ambiguity resolution is very good almost

everywhere in theory. The question remains, however: is this performance achievable

in practice?

Building with the tools outlined in Chapter 2, this chapter designs fixed weights

for linear vector-sensor arrays. Designing “good” fixed weights for such arrays means

balancing the competing objectives of low sensitivity to modeling errors, a narrow

beamwidth, and low sidelobe levels. After surveying and categorizing existing tech-

niques, this chapter proposes the use of offline convex optimization for beampattern

design. The techniques described in Section 4.3.3 design robust, fixed weights for

efficient non-adaptive processing. In many scenarios, these weights achieve good per-

formance like that predicted in Chapter 3. Each modified beampattern in the chapter

is compared to the “original,” or conventional, beampattern.
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4.1 Designs Using the Array Modulation Theorem

(AMT)

Good linear PSA beampatterns are easily achieved for every “look direction” by ap-

plying a well-designed spatial taper. Section 2.3.2 shows that this is not possible with

linear vector-sensor arrays, but a related technique illustrates the use of spatial tapers

in VSA processing. Imposing structure on the weights enables VSA beampattern de-

sign using the array modulation theorem. Structuring the weights yields an intuitive

but less flexible technique.

4.1.1 The Array Modulation Theorem and VSAs

The array modulation theorem provides a useful visualization of spatial tapering ap-

plied to vector-sensor arrays. It introduces “pattern multiplication,” which simplifies

certain designs by factoring the beampattern into two intuitive terms. This subsec-

tion introduces the array modulation theorem and illustrates its application to linear

vector-sensor arrays.

The array modulation theorem states that the beampattern for an array of iden-

tical, directional sensors is the beampattern assuming omnidirectional sensors mod-

ulated by the response of the directional sensor. Because the sensor response is the

same for each element, it factors out of the beampattern summation. Proof of this

factorization is provided in [5, §2.8] for the general case and in [1, §2.1] for vector-

sensor arrays. A key restriction of the array modulation theorem is that the responses

of each sensor element must be identical.

Applying the array modulation theorem to vector-sensor arrays is not obvious

because the VSA contains four types of sensors with different responses. To apply

the theorem with “look direction” ϕ0, consider weighting the nth vector-sensor by

wn = p tn e
jk0dn cosϕ0 , (4.1.1)

where p forms the same linear combination from every vector-sensor and tn applies
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Figure 4.1.1: Weighting scheme for which the array modulation theorem applies

a unique scale factor to each. Figure 4.1.1 illustrates such a structured weighting

scheme. The 4×1 vector p applies the same weighting to each vector-sensor, forming

N identical “pseudo-sensors.” The N × 1 spatial taper t = [t1 t2 · · · tN ]T forms

a beampattern from these pseudo-sensors. Because the pseudo-sensors are identical,

the array modulation theorem implies that the VSA beampattern is the beampattern

of the taper modulated by the response of the pseudo-sensor.

4.1.2 AMT Beampattern Design

The array modulation theorem enables the design of interesting beampatterns which

combine spatial tapering with pseudo-sensor nulling. Some of these beampatterns

are explored in [3, 4]. The remainder of this section provides example beampatterns

which use the pseudo-sensor response to null the pressure-sensor ambiguity and the

spatial taper to control sidelobes. For comparison, all examples are with ϕ0 = −π/4,

N = 10 elements, and f = 5/7fd.

A naive initial approach places the minimum of the pseudo-sensor response at zero

in the direction of the pressure-sensor ambiguity, effectively fixing the pseudo-sensor

beampattern and its derivative at a point. Assuming a three-dimensional vector-
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Figure 4.1.2: AMT beampattern: second-order constraints, uniform taper

sensor gives the pseudo-sensor weighting

p ∝


1

− cosϕ0

sinϕ0

 . (4.1.2)

With a uniform spatial taper, this weight yields modified beampatterns like the ex-

ample shown in Figure 4.1.2. The stringent, second-order constraints elevate the

pseudo-sensor response away from the null. This elevated pseudo-sensor response

raises the sidelobes of the VSA beampattern to significant levels and increases the

sensitivity factor of the weight by 6.02 dB, suggesting the weight is not robust. Re-

placing the uniform spatial taper with a 25 dB Taylor taper improves the sidelobe

structure as shown in Figure 4.1.3 but increases the sensitivity factor to 6.45 dB.

Furthermore, the spatial taper does not reduce sidelobes to the desired level because

they are modulated higher by the pseudo-sensor response.
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Figure 4.1.3: AMT beampattern: second-order constraints, 25 dB Taylor taper

An alternative approach defines

h(ϕ) ,


1

cosϕ

sinϕ

 (4.1.3)

and chooses the “optimum” pseudo-sensor weighting

p ∝
(
I− h(−ϕ0)h

T (−ϕ0)

hT (−ϕ0)h(−ϕ0)

)
h(ϕ0) (4.1.4)

= h(ϕ0)− h(−ϕ0) cos
2 ϕ0. (4.1.5)

This weighting minimizes the sensitivity factor subject to the point null constraint

at −ϕ0 and the unity gain constraint at ϕ0. The form of Equation 4.1.4 highlights

its interpretation as a projection of the unmodified weighting, h(ϕ0), into the space

orthogonal to h(−ϕ0). The optimum weighting produces beampatterns like the ex-
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Figure 4.1.4: AMT beampattern: “optimum” null, uniform taper

ample in Figure 4.1.4. The sensitivity factor of the example weight is elevated by

only 1.25 dB and the pressure-sensor ambiguity is reduced to a reasonably low level,

but the sidelobes are still higher than desired. Applying a 25 dB Taylor taper re-

sults in the beampattern shown in Figure 4.1.5. Although the spatial taper lowers

the sidelobes to an acceptable level, the pressure-sensor ambiguity again becomes the

dominant feature. The addition of a spatial taper increases the sensitivity factor by

1.68 dB compared to the original, or conventional, weights.

Starting from the result in Figure 4.1.5, two final modifications are worth men-

tioning. First, rather than constraining the null and minimizing the sensitivity factor,

one could constrain the sensitivity factor and minimize the power at −ϕ0. Apply-

ing such a constraint makes the weights more robust at the expense of nulling the

pressure-sensor ambiguity. Because the pseudo-sensor weighting is a small vector, the

sensitivity constraint is computationally efficient. Second, one could offset the null

placement slightly to avoid an uneven splitting of the ambiguity. The beampattern
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Figure 4.1.5: AMT beampattern: “optimum” null, 25 dB Taylor taper

resulting from an “offset” null is illustrated in Figure 4.1.6. Offsetting the null moves

it closer to ϕ0 and thus raises the sensitivity factor slightly to 1.85 dB.

4.1.3 Limitations of the AMT Approach

Pattern multiplication is simple and intuitive, but it does not fully exploit the ca-

pabilities of a vector-sensor array. Requiring that all vector-sensors form identical

pseudo-sensors is overly restrictive. Although some weights factor this way, many

useful weights do not.

The weights designed using pattern multiplication are restricted by the shape and

sensitivity of the pseudo-sensor response. Without losing generality, the vector-sensor

weight is parameterized as

p =


α

−β cosϕm

−β sinϕm

 (4.1.6)
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Figure 4.1.6: AMT beampattern: “offset” null, 25 dB Taylor taper

with β ≥ 0. With this parameterization, the shape of the pseudo-sensor response is

restricted to the linearly transformed cosine function

yp(ϕ) , pTh(ϕ) (4.1.7)

= α− β cos(ϕ− ϕm), (4.1.8)

which has a minimum at yp(ϕm) = α−β and a maximum at yp(π+ϕm) = α+β. Thus,

the pseudo-sensor response has at most two nulls and only one minimum. Requiring

unity gain at ϕ0 leaves only two degrees-of-freedom for nulling the pressure ambiguity,

regardless of the number of sensors in the array. The sensitivity factor, α2 + β2, is

constrained for robust weights, leaving very little freedom in the design.

A final critique of pattern multiplication is that it does not directly address the

design objectives stated in this work: low sensitivity, a narrow beamwidth, and low

sidelobe levels. Although many of the ad hoc extensions to pattern multiplication

address these objectives, the resulting weights are not optimal with respect to any
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specific design criterion.

4.2 Designs Using A Priori Noise Distributions

Another large class of algorithms for beampattern design is based on a priori knowl-

edge of the noise environment. This section mentions several such algorithms and

make the assumed noise distribution explicit for each. A novel result for VSA spatially

spread sources is included. The section concludes with a critique of the technique. As

before, all examples in this section are with an N = 10 element vector-sensor array

at f = 5/7fd, steered to ϕ0 = −π/4.

If the noise distribution is known, the “optimum” choice of beamforming weights

is the solution to the minimum variance distortionless response (MVDR) problem:

minimize wHR̃w

subject to wHv0 = 1
(4.2.1)

for the noise covariance matrix, R̃, and signal replica vector, v0. The linear constraint

avoids distortion of signals in the replica direction; the quadratic objective minimizes

the leakage of interference into the beamformer output. For invertible R̃ the weight

vector has a closed form,

w =
R̃−1v0

vH
0 R̃

−1v0

. (4.2.2)

For singular R̃, it is convenient to define the MVDR weights in the limit

w = lim
ϵ→0

(R̃+ ϵ2I)−1v0

vH
0 (R̃+ ϵ2I)−1v0

. (4.2.3)

The above limit exists for any covariance matrix, but care must sometimes be taken

to ensure numerical stability. Equation 4.2.3 has many natural interpretations: 1) it

gives the minimum norm solution to the under-determined problem, 2) the resulting

weight vector has the smallest sensitivity factor of any solution, and 3) the case of a

degenerate Gaussian distribution is treated properly as a limit.
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4.2.1 Spatially Discrete Sources and Point Nulls

A common and practical approach to VSA beampattern design places a null on the

pressure-sensor ambiguity. The general formulation of this problem includes a sensi-

tivity constraint or diagonal loading. The equivalent a priori noise distribution is

R̃ = vbv
H
b + ϵ2I, (4.2.4)

where vb is the signal replica of the pressure-sensor ambiguity, or “backlobe.” The

diagonal loading factor, ϵ2, arises in many contexts, often as a regularization term or

as the Lagrange multiplier for a quadratic/sensitivity constraint.

Although this “point null” approach seems more formal than the ad hoc designs

using pattern multiplication, the two techniques are equivalent. The equivalence

is shown by applying the matrix inversion lemma to Equation 4.2.2 with the noise

distribution from Equation 4.2.4:

w ∝
[
vbv

H
b + ϵ2I

]−1
v0

∝
[
I− vbv

H
b

ϵ2 + 2N

]
v0

= v0 − vb

(
2N

ϵ2 + 2N
cos2 ϕ0

)
. (4.2.5)

Because the backlobe is a pressure-sensor/phase ambiguity, both the signal replica

and the backlobe replica have a common phase vector, vp:

v0 = vp ⊗ h(+ϕ0) (4.2.6)

vb = vp ⊗ h(−ϕ0). (4.2.7)

For more on the Kronecker product representation of the vector-sensor array beam-

pattern, see [1, Ch. 2]. Substituting these expressions and using the properties of the
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Kronecker product gives

w ∝ [vp ⊗ h(+ϕ0)]− [vp ⊗ h(−ϕ0)]

(
2N

ϵ2 + 2N
cos2 ϕ0

)
= vp ⊗ p, (4.2.8)

where

p , h(+ϕ0)− h(−ϕ0)

(
2N

ϵ2 + 2N
cos2 ϕ0

)
. (4.2.9)

Equation 4.2.8 reveals that the optimum weight resulting from this a priori distribu-

tion naturally takes the form of pattern multiplication (Section 4.1.1). Furthermore,

the weight is equivalent to Equation 4.1.5 in the limit ϵ2 → 0.

Designing VSA beampatterns using spatially discrete sources, or point nulls, ex-

tends to multiple sources at arbitrary locations. Such approaches may yield acceptable

beampatterns, but no suitable method for determining the placement of sources/nulls

is known. With pressure-sensor arrays, polynomial and Fourier transform properties

analytically provide zero/null placement for Chebyshev, Taylor, Villeneuve, and other

beampatterns. With vector-sensor arrays, however, no such analysis exists.

4.2.2 Spatially Spread Sources and Sector Nulls

As shown in Figure 4.1.6, the point null technique (or the equivalent array modulation

technique) is unable to reduce the entire backlobe to a sufficiently low level. Choosing

an effective set of constraint points is difficult in the vector-sensor array case, so

extending the technique to multiple linear constraints is problematic.

An alternative approach uses the novel results in Section 2.4 to place a “sector

null” in the direction of the pressure ambiguity. The a priori noise covariance for this

approach is generally

R̃ = Rb + ϵ2I, (4.2.10)

where Rb is the covariance matrix of a spatially spread source located in the backlobe

direction. One of the three techniques in Section 2.4 is easily used to obtain Rb.

Because the covariance matrix of the spatially spread source is not full rank, some
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Figure 4.2.1: Comparison of tapered point and sector null beampatterns

amount of diagonal loading is required or the limiting form in Equation 4.2.3 must be

used. Figure 4.2.1 demonstrates that this approach produces acceptable beampatterns

when tuned properly. In this case, even a small amount of uniform spatial spreading

(σu = 4×10−3, about 2.8% of the beamwidth) and diagonal loading (ϵ2 = 2N×10−4)

substantially improves the backlobe null. A 25 dB Taylor taper is also applied to

reduce the sidelobe levels. The point and sector null beampatterns have sensitivity

factors of 1.68 dB and 1.71 dB, respectively.

Unfortunately, obtaining good beampatterns like the one shown in Figure 4.2.1 is

difficult in practice. Unlike the point null technique, no closed form expression exists

for either the covariance matrix or the weight vector. Widening the backlobe null

relies heavily on the sub-dominant eigenvectors of Rb, requiring burdensome, high-

precision, numerical integration for some terms (see Equation 2.4.7). Furthermore,

even a careful implementation of the sector null technique requires time-consuming

parameter tuning and necessitates the use a spatial taper.
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4.2.3 Limitations of the A Priori Approach

Section 4.2 presents a unified picture of many fixed weight design techniques for

vector-sensor arrays. Viewing these techniques in the context of “a priori noise dis-

tributions” highlights the primary limitation common to all: no technique explicitly

addresses the key objectives of low sidelobes, a narrow mainlobe, and low sensitivity.

As such, each approach requires a patchwork of tools including diagonal loading and

spatial tapers to meet the objectives of this chapter. In every case, the parameter

tuning is ad hoc and not separable. Like VSA pattern multiplication, the a priori

approach yields weights that are suboptimal with respect to the stated design objec-

tives.

4.3 Designs Using Convex Optimization

Sections 4.1 and 4.2 summarize many typical techniques for VSA fixed weight de-

sign. The techniques discussed share one powerful criticism: they do not directly

address the stated objectives of VSA beampattern design. Judging these techniques

by beamwidth, sidelobe level, and sensitivity is, in a sense, asking for one thing but

wanting another. The distinction between the implicit and explicit objectives is more

than philosophical.

This section shows that explicitly optimizing for the design objectives yields three

benefits. First, the resulting beampatterns are optimal in terms of one or more ob-

jective. The “optimality gap” of existing techniques is sometimes revealed to be

substantial. Second, trade-offs between the multiple objectives become straightfor-

ward. Third, no ad hoc parameter tuning is required. The only parameters are the

intuitive constraints applied to each design objective.

The techniques presented in this section connect the fields of array processing and

convex optimization. Such a connection has been noted before in the optimization

literature, the filter design literature, and the array processing literature. Similar

techniques are applied to the related problem of FIR filter design in [23]. In [24],
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the convex optimization material from [25] is applied to beampattern design. An

iterative algorithm for beampattern design is also presented in [5, §3.9.3]. Finally,

[26] illustrates the broad scope of applied convex optimization. Four contributions of

this section are applying optimization techniques to vector-sensor arrays, studying the

design problem in the appropriate multi-objective context, relating design criterion

to popular results in pressure-sensor array processing, and describing an efficient

algorithm for designing weights.

4.3.1 Spatial Quantization

Fixed weight design is often complicated by the uncountable number of points in the

beampattern. Analytical methods, such as polynomial approximation and sampling

of the Fourier transform, reduce the complexity of pressure-sensor array processing [5,

§3.2-3.3]. Chapter 2 reveals that such methods generally do not apply to vector-sensor

arrays. For vector-sensor arrays, spatial quantization converts the design problem into

a manageable form.

The smooth nature of the vector-sensor array beampattern means it is approxi-

mated arbitrarily well by a finite number of sample points. Consider the important

problem of constraining a vector-sensor array beampattern in some region. Section

2.3 shows that the deviation of the VSA beampattern between two sample points is

bounded, so a finite sampling exists that constrains the beampattern to any arbi-

trary accuracy. The local Fourier transform property suggests even more: because

the VSA beampattern behaves like a modified PSA beampattern on a a small scale,

the same quantization scheme should work well with both array types. Existing work

on FIR filter design (or equivalently, PSA beampattern design) utilizes a uniform

grid in discrete-time frequency [27]. Relating this work to the vector-sensor array

problem suggests a dense grid of ≈ 20N points in cosine-space (≈ 10N per side) for

a vector-sensor array beampattern. In some cases, an equally dense grid in angular

space yields better results near array endfire. The tolerances in filter design are often

tighter than in beampattern design, so this sampling appears more than adequate for
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Figure 4.3.1: Coarse spatial quantization in cosine-space

most beampattern design problems. For extremely tight tolerances, exchange algo-

rithms similar to [23] obtain an exact solution by iteratively updating the quantization

grid. The results in this thesis use an extremely fine spatial quantization to ensure

that any deviations are negligible. The results also focus primarily on quantization in

the azimuthal dimension; Section 4.3.5 demonstrates that the resulting beampatterns

behave well in both dimensions (azimuth and elevation).

Figure 4.3.1 illustrates a coarse spatial quantization in cosine-space for a vector-

sensor beampattern steered to ϕ0 = −π/4. The array contains N = 10 vector-sensors

with f = 5/7fd. The lone equality constraint forces unity gain in the look direction,

i.e. a distortionless response. Upper and lower bounds on the beampattern, denoted

by triangles in the figure, are enforced at each angular sample point. The quantization

scheme partitions angular space into a mainlobe region and a sidelobe region.1 In

the mainlobe region, the beampattern is constrained to be no greater than unity to

1The mainlobe region in beampattern design relates to the passband and transition regions in
FIR filter design.
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avoid “squinting” of the beampattern. In the sidelobe region, the beampattern is

constrained to be no greater than the desired sidelobe level. In both regions, the

beampattern is constrained to be no less than the negative of the desired sidelobe

level. The beampattern only becomes negative after the first null, so applying this

lower bound in the mainlobe region avoids bifurcation of the beam. Together, these

constraints approximate the shaded region in the figure. The coarse quantization in

Figure 4.3.1 uses only ≈ 5N points, far fewer than the suggested ≈ 20N . Even with

such a coarse quantization, the beampattern deviates very little from the desired

(shaded) region. Note that the cosine spacing is most dense at broadside where

the beampattern changes rapidly with angle; it is least dense at endfire where the

beampattern changes slowly with angle.

Spatial quantization has a rich and formal mathematical background. Although

a full discussion is outside the scope of this document, the concepts are worth men-

tioning. The fundamentals of spatial quantization are deeply rooted in differential

geometry. Many problems in signal and array processing involve inner products be-

tween a fixed vector and the set of points on a manifold in some high dimensional

vector space. Examples include filter design (the fixed vector is the impulse response

and the manifold is the Fourier basis) and general beampattern design (the vector

is an aperture weighting and the manifold is the array manifold of replica vectors).

Because the manifold is smooth, the inner product is smooth and is approximated to

arbitrary accuracy by sampling. In this context, 1) the vector-sensor array manifold

is a curve and 2) the cosine-spaced sampling selects points on the curve with approx-

imately equal geodesic spacing. The constraints also have a geometric picture. Each

linear inequality specifies a half-space; the collection specifies a high-dimensional poly-

gon, or a polytope. An equality constraint specifies a plane. Quadratic constraints

(introduced later) involve ellipsoidal regions. In this context, spatial quantization

is equivalent to approximating a desired region, or “feasible set,” with a polytope.

Further treatment of spatial quantization also exists in the field of semi-infinite pro-

gramming.
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4.3.2 The Minimax Criterion

Because beampattern design is closely related to filter design, applying the same

design criteria to both problems seems logical. The powerful “minimax” criterion

is widely used in both filter design ([20, §7.4]) and PSA beampattern design ([5,

§3.6]). Although the analytical techniques used in filter design do not apply with

vector-sensor arrays, Section 2.3 lays the foundation for numerical minimax designs

using linear programming. This section motivates the minimax criterion in array

processing, applies it to VSA beampattern design, and discusses the results.

The minimax criterion arises in many contexts within array processing. Most gen-

erally, the design criterion is to minimize the max imum error. Applying this concept

to beampattern design translates into minimizing the max imum sidelobe level. The

minimax criterion is a natural choice when dealing with discrete interference or jam-

ming, both common problems in array processing. The “worst-case” scenario for a

given beampattern places all interference at the exact location of the maximum side-

lobe, resulting in the lowest output signal-to-noise ratio. A minimax beampattern is

therefore the best worst-case design. When weights must be designed without a priori

information about interference location or power, the minimax criterion provides the

lowest upper-bound on interference leakage. The minimax criterion also arises as a

common objective in approximation theory. In this context, the minimax beampat-

tern is an “optimal” approximation to the desired response. The maximum error is

formally defined as the L∞ norm, also known as the Chebyshev or uniform norm.

Designing a minimax VSA beampattern is equivalent to solving a real linear pro-

gram (LP). Proving this equivalence requires only three steps thanks to the results in

Section 2.1 and 4.3.1. First, recall from Section 4.3.1 that constraining the beampat-

tern in the sidelobe region is equivalent to constraining it at finite number of points.

A fixed spatial quantization can approximate the continuous constraint to an arbi-

trary accuracy. By iteratively modifying the constraint points, exchange algorithms

find a quantization grid that yields the same result as the continuous constraint. Sec-

ond, recall from Equation 2.1.18 that the VSA beampattern at any point is a real,
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linear function of the real and imaginary parts of the weight vector. If the weight

is represented as the real vector, w ∈ R 3N , in the transformed space, the beampat-

tern at azimuth angle ϕ is expressed easily as y(ϕ) = vT (ϕ)w. Note that v(ϕ) is

the transformed replica vector given by the real coefficients (see Section 2.1.2). The

third and final step is writing the minimax criterion as a standard linear program.

From the second step, an upper bound on the beampattern at angle ϕ is expressed as

vT (ϕ)w ≤ βU. A lower bound is similarly expressed as −vT (ϕ)w ≤ −βL. Utilizing

the spatial quantization illustrated in Figure 4.3.1 results in the minimax problem

minimize δ

subject to vT (ϕ0)w = 1

vT (ϕm)w ≤ 1 m ∈ M

vT (ϕm)w ≤ δ m ∈ S

−vT (ϕm)w ≤ δ m ∈ {M∪ S}

. (4.3.1)

The index sets M and S correspond to the mainlobe and sidelobe regions, respec-

tively. In order, the constraints in Equation 4.3.1 enforce distortionless response,

avoid mainlobe “squinting,” upper-bound the sidelobe region, and lower-bound the

beampattern. The minimization in Problem 4.3.1 is carried out over the variables δ

and w. The objective and constraints in Problem 4.3.1 are linear functions of these

variables, so the problem constitutes a linear program. Because linear programs are

convex (see [25]), the minimax weights are a unique, global optimum. Refined numer-

ical algorithms exist that solve linear programs quickly (worst-case polynomial time)

to a very high precision. Two of the most common algorithms are interior point and

active set (i.e. simplex) methods [26, 28].

Figure 4.3.2 provides an example VSA minimax beampattern. The beampatterns

shown use the same parameters as the other sections: an N = 10 element vector-

sensor array at frequency f = 5/7fd, steered to ϕ0 = −π/4. The mainlobe region

corresponds to the ≈ 23 dB beamwidth of the conventional beampattern. Although

the sensitivity factor of the minimax weights is very high (≈ 154 dB), the differ-
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Figure 4.3.2: Example minimax beampattern

ence between the original (conventional) and minimax beampatterns in Figure 4.3.2

is striking. The sidelobes of the minimax beampattern are ≈ 31 dB, extremely low

compared to the original beampattern and at least 6 dB lower than any other beam-

pattern in this section. By definition, the maximum sidelobe level of the minimax

beampattern is the lowest possible. Furthermore, the minimax beampattern achieves

such a low sidelobe level with a narrower mainlobe than the conventional beampattern.

Minimax beampatterns appear significantly better than the alternatives when only

considering the design objectives of mainlobe width and sidelobe level.

Unfortunately, the minimax beampattern shown in Figure 4.3.2 is “too good to be

true” in practice. Recall the objectives of fixed weight design: narrow beamwidth, low

sidelobe levels, and low sensitivity. Although the minimax beampattern is optimal in

terms of the first two objectives, its sensitivity to modeling errors often makes it im-

practical. Parameters subject to modeling errors are commonly treated as stochastic.

Following the work in [15, 1], this thesis uses the extended Gilbert-Morgan mismatch
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model, treating the vector-sensor gains, phases, positions, and rotations as zero-mean

Gaussian random variables with standard deviations

Parameter Std. Dev. Units

Gain 0.1 Unitless

Phase 10 Degrees (◦)

Position 0.1 Wavelengths (λ)

Rotation 10 Degrees (◦)

.

These parameters represent a scenario with a substantial amount of mismatch. The

beampattern with stochastic parameters becomes the expected response power as a

function of angle, or

B(ϕ) , E
{
|y(ϕ)|2

}
= E

{
|wHv(ϕ)|2

}
= wHRmm(ϕ)w, (4.3.2)

where

Rmm(ϕ) , E
{
v(ϕ)vH(ϕ)

}
(4.3.3)

is the covariance matrix of a unit-power signal from angle ϕ. Note that this quadratic

form of the beampattern is valid for any stochastic model. The minimax and con-

ventional beampatterns from Figure 4.3.2 are shown under this mismatch model in

Figure 4.3.3. Note the difference in scale from Figure 4.3.2. In this example, the

extreme sensitivity of the minimax beampattern renders it useless for practical array

processing. The large magnitude of each element in the minimax weight vector leads

to an intuitive understanding of this sensitivity. To obtain the low sidelobe levels and

narrow mainlobe shown in Figure 4.3.2, the minimax weights magnify minute differ-

ences between the (ideal) responses of the sensors. Errors in the element responses

are typically much larger than these differences and are magnified by the minimax

weights, resulting in an unpredictable beampattern. One reason that the minimax
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Figure 4.3.3: Effects of mismatch on a minimax beampattern

criterion is sometimes more effective in filter design than beampattern design is the

uncertainties involved in array processing. Errors in temporal sampling (i.e. clock

jitter) are typically much smaller than errors in spatial sampling (i.e. position errors).

Although the minimax beampattern is extremely sensitive, it serves two important

purposes. First, it provides a bound on the achievable mainlobe and sidelobe levels

for any fixed weight. The mainlobe in Figure 4.3.2 is only slightly narrower than the

conventional beampattern; the difference is far less than half the beamwidth. This

suggests that no VSA beampattern with acceptable sidelobe levels has a mainlobe

that is significantly narrower than the conventional. A theoretical basis for this state-

ment appears in the direction-of-arrival bound in [1] (see Figure 1.4.1). Second, the

minimax beampattern reveals that vector-sensor array beampatterns sometimes defy

conventional wisdom and must be carefully designed. Assuming a typical relationship

between mainlobe and sidelobe levels, for instance, results in atypical behavior.
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4.3.3 The Minimum Sensitivity Criterion

To avoid the extreme sensitivity demonstrated by the minimax beampatterns, an al-

ternative criterion must balance all three design objectives. This section proposes a

“minimum sensitivity” criterion which does just that, resulting in significant improve-

ments and allowing explicit trade-offs between the three objectives. The minimum

sensitivity criterion applied to vector-sensor array processing is a key contribution of

this work, but the same concepts appear elsewhere in filter design ([23]) and array

processing ([24]). The following paragraphs introduce the criterion, provide a few

examples, and discuss one important trade-off involved in the design.

The previous section illustrates the need to unify the design objectives of a nar-

row mainlobe, low sidelobes, and low sensitivity into one design criterion. The key

question is how to relate the intuitive notion of a “good” beampattern in terms of

these competing objectives. The first step toward answering this question involves

“Pareto optimal” solutions. Although a full discussion of multi-objective optimization

is outside the scope of this document, Pareto optimal solutions capture the intuition

of multi-objective optimality. A solution is Pareto optimal if improving it along one

objective must necessarily worsen another. For any solution that is not Pareto opti-

mal, a Pareto optimal solution exists that is better along at least one objective and

no worse along the others. Therefore, the set of Pareto optimal solutions includes

every preferred solution to the multi-objective problem.

One approach for exploring the set of Pareto optimal solutions is to minimize

one objective and constrain the others. For the three-objective beampattern design

problem, this yields only three candidate criteria. First, one could minimize the side-

lobe level and constrain the beamwidth and sensitivity. This candidate suffers from

two problems: 1) sensitivity is the most difficult of the three objectives to interpret

and thus constrain, and 2) the criterion allows for undesirable, large variations in

sidelobe level from beam to beam. A second candidate criterion is to minimize the

beamwidth and constrain the sidelobe level and sensitivity. As with the first can-

didate, the sensitivity constraint is difficult to interpret. Furthermore, the resulting
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minor improvements in beamwidth may not be worthwhile. The third and best candi-

date criterion is to minimize the sensitivity and constrain the beamwidth and sidelobe

level. Choosing reasonable sidelobe and beamwidth constraints is straightforward, so

this criterion yields Pareto optimal beampatterns with little tuning.

“Minimum sensitivity” designs do just as the name suggests: they minimize the

sensitivity factor subject to a given mainlobe region and sidelobe level. Section 2.2

defines the (normalized) VSA sensitivity factor as

ξ , 2N wHw (4.3.4)

= wTQw. (4.3.5)

The diagonal matrix Q arises because of the transformation from the real weight

vector w to the complex weight vector w. The form of Q depends on the number of

elements (odd or even) but is clear from the transformation (see Section 2.1.2); an

even number of elements givesQ = 4N ·I. Because the sensitivity factor is a quadratic

form, minimum sensitivity weights are the solutions to a quadratic program. Section

4.3.2 demonstrates that the sidelobe constraints are linear. The beamwidth con-

straint simply determines the width of the mainlobe region in the spatial quantization

scheme. The minimum sensitivity problem is therefore

minimize wTQw

subject to vT (ϕ0)w = 1

vT (ϕm)w ≤ 1 m ∈ M

vT (ϕm)w ≤ δ m ∈ S

−vT (ϕm)w ≤ δ m ∈ {M∪ S}

, (4.3.6)

where M and S represent the mainlobe and sidelobe regions as in Problem 4.3.1.

Note that the optimization is performed only over w; the maximum sidelobe level,

δ, is fixed. The matrix Q is positive definite, so the quadratic program is strictly

convex with a unique global optimum. Refined algorithms exist that solve Problem
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Figure 4.3.4: Example minimum sensitivity beampattern

4.3.6 quickly (in worst-case polynomial time) and to high precision [26, 28]. Section

4.3.4 discusses one such algorithm that solves Problem 4.3.6 efficiently by leveraging

the special structure of the array processing problem.

Figure 4.3.4 provides an example of a minimum sensitivity beampattern. As

before, the beampattern is for an N = 10 element vector-sensor array steered to

ϕ0 = −π/4 at frequency f = 5/7fd. The maximum sidelobe constraint is −25 dB.

The mainlobe region is determined by the width of a corresponding pressure-sensor ar-

ray beampattern using a 25 dB Taylor taper. As expected, the sidelobes and backlobe

are low (no higher than −25 dB) and the mainlobe is comparable to the conventional

beampattern. By reducing the backlobe to a low sidelobe level, the minimum sensitiv-

ity beampattern in Figure 4.3.4 resolves the pressure-sensor ambiguity as effectively

as it resolves signals from any other direction.

Figure 4.3.4 is an excellent result, but the true strength of the minimum sen-

sitivity criterion is illustrated in Figure 4.3.5. Under the same mismatch scenario
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Figure 4.3.5: Effects of mismatch on a minimum sensitivity beampattern

as Section 4.3.2, the minimum sensitivity weights from Figure 4.3.4 still effectively

resolve the pressure-sensor ambiguity. The effect of the mismatch is similar to beam-

pattern modulation with directional additive noise (see [1, 15]). As the sensitivity

factor increases, the noise level increases and the signal gain decreases. The mini-

mum sensitivity weights reduce the level of additive noise close to the conventional

beampattern and maintain the same level of gain. In short, the minimum sensitivity

beampattern is approximately as robust as the conventional beampattern but without

the backlobe. For comparison, the normalized sensitivity factor is ξ ≈ 154 dB for the

minimax weights in Figure 4.3.3 and ξ ≈ 1.37 dB for the minimum sensitivity weights

in Figure 4.3.5. The minimum value of ξ is unity, or 0 dB.

Minimum sensitivity beampatterns have a number of interesting properties that

merit further discussion. Figures 4.3.6 and 4.3.7 illustrate a second example beampat-

tern in ideal and mismatched scenarios. The beampatterns in these figures arise from

a N = 20 element vector-sensor array at frequency f = 5/7fd, steered near endfire at
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Figure 4.3.6: Example endfire minimum sensitivity beampattern
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Figure 4.3.7: Effects of mismatch on an endfire minimum sensitivity beampattern
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ϕ0 = −π/8. The mismatch parameters are the same as before; the sidelobe constraint

remains−25 dB. Figure 4.3.6 reveals that the mainlobe and backlobe are merged when

the look direction is within a beamwidth of array endfire. Attempting to reduce the

backlobe to a low level is often infeasible or the resulting weights are extremely sen-

sitive. Chapter 3 provides a theoretical basis for this endfire performance problem.

The elegant solution, illustrated by the minimum sensitivity beampattern in Figure

4.3.6, extends the mainlobe region into the backlobe to widen the beamwidth until

the weights become less sensitive. For the example shown, the mainlobe is extended

until the sensitivity factor fell to ξ = 3 dB. Note that the resulting minimum sensitiv-

ity beampattern improves the ambiguity resolution, maintains a narrow beamwidth,

and achieves low sidelobe levels. Another property demonstrated in Figures 4.3.6 and

4.3.7 is sidelobe roll-off. In this respect, the minimum sensitivity beampatterns are

very similar to the popular Taylor taper. As the sidelobe constraint becomes more

restrictive, more sidelobes meet it with equality. If the sidelobe constraint is very high

(not binding), the minimum sensitivity weight equals the conventional weight. With

the lowest sidelobe level, the minimum sensitivity weight is the minimax weight.

One important issue in the design of minimum sensitivity weights is the trade-

off between sensitivity and maximum sidelobe level. As the maximum sidelobe level

decreases, the sensitivity increases monotonically. Figure 4.3.8 illustrates a typical

curve of minimum sensitivity versus sidelobe level for the familiar case with N = 10,

f = 5/7fd, and ϕ0 = −π/4. The minimum sensitivity weights delineate the gray

region in Figure 4.3.8. This region represents unachievable combinations of sidelobe

level and sensitivity. At one extreme, the minimax weights achieve the lowest abso-

lute sidelobe level. At the other extreme, the conventional weights achieve the lowest

absolute sensitivity. The minimum sensitivity curve connecting these points divides

into two regimes. The first regime in Figure 4.3.8 occurs for sidelobe levels above

≈ −25 dB, where a marginal decrease in sidelobe level changes the sensitivity very

little.2 The weights in this regime are generally well-behaved: coarse spatial quan-

2The “boundary” between the two regimes depends on the expected level of mismatch. The
choice of ≈ −25 dB is explained in Section 4.3.4.
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Figure 4.3.8: Minimum sensitivity versus maximum sidelobe level

tization yields acceptable weights, solving Problem 4.3.6 is numerically stable and

efficient in practice, and the beampatterns are robust. The second regime in Figure

4.3.8 occurs for sidelobe levels below ≈ −25 dB, where a marginal decrease in side-

lobe level significantly increases the sensitivity. Decreasing the sidelobe level of the

ideal beampattern in this regime actually increases the expected sidelobe level under

a mismatch scenario. The weights in this second regime are sometimes numerically

unstable, difficult to compute in practice, and require a fine spatial quantization. Fig-

ure 4.3.8 reveals the importance of considering both sensitivity and sidelobe level in

the design process. Although it is not shown here, the curve of minimum sensitivity

versus beamwidth exhibits similar behavior.

4.3.4 Advanced Optimization Topics

The criteria discussed in Sections 4.3.2 and 4.3.3 provide a gentle introduction to

fixed weight design using convex optimization. Several related optimization topics
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are worth mentioning here, but a detailed discussion is outside the scope of the

thesis. This subsection first provides heuristics and implementation details for the

VSA minimum sensitivity problem. It then highlights the role of convex optimization

in alternative design criteria.

Section 4.3.3 notes that the minimum sensitivity criterion requires “reasonable”

choices for sidelobe level and beamwidth. In practice, simple heuristics aid in choosing

both parameters. The approach taken here sets the maximum sidelobe level slightly

below the average expected sidelobes of a mismatched, conventional beampattern

(see [10], [1, §3.1], and [15]). Intuitively, this choice makes the sidelobes negligible

compared to the noise introduced by the mismatch. A reasonable mainlobe region

is chosen based upon a standard beamwidth, then expanded as necessary until the

sensitivity factor falls below a threshold.

Many algorithms are capable of solving quadratic programs like Problem 4.3.6,

but the special structure of minimum sensitivity design favors a modified active-set

method [28, §16.6]. A properly implemented active-set algorithm for this problem is

more precise, uses less memory, and requires orders of magnitude less computation

than a general purpose solver. Active-set methods are similar in structure to the

Remez exchange algorithm: they solve quadratic programs by determining the small

set of constraints “active” at the optimum and solving a simpler, equality-constrained

problem. Each iteration of the active-set method requires little computation. Only a

few iterations are typically required to solve the problem from a good, feasible starting

point. Adding an (exact) ℓ∞ penalty, commonly referred to as the “big M” method,

allows starting from any initial guess. Weights computed at nearby frequencies or

beams often provide an excellent “warm-start” to the algorithm.

The two criteria discussed in this chapter are not the only criteria possible with

convex optimization. Alternative criteria which seem intractable have efficient nu-

merical solutions as long as the problems are convex [25]. One example is weight

design based upon the expected beampattern. Consider an arbitrary array (including

any pressure- or vector-sensor array) under any deterministic or stochastic model.

Each point on the expected beampattern is a positive semidefinite quadratic form
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Figure 4.3.9: VSA beampatterns in azimuth and elevation

(like Equation 4.3.2). The minimax criterion applied to the expected beampattern

yields a convex, second-order cone program (SOCP) that is efficient to solve [24, 26].

4.3.5 Beampatterns in Azimuth and Elevation

The spatial quantization scheme discussed in Section 4.3.1 only constrains the beam-

pattern of a horizontal vector-sensor array at zero elevation, i.e in the horizontal

plane. The following provides an example and brief argument that additional eleva-

tion constraints are unnecessary. The ability of a horizontal VSA to resolve signals

at the same conical angle is limited. This resolution arises only from the direc-

tional elements; there is no vertical aperture to a horizontal array. Constraining the

beampattern in the horizontal plane applies two constraints per conical angle, so the

constrained beampattern has little freedom in the elevation dimension. Figure 4.3.9

confirms this behavior with 2-D contours of the beampatterns from Figure 4.3.4. The

look direction is marked with a star. The minimum sensitivity beampattern is lower
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than the conventional beampattern almost everywhere, even at nonzero elevation

where there are no constraints. Constraining the beampattern of a horizontal VSA

in the horizontal plane produces a weight that is well-behaved at all elevation angles.

4.4 Performance of Fixed Weights

The stated goal of this chapter is the design of fixed weights that achieve good perfor-

mance like that predicted in Chapter 3. Section 4.3.3 describes the design of minimum

sensitivity weights achieving 1) a narrow mainlobe, 2) low sidelobe levels, and 3) low

sensitivity. Properties (2) and (3) ensure that these weights achieve performance close

to the estimation bound in Section 3.2 for all but high-power interference.

For any fixed weight, the NRMSE performance as described in Chapter 3 depends

only on the sensitivity factor and the backlobe rejection. The mean-squared error for

the estimation scenario illustrated in Figure 3.2.1 is

MSEfixed = E
{
(α0 − α̂0)

2}
= α2

0 − 2α0E {α̂0}+ E
{
α̂2
0

}
. (4.4.1)

The power estimate, α̂0, obtained by any fixed weight is a scaled Chi-square random

variable with two degrees of freedom, so E {α̂2
0} = 2E {α̂0}

2 and

MSEfixed = α2
0 − 2α0E {α̂0}+ 2E {α̂0}

2 . (4.4.2)

The beam output power for the white noise scenario in Section 3.2 is

E {α̂0} = α0 + αnw
Hw + α1|wHv(−ϕ0)|2. (4.4.3)

The first term in Equation 4.4.3 is the target power, which remains undistorted by

the fixed weight. The second term is the output power due to white noise and does

not depend on the interference. The third term represents the backlobe interference
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Figure 4.4.1: Efficiency of an example fixed weighting

“leakage.” When the array JNR is small compared to the backlobe rejection, e.g.

α1

αn

<
1

2
· wHw

|wHv(−ϕ0)|2
, (4.4.4)

the interference leakage is negligible and the NRMSE is nearly constant with JNR. For

interference power above this threshold, the NRMSE increases quickly and diverges

from the lower bound. The CRB is not a strict bound in this case because the

estimator is biased, but it still commonly used for comparison [5, Chapters 8 and 9].

Because minimum sensitivity weights have low sidelobes and low sensitivity, their

NRMSE performance remains close to the bound unless the JNR is high. Figure 4.4.1

illustrates the NRMSE performance of the minimum sensitivity weight from Figures

4.3.4 and 4.3.5. The performance of the fixed weight only diverges from the bound

at JNR above the −25 dB sidelobe level. Fixed weights exist with better NRMSE

performance under this specific scenario, but minimum sensitivity weights perform

well for any sidelobe interferer without a priori knowledge of interference location.
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Chapter 5

Subspace Adaptive Processing

Chapter 4 describes the design of robust, fixed weights for vector-sensor array pro-

cessing. The minimum sensitivity beampatterns in Section 4.3.3 achieve substantial

improvements over existing techniques, but fixed-weight beamforming is fundamen-

tally limited in two important areas. First, the beamformer resolution is restricted by

the beamwidth. Second, the interference rejection is restricted by the sidelobe levels.

Improving performance in either area motivates the use of data adaptive beamform-

ing.

Adaptive beamforming (ABF) improves resolution and interference rejection by

adjusting the array weights based upon observed data. A thorough introduction to

adaptive processing is provided in [5]. Adaptive processing typically proceeds in two

steps. First, the second-order statistics of the data are estimated in the form of a

covariance matrix. This chapter focuses on estimation using the “sample covariance

matrix,”

R̂ , 1

K

K∑
k=1

xkx
H
k , (5.0.1)

because of its rapid convergence [9]. Recall from Section 3.1 that K is the number of

observations, or “snapshots.” The second step in adaptive processing computes weight

vectors by substituting the sample covariance matrix for the true, or theoretical,

covariance matrix. This step solves the MVDR problem in Equations 4.2.1 and 4.2.2

using the sample covariance matrix, R̂.
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The key problem in adaptive vector-sensor array processing is large dimension.

The data dimension, D0, increases from D0 = N with a pressure-sensor array to

D0 = 4N with a vector-sensor array. As mentioned in Section 1.4.3, adaptive process-

ing requires O(D3) computation and O(D) training time. Increasing D by a factor of

four necessitates algorithms that require less computation and converge more quickly.

Processing power is easily increased, but training time is fundamentally limited by

the stationarity of the data (see Section 1.4.3).

The work in this chapter does not overcome the fundamental problems of large di-

mension, it circumvents them by reducing the problem dimension without noticeably

affecting optimum performance. Sections 5.1 and 5.2 introduce and formalize sub-

space processing. Section 5.3 derives an “optimum” subspace appropriate for beam-

forming an entire region. After a brief discussion of the mathematics behind subspace

design, the chapter concludes by analyzing the performance of adaptive processing.

Key contributions of this chapter are 1) a theoretical framework for subspace design,

2) a derivation of eigenbeam transformations within this framework, and 3) an ap-

proximation revealing the substantial dimension reduction achieved. The techniques

in this chapter apply to any array, but the analysis and results are VSA-specific.

5.1 Introduction to Subspace Techniques

Subspace techniques reduce both computation and training time by performing stan-

dard adaptive processing in a low dimensional subspace. In standard adaptive pro-

cessing, the input data is fed directly into some adaptive processor. The dimension of

this “element-space” adaptive problem equals the data dimension, or D = D0. Sub-

space adaptive processing, illustrated by the block diagram in Figure 5.1.1, projects

the data into a low dimensional subspace before applying adaptive processing. The

replica vectors used in subspace adaptive processing pass through the same transfor-

mation. The dimension of the adaptive problem is reduced to the dimension of the

subspace, D ≪ D0. The reduced-dimension adaptive problem requires less computa-

tion and, more importantly, less training time than the element-space scheme.
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Figure 5.1.1: Adaptive processing in low-dimensional subspaces

Subspace adaptive processing has several advantages over other techniques for

dealing with large dimension. First, it involves a simple linear transformation of

the data. The standard processing techniques apply without modification to the

transformed data: jointly Gaussian data remains jointly Gaussian, conventional and

adaptive processing retain their properties, and optimum processing takes the same

form. Second, it is compatible with other techniques. Proven techniques such as di-

agonal loading and dominant mode rejection remain effective [10, 11]; promising new

techniques such as PCML still apply to the transformed data [12]. Third, subspace

processing is computationally efficient, especially for static arrays. For transforma-

tions computed offline, the cost of applying the transformation is offset by the savings

of inverting a smaller matrix.

Before discussing the fundamentals of subspace design, the relationship between

subspaces and orthonormal transformation matrices is important to clarify. The set

of all D-dimensional subspaces in CD0 is called the (complex) Grassmann manifold,

G(D,D0). Each subspace can have infinitely many orthonormal bases, related by

rotation, so there is generally not a one-to-one correspondence between G(D,D0)

and the orthonormal matrices
{
P ∈ CD0×D | PHP = ID

}
. The loose notation P ∈

G(D,D0) indicates that P is an orthonormal basis for one subspace in G(D,D0). The

optimal subspace is often unique, but the transformation matrix is not. For a full

treatment of optimization on the Grassmann manifold, see [29].
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5.2 Inner Product Preservation

The primary obstacle to developing a theory of subspace processing is the lack of a

useful optimality criterion. Many proven techniques such as beamspace processing

[5, §7.10] and subarray processing are easily framed as subspace methods, but their

choice of subspace is based on intuition. Comparing different subspaces requires a

definition of optimality, an ideal subspace. The goal of subspace processing is to

reduce dimension but leave the optimum output unchanged. Under what conditions

is the subspace transformation “lossless”?

Subspace optimum processing is equivalent to element-space optimum processing

if and only if the subspace transformation is inner product preserving. To ensure

equivalent processing for the signals in V, an orthonormal transformation matrix P

must only satisfy

⟨v0 , v1⟩ = ⟨PHv0 , P
Hv1⟩ ∀ v0,v1 ∈ V. (5.2.1)

An informal proof of Equation 5.2.1 is straightforward: inner product preservation

is equivalent to V ⊆ span(P), so applying the transformation performs a change of

basis and leaves the optimum output unaltered.

Many conditions are equivalent to Equation 5.2.1, but the chosen form is most

useful for several reasons. First, it provides a quantitative measure of subspace per-

formance that is useful for comparison and design. Second, it provides intuition about

how errors affect the output. If the norm of a vector is not preserved, the output

signal-to-noise ratio is lowered. If the inner product between two vectors is not fully

preserved, the ability to distinguish between the two signals (e.g. nulling) is affected.

Third, inner products naturally extend concepts from filter design to the multidimen-

sional case. The one-dimensional subspace design problem is closely related to filter

design; norms are equivalent to the magnitude response of the filter.

The power of Equation 5.2.1 lies in approximation. An ideal subspace satisfying

Equation 5.2.1 with equality is often not useful in practice. The ideal subspace for

many problems is simply element-space, or P = I. Although it sometimes takes
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the full dimension to satisfy with equality, inner product preservation is often well-

approximated with low dimensional subspaces.

5.3 Regional Projections

A natural starting point for subspace design appears in the definition of inner product

preservation. How can Equation 5.2.1 be approximated to support low-dimensional

processing over an entire region? This section provides one answer in the form of

“eigenbeam” transformations. Eigenbeam transformations are not new to array pro-

cessing (see [30]), but the justification given for their use is often vague. This section

derives eigenbeam transformations as the subspaces minimizing the squared error of

the inner products.

5.3.1 Problem Description

Section 5.2 derives conditions corresponding to the “ideal” subspace. The design

problem is now reduced to approximation, or selecting a subspace that minimizes

some measure of deviation from the ideal. There are many useful error metrics,

each of which defines an “optimal” subspace. This section describes the problem of

minimizing a common and tractable metric, the total squared error.

Applying the minimum squared error criterion to subspace design involves formally

defining the error and stating the problem. Section 5.2 reveals that the error between

the ideal subspace and any orthonormal transformation, P, is captured by the error

in the inner products. For any two vectors {v0,v1}, the error in the inner product is

ϵ{v0,v1} , vH
0 v1 − vH

0 PPHv1. (5.3.1)

The error implicitly depends on the transformation P. Equation 5.3.1 must be con-

sidered over all pairs of vectors in some region, K, of the manifold. The K considered

in this chapter are regions in cosine-space, or u-space, but the derivation is valid for

regions defined in any parameterization of the manifold (angular-space, wavenumber-
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space, etc.). The error is minimized over the set of manifold vectors in the region,

V , {v(k) | k ∈ K} . (5.3.2)

Writing the minimization in terms of the region, K, gives the optimization problem

min
P∈G(D,D0)

∫
K

∫
K
|ϵ {v(k0),v(k1)}|2 dk0 dk1. (5.3.3)

Using the loose notation v0 = v(k0) and v1 = v(k1) makes the dependence on k

implicit and produces a compact form of the problem:

min
P∈G(D,D0)

∫
K

∫
K
|ϵ {v0,v1}|2 dk0 dk1. (5.3.4)

The double integral over K in Equation 5.3.4 captures every pair of inner products.

5.3.2 Solution: Eigenbeams

The optimization problem in Equation 5.3.4 seems very difficult at first glance. It

is non-convex, requires a search over complex manifolds, and involves difficult inte-

grals. The solution, however, is powerful and elegant. The global optimum is easily

computed by a singular value decomposition to high numerical precision.

The global optimum to Problem 5.3.4 is derived in three steps. First, the problem

is modified to search over the orthogonal complement of the desired subspace. The

inner product error in Equation 5.3.1 is easily written as

ϵ{v0,v1} = vH
0 P⊥P

H
⊥v1, (5.3.5)

where P⊥ ∈ G(D0 −D,D0) is an orthonormal basis for the null-space of P. Finding

P in Problem 5.3.4 is equivalent to finding P⊥ in

min
P⊥∈G(D0−D,D0)

∫
K

∫
K

∣∣vH
0 P⊥P

H
⊥v1

∣∣2 dk0 dk1. (5.3.6)
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Second, the integrals are removed from the problem. Expanding the objective in

Equation 5.3.6 gives

∫
K

∫
K
vH
0 P⊥P

H
⊥v1 vH

1 P⊥P
H
⊥v0 dk0 dk1

=

∫
K

∫
K
tr
(
PH

⊥v0v
H
0 P⊥ PH

⊥v1v
H
1 P⊥

)
dk0 dk1

=

∫
K
tr

[
PH

⊥

(∫
K
v0v

H
0 dk0

)
P⊥ PH

⊥v1v
H
1 P⊥

]
dk1

= tr

[
PH

⊥

(∫
K
v0v

H
0 dk0

)
P⊥ PH

⊥

(∫
K
v1v

H
1 dk1

)
P⊥

]

= tr
[(
PH

⊥RKP⊥
)2]

, (5.3.7)

where RK is the covariance matrix

RK ,
∫
K
v(k)vH(k) dk. (5.3.8)

The first step above treats the scalar integrand as the trace of a 1 × 1 matrix and

uses the trace identity tr(AB) = tr(BA); the remaining steps utilize the linearity of

the trace function. Note that RK is the covariance matrix of isotropic noise over K.

The third and final step to solving Problem 5.3.4 determines the global optimum

using the Poincaré separation theorem [31, §4.3]. Let λi(R) represent the ith largest

eigenvalue of the n×n Hermitian matrixR. For any n×r orthonormal transformation

matrix P, the Poincaré separation theorem states that

λi(R) ≥ λi(P
HRP) ≥ λn−r+i(R) i = 1, . . . , r. (5.3.9)

The upper and lower bounds in Equation 5.3.9 are achieved simultaneously for all

eigenvalues when P spans the dominant and sub-dominant subspace of R, respec-
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tively.1 One implication of Equation 5.3.9 is that

r∑
i=1

f
[
λi(P

HRP)
]

(5.3.10)

is maximized/minimized for any monotonic function f(λ) whenP spans the dominant/sub-

dominant subspace of R. Substituting Equation 5.3.7 into Problem 5.3.6 yields

min
P⊥∈G(D0−D,D0)

D∑
i=1

λ2i
(
PH

⊥RKP⊥
)
. (5.3.11)

Because RK is positive semidefinite, each eigenvalue is nonnegative and f(λ) = λ2 is

monotonic. Using Equation 5.3.10, the global optimum is achieved when P⊥ spans

the sub-dominant subspace of RK, or when P spans the dominant subspace. The

global optimum subspace is always unique when the eigenvalues of RK are unique.

The above derivation is complex, but obtaining the optimum transformation is

relatively simple. An orthonormal transformation to the optimum D-dimensional

subspace is found in three steps:

1. Form the “isotropic” covariance matrix over K:

RK ,
∫
K
v(k)vH(k) dk

2. Compute the singular value decomposition of RK:

RK = USUH

3. Concatenate the dominant eigenvectors from U:

PE ,
[
u1 u2 · · · uD

]

1The eigenvectors with the largest eigenvalues span the dominant subspace; the eigenvectors with
the smallest eigenvalues span the sub-dominant subspace.

124



Note that the first two steps do not depend on the subspace dimension. Applying

the transformation matrix is “beamforming” with the eigenvectors of RK, so PE is

commonly referred to as an “eigenbeam” transformation. Often, the most difficult

step in computing the eigenbeam transformation is integrating to form RK.

5.3.3 Analysis

The procedure in Section 5.3.2 constructs orthonormal transformations to the opti-

mal least-squares subspaces of any chosen dimension. Section 5.3.2 only proves that

these subspaces minimize the least-squares criterion; it does not indicate how much

dimension reduction is possible.

This subsection analyzes the behavior of eigenbeam subspaces and demonstrates a

significant reduction in dimension with near-optimal performance. First, it character-

izes the error behavior of eigenbeam transformations and provides a rule for choosing

an acceptable subspace dimension. Second, it shows that the required dimension is

often very small and grows linearly with region size and frequency. Third, it pro-

vides an example of the performance improvements achieved with subspace adaptive

processing.

The integrated squared error from Equation 5.3.4 provides a natural metric for

choosing the dimension of eigenbeam subspaces. Just as the length of a filter is chosen

to satisfy a maximum error criterion, the dimension of an eigenbeam subspace is easily

chosen by the integrated error. Because the eigenbeams span the dominant subspace

of RK, the integrated error of a D-dimensional eigenbeam subspace is determined by

the sub-dominant eigenvalues of RK:

ε(D) =

D0∑
i=D+1

λ2i (RK) . (5.3.12)

Recall that D0 is the dimension of the full space, or the data dimension. The function

ε(D) is easily evaluated from the existing singular value decomposition. A more
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Figure 5.3.1: Integrated error versus eigenbeam dimension

universal quantity is the relative, or fractional, error formed by the ratio

η(D) , ε(D)

ε(0)

=

∑D0

i=D+1 λ
2
i (RK)∑D0

i=1 λ
2
i (RK)

. (5.3.13)

By definition, the fractional error lies in the range 0 ≤ η(D) ≤ 1 and is monotonically

decreasing with D. Figure 5.3.1 provides an example of fractional error (in decibels)

versus subspace dimension. The curve in Figure 5.3.1 corresponds to an N = 30

element VSA at f = 5/7fd; the region K corresponds to the entire visible region in

u-space. Figure 5.3.1 reveals that the fractional error exhibits threshold behavior at

a critical dimension that is much less than D0. Beyond this critical dimension, η(D)

decreases rapidly. A rule-of-thumb for choosing the subspace dimension is to select
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Figure 5.3.2: Loss incurred with an eigenbeam subspace: D/D0 = 0.4

the minimum dimension that reduces the fractional error below a given threshold, or

DE , inf {D | η(D) < ϵ} (5.3.14)

for some ϵ ≪ 1. The threshold behavior of η(D) implies that the particular choice

of ϵ has little effect on the resulting dimension, DE. The remainder of this section

assumes a conservative threshold of ϵ = 10−6. Applying this threshold to the example

in Figure 5.3.1 gives D/D0 = 0.4, a 60% reduction in dimension. To visualize the

resulting errors, consider the “subspace loss” of a manifold vector v as the ratio

vHPPHv

vHv
≤ 1. (5.3.15)

As its name implies, the subspace loss is always less than unity whenP is orthonormal.

Figure 5.3.2 confirms that the subspace loss is negligible (< 0.01 dB) for this example.

The figure also reveals that subspace loss increases near array endfire.
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Eigenbeam subspaces yield substantial dimension reduction when applied to vector-

sensor arrays. Below the design frequency, the required dimension approximately

equals the number of critical beams required to cover the region. Critical beams are

conventional beams spaced at the Rayleigh resolution limit, i.e. at the peak-to-null

width. In u-space, the VSA peak-to-null width is

(∆u)PN =
2

N
·
(
fd
f

)
, (5.3.16)

so the number of critical beams required to cover some region ∆u on both sides of

the array is

Bcrit = 2 · (∆u)
(∆u)PN

= 2N ·
(
f

fd

)
·
(
∆u

2

)
. (5.3.17)

The additional factor of two accounts for the two sides of the array. Figure 5.3.3

illustrates the eigenbeam dimension versus frequency and region size for a very long

array (N = 201). The subspace dimension is well approximated by the number of

critical beams, or

(
D

D0

)
≈

(
Bcrit

D0

)

=
1

2
·
(
f

fd

)
·
(
∆u

2

)
. (5.3.18)

Equation 5.3.18 is written in terms of normalized quantities to illustrate its simple bi-

linear form. The subspace dimension is often slightly greater than the approximation,

depending on the threshold, but the approximation becomes tighter as the number of

elements increases. Equation 5.3.18 is not intended to replace the numerical method

in Equation 5.3.14, only to illustrate its dependencies. The power of subspace pro-

cessing is evident in Equation 5.3.18 and Figure 5.3.3: compared to element-space,

eigenbeam processing reduces the dimension by at least half and often much more.
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Figure 5.3.3: Eigenbeam dimension versus frequency and region size

The dimension reduction achieved with eigenbeam processing allows for dramatic

improvements when the training is limited. As mentioned in Section 1.4.3, the number

of data snapshots is often too few for element-space processing. Figure 5.3.4 illustrates

one such scenario with an N = 30 element vector-sensor array at f = 5/7fd. The sim-

ulation involves white noise and four sources at ϕ ≈ {−0.73π, − 0.39π, 0.27π, 0.61π}

radians with array signal-to-noise ratios ASNR = {6, 12, 18, 24} dB, respectively. The

two sources nearest endfire leak into beams on the opposing side of the array; note the

small “backlobe” peaks near ϕ ≈ −0.27π and ϕ ≈ 0.73π. The eigenbeam subspace

is the same subspace illustrated in Figures 5.3.1 and 5.3.2 with the same dimension,

D = 48. The number of snapshots is K = 3×D, enough to guarantee the eigenbeam

covariance is well-estimated [9]. The ABF power estimates are non-Gaussian ran-

dom variables, so their median values and the 95% confidence region are indicated as

determined from 10,000 Monte-Carlo trials. The element-space processor is severely

affected by the low sample support, yielding a large power bias and unreliable esti-
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Figure 5.3.4: ABF comparison with K = 3×D snapshots

mates. By contrast, the eigenbeam processor is near optimum. Eigenbeam processing

reduces the power bias by ≈ 6 dB and yields more reliable power estimates. The com-

parison in Figure 5.3.4 is impossible in many scenarios because the training is too

short for element-space processing. For example, Figure 1.4.3 predicts only K ≈ 108

available snapshots in the scenario described above. Eigenbeam adaptive process-

ing is well-conditioned with this support, but element-space adaptive processing is

impossible without modification.

One benefit of dimension reduction is an improvement in output bias, or a dimin-

ished “loss.” Sample matrix inverse (SMI) processing estimates a covariance matrix

from a finite number of snapshots. The output power of the processor is biased low

because the covariance estimate is imperfect [9]. The power bias (in decibels) for a

D-dimensional problem with K > D snapshots is

10 log10

(
K + 1

K + 2−D

)
. (5.3.19)
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Reducing the problem dimension from D0 to D improves this bias by

10 log10

(
K + 2−D

K + 2−D0

)
. (5.3.20)

The improvement is most dramatic when the dimension is significantly reduced and

the number of snapshots is limited, as illustrated in Figure 5.3.4.

The eigenbeam techniques developed in this chapter have important applications

in sector and local subspace processing. This chapter primarily analyzes eigenbeam

processing over all of u-space. It is possible to segment u-space into different regions,

or “sectors,” and perform eigenbeam processing within each sector. It is also possible

to process each beam in its own local subspace. Partitioning u-space into multiple

regions produces many adaptive processing problems, each of which has smaller di-

mension than the original. Sector and local subspace techniques are discussed further

in [5, §3.10].

5.4 Differential Geometry of Subspace Design

The previous section describes the performance improvements possible with subspace

processing. A key result in the discussion is the observation in Equation 5.3.18 that

the eigenbeam dimension grows linearly with both frequency and region size and

remains smaller than the full data dimension. Although a detailed discussion is

beyond the scope of this thesis, Equation 5.3.18 hints at the special structure of

the vector-sensor array manifold. Parameterized by azimuth angle, the manifold

v(ϕ) represents a smooth curve on a radius-
√
2N sphere in the high dimensional

space C4N . Although v(ϕ) moves around the sphere (as indicated by the sidelobes in

the beampattern), it stays almost exclusively within the low-dimensional hyperplane

given by the eigenbeam subspace. In this sense, v(ϕ) moves around the sphere near

the “equator.” The curve appears flat on a small scale, but its dimension grows

linearly as the scale increases (see Figure 5.3.3). Subspace design is closely tied to

this geometric picture and other concepts from differential geometry.
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Figure 5.5.1: Efficiency of an example subspace processor

5.5 Performance of Adaptive Processing

The adaptive processing techniques described in this chapter approach the perfor-

mance predicted in Chapter 3 under many circumstances. Unlike the fixed weights

designed in Chapter 4, adaptive processors perform well even in the presence of strong

interference. Figure 5.5.1 illustrates this behavior with the standard N = 10 element

VSA steered to ϕ0 = −π/4 at frequency f = 5/7fd. The NRMSE metric and Cramér-

Rao bound are discussed in Section 3.2. The eigenbeam processor displayed in Figure

5.5.1 utilizes D = 19 dimensions and K = 50 snapshots. The subspace ABF is not

unbiased, but the Cramér-Rao bound is still helpful. Comparing Figures 5.5.1 and

4.4.1 reveals that the left/right performance of adaptive processing is substantially

better than fixed weight processing when the interference is strong. Furthermore, ad-

vanced adaptive processors likely achieve better NRMSE performance than the simple

SMI processor shown in the figure. Figure 5.3.4 reveals that adaptive processing also

increases resolution, an improvement not captured by the NRMSE metric.
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Chapter 6

Conclusion

The analyses and techniques presented in this thesis enable substantial improvements

in vector-sensor array processing. Building on the fundamentals enumerated in Chap-

ter 2, the thesis bounds vector-sensor performance and describes near-optimal pro-

cessing techniques.

6.1 Summary of Processing Improvements

Each chapter of the thesis focuses on improving a different branch of vector-sensor

array processing as described in Section 1.5. The performance bounds developed in

Chapter 3 tie the processing techniques together in Figures 4.4.1 and 5.5.1. These

figures quantify the left/right rejection of both techniques, but they do not give a

sense of overall performance. Figure 6.1.1 illustrates the improved VSA processing

achieved by this work. The four-source scenario described in Section 5.3.3 is simulated

with the standard N = 10 element vector-sensor array at f = 5/7fd. The number of

observations is K = 50.

The top axis in Figure 6.1.1 displays conventional VSA processing. With conven-

tional processing, strong sources on one side (ϕ > 0) of the array have high sidelobes

and backlobes that interfere with sources on the other side (ϕ < 0). False peaks at

ϕ ≈ −π/4 and ϕ ≈ −5π/8 make detecting the true sources difficult. It is impossible

to determine the location and number of sources from conventional processing alone.
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The center axis in Figure 6.1.1 displays the output of a beamformer using the

minimum sensitivity fixed weights described in Section 4.3.3. The weights have a

maximum sidelobe level of −25 dB. Minimum sensitivity weights reject sidelobe in-

terference without sacrificing much resolution, so the four true sources are clearly

visible without strong false peaks. The left/right resolution is reasonably close to the

optimum result. The limits of fixed weights are also illustrated: weak sidelobes are

visible on the strongest source and the array resolution is far from optimal.

The bottom axis in Figure 6.1.1 displays the eigenbeam adaptive processing de-

scribed in Chapter 5. Adaptive processing in the low-dimensional (D = 19) subspace

yields fast convergence and near-optimum results. Similar processing in element-space

produces a biased and unreliable output. Eigenbeam adaptive processing reduces the

left/right ambiguities more than fixed weight processing, but the most significant

improvement is the increased resolution.

6.2 Future Work in VSA Processing

The last chapter of this thesis is not the final chapter in vector-sensor array research.

The doors opened by this work lead to many unexplored and interesting areas within

array processing:

• Extending the convex optimization algorithms described in Chapter 4 to arbi-

trary arrays and stochastic models. A generalized beampattern design algorithm

could be easily constructed around a second-order cone solver (see Section 4.3.4).

Such an algorithm would be a powerful tool for arrays that are nonlinear, mis-

matched, or both.

• Deriving optimal “local” subspaces for each beam. The eigenbeam subspaces in

Chapter 5 support processing of signals and interference within a given region.

One alternative problem is designing a subspace for each beam. A weighted least

squares approach yields a modified eigenbeam technique. The dimension of such
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local subspaces is likely to be small and may only depend weakly on the array

length, but computational load and processing artifacts may be problematic.

A number of interesting topics specific to vector-sensor arrays also arise:

• Extending this work to resolve pressure-sensor grating lobes. Directional in-

formation allows for unambiguous vector-sensors array processing at all angles

and frequencies. This work focused on resolving left/right pressure ambigui-

ties. The same techniques may resolve pressure-sensor spatial aliasing above

the array design frequency (see [5, §2.4] and [1]).

• Matched field processing with vector-sensor arrays. The directional measure-

ments provided by a horizontal vector-sensor array allow limited vertical reso-

lution. Leveraging this vertical resolution could reduce the problematic ambi-

guities in matched field processing (see [21]).

• Computationally efficient adaptive processing. The point null approach in Sec-

tions 4.1 and 4.2 is easily transformed into an adaptive sidelobe canceller.

Adapting only to the backlobe and grating lobes requires little computation

but provides less benefit than fully-adaptive beamforming.

The techniques developed in this thesis provide a foundation for further research and

indicate the bright future ahead for acoustic vector-sensor arrays.
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Appendix A

Supplemental Material

A.1 Symmetric Noise Distributions

This appendix briefly proves a statement made in Section 3.1: for “left/right sym-

metric” noise distributions, the probability of error is a function of only the number

of snapshots and the K-L divergence. The formal definition of “left/right symmetric”

is that

vH
0 R

−1
n v0 = vH

1 R
−1
n v1 (A.1.1)

for all azimuth angles. Recall that v0 and v1 are replica vectors for opposing sides

of a linear vector-sensor array. This definition agrees with intuition and implies the

only condition necessary for this proof:

|R1R
−1
0 | =

|Rn + σ2v1v
H
1 |

|Rn + σ2v0v
H
0 |

=
|Rn(I+ σ2R−1

n v1v
H
1 )|

|Rn(I+ σ2R−1
n v0v

H
0 )|

=
1 + σ2vH

1 R
−1
n v1

1 + σ2vH
0 R

−1
n v0

= 1. (A.1.2)
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For any noise distribution, Section 3.1 shows that the probability of error only depends

on the eigenvalues of the matrix R1R
−1
0 and the number of snapshots K. Applying

the matrix inversion lemma gives

R1R
−1
0 = (Rn + σ2v1v

H
1 )(Rn + σ2v0v

H
0 )

−1

= (Rn + σ2v1v
H
1 )(R

−1
n − αR−1

n v0v
H
0 R

−1
n )

= I− αv0v
H
0 R

−1
n + σ2v1v

H
1 R

−1
n − σ2αβv1v

H
0 R

−1
n (A.1.3)

where

α , (σ−2 + vH
0 R

−1
n v0)

−1 (A.1.4)

β , vH
1 R

−1
n v0. (A.1.5)

The matrix in Equation A.1.3 can be written as the identity matrix plus a matrix

with rank no greater than two. Thus, it has no more than two non-unity eigenvalues.

Because the determinant is one, either the two non-unity eigenvalues are a reciprocal

pair or all eigenvalues are unity. In either case, the relationship between the two

(possibly) non-unity eigenvalues means that the trace of the matrix R1R
−1
0 fully

specifies its eigenvalues. Therefore, the trace together with the number of snapshots

specifies the probability of error. Recall that the K-L divergence between to zero-mean

Wishart distributions is

D(p0||p1) =
K

2

[
ln

|R1|
|R0|

+ tr
(
R−1

1 R0

)
− 4N

]
. (A.1.6)

The determinants are equal for left/right symmetric noise distributions, so the K-L

divergence with the number of snapshots also characterizes the probability of error.

Although not required for the proof, notice that the K-L divergence has a simple

form similar to Equation 3.1.29 for any left/right symmetric noise distribution. This

is shown by applying the matrix inversion lemma to A.1.6, expanding terms, and

evaluating the trace.
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A.2 Weights and the Array Manifold

Array processing often deals with array manifolds exhibiting a given property. That is,

every replica vector v(Θ) that forms the array manifold exhibits the same property.

It seems natural that any weight w applied to the manifold might inherit such a

property, e.g.

P1 Conjugate symmetric weights may be sufficient for a conjugate symmetric mani-

fold.

P2 Weights with element-wise linear phase may be sufficient for a manifold whose

replicas have element-wise linear phase.

As trivial and intuitive as these assumptions seem, they are difficult to prove and

some are false. An incorrect assumption is overly restrictive and may lead to sub-

optimal weights. This appendix proves that P1 is generally true and suggests that

P2 is generally not. More importantly, it provides weak sufficient conditions for any

property to be transferred from the array manifold to the weights.

Throughout the discussion, “P” denotes the property or the set of vectors exhibit-

ing the property. The following set of conditions guarantees that a property, P, of

the array manifold is transferred a weight:

C1 The weight is a solution to a convex optimization problem.

C2 The gradients of all objective and constraint functions exhibit P at any point ex-

hibiting P. Formally, for any gradient or constraint function f(w), this requires

[∇wHf(w)]w0
∈ P ∀w0 ∈ P.

C3 The property is preserved under real, linear combination. Formally, if x1 ∈ P

and x2 ∈ P then ax1 + bx2 ∈ P for all real a and b.

Note that the first condition applies only to the problem, the second applies to both

the problem and the property, and the third applies only to the property.

The above conditions are deemed “weak” because none is overly restrictive in

practice. The first condition applies to the most useful set of problems, those for which
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optimality is easily proved and local extrema do not exist. The third condition, C3, is

weak because any property not satisfyingC3 forms a concave set. For such properties,

the original (convex) optimization problem under the additional constraint w ∈ P

is non-convex and likely more difficult. Thus, although the solution may exhibit P,

this information is not necessarily helpful. The second condition is weak because

it is satisfied by many problems and properties of interest when C3 is satisfied.

This includes the beampattern synthesis, optimum beamforming, and weight design

problems studied in this thesis.

The proof consists of showing that there exists a sequence of weights {w0,w1, . . .},

wn ∈ P, that converges to a global optimum. Under the conditions C1–C3 above,

the proof is trivial thanks to the convergence of various first-order optimization algo-

rithms. In solving the canonical convex optimization problem

minimize f(w)

subject to gn(w) ≤ 0 n = 1, 2, . . . , N

hm(w) = 0 m = 1, 2, . . . ,M

, (A.2.1)

a number of first-order optimization algorithms with proven convergence iterate by

taking steps in the direction opposite a generalized gradient. These algorithms include

first-order variants of non-differentiable exact penalty and Lagrangian methods. In

this case, the set of generalized gradients ∇̃wH is contained in the convex hull formed

from the individual gradients of the objective and constraint functions:

∇̃wH ⊂
{
λ∇wHf(w) +

∑N
n=1 αn∇wHgn(w) +

∑M
m=1 βm∇wHhm(w)

∣∣∣
λ+

∑N
n=1 αn +

∑M
m=1 βm = 1, λ ≥ 0, αn ≥ 0, βm ≥ 0

}
.

(A.2.2)

The conditions C2 and C3 imply that the step direction exhibits P because it is a

real, linear combination of objective and constraint gradients exhibiting P. For the

algorithms mentioned, condition C1 guarantees convergence starting from any point.

Choosing a starting point w0 ∈ P without loss of generality, condition C3 guarantees

that a step along any generalized gradient also satisfies P. Thus, every weight in the
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sequence of iterates satisfies P. Because the sequence converges to a global optimum,

that global optimum must satisfy P.

The above proof deserves several comments. First, although the proof involves

first-order algorithms moving along generalized gradients, this is only to show that

a global optimum exists exhibiting P; it does not constrain the type of algorithm

used in practice. Second, if the problem is strictly convex (C1 is strengthened), the

unique optimum is proved to exhibit P. Third, if the problem is non-convex (C1 is

weakened), there exist local optima exhibiting P to which the first-order algorithms

above will converge.

Testing the two properties in the first paragraph, P1 and P2, for the conditions

reveals that P1 satisfies C3 but P2 does not. Thus, P1 is generally true but P2

need not be.
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Appendix B

Nomenclature

B.1 Acronyms

Acronym Description

ABF Adaptive Beamforming

ASNR Array Signal to Noise Ratio

CBF Conventional Beamforming

CRB Cramér-Rao Bound

DOA Direction of Arrival

FIR Finite Impulse Response

JNR Jammer to Noise Ratio

LP Linear Program

MSE Mean Squared Error

MVDR Minimum Variance Distortionless Response

NRMSE Normalized Root Mean Squared Error

PCML Physically Constrained Maximum Likelihood

PSA Pressure-sensor Array

RMSE Root Mean Squared Error

SINR Signal to Interference-Plus-Noise Ratio

SMI Sample Matrix Inverse

SNR Signal to Noise Ratio

VSA Vector-sensor Array
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B.2 Notation

Notation Description Example

a Scalar variable Eqn. 3.1.31

a Vector variable Eqn. 1.7.1

aH Conjugate (or Hermitian) transpose Eqn. 2.1.1

a∗ Conjugation Eqn. 3.2.16

aT Transpose Eqn. 1.7.1

a⊙ b Element-wise (or Hadamard) product Eqn. 2.4.11

a⊗ b Tensor (or Kronecker) product Eqn. 4.2.7

[a , b] or [a b] Horizontal concatenation Eqns. 1.7.1 or 3.1.2

D(p0||p1) Kullback-Leibler divergence Eqn. 3.1.24

A ≽ 0 Matrix A is positive semidefinite Eqn. 3.2.1

[A]ij i, jth element of the matrix A Eqn. 3.2.2

E {x} Expectation of random variable x Eqn. 4.4.3

a , 0 Definition of a Eqn. 5.3.1

RN or CN Real or complex N -dimensional space Sec. 5.1

G(D,D0) Grassmann manifold Sec. 5.1

⟨a, b⟩ Inner product Eqn. 5.2.1

λi(R) ith largest eigenvalue of R Eqn. 5.3.9

tr(A) Trace of the matrix A Eqn. 5.3.7

|A| Determinant of the matrix A Eqn. 3.1.6

f (n)(x) nth derivative of f(x) Eqn. 2.4.15

diag(A) Main diagonal of A Eqn. 3.2.17 a

b

 Vertical concatenation Eqn. 1.7.8
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