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Abstract

Classical hydrophones measure pressure only, but acoustic vector-sensors also mea-
sure particle velocity. Velocity measurements can increase array gain and resolve
ambiguities, but make vector-sensor arrays more difficult to analyze. This thesis de-
rives a new set of useful performance measures for acoustic vector-sensor arrays. It
characterizes the vector-sensor array beampattern with and without modeling errors,
or “mismatch.” It also develops a hybrid Cramér-Rao bound for direction-of-arrival
estimation under mismatch. The results are analyzed, compared to Monte-Carlo
simulations, and explored for insight.
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Chapter 1

Introduction

Most introductions to array processing characterize the performance of classical hy-

drophone arrays. Texts commonly derive and interpret performance measures that

prove useful in both theory and practice. Acoustic vector-sensors, however, are more

difficult to evaluate because they measure particle velocity in addition to pressure.

This thesis develops and analyzes performance measures for acoustic vector-sensor

arrays. It organizes into two logical parts: 1) performance measures and insights

under correct modeling and 2) performance analysis and bounds under Gaussian

modeling errors. For those unfamiliar with sonar array processing or vector-sensors,

the following two sections give background material and motivate this research.

1.1 Background

The principles that have historically driven passive sonar research are the same ones

motivating this work. To fully understand the logic behind this thesis, then, one

needs some background in undersea surveillance.

For readers new to the ocean environment, I must first explain the preference

for passive sonar. Most detection systems in air or free space use electromagnetic

waves, but these generally absorb quickly in salt water. Sound waves, however, can

travel great distances - sometimes thousands of miles - underwater. They are reflected

by objects and produced by machinery, making sound useful for active and passive
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detection. Undersea surveillance applications often reject active sonar for two reasons.

First, active sonar pulses travel beyond the maximum detection range. Targets can

intercept these pulses at great distance and avoid detection. Second, active sonar is

not covert. Sources transmitting active sonar may sometimes be located and classified

easily.

The most common sensor employed for sonar is the hydrophone. Essentially an

underwater microphone, hydrophones measure pressure only. Sound waves passing

over a hydrophone introduce changes in pressure that are measured and used for

detection. Omnidirectional hydrophones are common because they are easy to build,

maintain, and analyze. Decades of experience with hydrophones show they survive

well in the corrosive ocean environment and can easily be assembled into arrays.

The most common sensor configuration is the uniformly spaced linear array. Lin-

ear arrays may be fixed to the side of a ship, mounted on the sea floor, or towed behind

a moving vessel. When a vessel travels in a straight line, drag pulls a towed array

into a roughly linear shape. The exact sensor locations and orientations, however,

are usually unknown.

Given a configuration of sensors, performance can be readily improved by increas-

ing the information measured by each sensor. For acoustic measurements, particle

velocity provides additional information about the direction of sound arrival. Acous-

tic vector-sensors each contain one omnidirectional hydrophone measuring pressure

and three orthogonal geophones measuring the components of particle velocity.1 One

common geophone structure is a tube containing a magnetic mass suspended by

springs. Any vibration along the axis of the tube causes the mass to move, inducing

a current in a wire coil. This induced current yields a measurement of velocity along

the geophone axis.

1My analysis uses this description although some vector-sensors equivalently use accelerometers
or directional hydrophones.
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1.2 Motivation

The previous section motivated the use of acoustic vector-sensors for undersea surveil-

lance; this section outlines the need for useful vector-sensor array performance mea-

sures. As vector-sensors become more common, the need for useful design and analysis

tools increases.

Although geological vector-sensors have existed for decades, recent advances in

geophone design have increased their utility in sonar applications. Because they

provide more information per sensor, vector-sensor arrays will likely play a larger role

in the future of sonar. The ability of engineers to exploit vector-sensors will depend

largely on how well their performance is understood.

When designing or analyzing pressure-sensor arrays, engineers use established

metrics like response pattern, beamwidth, gain, and design frequency. Such measures

are useful because they appear often in theory and are robust in practice. Together

with recent work in [1, 2, 3, 4], this thesis provides a set of similar tools for vector-

sensor arrays. Such tools give insight into the design and analysis of these arrays

both in theory and practice.

Although this thesis should be taken in context with these references, its contribu-

tions are unique. Unlike [3], the second chapter of this work studies the vector-sensor

beampattern under simple models to gain intuition and insight. Also, the beam-

pattern expression derived in [3] is distinct from the direction-of-arrival performance

bound developed here. The Cramér-Rao bounds derived in [1] and [2] apply only to

vector-sensor arrays without mismatch and are therefore special cases of the bound

presented here.

1.3 Outline

This thesis is a discussion in two logical parts. First, it covers vector-sensor arrays

that are correctly modeled, or “ideal.” This topic leads logically into the second

discussion on “mismatched” vector-sensor arrays. The document is presented in four
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chapters:

1. Chapter 1 forms introductory material. It includes a description of the topic, the

relevance of my research, and background material including the measurement

model used for the rest of the thesis.

2. Chapter 2 explores the properties of vector-sensor arrays whose position and

orientation are known. It derives several formulas relating vector-sensor arrays

to classical pressure-sensor arrays, specializing the results for the uniform linear

array.

3. Chapter 3 performs a detailed analysis of “mismatched” vector-sensor arrays

whose position and orientation are stochastic. First, it considers the simple

randomly perturbed linear array. Second, it explores a more complex model

with Gaussian position and orientation errors. Using this model, it derives a

Cramér-Rao bound for direction-of-arrival estimation.

4. Chapter 4 concludes the thesis, evaluating this work and its contribution. This

chapter also discusses implications of the results and additional areas of poten-

tial work.

1.4 Sensor and Environment Model

To simplify discussion, this entire document assumes the same basic sensor and en-

vironment model. Each section explicitly notes any departures from or extensions to

this common model. The subsequent analysis assumes the following sensor model:

1. Co-located sensor components. The hydrophone and three geophones of each

vector-sensor are located at the same point and observing the same state. In

practice, this requires the component spacing to be small compared with the

minimum wavelength (set by the highest operating frequency).

2. Point sensors. Each vector-sensor is modeled as a single point. In practice,

this requires the sensor dimensions to be small compared with the minimum
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wavelength.

3. Geophones with cosine response. The signal response of each geophone is pro-

portional to the cosine of the angle between the geophone axis and the source.

Cosine geophone response results from measuring velocity along only one axis.

4. Orthogonal geophones. The axes of the three geophones are orthogonal. In

practice, this is true when each vector-sensor is a static unit.

The thesis also assumes the following environment model:

1. Free-space environment. Sound waves travel in a quiescent, homogeneous,

isotropic fluid wholespace. This implies direct-path propagation only.

2. Narrowband signals. The signal is analyzed at a single frequency. In practice,

this means the signal is sufficiently band-limited to allow narrowband processing

in the frequency domain. Such a band-limited signal may be obtained by pre-

filtering or computing the DFT of the measurements.

3. Plane wave propagation. The sound waves are planar at each sensor and across

the array. This implies the unit vector from each sensor to the “source” is the

same, regardless of the sensor location. In practice, it requires far-field sources

whose distance is much greater than the length of the array and the maximum

wavelength.

The underlying assumptions and notation are similar to those in [1, 2, 5], although

this document has a different objective.

1.5 Plane Wave Measurement Model

Under the assumptions in Section 1.4, I consider a plane wave parameterized by

azimuth φ ∈ [0, 2π) and elevation ψ ∈ [−π/2, π/2] impinging on an array of M

vector sensors. When necessary I use the right-handed coordinate system with φ = 0

as forward endfire, φ = π/2 as port broadside, ψ = 0 as zero elevation, and ψ = π/2
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as upward. For notational convenience, I group the parameters φ and ψ into the

vector Θ. Without loss of generality, I assume the geophone axes are the axes of the

coordinate system. If this is not the case, the data from each vector sensor may be

rotated to match the coordinate axes. I also define

u = [cos φ cos ψ, sin φ cos ψ, sin ψ]T (1.5.1)

as the unit length vector pointing from the origin to the source (or, opposite the

direction of the wave propagation). The following derivations touch only briefly on

direct-path acoustic propagation. For a much more detailed study of ocean acoustics,

see [6].

I first derive an equation relating pressure and particle velocity. Assuming an

inviscid homogeneous fluid, the Navier-Stokes equations become the Euler equations

∂v

∂t
+ vT∇v = −∇p

ρ
(1.5.2)

where v is fluid velocity, ρ is density, and p is pressure. For acoustic propagation

this equation is linearized, neglecting the convective acceleration term vT∇v. With

a plane wave, the pressure p relates across time t and position x by the sound speed

c:

p(x, t) = f

(
uTx

c
+ t

)
(1.5.3)

∴ ∇p =
u

c
· ∂p

∂t
. (1.5.4)

Substituting Equation 1.5.4 into the Euler equations in 1.5.2, it can be shown that

under weak initial conditions the pressure and fluid velocity obey the plane wave

impedance relation

v = − u

ρc
p. (1.5.5)

Because the geophones are aligned with the coordinate axes, they simply measure the

components of the velocity vector v. The resulting linear relationship between the
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pressure and each component of the fluid velocity greatly simplifies the analysis of

vector-sensor array performance.

This linear relationship proves most useful by allowing me to express the velocity

measurements in terms of pressure and the source unit vector. Returning to the array

of M vector-sensors, I now write the measurement of the kth vector sensor in phasor

form as

ej2π(rT
k u)


 1

−u/ρc


 (1.5.6)

where rk is the position of the sensor in units of wavelengths. Measuring distance in

wavelengths simplifies many expressions and is used often in the following sections.

The term outside the vector is the wave phase delay, which factors out because of

Equation 1.5.5. In practice, only the gain difference between the pressure sensors and

geophones is important. For convenience, I choose a normalization that absorbs that

gain difference into the pressure term:

ej2π(rT
k u)


η

u


 . (1.5.7)

Although this choice of normalization seems arbitrary, it results in simpler expressions

later and is similar to the notation used in [1, 2, 5]. 2 Also note that this choice of

normalization requires a factor of (ρc)−2 when comparing beam estimates in units of

power.

2My η is not exactly the same as the one used in [1, 2, 5].
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Chapter 2

Ideal Vector-Sensor Arrays

This chapter explores the theoretical performance of acoustic vector-sensor arrays

whose position and orientation are known. For these idealized arrays, it develops

connections to classical pressure-sensor arrays. The goal of this chapter is to develop

a design and analysis framework for vector-sensor arrays that mirrors the classical

results for pressure-sensor arrays.

When analyzing the behavior of a sensor array, one of the most fundamental

expressions is the array directional response or “beampattern”. In its most general

form, the directional response gives the output power of a spatial matched filter

or beamformer as a function of source location. The following sections derive the

response pattern for an arbitrary array and analyze the resulting expression for the

uniform linear array.

2.1 General Response Pattern

Applying the measurement model specified in Chapter 1, I now examine the entire

array of M arbitrarily placed vector-sensors. With the measurement from each sensor
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given in expression 1.5.7, the measurement from the array is

v(Θ) =
[
ej2π(rT

1 u), ej2π(rT
2 u), . . . , ej2π(rT

Mu)

]T

⊗

η

u




, ap ⊗ h (2.1.1)

where ⊗ represents the Kronecker, or tensor, product. Note again that the sensor

positions rm are in units of wavelengths. Equation 2.1.1 factors the 4M × 1 measure-

ment vector into a M ×1 phase vector ap and a 4×1 vector-sensor component vector

h. A few things are worth noting about this expression. First, this factorization is

possible because of Equation 1.5.5 and because I have chosen a common orientation

for each vector-sensor. Second, the phase vector ap is simply the measurement vector

for the corresponding pressure-sensor array.

Having specified a measurement vector, I now explore the conventional beamform-

ing (CBF) “beampattern” for this array. Conventional beamforming is essentially

spatial matched filtering, in this case with a signal parameterized by Θ and a hy-

pothesis parameterized by Θ̂. Operating in the frequency domain, CBF computes

the normalized inner product

y(Θ̂,Θ) , v(Θ̂)Hv(Θ)

v(Θ̂)Hv(Θ̂)
, (2.1.2)

the response of a spatial matched filter to the signal Θ. This thesis uses H to denote

the Hermitian, or conjugate, transpose. Normalizing the inner product produces a

peak value of unity when the hypothesis is exactly correct. In practice, the normaliza-

tion constant absorbs into the hypothesized measurement replica, defining a weight

vector

w(Θ̂) , v(Θ̂)

v(Θ̂)Hv(Θ̂)
. (2.1.3)

For this work, I am only interested in the magnitude squared of the response, B(Θ̂,Θ) ,
|y(Θ̂,Θ)|2, called the beampattern. In the following sections, I use the shorter nota-
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tion

y =
v̂Hv

v̂H v̂
, ŵ =

v̂H

v̂H v̂
, B = |y|2, etc. (2.1.4)

where the dependence on Θ̂ and Θ is implied.

I now compute the beampattern function from the definitions given above. I first

simplify the numerator of y using the mixed-product property of the ⊗ operator:

v̂Hv = (âp ⊗ ĥ)H(ap ⊗ h)

= (âH
p ap)⊗ (ĥHh)

= (âH
p ap) · (ĥHh). (2.1.5)

I then substitute this result to write the response expression as

y =
(âH

p ap) · (ĥHh)

(âH
p âp) · (ĥHĥ)

= yp · ĥ
Hh

ĥHĥ
(2.1.6)

where yp is the response of the corresponding pressure-sensor array. I further simplify

the vector sensor component

ĥHh =


η

û




H 
η

u




= η2 + ûHu

= η2 + cos(θ) (2.1.7)

ĥHĥ = η2 + ûHû

= η2 + 1 (2.1.8)

where θ is the angle, not necessarily in the x-y plane, between the vectors specified
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Figure 2.1.1: Unit vectors u and û

by Θ̂ and Θ. From here I write the signal response and beampattern equations

y = yp · η2 + cos(θ)

η2 + 1
(2.1.9)

B = Bp ·
∣∣∣∣
η2 + cos(θ)

η2 + 1

∣∣∣∣
2

(2.1.10)

where Bp is the beampattern of the associated pressure-sensor array.

Before exploring these expressions in detail, I give a picture of the three-dimensional

unit vectors u and û in Figure 2.1.1. The plot on the left illustrates u and its com-

ponents in the x, y, and z directions. Note that this unit vector u has an arbitrary

direction and need not lie in the x-y plane. The plot on the right shows the same

unit vector and the hypothesized direction vector û. I have illustrated the azimuth

angle φ and elevation angle ψ of u. I have also illustrated θ, the angle between the

two vectors. It is important to understand that θ is the angle between these vectors

in R 3 whereas φ is the angle one vector forms when projected onto the x-y plane.

From this figure, it is clear that the cos θ term comes from the scalar projection of u

onto û.

I now analyze the structure of Equation 2.1.10, specifically the vector-sensor mod-
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Figure 2.1.2: Vector-sensor modulation term Bv

ulation term

Bv ,
∣∣∣∣
η2 + cos(θ)

η2 + 1

∣∣∣∣
2

. (2.1.11)

In other contexts, this term is often referred to as the polarization term. This name

originates in electromagnetic fields where the additional sensor gain comes from mea-

suring wave polarization. Similarly, the angle θ is often called the polarization angle.

Figure 2.1.2 plots this term versus θ as the normalization constant η varies. With

proper normalization of the data, η = 1, giving the ideal null at θ = ±π. As the vec-

tor sensor gain decreases, η →∞ and Bv → 1, i.e., the vector-sensor array effectively

becomes a pressure-sensor array. Also observe that the vector-sensor modulation

term varies slowly with θ and forms an envelope for the pressure-sensor beampattern.

The “width” of the envelope Bv is generally much larger than the beamwidth of the

pressure-sensor array response Bp. Thus, the mainlobe where cos(θ) ≈ 1 is generally

dominated by the pressure-sensor response; the vector-sensor terms affects the side-
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lobe and ambiguity regions. Put another way, when θ ≈ 0 there is no polarization

gain and the vector-sensor array effectively behaves like a pressure-sensor array. As a

final note, it is easy to show that any effects from a spatial taper only enter through

Bp and do not alter the vector-sensor term Bv.

2.2 Uniform Linear Array (ULA)

In this section, I apply the results above to the uniform linear array. This simple

example illustrates the usefulness of the beampattern factorization and allows me to

explore its use in more detail. The uniform linear array considered here is a uniformly

weighted array of M linearly spaced sensors separated by d wavelengths. I further

assume zero elevation or ψ = 0. Often, I use classical results for the pressure-sensor

array which can be found in the thorough source [7].

2.2.1 Beampattern

I now examine in detail the factorization given by Equation 2.1.10. For the uniform

linear array defined above, the pressure-sensor beampattern is given by

Bp =
1

M

sin
[

M
2

2πd(cos φ− cos φ̂)
]

sin
[

1
2
2πd(cos φ− cos φ̂)

] (2.2.1)

and depends on Θ only through the azimuth angle φ. Again, choosing distance d in

units of wavelengths greatly simplifies the expressions. Equation 2.2.1 is the familiar

discrete sinc or Dirichlet beampattern appearing in classical array literature.

Before illustrating the vector-sensor ULA beampattern, I discuss the coordinate

system used in Figures 2.2.1-2.2.3. Although the vector-sensor beampattern is a

function of both azimuth and elevation through Bv, I only display a single scan at zero

elevation. This is a reasonable restriction when considering sources whose distance is

much greater than their depth. As mentioned in Section 1.5, φ = 0 is forward endfire

and φ = π/2 is port broadside. The horizontal axis in Figures 2.2.1-2.2.3 scans from

22



                                       
   

   

   

   

   

   

   

  

 

cosφ

P
ow

er
(d

B
)

 

 

−1 −0.5 0 0.5 1 0.5 0 −0.5 −1
-40

-35

-30

-25

-20

-15

-10

-5

0

Bp

Bv

Figure 2.2.1: ULA Beampattern Components: φ̂ = π/2

φ = −π to φ = π with constant cosine spacing. Thus, aft endfire is at the left and

right edges and forward endfire is in the center. Also, the starboard side of the array

appears on the left half of each plot and the port side appears on the right half. This

counterintuitive starboard-to-port scan results from using a right-handed coordinate

system with z directed upward.

Now examine the beampattern terms illustrated in Figure 2.2.1 for M = 10,

d = 1/2, and φ̂ = π/2 (port broadside). Both the pressure-sensor term, Bp, and the

vector-sensor modulation term, Bv, for this example are illustrated in Figure 2.2.1.

Because it is plotted versus cos φ, the shape of Bv is altered from that in Figure 2.1.2,

raising an important distinction: a “natural” parameter space for the pressure-sensor

component is cos φ; a “natural” parameter space for the vector-sensor component

is θ. In general, ψ 6= 0 and these are different spaces (φ is conical angle but θ is

polarization angle in three dimensions).
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Figure 2.2.2: ULA Beampattern Components: φ̂ = π/4

Although changing φ̂ or “steering” with a pressure-sensor array simply shifts the

beampattern in wavenumber space, the same is not true for a vector sensor array.

This effect is illustrated in Figure 2.2.2 with φ̂ = π/4. This figure clearly shows

the left/right, or port/starboard, ambiguity in Bp resulting from the conical angle

φ. Comparing with Figure 2.2.1 reveals a different mapping of the vector-sensor

modulation term. With φ̂ = π/2 the vector-sensor null lies exactly on an ambiguity

of Bp, but φ̂ = π/4 produces a null in the sidelobe region.

The beampattern for a vector-sensor array is given by the product of Bp and

Bv. For the examples above with φ̂ = π/2 and π/4, the beampatterns are shown in

Figure 2.2.3. This figure illustrates the effect of the vector-sensors on the left/right

ambiguity inherent with the pressure-sensor array. The pressure-sensor ambiguity is

nulled when the array is steered to broadside, but it becomes higher as it is steered

toward endfire. As before, no spatial taper can further reduce the level of this pressure-
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sensor ambiguity.

One of the more important theoretical benefits of a vector-sensor ULA is its ability

to discriminate acoustic arrivals that would be ambiguous with a pressure-sensor ULA.

In the next two subsections, I apply the beampattern factorization in Equation 2.1.10

to study the reduced level of pressure-sensor ambiguities.

2.2.2 Conical Angle (Left/Right) Discrimination

Because a linear pressure-sensor array is symmetric about rotation about its axis, its

directional response is a function only of conical angle. This results in ambiguous

arrivals: the array cannot determine its left from its right, or port from starboard.

In practice, this means the array must maneuver to determine the true location of a

source, a strict limitation. As demonstrated in the previous subsection, the velocity

components of a vector-sensor array are not symmetric about any rotation. As a

result, a linear vector-sensor array may “resolve” ambiguities that would be present

with a pressure-sensor array.

With a linear pressure-sensor array, a source arriving at the hypothesized angle

φ̂ is indistinguishable from a source at angle φ′ = 2π − φ̂, the same conical angle

on the opposite side of the array. This ambiguity produces a peak or “backlobe”

in the beampattern. Because the angle of these sources in three dimensions - the

polarization angle θ - is clearly different, they are unambiguous with a vector-sensor

array. In terms of the beampattern equations, this means

Bp(φ̂) = Bp(φ
′) = 1 (2.2.2)

Bv(φ̂) 6= Bv(φ
′). (2.2.3)
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The directional response at the backlobe φ′ is given by

B(φ′) = Bv(φ
′)

=

∣∣∣∣∣
η2 + cos(φ̂− φ′)

η2 + 1

∣∣∣∣∣

2

=

∣∣∣∣∣
η2 − 1 + 2 cos2(φ̂)

η2 + 1

∣∣∣∣∣

2

(2.2.4)

where the last step substitutes for φ′ and applies a double angle identity. With proper

normalization of the data, η = 1, resulting in the simple but useful relation

B(φ′) = cos4(φ̂) (2.2.5)

giving the left/right suppression for any steering angle φ̂. Note that although φ′ is an

ambiguity for the pressure sensor array, it is not necessarily the highest point in the

beampattern of a vector sensor array. One such example is Figure 2.2.3 for φ̂ = π/4.

The vector-sensor modulation shifts the peak of the backlobe very slightly toward

endfire. In practice, Equation 2.2.5 is a good approximation to the peak value when

the mainlobe is not excessively large. It is also important that the level and location

of the backlobe are not affected by any spatial taper and do not vary with frequency

or the number of sensors.

One use of Equation 2.2.5 is to give approximate regions over which a given

left/right resolution is obtained: for at least 6 dB of resolution, π/4 ≤ φ̂ ≤ 3π/4 or

within π/4 radians of broadside.

2.2.3 Spatial Aliasing (Grating Lobe) Discrimination

In the same way that under-sampling a time signal produces frequency aliasing, spa-

tially under-sampling a plane wave produces aliasing in the beampattern. The ambi-

guities or “grating lobes” resulting from this spatial aliasing limit the use of pressure-

sensor arrays above a given design frequency. To further illustrate the usefulness of

the beampattern results shown above, I quickly derive expressions for the location
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and level of pressure-sensor grating lobes on the uniform linear vector-sensor array.

One theoretical benefit to acoustic vector-sensor arrays is their improved perfor-

mance above the design frequency of corresponding pressure-sensor arrays. The design

frequency of a uniform linear array is analogous to the Nyquist frequency for spatial

sampling. Using previous notation, the perfect reconstruction criterion is d < 1/2.

Denoting the inter-element spacing by δ units of length (whereas d is in wavelengths),

this gives the design frequency

fd =
c

2δ
. (2.2.6)

The spatial aliasing occurring above this design frequency enters only through Bp

(Equation 2.2.1) because this function is periodic with respect to cos φ. In the follow-

ing analysis I restrict my attention to pressure-sensor grating lobes existing within

acoustic space. By symmetry, it is sufficient to consider only arrival angles φ̂ < π/2.

The location of the pressure-sensor grating lobes is then easily found as

cos φ′ = cos φ̂− 1

d

= cos φ̂− 2
fd

f
. (2.2.7)

Examining this expression quickly reveals that the location of a pressure-sensor grat-

ing lobe depends on both arrival angle and analysis frequency. Even above the design

frequency, pressure-sensor grating lobes for some angles φ̂ may not exist in physical

space. Like the backlobes in the previous subsection, Bp(φ
′) = 1, leaving

B(φ′) = Bv(φ
′)

=
1

(η2 + 1)2

∣∣∣∣η2 + cos

[
φ̂− cos−1

(
cos φ̂− 2

fd

f

)]∣∣∣∣
2

. (2.2.8)

Unlike the backlobe expression in Equation 2.2.5, Equation 2.2.8 is clearly dependent

on frequency. Both results, however, are independent of the number of sensors and

any spatial tapering. This leads to the important conclusion that neither backlobe

nor grating lobe reduction is enhanced by increasing the number of sensors.

The behavior of Equation 2.2.8 is not immediately apparent, but a few examples

28



         
    

  

    

  

    

cos φ̂

G
ra

ti
n
g

L
ob

e
L
ev

el
(d

B
)

-0.5 0 0.5 1
-2.5

-2

-1.5

-1

-0.5

Figure 2.2.4: Vector-sensor “Grating Lobe” Height: f/fd = 4

provide some insight. In the examples to follow, I again assume that η = 1. First,

I fix the frequency at f/fd = 4 and examine the “grating lobe” levels across all φ̂.

I again put the term in quotations because spatially aliased sources are no longer

ambiguous on a vector-sensor array and thus not true grating lobes. The result is

shown in Figure 2.2.4. For this figure, the input range is restricted to cos φ̂ ∈ [−1/2, 1]

because no “grating lobes” occur in acoustic space when cos φ̂ < −1/2. As a second

example, I fix the angle at broadside, φ̂ = π/2, and consider the “grating lobe”

level as a function of frequency. At this angle, “grating lobes” begin to appear when

f/fd ≥ 2. As is shown in Figure 2.2.5, these lobes are at a −6 dB level when they first

appear at twice the design frequency. As a final example, I plot contours of Equation

2.2.8 versus φ̂ and f/fd. These contours are shown in Figure 2.2.6. The unlabeled

contour corresponds to the angle beyond which no “grating lobes” appear in acoustic

space. Figure 2.2.6 is readily used for design and analysis; for example, if an adaptive

beamforming algorithm effectively nulls signals with 3 dB of mismatch, it may null

these “grating lobes” up to approximately twice the design frequency.
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2.2.4 Near-Field Processing

Although the factorization given in Equation 2.1.10 is helpful for plane wave signals,

it also holds well as an approximation when wavefront curvature increases. The “far-

field” or plane-wave assumption that allows factoring the vector sensor term out of the

array response is more strict than the traditional Fresnel rule-of-thumb. The Fresnel

far-field distance for an array of aperture size L, usually given as dff = L2/2λ, is

based on a maximum phase error of π/8 [8]. With geophones, however, the angle-of-

arrival error at the aperture edges produces differences in the beampattern at ranges

greater than dff . At first glance, this seems to limit the practical use of Equation

2.1.10. However, this approximation is still useful because it may begin failing in

the low sidelobe regions. These regions, although of theoretical interest, may already

be unattainable in practice and may not contribute much integrated error. Because

this thesis deals only with plane wave signals, a more detailed discussion of near-field

effects is outside its scope.
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Chapter 3

Mismatched Vector-Sensor Arrays

In the previous chapter, I considered “ideal” vector-sensor arrays. I term these arrays

“ideal” because of two strong assumptions. First, I assume there are no errors in the

model, i.e. the sensor positions and orientations are known. Second, I assume the

received signal is deterministic and without sensor noise. In practice, both of these

assumptions are typically violated. Sometimes, the sensor parameters - position and

orientation - are fixed and known with some error tolerance. With other arrays, the

sensor parameters vary slowly with time and can only be approximated. Signals, in

practice, are usually embedded in noise and modeled stochastically.

This chapter expands my analysis to include these practical considerations. Of pri-

mary concern is the performance of acoustic vector-sensor arrays under “mismatch”

or modeling errors. Now that I know how well “ideal” vector-sensor arrays can do,

how does their performance degrade when the sensor parameters have random errors?

The first section below considers the uniform linear array under Gaussian perturba-

tions. Using some results from nonuniform sampling theory, it computes the average

beampattern and studies the effects introduced by mismatch. The second section ex-

amines the problem of direction-of-arrival (DOA) estimation. With a Gaussian signal

and error model, it derives and analyzes a Cramér-Rao lower bound for any unbiased

DOA estimator.
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3.1 Perturbed Linear Array

The previous chapter derived a simple form (see Equations 2.1.10 and 2.2.1) for the

beampattern of a uniform linear array of vector-sensors. Before delving into direction-

of-arrival estimation, it would be useful to understand how this beampattern changes

when the array parameters have random errors. To keep the analysis simple, I consider

only independent identically distributed (IID) Gaussian position errors. For a more

detailed analysis of the beampattern under Gaussian modeling errors - including

rotation, gain, and phase errors - see the work in [3] and [9]. Also, for an alternate

analysis of random pressure-sensor arrays, see [10].

In the following subsections, I only consider the effect of position errors on the

pressure-sensor array beampattern Bp. To motivate this discussion and justify ignor-

ing the vector-sensor term Bv, examine the mean vector-sensor array beampattern

with position errors only. I denote expectation with E{·} and use the random vector

ρR to represent the position errors. Suppressing the dependence on Θ̂, the expected

beampattern is then

E{B} = EρR{Bp ·Bv}
= EρR{Bp} ·Bv (3.1.1)

where the factorization is possible because Bv is a function of known rotation param-

eters only and Bp is a function of position parameters only. When rotation errors are

also considered as in [3], this factorization is not possible. As I show in this section,

focusing on such a simplified model allows me to connect the field of “nonuniform

sampling” to the analysis of a perturbed linear array. Although the resulting proof is

less general the one given in [9], it is more insightful thanks to the connections with

nonuniform sampling.
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3.1.1 Nonuniform Sampling

Before analyzing the perturbed linear array, I briefly state a useful result from the

nonuniform sampling of a signal. The signal I define is the wide-sense stationary

continuous-time random process f(t). This signal is sampled at nonuniform times to

give f̃ [n] = f(nT +ξn) where T is the nominal sampling period and ξn is a sequence of

IID random variables. Recent work presented in [11] relates the discrete-time power

spectrum density (PSD) Sf̃ f̃ to the continuous-time PSD Sff :

Sf̃ f̃

(
ejω

)
=

1

T

∞∑

k=−∞
Sff

(
ω − 2πk

T

) ∣∣∣∣ϕξ

(
ω − 2πk

T

)∣∣∣∣
2

+
1

2π

∫ ∞

−∞
Sff (Ω)

[
1− |ϕξ (Ω)|2] dΩ (3.1.2)

where ϕξ (s) = E
{
ejsξ

}
is the characteristic function of ξ. Stating this result in

words, the nonuniform sampling causes two effects: 1) the continuous-time PSD is

windowed by ϕξ and aliased, and 2) white noise is introduced. Also note that with

uniform sampling ϕξ = 1 and Equation 3.1.2 reverts to the standard uniform sampling

expression for aliasing.

3.1.2 Relation to Perturbed ULA

To connect Equation 3.1.2 with the perturbed linear array, I must introduce the

concept of an infinite linear aperture. The linear array obtains measurements at a

finite number of points on a line, but an infinite linear aperture obtains measurements

at every point on the line. Without loss of generality, assume the infinite linear

aperture is oriented along the x axis and the single source is in the x-y plane. I now

define

k0 , 2π

λ
(3.1.3)

kx , −k0 cos φ. (3.1.4)
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In words, the variable k0 is the magnitude of the wavenumber and kx is the wavenum-

ber component along the array axis. The infinite linear aperture measurements are

of acoustic pressure in phasor form, written as

p(x) = exp
(
j k̂x x

)
. (3.1.5)

Because this array lies in the same x-y plane as the propagating wave, I need only

consider position errors in the x and y directions. To formalize the modeling errors,

assume the position perturbations are zero-mean Gaussian with variances given by

σ2
x and σ2

y.

Having now defined an infinite linear aperture, I examine its relationship to

nonuniform sampling. Using the same notation as Section 3.1.1, the discrete sensors

with position perturbations are equivalent to a finite nonuniform spatial sampling of

p(x). Specifically, I write the discrete measurements as apn = p(nδ + ξn), where ξn

are zero-mean Gaussian IID random variables with variance σ2 = σ2
x +σ2

y tan2 φ̂. Col-

lapsing the position errors into a single variance is possible because errors along the

y axis are equivalent to scaled errors along the x axis. Now, I relate time in Equation

3.1.2 to space along the infinite linear aperture. Formally, this means variables are

remapped like

t ↔ x

Ω ↔ kx

. (3.1.6)

Now the importance of wavenumber kx is clear: it is the spatial equivalent to angular

frequency Ω.

To show the implications of this mapping from time to space, I apply the nonuni-

form sampling result to the perturbed array in four steps. The first step simply

maps variables from space to time. This mapping gives the equivalent time series

f(t) = p(t) which is now sampled at intervals equal to the inter-element spacing

T = δ. The second step computes the terms in Equation 3.1.2. The time series is
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simply a complex exponential and the ξn are Gaussian, so I have

Sff (Ω) = 2πD
(
Ω− k̂x

)
(3.1.7)

|ϕξ(Ω)|2 = exp
(−σ2Ω2

)
(3.1.8)

where D(·) is the familiar Dirac delta function. The sifting property of the delta

function makes the evaluation of Equation 3.1.2 simple, giving

γ , exp
(
−σ2 k̂ 2

x

)
(3.1.9)

= exp
[
−k2

0

(
σ2

x cos2 φ̂ + σ2
y sin2 φ̂

)]
(3.1.10)

Sf̃ f̃

(
ejω

)
=

2πγ

δ

∞∑

k=−∞
D

(
ω − 2πk

δ
− k̂x

)
+ (1− γ) . (3.1.11)

Note that Sf̃ f̃ is the PSD for an infinite-length sequence of samples. To reflect the

finite number of samples in a linear array, the third step windows this sequence. I

now define

w[n] ,





1/M 0 ≤ n < M

0 otherwise
(3.1.12)

g[n] , w[n]f(nδ) (3.1.13)

g̃[n] , w[n]f̃ [n] (3.1.14)

where the rectangular window w[n] is normalized to agree with Equation 2.1.2. Note

that g[n] is the sequence obtained by uniform sampling and g̃[n] is the sequence

obtained by nonuniform sampling. Through linearity, windowing the first term in

Equation 3.1.11 gives γ times the uniform sampling PSD. The second term gives

white noise that is easily evaluated in the time domain. Combining the two produces

Sg̃g̃

(
ejω

)
= γ · Sgg

(
ejω

)
+ (1− γ) · 1

M
. (3.1.15)

The fourth and final step is very brief and converts back to the space domain, giving
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a result in terms of φ. The PSD of g[n] becomes the nominal beampattern and the

PSD of g̃[n] becomes the expected beampattern. After the transformation, Equation

3.1.15 becomes

E{Bp( φ )} = γ ·Bp( φ ) + (1− γ) · 1

M
. (3.1.16)

Note that the derivation above is easily extended to non-rectangular windows and is

valid as stated for any window normalized for unity gain. Note also that it is trivial

to include Gaussian phase errors in the proof through Equation 3.1.10.

3.1.3 Analysis of the Expected Beampattern

Although the end result in Equation 3.1.16 is the same as that derived in [9] for a

nominally linear array, the derivation shown here has two benefits. First, it connects

the field of array processing to that of nonuniform sampling. Linear arrays have long

been associated with discrete-time signal processing, but they have not been fully

explored in the context of nonuniform sampling. Though the end result in [9] has

a nice interpretation, the proof is strictly mathematical. A second benefit of my

derivation is that it comes with an intuitive picture of how position mismatch affects

the beampattern.

To gain this intuition, examine Figure 3.1.1. This figure results from the param-

eters M = 16, f = 2fd, φ̂ = 4π/9, σx = λd/3, and σy = 0. Each illustration is shown

on the same horizontal axis of Ω, analogous to the horizontal wavenumber kx. Part (a)

of the illustration shows the characteristic function ϕξ. As shown by the dotted lines,

the mismatch factor γ comes from this curve evaluated at the source wavenumber k̂x.

Because the position errors are Gaussian, ϕξ takes a normalized Gaussian shape. As

position errors decrease, the characteristic function spreads and γ increases. Part (b)

shows the PSD Sf̃ f̃ of the nonuniformly sampled infinite sequence f̃ [n]. Compared to

an uniformly sampled PSD, the impulse train is weighted by a factor of γ and white

noise of power 1− γ is added. In the limit of no mismatch the PSD converges to the

familiar impulse train. Part (c) shows the effect of windowing the sequence f̃ [n] to

obtain g̃[n]. The PSD of the window, in this case a sinc function, is convolved with
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Figure 3.1.2: Mismatched Beampattern: f = 2fd

Sf̃ f̃ yielding a Dirichlet function.

To complete the picture of position mismatch, the PSD in Figure 3.1.1 must be

mapped from Ω to φ. By definition, Ω ↔ kx and kx = −k0 cos φ so a region of Ω

maps linearly to a region in cos φ. Figure 3.1.2 shows this mapping for the illustrated

example in the previous paragraph. I have also included the average beampattern

from a 4000-trial Monte-Carlo simulation although it lies almost exactly on the pre-

dicted curve. The shaded region corresponding to cos φ /∈ [−1, 1] is dubbed “virtual

space” because no real φ maps to this region. The term “physical space” likewise

refers to the complementary region of real φ. Because the analysis frequency is above

the design frequency of the array more than one peak maps into physical space. This

produces spatial aliasing, or grating lobes, in the beampattern. If I lower the analysis

frequency to f = fd/2 but keep the same source wavenumber k̂x and mismatch σ, the

illustration in Figure 3.1.1 remains exactly the same. The mapping to φ, however,

changes as shown in Figure 3.1.3. Because the new analysis frequency is below the

array design frequency only one peak maps into physical space and no grating lobes

are present.

Before moving on I summarize the effect of position mismatch on the beampattern.
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Figure 3.1.3: Mismatched Beampattern: f = fd/2

The decrease in peak value caused by mismatch is simply a factor γ which in decibels

grows linearly with σ2 k̂ 2
x . The expected beampattern is a linear interpolation between

the ideal beampattern and 1/M white noise - with γ as the interpolation factor.

Having derived some intuition for the expected beampattern under position errors

only, I now examine the vector-sensor array performance under a more general class

of modeling errors.
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3.2 Cramér-Rao Bound

This section derives a Cramér-Rao bound for direction-of-arrival estimation error

with a single-source. The initial model is an arbitrary array of vector sensors whose

position and rotation are perturbed by zero-mean Gaussian errors. Later subsections

extend this model to include Gaussian gain and phase errors. The modeling errors

here are the same as in [3] and are a vector-sensor extension of the Gilbert-Morgan

model in [9]. Despite sharing a mismatch model, the DOA bound explored in this

thesis is distinct from the beampattern expressions derived in [3]. All measurements

under this model are of a zero-mean Gaussian random process of unknown power

corrupted by additive white noise of unknown power. This is the more common

scenario of “unknown signal in unknown noise.” To keep things shorter I use without

proof the “hybrid” Cramér-Rao bound given in [7], Chapter 8.11. The bound used

below is an approximation that is valid when the variance of the perturbations is

small (again, see [7]). Note also that without modeling errors this bound reduces to

the result given in [2].

3.2.1 Statement of the Hybrid Bound

The stochastic model outlined above may seem simple, but the bound it produces

is quite complex to derive and express. This subsection elaborates on the model,

defines several useful quantities, and states the hybrid Cramér-Rao bound explored

in the rest of the chapter. It also clarifies some notation in an attempt to keep the

derivation as simple as possible.

I begin by defining some helpful quantities and notation. Recalling the plane wave

replica vector v parameterized by Θ = [φ ψ]T , suppose there are K independent

measurements or “snapshots” of the form

xk(Θ) = v(Θ) · CN (0, σ2
s) + CN (0, σ2

n), k = 1, 2, . . . , K (3.2.1)

where CN (µ, σ2) denotes a complex Gaussian random variable with mean µ and
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variance σ2. If the noise variance of the pressure sensors differs from that of the

velocity sensors, it can be absorbed without loss of generality into the normalization

constant η. This normalization introduced in Equation 1.5.7 allows me to treat the

sensors as having equal noise powers. As stated above, my model assumes the more

common scenario where both variances σ2
s and σ2

n are unknown. Also, each vector-

sensor is perturbed by Gaussian position and rotation errors. It is further assumed

that the components of each vector-sensor are rigidly connected and thus displaced

and rotated together. To help keep a simple notation, I use a semicolon to denote

vertical concatenation. I then define the perturbation parameters in column vectors

ρR , [x ; y ; z] (3.2.2)

ρΘ , [α ; β ; γ] (3.2.3)

ρ ,
[
ρR ; ρΘ

]
(3.2.4)

where ρR are the Euclidean coordinates of a sensor and ρΘ are the Euler rotation

angles about the corresponding coordinate axes. I also introduce notation to index

into the source and rotation parameters, using Θl and ρl to indicate the lth parameter

in Θ and ρ, respectively. This is a slight abuse of notation because each vector-sensor

technically has its own perturbation parameters. For the mth vector-sensor, I denote

these perturbation parameters by {xm, ym, zm, αm, βm, γm}. In the results that follow,

I often find block matrices that cannot be expressed simply with Kronecker and

Hadamard products. With such matrices, notation like A = [Aij] indicates that the

terms Aij are concatenated over row index i and column index j to form the matrix A.

Another example of this notation is [∂A/∂ρi], indicating the vertical concatenation

of the derivatives of the matrix A with respect to the perturbation parameters ρ.

Having setup some notation and defined the model parameters, I begin listing

terms used in the following sections. First, I define the derivative of the replica
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vector with respect to the source parameters

Dφ , ∂v

∂φ
, etc. (3.2.5)

DΘ , [Dφ Dψ] (3.2.6)

where “etc.” indicates that Dψ is defined similarly. Because v is a length 4M column

vector, Dφ is 4M×1 and DΘ is 4M×2. I also create derivatives of a slightly different

form with respect to the perturbation parameters

Dx ,
[

∂v1

∂x1

;
∂v2

∂x2

; . . . ;
∂v4M

∂x4M

]
, etc. (3.2.7)

where the derivatives in Equation 3.2.7 go through all 4M sensor elements (M pressure

sensors and 3M velocity sensors as defined in Equation 2.1.1). Just as D? defined

derivatives of the replica vector v with respect to a given variable ?, the notation δ?

defines derivatives of the unit vector u:

δφ , ∂u

∂φ
, etc. (3.2.8)

Another helpful notation is to define derivatives of the h vector similarly

∆φ , ∂h

∂φ
, etc.1 (3.2.9)

From the results from Section 2.1 recall that vHv = M(η2 + 1). In keeping with the

1For the derivatives considered, ∆? = [0 ; δ?] for a given parameter ?.
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notation from [7], I define the terms

Sf , σ2
s (3.2.10)

Sx , vSfv
H + σ2

nI (3.2.11)

Σ , Sfv
HS−1

x vSf/σ
2
n

= σ2
sv

H
[
vvHσ2

s + σ2
nI

]−1
vσ2

s/σ
2
n

= γ2vH
[
γvvH + I

]−1
v

= γ2vH
[
I− γv

(
1 + γvHv

)−1
vH

]
v

= γ2vHv

(
1− γvHv

1 + γvHv

)

= γ · γM(η2 + 1)

γM(η2 + 1) + 1
(3.2.12)

where γ = σ2
s/σ

2
n is the element signal-to-noise ratio (SNR).2 Note that Sf and Σ are

scalar values because of the single source. Lastly, I define

P⊥
v , I− v(vHv)−1vH

= I− [(apa
H
p )⊗ (hhH)]/[M(η2 + 1)], (3.2.13)

a projection matrix orthogonal to the replica subspace. In other words, the source

replica vector v spans the nullspace of the projection matrix P⊥
v . This matrix can be

viewed as a covariance matrix driving a perfect null in the direction of the source.

With the above definitions, I now state the hybrid Cramér-Rao bound. To simplify

the resulting equation, I write it in block form and in terms of the matrices

A , 2KΣ ·Re
{
DH

ΘP⊥
vDΘ

}
(3.2.14)

B , 2KΣ ·Re
{[

(P⊥
v )TD∗

Θj
¯Dρi

]}
(3.2.15)

C , 2KΣ ·Re
{[

Dρi
DH

ρj
¯ (P⊥

v )T
]}

+ Λ−1
ρ . (3.2.16)

2This Σ is not exactly the same as that used in [7]. Here, it has a nice interpretation as the
product of the element SNR and the array SNR.
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In the above equations, ∗ denotes matrix conjugation. The covariance matrix Λρ

specifies the second-order statistics for the perturbation parameters. Again using

notation similar to [7], the following equation for CHCR lower bounds the mean-

square error of unbiased estimates for Θ and ρ:

CHCR(Θ,ρ) =


 A BT

B C



−1

. (3.2.17)

For the remainder of this section, I only consider the mean-square error bounds on

the source parameters Θ. That is, I treat the perturbations ρ as nuisance parameters.

This allows me to rewrite Equation 3.2.17 for only the upper left partition as

CHCR(Θ) =
[A−BT C−1B]−1

. (3.2.18)

This form of the hybrid Cramér-Rao bound is presented in more detail in [7]. Al-

though Equation 3.2.18 bounds estimation of Θ in radians, it is often better to know

the bound in cosine-space. Thankfully, applying a simple change of coordinates to

the CRB is easily done as described in [7]. For the bound on φ this only requires

multiplying by sin2 φ. Keeping Equation 3.2.18 in mind, I now begin evaluating the

terms of the bound in detail.

3.2.2 Evaluation of Terms

When deriving each term in the hybrid Cramér-Rao bound, a few observations become

very helpful. First, the real components in h are unaffected by position errors. Put

another way, only the phase vector ap is affected when perturbing the sensor positions.

Second, the phase components in ap are unaffected by orientation errors. The two

statements above are another instance where the factorization in Equation 1.5.7 comes

in very handy: position errors enter through ap and rotation errors enter through h.

Evaluation of Equation 3.2.18 begins in the logical place with the matrix A. For
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this, I need the derivatives that compose DΘ:

Dφ =
∂

∂φ
v

=
∂

∂φ
(ap ⊗ h)

=
∂ap

∂φ
⊗ h + ap ⊗ ∂h

∂φ

=
(
j2πRT δφ ¯ ap

)⊗ h + ap ⊗∆φ (3.2.19)

where R , [r1 r2 . . . r4M ] is a matrix containing the element positions in units of

wavelengths. The first term in Equation 3.2.19 is the derivative of the phase compo-

nent; the part in parentheses is the equivalent derivative for a pressure-sensor array.

The second term is the corresponding derivative for the directional gain. Similarly,

the elevation derivative is

Dψ =
(
j2πRT δψ ¯ ap

)⊗ h + ap ⊗∆ψ. (3.2.20)

It is now easy to calculate the derivatives of the unit vector u as defined in Equation

3.2.8:

δφ = [− sin φ cos ψ ; cos φ cos ψ ; 0] (3.2.21)

δψ = [− cos φ sin ψ ; − sin φ sin ψ ; cos ψ] . (3.2.22)

Without loss of generality, I assume the origin of the coordinate system is the ar-

ray centroid. As was mentioned in [2], the three vectors {u , δφ , δψ} are or-

thogonal as illustrated in Figure 3.2.1. From this, it is easy to see that the vec-

tors {h , ∆φ , ∆ψ} are also orthogonal. Their orthogonality along with the choice

of origin implies DH
Θv = 0 and thus DH

ΘP⊥
v = DH

Θ. Using these identities in
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Figure 3.2.1: Orthogonal Vectors {u , δφ , δψ}

Equation 3.2.14 above gives

A = 2KΣ ·Re
{
DH

ΘDΘ

}

= 2KΣ ·Re






 DH

φ Dφ DH
φ Dψ

DH
ψ Dφ DH

ψ Dψ






 . (3.2.23)

I now evaluate the terms in this matrix, starting with the off-diagonal term

DH
φ Dψ =

{(
j2πRT δφ ¯ ap

)⊗ h + ap ⊗∆φ

}H

{(
j2πRT δψ ¯ ap

)⊗ h + ap ⊗∆ψ

}

=
{(

j2πRT δφ ¯ ap

)⊗ h
}H {(

j2πRT δψ ¯ ap

)⊗ h
}

+ {ap ⊗∆φ}H {ap ⊗∆ψ}
= 4π2(η2 + 1) · δT

φ (RRT )δψ + M · δT
φ δψ. (3.2.24)

The first step above eliminates the cross-terms because the vectors {h , ∆φ , ∆ψ}
are orthogonal; the second step substitutes the norms of ap and h. Modifying
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Equation 3.2.24, I easily get the remaining terms to yield the simplified form

A = 2KΣ



4π2(η2 + 1)


 δT

φ (RRT )δφ δT
φ (RRT )δψ

δT
φ (RRT )δψ δT

ψ (RRT )δψ


 + M


 cos2 ψ 0

0 1








(3.2.25)

which is the same expression given in [2] when there is no position or orientation

uncertainty. The second term in this equation contains the inner products of the

orthogonal vectors δφ and δψ and is thus diagonal. It is also easy enough to see that

the second term in Equation 3.2.24 combines with the first to give

A = 2KΣ · [δφ δψ]T
{
4π2(η2 + 1) ·RRT + M · I} [δφ δψ]. (3.2.26)

This representation is appealing because the array geometry only enters through the

term in curly brackets, specifically through RRT . Likewise, the source position only

enters through the matrix term [δφ δψ].

Having derived an expression for A, I move to the next term B. Recall that

the paragraph above showed DH
ΘP⊥

v = DH
Θ. Using this, I now seek the simpler but

equivalent expression

B = 2KΣ ·Re
{[

D∗
Θj
¯Dρi

]}
. (3.2.27)

Because the B matrix is in block form, I begin by looking at a single block term

D∗
φ ¯ Dx. Having already computed Dφ above, I start with Dx. Although Dx is

defined in Equation 3.2.7 using derivatives of each of the 4M sensor elements, it is

easier to consider the derivative taken over each of the M vector-sensors. For the kth

vector-sensor,

∂vk

∂xk

=
∂

∂xk

(apk
⊗ h)

= h · ∂

∂xk

exp
{
j2π(rT

k u)
}

= j2πux · vk (3.2.28)
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where ux is the x-component of the unit vector u. To make the first step shown, I

use the property described above: the vector h is invariant with respect to changes in

position. Applying this result to every vector-sensor makes the complete derivative

Dx =

[
∂v1

∂x1

;
∂v2

∂x2

; . . . ;
∂vM

∂xM

]

= j2πux · v (3.2.29)

with similar results for Dy and Dz. Denoting an M -length vector of ones with 1M , I

now compute the element-wise product

D∗
φ ¯Dx =

{(
j2πRT δφ ¯ ap

)⊗ h + ap ⊗∆φ

}∗ ¯ {j2πuxap ⊗ h}
=

(
4π2uxR

T δφ ¯ a∗p ¯ ap

)⊗ (h¯ h)

+
(
j2πuxa

∗
p ¯ ap

)⊗ (h¯∆φ)

=
(
4π2uxR

T δφ

)⊗ (h¯ h) + (j2πux1M)⊗ (h¯∆φ) (3.2.30)

where the first step applies the Kronecker mixed-product property and the second

uses the identity a∗p ¯ ap = 1M . Since I am only interested in the real part of this

result, I need only the first term in Equation 3.2.30,

Re
{
D∗

φ ¯Dx

}
= 4π2uxR

T δφ ⊗ (h¯ h) . (3.2.31)

From this result, it is easy to extrapolate every analogous term with {Dx, Dy, Dz}
and with Dψ. The only remaining terms are those involving the rotation parameters

such as D∗
φ¯Dα. When I computed the position perturbation terms {Dx, Dy, Dz},

I simply differentiated with respect to existing position parameters rk. To follow the

same procedure for the rotation parameters, I incorporate a rotation matrix about

the three axes, Q(α, β, γ)T . Suppressing the arguments of Q, substitute the rotated
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vector h = [η ; QTu] and write3

∆α =

[
0 ;

(
∂Q

∂α

∣∣∣∣
α=0

)T

u

]
. (3.2.32)

Using the same rotation matrix, analogous expressions result for ∆β and ∆γ. An

expression for the rotation matrix may be easily found elsewhere, but I list the ∆?

terms for convenience

∆α = [0 ; 0 ; sin ψ ; − sin φ cos ψ] (3.2.33)

∆β = [0 ; − sin ψ ; 0 ; cos φ cos ψ] (3.2.34)

∆γ = [0 ; sin φ cos ψ ; − cos φ cos ψ ; 0]. (3.2.35)

Using these derivatives, computing one rotation perturbation term gives

∂vk

∂αk

=
∂

∂αk

(apk
⊗ h)

= apk
⊗∆α (3.2.36)

∴ Dα = ap ⊗∆α. (3.2.37)

I can now express the element-wise product

D∗
φ ¯Dα =

{(
j2πRT δφ ¯ ap

)⊗ h + ap ⊗∆φ

}∗ ¯ {ap ⊗∆α}
=

(−j2πRT δφ ¯ a∗p ¯ ap

)⊗ (h¯∆α)

+
(
a∗p ¯ ap

)⊗ (∆α ¯∆φ)

=
(−j2πRT δφ

)⊗ (h¯∆α) + (1M)⊗ (∆α ¯∆φ) . (3.2.38)

As before, I am only interested in the real part

Re
{
D∗

φ ¯Dα

}
= (1M)⊗ (∆α ¯∆φ) . (3.2.39)

3Because the nominal rotations are zero, this is simply a more verbose definition of h and does
not change any previous results.
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Enough representative terms have been derived now to write the matrix B:

B = 2KΣ ·




4π2uxR
T δφ ⊗ (h¯ h) 4π2uxR

T δψ ⊗ (h¯ h)

4π2uyR
T δφ ⊗ (h¯ h) 4π2uyR

T δψ ⊗ (h¯ h)

4π2uzR
T δφ ⊗ (h¯ h) 4π2uzR

T δψ ⊗ (h¯ h)

1M ⊗ (∆α ¯∆φ) 1M ⊗ (∆α ¯∆ψ)

1M ⊗ (∆β ¯∆φ) 1M ⊗ (∆β ¯∆ψ)

1M ⊗ (∆γ ¯∆φ) 1M ⊗ (∆γ ¯∆ψ)




= 2KΣ ·

 4π2u⊗ (RT [δφ δψ])⊗ (h¯ h)

[ 1M ⊗ (∆ρΘ
i
¯∆Θj

) ]


 (3.2.40)

where the lower term in the last equation is itself a block matrix.

Having derived expressions for the matrices A and B, I naturally turn to the final

block C in the hybrid Cramér-Rao bound. For convenience, I restate the definition

in Equation 3.2.16:

C , 2KΣ ·Re
{[

Dρi
DH

ρj
¯ (P⊥

v )T
]}

+ Λ−1
ρ .

Having already computed the derivatives D? needed, I immediately begin computing

a single term

DxD
H
y ¯ (P⊥

v )T = (j2πuxv)(j2πuyv)H ¯ (P⊥
v )T

= 4π2uxuyvvH ¯ (P⊥
v )T

= 4π2uxuy(apa
H
p ⊗ hhT )¯ (P⊥

v )T . (3.2.41)

Although it may not be immediately obvious, this term itself is real, so taking the

real part is not necessary. Analogous results follow for the other position perturbation

blocks. Looking at a rotation perturbation block gives

DαD
H
β ¯ (P⊥

v )T = (ap ⊗∆α)(ap ⊗∆β)H ¯ (P⊥
v )T

= (apa
H
p ⊗∆α∆

T
β )¯ (P⊥

v )T (3.2.42)
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which again is a real matrix. Finally, the off-diagonal blocks in the C matrix are

terms like

DxD
H
α ¯ (P⊥

v )T = (j2πuxap ⊗ h)(ap ⊗∆α)H ¯ (P⊥
v )T

= j2πux(apa
H
p ⊗ h∆T

α)¯ (P⊥
v )T . (3.2.43)

Although the diagonal blocks were real, these terms are purely imaginary. Because

their real part is zero, these blocks form matrices of zeros in C. Writing all blocks

together and simplifying gives

C1,1 , 4π2uuT ⊗ [
vvH ¯ (P⊥

v )T
]

(3.2.44)

C2,2 ,
[
(apa

H
p ⊗∆ρΘ

i
∆T

ρΘ
j
)¯ (P⊥

v )T
]

(3.2.45)

C = 2KΣ ·

 C1,1 0

0 C2,2


 + Λ−1

ρ . (3.2.46)

Although this expression can be expanded, I keep it in this form for brevity.

Having now computed enough terms to evaluate the hybrid Cramér-Rao bound,

a few notes are worth mentioning. First, if any perturbations are deterministic or

zero, they introduce singularities into the bound. Put another way, deterministic

errors should not be included in the CRB. If any perturbation is nonrandom, the

corresponding row and column in C−1
HCR should be removed. See [7] for more details

and an example. Second, the rotation perturbations for each pressure sensor may be

modeled as zero. Based on discussions above, the pressure sensor measurements do

not depend on orientation. Combined with the first point, this means I could remove

the rows and columns in B and C corresponding to pressure sensor rotation errors.

Third, the vector-sensor array deteriorates into a pressure-sensor array as η → ∞.

This means that much of the work I have done, including the CRB, is valid for a

pressure-sensor array if I let η →∞. Equivalently, to bound a pressure-sensor array

I can let h = [ 1 ; 0 ; 0 ; 0 ] or the scalar h = 1, although these require changing

many of the derivatives I have computed. Thus, the CRB bound on DOA estimation
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can be applied to pressure-sensor arrays with only simple modifications.

As a final note, I describe how these expressions might simplify under weak condi-

tions. Specifically, when the rotation errors are uncorrelated with the position errors,

the covariance matrix Λρ is block diagonal. This implies that C is also block diago-

nal, making its inverse simpler to compute. With a bit of algebra then, the second

term in Equation 3.2.18 takes a simpler form. This term, BT C−1B, summarizes the

effect of the modeling errors on the bound. A simpler form might reveal analytically

which errors dominate the bound under different circumstances and geometries. Un-

der stronger conditions like IID perturbations and a uniform linear array, the bound

may even simplify further.

3.2.3 Including Gain and Phase Errors in the CRB

Thus far, I have only considered errors in vector-sensor position and orientation.

In practice, however, each sensor also has gain and phase errors. In this section, I

consider how the hybrid Cramér-Rao bound changes when Gaussian gain and phase

errors are introduced. The first matrix examined in the previous section, A, is only

a function of the source parameters and does not change with the addition of new

perturbation parameters. In the matrices B and C, however, new gain and phase

blocks appear. Denoting the new gain and phase parameters by g and p, I examine

the expanded matrices B′ and C′ below.

For reasons that become clear soon, I begin by examining the new gain blocks in

the matrix C′. The element-wise derivative of the replica vector with respect to gain

errors is easily computed as

Dg =

[
∂

∂gi

vi(1 + gi)

∣∣∣∣
gi=0

]

= v (3.2.47)

where the gain perturbations enter through gi. The (1 + gi) term here mirrors the

work done on the rotation derivatives in Equation 3.2.32. As before, the nominal
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value of the perturbations gi = 0 leads to the expressions I have already derived. I

now examine C′, computing the α-g rotation-gain cross term

DαD
H
g ¯ (P⊥

v )T = (ap ⊗∆α)(ap ⊗ h)H ¯ (P⊥
v )T

= (apa
H
p ⊗∆αh

T )¯ (P⊥
v )T (3.2.48)

which is strictly real. By symmetry, I know the β-g and γ-g blocks are real as well.

These real blocks bring up an important point: the addition of gain errors keeps

C′ from being block diagonal. The previous section spent time enumerating each

block in an effort to show how the resulting term BT C−1B might simplify when C
is block diagonal. With the addition of gain terms, however, this simplification does

not generally happen.

Unfortunately, the phase errors have the same effect. The element-wise derivative

of the replica vector with respect to phase errors is also easy to compute:

Dp =

[
∂

∂pi

(
vi · ejpi

)∣∣∣∣
pi=0

]

= jv. (3.2.49)

Interestingly, this derivative is j times the equivalent gain derivative. Using this

relationship, work done in the previous paragraph reveals the α-p, β-p, and γ-p blocks

in C′ are zero. I must then look at the blocks including position errors, starting with

DxD
H
p ¯ (P⊥

v )T = (j2πuxv)(jv)H ¯ (P⊥
v )T

= (2πuxvvH)¯ (P⊥
v )T . (3.2.50)

Recalling Equation 3.2.41, recognize that this term is different only by a real constant,

implying it is also real. Just like the rotation-gain blocks in the previous paragraph,

the position-phase blocks keep C′ from being block diagonal. That these blocks are

nonzero provides important insight into vector-sensors and is discussed in the CRB

analysis section.
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Although I could continue expanding the new terms in B′ and C′, the resulting

expression would be complicated and provide little insight. So instead, I simply define

the new perturbation parameter vector

ρ′ = [ ρ ; g ; p ] (3.2.51)

and give the updated matrices in terms of ρ′. From Equations 3.2.27 and 3.2.16, I

easily get

B′ = 2KΣ ·Re
{[

D∗
Θj
¯Dρ′i

]}
(3.2.52)

C′ = 2KΣ ·Re
{[

Dρ′i
DH

ρ′j
¯ (P⊥

v )T
]}

+ Λ−1
ρ′ . (3.2.53)

Because the previous sections list every variable and derivative used here, these equa-

tions form a good basis for numerically evaluating the hybrid Cramér-Rao bound.

Before moving on, observe a few notes about the hybrid Cramér-Rao bound under

gain and phase errors. First, Gaussian phase errors between vector-sensors may be

modeled as position error and incorporated into the existing bound. Second, phase

errors between elements within a single vector-sensor may be moderated in practice

by the fact that phase information is measured redundantly. Third, if each velocity

sensor rotates independently, the resulting modeling errors may be approximated as

gain errors.

3.2.4 The Maximum Likelihood (ML) Estimator

This chapter has spent a significant amount of effort discussing the Cramér-Rao lower

bound for DOA estimation without mentioning any explicit estimation algorithms.

Partly, this is because the CRB is a lower bound for the variance of any unbiased

estimator. Now, however, it is appropriate to look at the maximum likelihood or ML

estimator.

I begin by defining the ML estimator and stating its relevance to the CRB. The

“likelihood” of some measured data X given a set of parameters P is simply the
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conditional distribution pX(X;P). The maximum likelihood estimator is then

P̂ML , arg max
P

pX(X;P). (3.2.54)

The ML estimator is generally important for several reasons. First, it is practical to

obtain as is shown below. Second, when an efficient estimator exists, it is the ML

estimator.4 This does not mean, however, that the ML estimator must be efficient

or even unbiased. Third, the ML estimator is often asymptotically efficient and

consistent.5

I now examine the ML estimator under my mismatched data model. Beginning

with the signal model in Equation 3.2.1, I need only define the vector y as the complex

magnitude and phase of each received snapshot. The parameter vector to estimate is

then

P , [ ρ ; Θ ; y ]. (3.2.55)

The estimation of additive noise is implied as it can be determined from the other

parameters. With this definition, the data is a nonlinear deterministic matrix function

F of the parameters added to complex Gaussian noise. The likelihood function is then

only the probability of the additive noise given the parameters. Because the noise is

IID, this probability is written

pX(X;P) =
K∏

i=1

·
4M∏
j=1

CN (Xij − F(P)ij ; 0, σ2
n). (3.2.56)

Maximizing the likelihood is equivalent to maximizing the log-likelihood

ln pX(X;P) = − 1

2σ2
n

K∑
i=1

4M∑
j=1

|Xij − F(P)ij|2 − 2KM ln 2πσ2
n. (3.2.57)

4“Efficient” simply means the estimator achieves the CRB with equality.
5A “consistent” estimator asymptotically converges to the correct value.
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Ignoring the constant term and the coefficient, I now write the ML estimator as

P̂ML = arg min
P

K∑
i=1

4M∑
j=1

|Xij − F(P)ij|2

= arg min
P

tr
[
(X− F(P))H (X− F(P))

]
(3.2.58)

where tr[·] indicates the trace of a matrix, or the sum of its diagonal elements. I now

go a little farther by writing

F(P) = v(P)yT (3.2.59)

where v(P) is the replica vector produced by the parameters P. At this point,

I pause to say something about the nonlinear vector function v(P): any possible

output is produced by more than one input. When both gain and phase errors are

considered, I can say something even stronger: any arbitrary output is possible. That

is, there are many ways to produce any output vector by judiciously choosing P. This

statement has the important implication that the maximum likelihood estimate is not

unique. Thus, any ML algorithm only estimates what output v is produced when

the likelihood is maximized. To find this ML output vector, rewrite the optimization

problem as

P̂ML = arg min
v, y

tr
[(

X− vyT
)H (

X− vyT
)]

= arg min
v, y

−2tr
[
XHvyT

]
+ tr

[
y∗vHvyT

]

= arg max
v, y

2tr
[
XHvyT

]− ‖v‖2 · ‖y‖2

= arg max
v, y

2yTXHv − ‖v‖2 · ‖y‖2 . (3.2.60)

Because v is a replica vector, its norm is fixed. The solution to the optimization

problem is now evident: given ‖y‖ the maximum likelihood is achieved when yTXHv

is maximized. Using the Cauchy-Schwarz inequality, this occurs when y is parallel to
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XHvML and

vML = arg max
v

∥∥XHv
∥∥2

= arg max
v

vHRv

∝ Φ1 (3.2.61)

where R = XXH is the sample covariance matrix and Φ1 is the principal eigenvector

- the eigenvector with the largest eigenvalue - of R. Thus, any choice of parameters

P satisfying v(P) ∝ Φ1 maximizes the likelihood function. As long as the ML

estimator is not unique, an estimator that maximizes the likelihood function does not

necessarily satisfy any of the above properties. It may not be asymptotically efficient

or consistent; it may never meet the CRB with equality; it may not even be unbiased.

Again, a non-unique ML estimator occurs when gain and phase errors are included.

Without gain or phase errors, the solution may require a high-dimensional search and

both the model and algorithm may be impractical.

3.2.5 Analysis and Examples

Having established a Cramér-Rao bound for direction-of-arrival estimation, I now

analyze the bound with examples. After introducing a standard mismatched ULA

model, I relate the different sources of modeling errors. Then, I provide some results

contrasting pressure and vector-sensor arrays. Finally, I compare simple direction-of-

arrival algorithms to the CRB.

Although the Cramér-Rao bound applies for arbitrary arrays, the examples in this

section are only uniform linear arrays. To focus the discussion, I use the following

standard ULA mirroring the Gilbert-Morgan model in [3]:

• M = 13 equally spaced elements on the x-axis

• γ = 1/4 element level SNR

• K = 10 independent snapshots
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• IID perturbations

• Analysis at frequency 7
8
· fd

• 10,000 independent Monte-Carlo trials when simulated

• Single source at φ̂ = −π/3, ψ̂ = 0 in x-y plane

• Position error σx = σy = σz = λd/10

• Rotation error σα = σβ = σγ = π/18

• Sensor gain error σg = 0.1

• Sensor phase error σp = π/18

where λd is one wavelength at the design frequency fd. In the following paragraphs, I

explicitly note any deviations from this model. In each example, the CRB is computed

in cosine-space and plotted in decibels of a beamwidth. Although I only present

examples of uniform linear arrays, many of my conclusions apply equally to any

array.

Deriving the Cramér-Rao bound matrix C′ with sensor gain and phase errors

revealed that only a select few off-diagonal blocks were nonzero. The implied connec-

tions between rotation and gain - or similarly between position and phase - are not by

chance. Although I introduced vector-sensors as measuring the physical quantities of

pressure and particle velocity, one can equivalently think of each vector-sensor as mea-

suring amplitude and phase information. Now the reason for the nonzero off-diagonal

terms is clear: sensor gain and rotation errors appear as amplitude measurements

but sensor phase and position errors affect phase measurements. Taking this a step

farther, consider the asymptotic CRB as SNR or observation time increases. In this

limit if either amplitude or phase measurements are error-free, one can exactly deter-

mine direction-of-arrival and the CRB decays to zero. These relationships between

modeling errors are illustrated in Figures 3.2.2 and 3.2.3. In these figures, only the

given sources of mismatch are present. Notice the striking asymptotic similarities be-

tween sensor gain and rotation errors and between sensor phase and position errors.
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Figure 3.2.2: CRB with Gain and/or Phase Errors
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Figure 3.2.3: CRB with Rotation and/or Position Errors
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Although the asymptotic region begins at a higher SNR for sensor phase errors, the

figures are almost identical. Also note that when amplitude and phase measurement

errors are both present the bound does not decay to zero. Under these conditions any

estimator is asymptotically limited by the mismatch and not by observation time or

SNR.

The theoretical advantages of vector-sensor over pressure-sensor ULAs attract

much research attention. In this section, I contrast vector and pressure-sensor array

Cramér-Rao bounds. First examine the CRB as a function of SNR in Figure 3.2.4.

Because both magnitude and phase measurement errors are modeled, the bounds

asymptotically approach a constant. For the acoustic vector-sensor array, however,

the bound is several decibels lower indicating better direction-of-arrival performance

may be possible. Also note that rotation errors, which do not affect pressure-sensors,

increase the vector-sensor CRB only slightly. Figure 3.2.5 reveals similar results when

the CRB is plotted versus the number of snapshots, K. In this case, however, rotation

errors hardly change the vector-sensor array bound. These plots, combined with the

initial beampattern study, suggest that vector-sensor performance may not be overly

sensitive to rotation errors. An intuitive explanation is that the geophone response

- and similarly, the vector-sensor modulation term Bv - has a very wide mainlobe.

For rotation errors to significantly affect the performance, very large errors would

need to be present. Both Figures 3.2.4 and 3.2.5 show vector-sensor arrays bounded

lower than pressure-sensor arrays. Intuitively, the increased number of measurements

should make vector-sensors robust to some modeling errors.

Although the Cramér-Rao bound shows vector-sensors might improve perfor-

mance, it would be useful to find simple DOA algorithms that operate much better

with vector-sensors. This section analyzes the performance of a single direction-of-

arrival algorithm compared with the Cramér-Rao bound. The algorithm chosen is a

simple matched filter searching over azimuth to maximize CBF power. Although this

algorithm is a simple one-dimensional search, it seemed to perform as well asymptot-
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Figure 3.2.4: Pressure and Vector-Sensor Arrays: CRB vs. SNR
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Figure 3.2.5: Pressure and Vector-Sensor Arrays: CRB vs. Snapshots
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ically as more complex approaches. In function form, the algorithm maximizes

F (φ) =
∥∥v(φ)HX

∥∥2
(3.2.62)

where v is evaluated with ψ = 0. Figure 3.2.6 reveals that, with a pressure-sensor

ULA, this algorithm is asymptotically very close to the bound. In Figure 3.2.7,

however, the algorithm does not meet the vector-sensor CRB. It performs equally well

in both cases, despite the additional velocity measurements. These figures suggest

that, although DOA performance may possibly improve with vector-sensor arrays,

efficient algorithms could be difficult to develop. In particular, MAP self-calibration

algorithms might approach the CRB but require much more computation given the

high-dimensional search space. In this discussion, recall that a principal motivation

behind acoustic vector-sensors is not their direction-of-arrival performance but their

ability to resolve pressure-sensor ambiguities.
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Figure 3.2.6: Pressure-Sensor Array Algorithm Performance
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Chapter 4

Conclusion

The performance tools developed in this thesis should be useful both in theory and

practice. As acoustic vector-sensors increase in capability and number, a more com-

plete picture of their performance will aid in the design of new arrays and the analysis

of data.

4.1 Summary

Just as this thesis organizes into two parts, the conclusions also fall into two categories.

First, there are initial observations about ideal arrays, or arrays without mismatch.

Second, these results are leveraged to analyze vector-sensor arrays under Gaussian

modeling errors.

The first section of this thesis ignores the effects of modeling errors to provide

tools like those used with pressure-sensor arrays. It reveals the importance of a

beampattern factorization in developing simple intuition for the vector-sensor array

response. It also quantifies the ability of vector-sensor CBF to null pressure-sensor

ambiguities.

The second section of this thesis shows that like pressure-sensor arrays, vector-

sensor arrays are reasonably robust to mismatch. It develops a useful beampattern

expression under position mismatch and a hybrid Cramér-Rao bound for DOA esti-

mation under Gaussian modeling errors. Analysis of the CRB implies that although
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vector-sensors require additional orientation parameters, DOA performance is not

overly sensitive to rotation mismatch. Furthermore, the CRB hints that performance

may be improved with vector-sensors because of the increased number of measure-

ments.

4.2 Future Work

This thesis is by no means comprehensive, and could be extended in several directions.

First, one could research alternative performance bounds. Some bounds, such as

the Ziv-Zakai bound in [12], are more complex but can be tighter than the CRB.

Analysis of these bounds could better quantify rotation errors or approximate their

effect on vector-sensor performance. Second, one could design practical algorithms to

exploit vector-sensors. Algorithm design goals might be to approach the theoretical

performance limit, stay computationally efficient, and remain robust to mismatch.
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Appendix A

Nomenclature

A.1 Acronyms

Acronym Description

CBF Conventional Beamforming

CRB Cramér-Rao Bound

DFT Discrete Fourier Transform

DOA Direction of Arrival

HCR Hybrid Cramér-Rao Bound

IID Independent and Identically
Distributed

MAP Maximum a Posteriori

ML Maximum Likelihood

PSA Pressure-sensor Array

PSD Power Spectrum Density

SNR Signal to Noise Ratio

ULA Uniform Linear Array

VSA Vector-sensor Array
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A.2 Notation

Notation Description Example

a Scalar variable Eqn. 3.1.4

a Vector variable Eqn. 1.5.1

am mth element of vector a
unless stated otherwise

Eqn. 1.5.6

aH Conjugate (or Hermitian)
transpose

Eqn. 2.1.2

a∗ Conjugation Eqn. 3.2.15

aT Transpose Eqn. 1.5.1

a¯ b Element-wise (or
Hadamard) product

Eqn. 3.2.16

a⊗ b Tensor (or Kronecker)
product

Eqn. 2.1.1

[a , b] or [a b] Horizontal concatenation Eqns. 1.5.1 or 3.2.26

[a ; b] or


 a

b


 Vertical concatenation Eqns. 3.2.4 or 1.5.7

? An arbitrary variable Sec. 3.2.1
[
Aαiαj

]
Block matrix notation Eqn. 3.2.15 or Sec. 3.2.1

CN (µ, σ2)
Complex Gaussian random
variable with mean µ and

variance σ2

Eqn. 3.2.1
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