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Abstract

This thesis proposes two algorithms for recovering an acoustic signal from multiple
blind measurements made by sensors (microphones) over an acoustic channel. Unlike
other algorithms that use a posteriori probabilistic models to fuse the data in this
problem, the proposed algorithms use results obtained in the context of data com-
munication theory. This constitutes a new approach to this sensor fusion problem.
The proposed algorithms determine inverse channel filters with a predestined support
(number of taps).

The Coordinated Recovery of Signals From Sensors (CROSS) algorithm is an in-
direct method, which uses an estimate of the acoustic channel. Using the estimated
channel coefficients from a Least-Squares (LS) channel estimation method, we pro-
pose an initialization process (zero-forcing estimate) and an iteration process (MMSE
estimate) to produce optimal inverse filters accounting for the room characteristics,
additive noise and errors in the estimation of the parameters of the room character-
istics. Using a measured room channel, we analyze the performance of the algorithm
through simulations and compare its performance with the theoretical performance.

Also, in this thesis, the notion of channel diversity is generalized and the Averaging
Row Space Intersection (ARSI) algorithm is proposed. The ARSI algorithm is a direct
method, which does not use the channel estimate.

Thesis Supervisor: Charles E. Rohrs
Title: Research Scientist
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Chapter 1

Introduction

1.1 Blind Signal Estimation over Single-Input Multi-

Output Channel

It is a common problem to attempt to recover a signal from observations made by

two or more sensors. Most approaches to this problem fuse the information from

the sensors through an a posteriori probabilistic model. This thesis introduces an

entirely different approach to this problem by using results obtained in the context

of data communication theory. These previous results are collected under the rubric

of multichannel blind identification or equalization as surveyed in [1].

Consider a case where an independently generated acoustic signal is produced and

then captured by a number of microphones. The Coordinated Recovery of Signals

From Sensors (CROSS) algorithm and the Averaging Row Space Intersection (ARSI)

algorithm presented in this thesis apply well if each recorded signal can be well mod-

eled by a linear time-invariant (LTI) distortion of the signal with an additive noise

component. These algorithms produce estimates of the originating signal and the

characterization of each distorting LTI system. We believe the algorithms may be

useful in fusing different modalities of sensors (seismic, radar, etc.) as long as the

LTI model holds and the modalities are excited from a common underlying signal.

Finally, these algorithms can be used to remove the LTI distortions of multiple signals
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simultaneously as long as there are more sensors than signals. Thus, it is a natural

algorithm for adaptive noise cancellation. In this thesis, we discuss only a single

signal. The extension is natural.

In the data communication problem covered in previously published literature, the

originating signal is under the control of the system designer and certain properties

of this signal are often assumed. Some of these properties include the use of a finite

alphabet [2], whiteness [3], and known second order statistics [4]. However, these

assumptions on the originating signal are inappropriate in the sensor problems we

address, and thus we are required to modify and extend the existing theory.

1.1.1 Signal Model: Single-Input Multi-Output (SIMO) Model

We measure the signal of interest using several sensors. We model the channel between

the signal and sensors as FIR filters. In this model, measured signals, y1, · · · , yq, can

be written as

yi = hi ∗ x + wi (1.1)

where, indexing of sequences has been supressed, ∗ represents convolution of the

sequence hi[n] with the sequence x[n], and for i = 1, · · · , q, the wi[n] are independent

wide-sense stationary zero-mean white random processes. The wi are independent

of each other. We assume that we can model the variances of the noises, σ2
i . By

multiplying by the scalars, σ
σi

, we can normalize the variance of each noise component

into σ2. We assume for simplicity of exposition that the variances of wi are all equal

to σ2. We assume that the FIR filters, hi, are causal and the minimum delay is zero.

That is,

min{n|hi[n] 6= 0, for some i = 1, · · · , q} = 0. (1.2)

Let K be the order of the system, which is the maximum length of time a unit

pulse input can effect some output in the system. That is,

K = max{n|hi[n] 6= 0, for some i = 1, · · · , q}. (1.3)

14



With this SIMO FIR model, we can state the goal of blind signal or channel

estimation system as the follows:

Goal of Blind Signal or Channel Estimation System

Given only the measurement signals, y1, · · · , yq, find an implementable algorithm

that can be used to estimate the input signal x and/or the channel, h1, · · · , hq, which

minimizes some error criteria.

1.2 Problem Statement

In this thesis, we focus on estimating the input signal. We constrain our estimate of

the input signal as a linear estimate, which can be calculated by linear operations on

the measured signals. The linear estimate of the input signal, x̂, can be written as

the following:

x̂ = f1 ∗ y1 + · · · + fq ∗ yq. (1.4)

Our goal is to determine the linear estimate of the input signal that minimizes

the mean square error between the estimated and the actual signals. We can state

our problem as follows:

Problem Statement:

Given the measured signals, y1, · · · , yq, determine inverse channel filters, f1, · · · , fq,

that minimize the mean square error,

ǫ = E[
1

T2 − T1 + 1

T2
∑

n=T1

(x̂[n] − x[n])2] (1.5)

where the support of the input signal is [T1, T2], that is, x[n] = 0 for n ≤ T1 and

n ≥ T2. In this thesis, we generally assume that the length of the support is sufficiently

large for our purposes; however, we derive performance measures that show how
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performance improves as T2 − T1 increases. We let T1 = 1 and T2 = T to make the

notation simple.

1.3 Constraints

Even in the absence of noise, if given only one measurement signal, we cannot de-

termine the input signal without additional prior knowledge. Even with multiple

measurements and in the absence of noise, we cannot determine the input signal well

if the input signal and the channel do not satisfy certain conditions. Previously pre-

sented in [1], the linear complexity and channel diversity constraints are reviewed in

this section. If the two constraints are satisfied, the input signal can be determined

to within a constant multiplier in the absence of the noise.

For any constant c, the channel, ch1, · · · , chq, and the input signal, x
c
, produce

the same measured signals as the channel, h1, · · · , hq, and the signal x. Only given

the measured signals, the input signal cannot be determined better than to within a

constant multiplier.

1.3.1 Linear Complexity of the Input Signal

The linear complexity of a deterministic sequence measures the number of memory

locations needed to recursively regenerate the sequence using a linear constant co-

efficient difference equation. As presented in [1], the linear complexity of the input

signal is defined as the smallest value of m for which there exists {ci} such that

x[n] =
m

∑

j=1

cjx[n − j], for all n = N1 + m, · · · , N2, (1.6)

where [N1, N2] is the support of the input signal.

For example, consider the linear complexity of the following signal: x[n] = c1sin(a1n+

b1) + · · ·+ cMsin(aMn + bM), which is the sum of M different sinusoids. Let xi[n] be

the one particular sinusoid: xi[n] = cisin(ain + bi). Then, x[n] = x1[n] + · · ·+ xM [n].

The linear complexity of each particular sinusoid, xi[n], is two since any sample of
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xi[n] can be represented as a linear combination of two previous samples: xi[n] =

2cos(ai)xi[n − 1] − xi[n − 2].

To determine the linear complexity of the sum of M sinusoids, let hi[n] = δ[n] −
2cos(ai)δ[n−1]+δ[n−2]. Then, hi ∗xi = 0. That is, by putting the sum of sinusoids,

x[n], into the filter hi, we can remove the corresponding sinusoid, xi[n]. Thus, the

output of a cascade connection of all the filters h1, · · · , hM with input x[n] is zero.

That is, h1 ∗ h2 ∗ · · · ∗ hM ∗ x = 0.

The number of taps of the cascaded system, h1 ∗h2 ∗ · · · ∗hM , is 2M +1; therefore,

any sample of x[n] is a linear combination of previous 2M samples of x[n]. The linear

complexity of the sum of M different sinusoids is less than or equal to 2M . In fact,

we can prove that the linear complexity of the sum of M different sinusoid is 2M by

mathematical induction.

This linear complexity is related to the maximum number of independent rows of

the following matrix:

X =











x[n] · · · x[n + k]
...

...

x[n − N ] · · · x[n + k − N ]











.

For large k, satisfying at least k ≥ N , if the linear complexity is greater than

or equal to the number of rows, the rows of the matrix X are linearly independent

since any row cannot be expressed as a linear combination of the other rows. For

large k, satisfying at least k ≥ N , the rank of the matrix is equal to the number of

independent rows. That is, the matrix becomes a full row rank matrix.

We assume that the input signal of our consideration has large linear complexity,

m, such that m >> K in the remainder of this thesis.

1.3.2 Diversity Constraint of the Channel

Assume that the input signal has large linear complexity. The diversity constraint on

the channel, h1, · · · , hq, developed in [1] and restated here is necessary for a solution
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to within a constant multiplier. The constraint is that the transfer functions of the

channel in the z-domain (frequency domain) have no common zeros. In other words,

there is no complex number z0 such that H1(z0), · · · , Hq(z0) are all simultaneously

zero. The proof of necessity and the other details of the diversity constraint are shown

in [1].

In the absence of noise, the combination of the diversity constraint, which is the

no common zero constraint, and the linear complexity constraint on the input is

also a sufficient condition for a solution to within a constant multiplier. That is, we

can determine the channel coefficients and input signal to within a constant factor

multiplication as long as the diversity constraint is satisfied. In Chapter 4 and 6,

we show that, in the noiseless case with the diversity and complexity constraints in

place, our algorithms can determine the input signal and the channel coefficients to

within a scalar multiplication.

However, in the presence of noise, the performance of the input signal estimate

depends not only on the channel diversity constraint, but also on the specific values

of the channel coefficients. One simple reason is that different channel coefficients

produce different signal to noise ratios (SNR) of the measured signals. Measuring the

achievable performance of the input signal estimate from the measured signals in the

presence of noise is ambiguous and has not, to our knowledge, been defined yet. In

Chapter 3, we generalize the idea of the diversity constraint and define a measure of

the diversity in the presence of noise.

1.4 Two General Approaches of Estimating the In-

put Signal

Our problem statement has two sets of unknowns: the input signal and the channel

coefficients. Knowing one of them greatly simplifies the process of estimating the

other. We can estimate the input signal not only through a direct method, but also

through an indirect method, which consists of estimating the channel coefficients
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and then using the channel coefficients estimates to estimate the input signal. In

this section, we introduce the ideas of an indirect method (CROSS Algorithm) and

a direct method (ARSI Algorithm) and the differences between our algorithms and

algorithms previously developed. We present the details of the CROSS Algorithm in

Chapter 4 and the ARSI Algorithm in Chapter 6.

1.4.1 Indirect Method

During the last decade, the problem of blindly estimating the channel coefficients

from measured signals has been studied within the context of a data communication

problem by many researchers. For the sensor problem we address, we consider three of

these methods developed previously: the LS(Least Squares) method [5], the SS(Signal

Subspace) method [6], and the LSS(Least Squares Smoothing) method [7]. As shown

in [8], if we use only two measurements, the LS and the SS methods produce the same

result.

Using the channel estimate, we can estimate the input signal by equalizing the

channel. If given the correct channel coefficients, MMSE (minimum mean square

error) equalizers can be determined as is done in [9]. However, we will not have

correct channel information in the presence of noise.

In Chapter 4, we present an algorithm to determine the input signal using the

channel estimate from the Least-Squares channel estimation method [5]. Compared

to MMSE estimate given in [9] that assumes a correct channel estimate, our algorithm

determines inverse channel filters even with a flawed channel estimate. For an ideal

situation, where we can use an infinite number of taps for the inverse channel filters, we

derive an MMSE Infinite Impulse Response (IIR) equalizer. The IIR equalizer shows

a frequency domain view, and the minimum mean square error of the input signal

estimate is derived. For a practical situation, where we can use only a finite number

of taps for the inverse channel filters, we present an iterative process for MMSE

Finite Impulse Response (FIR) inverse channel filters. We initialize our process by

determining the inverse channel filters’ coefficients that minimize one factor of the

mean square error. The initialization produces an unbiased or zero-forcing input
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signal estimate. We then iterate the process of improving the signal estimate using

the knowledge of the distribution of the channel estimate.

1.4.2 Direct Method

As developed in [10] and restated in Section 6.1, isomorphic relations between input

and output row spaces enable us to estimate the vector spaces generated by the rows

of Toeplitz matrices of the input signal from the measured signals. We construct

Toeplitz matrices of the input signal whose rows are linearly independent except for

one common row. By intersecting the row spaces of the matrices, we can estimate

the common row and, as a by-product, the intersection process itself determines the

coefficients of the inverse channel filters.

Algorithms that use these kinds of row space intersections are developed in [10]

and [11]. The algorithm given in [10] computes the union of the vector spaces that

are orthogonal to the row spaces of the input signal matrix estimated by the row

spaces of the measured signal matrix. The algorithm then determines the vector

that is orthogonal to the union. In the noisy case, it computes the singular vector

corresponding to minimum singular value of the matrix whose rows form a basis for

the union.

The algorithm given in [11] estimates the row spaces of the input signal matrix

from the measured signal and then determines the input signal estimate that mini-

mizes the sum of distances between the row space of the Toeplitz matrix of the input

signal estimate and the row spaces calculated from the measured signal.

The difference between our algorithm and the algorithms given in [10] and [11] is

that the algorithms given in [10] and [11] compute the intersection of the row spaces

to get an estimate the input signal, while we determine a vector that belongs to

one particular vector space corresponding to the inverse channel filters with a given

support, which enables us to determine inverse channel filters with smaller number of

taps than the number of taps required for the other algorithms given in [10] and [11].

Also, under a fixed support of the inverse channel filters, our algorithm uses more

row spaces than the other algorithms. Since our algorithm use more vector spaces for
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the intersection, the error in the presence of noise is averaged and thus reduced.

1.5 Outline of the Thesis

Chapter 2 presents a review of existing literature that we use in the remainder of the

thesis. The SIMO FIR signal model is rewritten as a matrix form. The idea of effective

channel order in [12] is reviewed. We summarize the order estimation methods given

in [7], [13], [14], and [15]. Also, we introduce the Least Squares(LS) method [5]

for estimating a channel and present the distribution of the channel estimate. The

distribution is derived in Appendix A. This derivation uses the method of [16] to

produce new results for the specific problems considered in this thesis.

Chapter 3 presents the idea and the definition of diversity of the channel in a new

form that accounts for the presence of noise in the system. We define the diversity as

the minimum ratio of the energy of the measurement signal to the energy of the input

signal using the worst case input signal. We present two different way of increasing the

diversity. One way involves underestimating the channel order; this sheds a new light

on the meaning of the effective channel order. The other way involves constraining

the vector space in which the input signal resides.

Chapter 4 develops the Coordinated Recovery of Signals From Sensors (CROSS)

algorithm of estimating the input signal in a Minimum Mean Square Error (MMSE)

sense given an estimate of the channel coefficients. Given correct channel information,

MMSE equalizers can be determined, as is done in [9]. However, in the presence of

noise, we cannot accurately determine the channel. We use the Least Squares(LS)

method [5] to estimate the channel partly because we can characterize the distribution

of the channel estimate. The CROSS algorithm produces inverse filters that appro-

priately account for the errors in the estimate of the distorting filters and the need to

directly filter the additive noise as well as the need to invert the distorting filters. We

determine IIR inverse channel filters and produces a frequency domain lower bound

on the mean square error of the input signal estimate. We also determine the FIR

inverse channel filters that minimize the error given the number of taps and the place-
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ment of taps for the inverse channel filters. In this case, the estimate of each value

of the input signal is a linear combination of only a finite number of samples in the

measurements. We can represent the mean square error of the input signal estimate

as the sum of three error functions. We estimate the input signal using two different

criteria. The first criterion minimizes only one of the three error functions, which

depends only on the noise. That leads to the zero-forcing(unbiased) input signal esti-

mate. This estimate is used as an initialization of the CROSS algorithm. The second

criterion minimizes the entire mean square error using the previously attained initial

input signal estimate and the distribution of the channel estimate. That leads to the

improved input signal estimate. We can iterate the second procedure to continue to

improve the signal estimate.

Chapter 5 analyzes the performance of the Least-Squares(LS) Channel Estima-

tion Method and the CROSS algorithm. We implement the algorithm and perform

simulations. We measure typical room audio channels by a sighted method, which

estimates the channel coefficients using both the input signal and the measured sig-

nals. We then artificially generate the measured signals for the simulations. For the

LS method, we compare the performance of the simulation to the theoretical perfor-

mance. We conclude that the channel error from the LS method is proportional to

the inverse of the number of measured signal samples we use to estimate the channel

and that the error is dominated by the few smallest singular value of the Toeplitz

matrix of the channel coefficients. We also perform the CROSS algorithm. We inves-

tigate the condition where the iteration process reduces the error in the input signal

estimate.

Chapter 6 presents a direct method of estimating the input signal. “Direct”

means that the channel coefficients are not estimated. We call this direct method the

Averaging Row Space Intersection (ARSI) method. We construct several Toeplitz

matrices of the input signal that have only one row in common. Although the channel

is unknown, we can estimate the row vector space of the matrix generated from the

input signal using the Toeplitz matrices of measured signals as long as the channel

satisfies the diversity constraint. The performance of the estimate of the row vector
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space depends on the diversity of the channel defined in Chapter 3. Since the Toeplitz

matrices of the input signal have one row in common, the intersection of the row vector

spaces of the Toeplitz matrices determines the common row to within a constant

multiplication factor. The intersection of the estimated row vector spaces, in the

noiseless case, determines and, in the noisy case, estimates the one dimensional row

vector space generated by the input signal sequence. The support of the inverse

channel filters determines the Toeplitz matrices of the measured signals to use. In

fact, the vector of the output sequence of the inverse channel filters can be represented

as a linear combination of the rows of a Toeplitz matrix of the measured signals. The

other Toeplitz matrices of the measured signals are used to average the noise and

decrease the mean square error. As the number of taps of the inverse channel filters

is increased, the number of row spaces to be averaged is also increased, which decreases

the mean square error.

1.6 Contributions of this Thesis

The first contribution of this thesis to apply blind equalization concepts to the prob-

lem of estimating acoustic source signals as measured by multiple microphones in

typical room settings. Previous approaches to this problem have fused the infor-

mation from the multiple sensors through an a posteriori probabilistic model. The

approach here represents a new approach to data fusion in this problem setting.

In this thesis, we generalize the notion of the channel diversity. The diversity

constraint given in [1] and restated in Section 1.3.2 only applies in the absence of

noise. We define a measure of channel diversity that accounts for the presence of

noise and describes the performance of the input signal estimate. Using the newly

defined diversity measure, we explain the effective channel order and generalize the

blind signal estimation problem.

Compared to the MMSE estimate given in [9] that assumes correct channel es-

timates, the CROSS algorithm determines the optimal inverse channel filters which

accounts for the inevitable errors in the channel estimates. Also, our algorithm can
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deal with deterministic input signals as well as the wide-sense stationary input signals

generally assumed in the data communication theory settings.

The ARSI method uses multiple row spaces of the matrix of the input signal

estimated from the measured signals. The same idea is also used in direct methods

given in [10] and [11]. However, under a fixed support of the inverse channel filters, our

algorithm, the ARSI method, uses more row spaces than the other algorithms. Since

our algorithm use more vector spaces for the intersection, the error in the presence of

noise can be averaged and thus reduced.
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Chapter 2

Background

In Section 2.1, we rewrite the SIMO FIR signal model (1.1) in a matrix form. This

matrix form is used in the remainder of the thesis. In Section 2.2, we introduce a

naive approach of the order estimation. We then summarize some existing order esti-

mation methods. In Section 2.3, we summarize the Least Squares(LS) blind channel

estimation method and the distribution of its estimates. In Section 2.4, we present a

definition of singular value decomposition (SVD) that we use in the remainder of the

thesis.

2.1 Signal Model in a Matrix Form

2.1.1 Notation

With q channels let:

y[n] =











y1[n]
...

yq[n]











w[n] =











w1[n]
...

wq[n]










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Xk[n] =
[

x[n] · · · x[n + k]
]

Yk[n] =
[

y[n] · · · y[n + k]
]

=











y1[n] · · · y1[n + k]
...

yq[n] · · · yq[n + k]











Wk[n] =
[

w[n] · · · w[n + k]
]

=











w1[n] · · · w1[n + k]
...

wq[n] · · · wq[n + k]











For n = 0, · · · , K,

h[n] =











h1[n]
...

hq[n]











TN(h) is a q(N + 1) × (N + K + 1) block Toeplitz matrix:

TN(h) =

















h[0] h[1] · · · h[K] 0 · · ·
0 h[0] h[1] · · · h[K] 0 · · ·

. . .

· · · 0 h[0] h[1] · · · h[K]

















where N is an argument that determines the size of the Toeplitz matrix.

2.1.2 Equivalent Signal Models

In this section, we represent the SIMO FIR channel model (1.1) in a matrix form.

We can rewrite the signal model (1.1) in a matrix form as:

y[n] = h[0]x[n] + · · · + h[K]x[n − K] + w[n]. (2.1)
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That is,

y[n] =
[

h[0] · · · h[K]
]











x[n]
...

x[n − K]











+ w[n]. (2.2)

We can increase the number of rows using the block Toeplitz matrix TN(h) to

make the matrix of the channel, TN(h), have at least as many rows as columns. For

safety, we choose N ≥ K so that TN(h) is a full rank and left-invertible matrix. It

is proved in [17] that the Toeplitz matrix is left-invertible if N ≥ K and the channel

satisfies the diversity constraint.

For any N > 0,











y[n]
...

y[n − N]











= TN(h)











x[n]
...

x[n − N − K]











+











w[n]
...

w[n − N]











. (2.3)

We can also increase the number of columns to make the matrix of x have more

columns than rows. Then, from the assumption on the linear complexity of the input

signal, all the rows of the matrix of x will be linearly independent.

For any k > 0,











y[n] · · · y[n + k]
...

...

y[n − N] · · · y[n + k − N]











= TN(h)











x[n] · · · x[n + k]
...

...

x[n − N − K] · · · x[n + k − N − K]











+











w[n] · · · w[n + k]
...

...

w[n − N] · · · w[n + k − N]











,
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that is,











Yk[n]
...

Yk[n − N]











= TN(h)











Xk[n]
...

Xk[n − N − K]











+











Wk[n]
...

Wk[n − N]











(2.4)

where Xk[n] is the 1× (k + 1) and Yk[n],Wk[n] are the q × (k + 1) matrices defined

previously.

2.2 Order Estimation

Many channel estimation methods such as the Least-Squares method [5] and the

Subspace method [6] require knowledge of the exact channel order. Direct signal

estimation methods [10] [11] also need to know the channel order in advance. Linear

prediction channel estimation methods given in [3] and [18] require only knowledge

of the upper bound of the channel order. However, in those method, the input

symbols need to be uncorrelated, which does not hold in many practical situations.

Without assuming uncorrelatedness or whiteness of the input signal, every algorithm

that we have found requires the exact knowledge of the channel order. The channel

order needs to be estimated within the channel estimation or direct signal estimation

algorithms.

Generally, many channel order estimation methods have the following form:

1. Determine the possible range of the channel order

2. Construct an objective function

3. Find the channel order that maximizes or minimizes the objective function by

calculating the objective function for each possible channel order in turn.

The Joint Order Detection and Channel Estimation method given in [7] uses an

upper bound of the order to preprocess and estimate the order and channel simulta-

neously. However, also in that method, the value of an objective function for each

possible value of the channel order is also calculated.

28



In this section, we present a naive approach and briefly summarize the idea of

the existing algorithms. We then use the estimated order to estimate the channel

coefficients using the Least-Square channel estimation method.

2.2.1 Naive Approach: Noiseless Case

We pick N ≥ K and assume that the channel diversity constraint is satisfied so that

the channel matrix TN(h) has at least as many rows as columns and TN(h) is left-

invertible. Assume enough linear complexity of the input and let k be a large number

that makes the rows in the matrix of the input signals linearly independent and then,

in the absence of noise, the rank of the matrix of the measurement signals is the same

as the number of rows in the input matrix. That is,

rank





















Yk[n]
...

Yk[n − N]





















= rank





















Xk[n]
...

Xk[n − N − K]





















= N + K + 1. (2.5)

We can determine the order of the system by calculating the rank of the matrix

of the measurements as

K = rank





















Yk[n]
...

Yk[n − N]





















− N − 1 (2.6)

However, in a noisy case, rank





















Yk[n]
...

Yk[n − N]





















= q(N +1), the number of rows

in the matrix.
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2.2.2 Effective Channel Order Estimation

In many practical situations, a channel is characterized by having long tails of “small”

impulse response terms. As presented in [14], to estimate the channel coefficients,

we should use only the significant part of the channel. Otherwise, the problem of

estimating the channel is ill-conditioned and the performance of channel estimation

methods becomes very poor.

We summarize the effective channel order estimation methods developed. We can

categorize the order estimation methods into the following two cases.

Direct Methods: Using Singular Values of the Matrix of the Measured

Signals

The order of the channel can be estimated using the singular values of the matrix

of the measured signals. Let σi be the ith eigenvalue of the matrix of the measured

signals,




















Yk[n]
...

Yk[n − N]









































Yk[n]
...

Yk[n − N]





















T

.

These eigenvalues can be used to determine approximately the rank of the matrix

so that we can determine the order from equation(2.6). Objective functions are con-

structed and the rank is determined as the value of rank minimizing these functions.

We present here three different objective functions used. In [13], it is assumed that

the measured signals form Gaussian processes, information theoretic criteria is used,

and two approaches called AIC and MDL are used.

AIC(r) = −2log





∏qN
i=r+1 σ

1
qN−r

i

1
qN−r

∑qN
i=r+1 σi





(qN−r)(k−1)

+ 2r(2qN − r) (2.7)

MDL(r) = −2log





∏qN
i=r+1 σ

1
qN−r

i

1
qN−r

∑qN
i=r+1 σi





(qN−r)(k−1)

+
1

2
r(2qN − r)log(k − 1) (2.8)
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In practice, the Gaussian assumption may not hold, weakening the basis of these

methods. Furthermore, AIC method tends to overestimate the channel order.

In [14], the following function called Liavas’ criterion is used.

LC(r) =







λr+1

λr−2λr+1
, if λr+1 ≤ λr

3

1, otherwise.
(2.9)

Joint Methods

Unlike the previous three methods, based on the singular values of the matrix of the

measured signals, the following two methods seek to determine the order and channel

coefficients jointly. The method given in [7] performs joint estimation. In this method,

the order of the channel is initially overestimated. Denote the overestimate as l. Then,

by Least Squares Smoothing (LSS ) [19] the column space of Tl−K(h)T is estimated

and the orthogonal vector space of the column space is determined. The objective

function is calculated as the the minimum singular value of the block Hankel matrix

of the orthogonal vector space. The argument of the objective function is related to

the size of the block Hankel matrix. The order is determined as the value minimizing

the objective function.

When the channel order is correctly detected, Least Squares (LS) [5], Signal Sub-

space (SS) [6], and Least Squares Smoothing (LSS) [19] perform the channel estima-

tion better than the joint channel and order estimation method.

The method given in [15] uses the channel estimate to improve the order estimate.

The method overestimates the order of the channel via the AIC method and then

estimates the channel using channel estimation methods such as LS [5], SS [6], and

LSS [19] at the given order. In theory, a transfer function of each estimated filter is

a multiple of a transfer function of the real filter and the ratio of them is the same

for any filter. By extracting out the greatest common divisor, the real channel is

estimated and also the effective order is calculated. However, this method can be

applied only to the case of two measurements.
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2.3 Least Squares Blind Channel Estimation Method

In this section, we summarize the LS channel estimation method[5] and its perfor-

mance derived based on the proof of Theorem 13.5.1 in [16].

2.3.1 Notation

Let:

hi =











hi[K]
...

hi[0]











(2.10)

h =

















h1

h2

...

hq

















(2.11)

Yi[N] =

















yi[K] yi[K + 1] · · · yi[2K]

yi[K + 1] yi[K + 2] · · · yi[2K + 1]
...

...
. . .

...

yi[N − K] yi[N − K + 1] · · · yi[N ]

















(2.12)

2.3.2 Algorithm

In the noiseless case, for any 1 ≤ i, j ≤ q, we can see

yi ∗ hj = (x ∗ hi) ∗ hj = (x ∗ hj) ∗ hi = yj ∗ hi. (2.13)

We can represent (2.13) in a matrix form:

Yi[N]hj = Yj[N]hi. (2.14)
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From equation (2.14), we can make a linear equation of the form:

Yh = 0 (2.15)

where Y is formed appropriately[5].

For example, for q = 2, the matrix, Y, is

Y =
[

Y2[N] −Y1[N]
]

(2.16)

and, for q = 3, the matrix, Y, is

Y =











Y2[N] −Y1[N] 0

Y3[N] 0 −Y1[N]

0 Y2[N] −Y1[N]











. (2.17)

In the noisy case, each entry of the matrix, Y, has a signal component and a noise

component. Thus, we can represent the matrix Y as the sum of two matrices Yx and

Yw. One is associated with the filtered input signal and the other is associated with

the noise.

The channel coefficients satisfy

Yxh = 0. (2.18)

Since we cannot separate Yx from Y, we estimate the channel as the vector that

minimizes ||Yh|| given that ||h|| = 1. That is, h is given by the right singular vector

associated with the minimum singular value of the matrix Y. The details are given

in [5].

2.3.3 Performance

Let ĥi be the estimate of hi. We assume that the input signal, x, is a determinis-

tic signal and the noises, wi, are i.i.d zero-mean Gaussian random processes. The
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distribution of the channel estimate using the LS method is derived in Appendix A

where we modify the proof of Theorem 13.5.1 given in [16]. The derived asymptotic

distribution is

ĥ =
h

||h|| +

q(K+1)−1
∑

i=1

ciui (2.19)

where ci is a zero-mean Gaussian Random Variable with variance

q(q−1)
2

σ2(λ2
i + q(q−1)

2
σ2)

(N − 2K)λ4
i

, (2.20)

and λi and ui are the ith singular value and the ith right singular vector of the matrix

1√
N−2K

Yx. The ci are independent of each other.

2.4 Singular Value Decomposition (SVD)

We use the following definition of the singular value decomposition in the remainder

of the thesis. This definition is used in MATLAB function svd.

Definition of SVD

Any m × n matrix, A, can be written as

A = UΣV∗ (2.21)

where U is a unitary matrix of dimension m×m, V is a unitary matrix of dimension

n × n, and Σ is a m × n diagonal matrix, with nonnegative diagonal elements in

decreasing order. The matrix V∗ is the conjugate transpose of V.

For a real matrix A, the unitary matrices, U and V, also become real matrices,

the columns of U form an orthonormal basis of Rm, the columns of V form an

orthonormal basis of Rn, and V∗ = VT .
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Chapter 3

Diversity of the Channel

In Chapter 1, we mentioned that, in the absence of noise, to have a solution to within

a constant multiplier to the channel identification problem, the transfer functions

of the channel should have no common zeros. This is called the channel diversity

constraint. However, in the presence of noise, to our knowledge, a good measure of

the performance of the input signal estimate as affected by the characteristics of the

channel coefficients has not been defined yet. In this chapter, we define a measure of

the diversity of the channel, D(h1, h2, · · · , hq), to characterize the channel based on

the following desired properties.

3.1 Properties

1. Diversity of the identity channel is one.

D(δ[n]) = 1 (3.1)

2. Diversity is zero if and only if the transfer functions of the channel have one or

more common zeros.

D(h1, h2, · · · , hq) = 0 ⇐⇒ GCD{H1(z), · · · , Hq(z)} 6= constant. (3.2)
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3. As a corollary, diversity of one filter with at least two taps is zero since the

transfer function of the filter is itself the greatest common divisor of the transfer

function.

D(h1) = 0 (3.3)

4. A pure delay in any channel does not change diversity.

D(h1[n], · · · , hi[n − k], · · · , hq[n]) = D(h1[n], · · · , hi[n], · · · , hq[n]) (3.4)

5. For any constant c,

D(ch1, ch2, · · · , chq) = |c|D(h1, h2, · · · , hq) (3.5)

6. An additional measurement may increase and cannot decrease diversity.

D(h1, · · · , hq) ≤ D(h1, · · · , hq, hq+1) (3.6)

3.2 Definition of Diversity

Property 2 says that diversity is zero if and only if the channels do not satisfy the

noise free channel diversity constraint. That is, transfer functions of the channel

have one or more common zeros. Suppose the transfer functions of the channel has a

common zero and let z = a be the common zero of H1(z), · · · , Hq(z). In other words,

H1(a) = · · · = Hq(a) = 0. In the absence of noise, the measured signals generated

by the input signal, x[n] = an, are all zeros. Thus, there is no way to determine the

component of the input signal with the form x[n] = can. Mathematically speaking, we

can represent any signal as the sum of the following two signals. One signal belongs to

the the vector space {can|c is a complex number} and the other signal is orthogonal

to this vector space. If the transfer functions of the channel have a common zero at

z = a, then we cannot determine the component of the input signal belonging to the

first vector space from the measured signals.
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One possible definition of diversity, which satisfies the desired properties, is the

minimum ratio of the energy of the measurement signal to the energy of the input

signal. Intuitively, this measures the worst case amplitude response of the channel.

The input signal associated with this worst case amplitude response is the most

difficult signal to determine in the presence of noise. The diversity measure proposed

is:

D(h1, · · · , hq) , min
x

√

∑∞
n=−∞ {(h1 ∗ x)[n]2 + · · · + (hq ∗ x)[n]2}

∑∞
n=−∞ x[n]2

(3.7)

In Appendix B, we prove that this definition satisfies all the properties given in

the previous section.

3.3 Diversity with Finite Length Signals

The definition of diversity in the previous section assumes that the length of the

input signal is infinite. In practice, however, we can observe only a finite number

of samples from the measurements. In this section, we reformulate the definition of

diversity when only a finite number of samples are available.

Suppose that the channel is known. We measure the samples from index n − N

to index n: y[n − N], · · · ,y[n]. From (2.3), the measurement signals satisfy the

following equation:











y[n]
...

y[n − N]











= TN(h)











x[n]
...

x[n − N − K]











+











w[n]
...

w[n − N]











. (3.8)

Let’s decompose TN(h) using singular value decomposition (SVD) as

TN(h) = UΛVT (3.9)
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where

U =
[

u1 u2 · · · uq(N+1)

]

, (3.10)

V =
[

v1 v2 · · · vN+K+1

]

. (3.11)

Each ui, vj is a column vector of length N + K + 1. Let λi be the ith singular

value, i = 1, · · · , N + K + 1, ordered in descending magnitude. From equations

(3.8) and (3.9), we can reorganize our channel as q(N + 1) parallel channels as, for

1 ≤ i ≤ N + K + 1,

λivi
T











x[n]
...

x[n − N − K]











+ ui
T











w[n]
...

w[n − N]











= ui
T











y[n]
...

y[n − N]











, (3.12)

for N + K + 2 ≤ i ≤ q(N + 1),

ui
T











w[n]
...

w[n − N]











= ui
T











y[n]
...

y[n − N]











. (3.13)

The signal to noise ratio (SNR) of the output of each parallel channel depends

on the singular value of TN(h), λi, which is the gain of each channel. The minimum

singular value, λN+K+1, which is the smallest gain, determines the accuracy of the

estimate when the worst-case input signal, whose components are zero except for the

component in vi direction, is applied. If λN+K+1 is small, we need to greatly amplify

the noise to estimate the component of the input signal in vN+K+1
T direction.

In the absence of noise, the minimum ratio of the magnitude of











y[n]
...

y[n − N]











to

the magnitude of











x[n]
...

x[n − N − K]











is the minimum singular λN+K+1. The diversity
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of the channel becomes

Diversity = lim
N→∞

λN+K+1 (TN(h)) (3.14)

In Appendix B, we prove the convergence of limN→∞ λN+K+1 (TN(h)).

3.4 Examples: Small Diversity

In this section, we present three different kinds of channel that have small diversity.

3.4.1 Common Zeros

Let Hc(z) = GCD{H1(z), · · · , Hq(z)}. Let the transfer functions of the channel have

one or more common zeros and thus Hc(z) is not a constant. Then, there exist

h̃1, · · · , h̃q such that h1 = hc ∗ h̃1, · · · , hq = hc ∗ h̃q. Let K̃ be the order of the channel

h̃1, · · · , h̃q. Then, K̃ < K.

Each row of the Toeplitz matrix, TN(h), satisfies the following equation:

[

0 · · · 0 hi[0] · · · hi[K] 0 · · · 0
]

=
[

0 · · · 0 h̃i[0] · · · h̃i[K̃] 0 · · · 0
]

TN+K̃(hc) (3.15)

where the length of the vector of hi is N + K + 1, the length of the vector of h̃i is

N + K̃ + 1, the lengths of consecutive zeros of the vector of hi are l and N − l, the

lengths of consecutive zeros of the vector of h̃i are also l and N − l.
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Then, the Toeplitz matrix, TN(h), can be written as

















h[0] h[1] · · · h[K] 0 · · ·
0 h[0] h[1] · · · h[K] 0 · · ·

. . .

· · · 0 h[0] h[1] · · · h[K]

















=

















h̃[0] h̃[1] · · · h̃[K̃] 0 · · ·
0 h̃[0] h̃[1] · · · h̃[K̃] 0 · · ·

. . .

· · · 0 h̃[0] h̃[1] · · · h̃[K̃]

















TN+K̃(hc). (3.16)

That is,

TN(h) = TN(h̃)TN+K̃(hc). (3.17)

Thus, the matrix, TN(h), is not a full rank matrix:

rank(TN(h)) ≤ N + K̃ + 1 < N + K + 1.

If the transfer functions of the channel have one or more common zeros, since

TN(h) is not full rank and then the minimum singular value of the matrix TN(h),

λN+K+1 (TN(h)), is zero. Thus, the diversity of the channel is zero.

3.4.2 Filters with the Same Stop Band

Let the filters have the same stop band: w ∈ [w1, w2]. By that we mean the frequency

responses of the filters satisfy, for w ∈ [w1, w2],

|Hi(e
jw)| < ǫ, (3.18)

where ǫ is a small positive number.

Let:

Hi[k] = Hi(e
j(w1+ 2πk

N+K+1
)), (3.19)
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the matrix D be the (N + K + 1) × (N + K + 1) diagonal matrix whose entries

are

Dn,n = e−jw1n for n = 1, · · · , N + K + 1, (3.20)

the matrix F be the (N + K + 1) points DFT matrix whose components are

Fn,m = e−j 2πn
N+K+1

m for n = 1, · · · , N + K + 1 and m = 1, · · · , N + K + 1, (3.21)

in other words,

F =























1 1 · · · 1 1

1 e−j 2π1
N+K+1

1 · · · e−j 2π1
N+K+1

(N+K−1) e−j 2π1
N+K+1

(N+K)

...
...

. . .
...

...

1 e−j
2π(N+K−1)

N+K+1
1 · · · e−j

2π(N+K−1)
N+K+1

(N+K−1) e−j
2π(N+K)
N+K+1

(N+K)

1 e−j
2π(N+K)
N+K+1

1 · · · e−j
2π(N+K)
N+K+1

(N+K−1) e−j
2π(N+K)
N+K+1

(N+K)























. (3.22)

Let r[n] be a signal with support [0, N + K]. Let r be a row vector with length

N + K + 1:

r =
[

r[0] r[1] · · · r[N + K]
]

. (3.23)

By multiplying DF to the row vector, r, we can determine the value of Fourier

Transform of the signal, r[n], at frequencies w = w1 + πk
N+K+1

for k = 0, · · · , N + K.

That is,

rDF =
[

r[0] r[1]e−jw1 · · · r[N + K]e−jw1(N+K)

]

F

=
[

R(ejw1) R(ej(w1+
2π

N+K+1
)) · · · R(ej(w1+

2π(N+K)
N+K+1

))
]

. (3.24)

Thus, the row vector of TN(h) multiplied by DF is
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[

0 · · · 0 hi[0] hi[1] · · · hi[K] 0 · · · 0
]

DF =
[

Hi[0]e−j( 2π0
N+K+1

+w1)m Hi[1]e−j( 2π1
N+K+1

+w1)m · · · Hi[N + K]e−j(
2π(N+K)
N+K+1

+w1)m
]

where m is the number of consecutive zeros in the beginning of the the row vector.

Therefore, all the entries of TN(h)DF can be written as the frequency responses

Hi[k] multiplied by a unit norm complex number.

TN(h)DF =
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

H1[0] H1[1] · · · H1[N + K]

.

.

.

.

.

.

.

.

.

Hq [0] Hq [1] · · · Hq [N + K]

H1[0]e
−j( 2π0

N+K+1
+w1)1

H1[1]e
−j( 2π1

N+K+1
+w1)1

· · · H1[N + K]e
−j(

2π(N+K)
N+K+1

+w1)1

.

.

.

.

.

.

.

.

.

Hq [0]e
−j( 2π0

N+K+1
+w1)1

Hq [1]e
−j( 2π1

N+K+1
+w1)1

· · · Hq [N + K]e
−j(

2π(N+K)
N+K+1

+w1)1

.

.

.

.

.

.

.

.

.

H1[0]e
−j( 2π0

N+K+1
+w1)(N−1)

H1[1]e
−j( 2π1

N+K+1
+w1)(N−1)

· · · H1[N + K]e
−j(

2π(N+K)
N+K+1

+w1)(N−1)

.

.

.

.

.

.

.

.

.

Hq [0]e
−j( 2π0

N+K+1
+w1)(N−1)

Hq [1]e
−j( 2π1

N+K+1
+w1)(N−1)

· · · Hq [N + K]e
−j(

2π(N+K)
N+K+1

+w1)(N−1)

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

.

Since |Hi[0]| = |Hi(e
jw1)| < ǫ, all the components of the first column have magni-

tude less than ǫ. Thus, the magnitude of the first column is less than
√

q(N + 1)ǫ.

Therefore, the smallest singular value of TN(h)DF is less than
√

q(N + 1)ǫ. Since all

the rows of F are orthogonal to each other and they have the same norm
√

N + K + 1,

1√
N+K+1

F is an unitary matrix. The matrix D is also unitary. Since the multiplying

by a unitary matrix does not change the singular values, the singular values of TN(h)

are the same as those of 1√
N+K+1

TN(h)DF. Therefore, the smallest singular value of

TN(h) is less than
√

q(N+1)
N+K+1

ǫ.
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3.4.3 Small leading or tailing taps

The minimum singular value is less than or equal to the magnitude of any column:

λN+K+1 (TN(h)) = min
v

||TN(h)v||
||v|| ≤ ||TN(h)i|| (3.25)

where TN(h)i is the ith column of TN(h).

Thus, the diversity of the channel is less than or equal to the magnitude of the

first column and the last column:

D(h1, · · · , hq) ≤
√

h1[0]2 + · · · + hq[0]2, (3.26)

D(h1, · · · , hq) ≤
√

h1[K]2 + · · · + hq[K]2. (3.27)

Therefore, if all of the multiple measurement channel simultaneously have small

leading or tailing taps, the diversity of the channel is also small.

3.5 Effective Channel Order Revisited

As given in [12], given that the input signal is white, the performance of the LS (least

squares) channel estimation method[5] and SS (signal subspace) channel estimation

method[6] degrade dramatically if we model not only the “large” terms in the channel

response but also some “small” ones.

As shown in the previous section, the channel that has small leading or tailing

taps is one of the channels that have small diversity. We have explained here using

our extended concept of diversity why modeling not only significant terms but also

insignificant terms decreases the performance of the LS channel estimation method.

We show, in Appendix A, if the diversity of the channel is small, then with a white

input signal and white additive noise, the performance of the LS channel estimation

method become very poor. We also show that if the diversity of the channel is large,

then with a white input signal and white additive noise, the error of the channel
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estimate using the LS channel estimation method becomes very small.

We can increase the diversity of the channel by ignoring the insignificant part

of the channel. If we use only significant part of the channel to estimate the input

signal, the noise is not greatly amplified in the estimation process. In other words,

underestimating the order increases the diversity. However, ignoring the insignificant

part of the channel means that the measured signals from the insignificant part must

be regarded as noise. Therefore, underestimating the the channel order increases the

noise variance. This produces an engineering tradeoff.

3.6 Diversity over a Constrained Vector Space

Symbols in the data communication problem are usually i.i.d, so the power spectral

density of the measured signals is nonzero over all frequencies. However, acoustic

signals, for example, music signals, are usually low frequency signals. In this case, we

have a prior knowledge of the input signal: all the signals are the elements of a certain

vector space. Also, sometimes, our interest is in estimating the input signal over a

certain frequency band. In this section, we generalize our definition of the diversity

and propose a new problem statement.

Define diversity over a vector subspace V as

DV (h1, · · · , hq) = lim
N→∞

min
v∈V

||TN(h)v||
||v|| (3.28)

In Section 3.5, we mentioned that by ignoring the insignificant part of the channel,

the diversity can be increased. We can also increase the diversity by constraining our

interest in estimating the input signal. For example, let the transfer functions of

the channel have common zeros and Hc(z) = GCD{H1(z), ..., Hq(z)}. As is shown

in Section 3.4.1, the diversity D of this channel is zero. Choosing V = {v|hc ∗ v =

0}⊥ makes the diversity DV nonzero since the measured signals cannot be zero with

nonzero input signal taken from this subspace. Estimating an input signal component

on the vector space may not amplify the power of the noise much while estimating
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input signal over the entire signal space will greatly amplify the power of the noise.

We can generalize our problem of blind signal estimation as follows:

Generalized Problem Statement:

Given the measured signals, estimate the component of the input signal on a certain

vector space which minimizes the mean square error over the vector space.
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Chapter 4

Linear MMSE Signal Estimate of

the Input given the LS Estimate of

the Channel: The CROSS

Algorithm

4.1 Mean Square Error of the Input Signal Esti-

mate

Using the LS channel estimation methods, we can have the estimate of the channel

prior to estimating the input signal. As is written in Section 2.3.3, the asymptotic

estimate ĥ can be written in the following form:

ĥ =
h

||h|| + e (4.1)

where e =
∑q(K+1)−1

i=1 ciui.

A coefficient, ci, is a zero-mean Gaussian random variable with variance

q(q−1)
2

σ2(λ2
i + q(q−1)

2
σ2)

(N − 2K)λ4
i

, (4.2)
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and λi and ui are the ith singular value and the ith right singular vector of the matrix

1√
N−2K

Yx. The ci are independent of each other.

For simplicity, we assume that ||h|| = 1.

The mean square estimate error of x[n] (1.6) can be written as

ǫ = E
[

1
T

∑T
n=1(x̂[n] − x[n])2

]

= 1
T

∑T
n=1 E

[

{(f1 ∗ y1 + · · · + fq ∗ yq)[n] − x[n]}2]
. (4.3)

Let

g = f1 ∗ ĥ1 + · · · + fq ∗ ĥq. (4.4)

When we estimate the channel using a large number of the samples of measured

signals, we can regard our channel estimate as a function of measured signals’ samples.

Since, for all i = 1, · · · , q and n, the noise samples, wj[n], are independent to each

other, the dependence of the error of the channel estimate on any particular noise

sample is negligible. Also, if yj[n] is not the sample used to estimate the channel, wj[n]

is independent to the channel estimate. Thus, we assume that, for all i, j = 1, · · · , q

and m,n, ei[m] and wj[n] are uncorrelated and we split the expected value inside the

summation as

E [{(f1 ∗ y1 + · · · + fq ∗ yq)[n] − x[n]}2]

≈ E [{(g ∗ x)[n] − x[n]}2] − E [{(f1 ∗ e1 + · · · + fq ∗ eq) ∗ x}[n]2]

+E [(f1 ∗ w1 + · · · + fq ∗ wq)[n]2] . (4.5)

Then, the mean square error, ǫ, becomes

ǫ = ǫ1 + ǫ2 + ǫ3
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where

ǫ1 =
1

T

T
∑

n=1

{(g ∗ x)[n] − x[n]}2, (4.6)

ǫ2 = E

[

1

T

T
∑

n=1

(f1 ∗ w1 + · · · + fq ∗ wq)[n]2

]

, (4.7)

ǫ3 = −E

[

1

T

T
∑

n=1

{(f1 ∗ e1 + · · · + fq ∗ eq) ∗ x}[n]2

]

. (4.8)

The second term, ǫ2, can be simplified as

ǫ2 = E
[

1
T

∑T
n=1(f1 ∗ w1 + · · · + fq ∗ wq)[n]2

]

= E
[

1
T

∑T
n=1(

∑∞
m=−∞ f1[m]w1[n − m] + · · · + fq[m]wq[n − m])2

]

= 1
T

∑T
n=1

∑∞
m=−∞ f1[m]2E[w1[n − m]2] + · · · + fq[m]2E[wq[n − m]2]

= σ2
∑∞

n=−∞(f1[n]2 + · · · + fq[n]2).

If the estimate is unbiased, the expected value of the estimate should be equal to

the input signal:

x = E[x̂] = g∗x−E[(f1 ∗e1 + · · ·+fq ∗eq)∗x]+E[f1 ∗w1 + · · ·+fq ∗wq] = g∗x (4.9)

That is, for an unbiased estimate, g = δ. This constraint is called the zero-forcing

condition from its history in data communications. In this case, the first term of the

error ǫ1 = 0.

If the estimate of the filter coefficients are correct, then e = 0, so ǫ3 = 0.

4.2 Initializing The CROSS algorithm

In Section 4.4, we will present the MMSE FIR estimate of signal that minimizes the

total error, ǫ, introduced above. To make the appropriate tradeoffs, the optimal filter

makes use of the signal statistics. As we do not wish to assume these statistics are
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known, we propose the following approach to bootstrap the algorithm.

Given the channel estimate produced using the methods of Section 2.3, we can

perform an initial estimate of the signal x by using the zero forcing inverse filters. If

the FIR inverse filters are long enough, that is, the number of taps of each inverse

channel filter is greater than or equal to K, we can find the inverse channel filters,

f1, · · · , fq, that satisfy the zero-forcing constraint g = δ. Then, we determine the

initial estimate that minimizes ǫ2 subject to the zero-forcing constraint. No statistics

of x are needed to solve for this initial estimate. Statistics of the resulting estimate

of x can then be used as an estimate of the statistics of x in one or more further

iterations to improve the estimate using the total error ǫ1 + ǫ2 + ǫ3.

If we wish, we can use a large number of taps for the FIR inverse channel fil-

ters during initialization and the first few iterations and then impose tighter length

constraints for later iterations.

4.3 IIR Estimate

Consider using a large number of samples of the measured signals so that the channel

estimates become very accurate and then determining the IIR inverse channel filters

that minimize the total error, ǫ. It is shown in equations (4.1) and (4.2) that the

channel estimates become very accurate as the number of samples of data used in the

estimation grows. We can then assume that the error in the estimate of the channel, ǫ3,

is negligible. We represent the error, ǫ, in frequency domain and determine the inverse

channel filters in the frequency domain. This IIR estimate is not implementable in

practice. However, this development gives us a frequency interpretation and, from

this estimate, we can determine a bound of the mean square error of the input signal

estimate when more restrictive assumptions are used. Since we now consider x over

an infinite interval, we define the power in x:

||X(ω)||2p = lim
T→∞

|XT (ω)|2
T

(4.10)
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where

XT (ω) =
T

∑

n=1

x[n]e−jωn.

4.3.1 Error of the Fourier Domain Representation

From the Parseval’s relation, as the number of inverse filter taps and the amount of

data used in the channel estimate go to infinity, the error, ǫ1, becomes

ǫ1 =
1

T

T
∑

n=1

{((g ∗ x)[n] − x[n])2} =
1

2π

∫ π

−π

|G(ω) − 1|2||X(ω)||2pdω. (4.11)

The error, ǫ2, is simplified as

ǫ2 = σ2

∞
∑

n=−∞
{f1[n]2 + · · · + fq[n]2} =

σ2

2π

∫ π

−π

|F1(ω)|2 + · · · + |Fq(ω)|2dω, (4.12)

and the error, ǫ3, becomes

ǫ3 = 0. (4.13)

4.3.2 Minimizing ǫ2 in terms of G

Using Cauchy Schwarz Inequality, the error, ǫ2, is minimized as

ǫ2 = σ2

2π

∫ π

−π
|F1(ω)|2 + · · · + |Fq(ω)|2dω

= σ2

2π

∫ π

−π

(|F1(ω)|2+···+|Fq(ω)|2)(|H1(ω)|2+···+|Hq(ω)|2)

|H1(ω)|2+···+|Hq(ω)|2 dω

≥ σ2

2π

∫ π

−π

|F1(ω)H1(ω)+···+Fq(ω)Hq(ω)|2
|H1(ω)|2+···+|Hq(ω)|2 dω

= σ2

2π

∫ π

−π
|G(ω)|2

|H1(ω)|2+···+|Hq(ω)|2 dω.

Let (·)∗ be the conjugate of (·).
This Cauchy Schwarz Inequality satisfies equality when the ratio between Fi(ω)

and Hi(ω)∗ are the same for i = 1, · · · , q. That is,
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Fi(ω)

Hi(ω)∗
= C(ω).

From the constraint f1 ∗ h1 + · · · + fq ∗ hq = g, we can determine C(ω) as

C(ω){H1(ω)H1(ω)∗ + · · · + Hq(ω)Hq(ω)∗} = G(ω),

that is,

C(ω) =
G(ω)

|H1(ω)|2 + · · · + |Hq(ω)|2 .

Therefore, the equality holds when

Fi(ω) =
G(ω)Hi(ω)∗

|H1(ω)|2 + · · · + |Hq(ω)|2

for i = 1, · · · , q.

We conclude that

1. The error, ǫ2, is minimized in terms of G(ω)when

Fi(ω) =
G(ω)Hi(ω)∗

|H1(ω)|2 + · · · + |Hq(ω)|2 (4.14)

for i = 1, · · · , q.

2. The minimum ǫ2 in terms of G(ω) is

ǫ2 =
σ2

2π

∫ π

−π

|G(ω)|2
|H1(ω)|2 + · · · + |Hq(ω)|2dω. (4.15)

4.3.3 Minimizing Total Error

The total error, ǫ, in terms of G(ω) is
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ǫ = 1
2π

∫ π

−π
|G(ω) − 1|2||X(ω)||2p + σ2|G(ω)|2

|H1(ω)|2+···+|Hq(ω)|2 dω

= 1
2π

∫ π

−π

(

||X(ω)||2p + σ2

|H1(ω)|2+···+|Hq(ω)|2

)

|G(ω)|2 −

||X(ω)||2p (G(ω) + G(ω)∗) + ||X(ω)||2pdω

Completing the square we can write

ǫ =
1

2π

∫ π

−π

(

||X(ω)||2p +
σ2

|H1(ω)|2 + · · · + |Hq(ω)|2
)

|G(ω) −
||X(ω)||2p

σ2

|H1(ω)|2+···+|Hq(ω)|2 + ||X(ω)||2p
|2dω

+
1

2π

∫ π

−π

σ2

|H1(ω)|2+···+|Hq(ω)|2 ||X(ω)||2p
σ2

|H1(ω)|2+···+|Hq(ω)|2 + ||X(ω)||2p
dω

Therefore, the total error is minimized when

G(ω) =
||X(ω)||2p

σ2

|H1(ω)|2+···+|Hq(ω)|2 + ||X(ω)||2p
. (4.16)

The minimum error is

ǫ =
1

2π

∫ π

−π

σ2

|H1(ω)|2+···+|Hq(ω)|2 ||X(ω)||2p
σ2

|H1(ω)|2+···+|Hq(ω)|2 + ||X(ω)||2p
dω. (4.17)

4.3.4 Summary: IIR MMSE Estimate

The IIR MMSE estimate of the input signal is

x̂ = f1 ∗ y1 + · · · + fq ∗ yq (4.18)

where
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G(ω) =
||X(ω)||2p

σ2

|H1(ω)|2+···+|Hq(ω)|2 + ||X(ω)||2p
, (4.19)

Fi(ω) =
G(ω)Hi(ω)∗

|H1(ω)|2 + · · · + |Hq(ω)| , (4.20)

for i = 1, · · · , q.

The minimum error is

ǫ =
1

2π

∫ π

−π

σ2

|H1(ω)|2+···+|Hq(ω)|2 ||X(ω)||2p
σ2

|H1(ω)|2+···+|Hq(ω)|2 + ||X(ω)||2p
dω. (4.21)

The IIR MMSE unbiased (zero forcing) estimate of the input signal is

x̂ = f1 ∗ y1 + · · · + fq ∗ yq (4.22)

where

Fi(ω) =
Hi(ω)∗

|H1(ω)|2 + · · · + |Hq(ω)|2 (4.23)

for i = 1, · · · , q.

The minimum error is

ǫ =
σ2

2π

∫ π

−π

1

|H1(ω)|2 + · · · + |Hq(ω)|2dω. (4.24)

4.4 The CROSS Algorithm - Producing an Opti-

mal Input Estimate Using FIR Filters

The IIR inverse channel filters we presented in the previous section are not realizable

in practice. By windowing the IIR inverse channel filters, we can get FIR filters,

but they are not optimal. In this section, we determine optimal FIR inverse channel

filters with a predetermined support. That is, fi[n], for i = 1, · · · , q, can be nonzero

for n ∈ [−N1, N2]. We also determine the minimum mean square error under the FIR
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constraint. The method consists of first defining matrices that simplify the problem

statement, and then minimizing ǫ2 and ǫ3 in terms of g and finally minimizing the

total error over all g.

4.4.1 Toeplitz Matrix Representation of the Sum of Convo-

lutions

For any r1[n], · · · , rq[n] with nonzero values for n ∈ [−N1, N2], s1[n], · · · , sq[n] with

nonzero values for n ∈ [0, K], and l[n] with nonzero values for n ∈ [−N1, N2 + K],

the following equation can be written as a matrix form:

r1 ∗ s1 + · · · + rq ∗ sq = l. (4.25)

Let

r =
[

r1[−N1] r2[−N1] · · · rq[−N1] r1[−N1 + 1] · · · rq[N2]
]

, (4.26)

l =
[

l[−N1] · · · l[N2 + K]
]

. (4.27)

We can represent equation (4.25) in a matrix form as

l = rTN1+N2
(s) (4.28)

4.4.2 Error in a Matrix Form

With the appropriate notation given in the next section, we can simplify the error

equations in a matrix form. We present the simplification before formally defining the

quantities as we think that the reader can come to understand the general notions be-

fore worrying about the detail. A reader who prefers the more standard development

is, of course, welcome to read Section 4.4.3 before Section 4.4.2.
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The first term, ǫ1, can be written as

ǫ1 = 1
T

∑T
n=1{(g ∗ x)[n] − x[n]}2

= 1
T

∑T
n=1



















(g − δ)











x[n + N1]
...

x[n − N2 − K]





























2

= 1
T

∑T
n=1(g − δ)











x[n + N1]
...

x[n − N2 − K]











[

x[n + N1] · · · x[n − N2 − K]
]

(g − δ)T

= (g − δ)



















1
T

∑T
n=1











x[n + N1]
...

x[n − N2 − K]











[

x[n + N1] · · · x[n − N2 − K]
]



















(g − δ)T ,

thus,

ǫ1 = (g − δ)R(g − δ)T . (4.29)

The second term, ǫ2, becomes

ǫ2 = σ2

N2
∑

n=−N1

(f1[n]2 + · · · + fq[n]2) = σ2ffT . (4.30)
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The third term, ǫ3, can be represented as

ǫ3 = −E
[

1
T

∑T
n=1(ge ∗ x)[n]2

]

= −E











1
T

∑T
n=1



















ge











x[n + N1]
...

x[n − N2 − K]





























2









= −E











1
T

∑T
n=1



















ge











x[n + N1]
...

x[n − N2 − K]











[

x[n + N1] · · · x[n − N2 − K]
]

ge
T





























= −E











ge



















1
T

∑T
n=1











x[n + N1]
...

x[n − N2 − K]











[

x[n + N1] · · · x[n − N2 − K]
]



















ge
T











= −E
[

geRge
T
]

= −fE
[

TN1+N2
(e)RTN1+N2

(e)T
]

fT

since

ge = fTN1+N2
(e)

from (4.25) and (4.28).

Thus,

ǫ3 = −fRef
T . (4.31)

4.4.3 Notation

Let

e be a multi-channel with channels e1, · · · , eq,
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ge = f1 ∗ e1 + · · · + fq ∗ eq (4.32)

g =
[

g[−N1] · · · g[N2 + K]
]

(4.33)

ge =
[

ge[−N1] · · · ge[N2 + K]
]

(4.34)

f =
[

f1[−N1] f2[−N1] · · · fq[−N1] f1[−N1 + 1] · · · fq[N2]
]

(4.35)

δ =
[

0 · · · 0 1 0 · · · 0
]

(4.36)

where δ has N1 + N2 + 1 entries that are all zero except the (N1 + 1)th component.

R =
1

T

T
∑

n=1











x[n + N1]
...

x[n − N2 − K]





















x[n + N1]
...

x[n − N2 − K]











T

(4.37)

Re = E
[

TN1+N2
(e)RTN1+N2

(e)T
]

=

q(K+1)−1
∑

i=1

E[c2
i ]TN1+N2

(ui)RTN1+N2
(ui) (4.38)

where ui is a multi-channel with channels whose taps divide the components of the

vector ui into q parts corresponding the taps of hj, j = 1, cdots, q, in the vector h.

R1 = σ2I − Re (4.39)

Denote the singular value decomposition (SVD) of TN1+N2
(ĥ) as

TN1+N2
(ĥ) = USVT . (4.40)

Let D be an (N1 +N2 +K +1)× (N1 +N2 +K +1) diagonal matrix whose entries

are D(i, i) = S(i, i) so that

S =





D

0



 . (4.41)
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The matrix fU is partitioned so that

fU =
[

P1 P2

]

= P (4.42)

where P1 contains the first (N1 + N2 + K + 1) columns.

The matrix UTR1U is partitioned so that

UTR1U =





R11 R12

R12
T R22



 (4.43)

where R11 contains the first N1 + N2 + K + 1 rows and columns.

4.4.4 Minimizing ǫ2 + ǫ3 in terms of g

We are now going to choose f or, equivalently P, to minimize the error, ǫ2 + ǫ3

ǫ2 + ǫ3 = fR1f
T (4.44)

as a function of g where, from (4.25) and (4.28), we can rewrite the definition of g:

f1 ∗ ĥ1 + · · · + fq ∗ ĥq = g as

fTN1+N2
(ĥ) = g. (4.45)

From the SVD of the matrix, TN1+N2
(ĥ), (4.40), the constraint (4.45) becomes

fUS = gV, (4.46)

that is,

PS =
[

P1 P2

]





D

0



 = P1D = gV. (4.47)
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From this, the matrix P1 can be written as

P1 = gVD−1 (4.48)

and the matrix P2 has no constraint.

Since U is a unitary matrix, the error, ǫ2 + ǫ3, becomes

ǫ2 + ǫ3 = (fU)UTR1U(fU)T (4.49)

=
[

P1 P2

]





R11 R12

R12
T R22





[

P1 P2

]T

(4.50)

= P1R11P1
T + P1R12P2

T + P2R12
TP1

T + P2R22P2
T . (4.51)

The remaining free matrix P2 can be chosen to minimize ǫ2 + ǫ3 by choosing P2

such that

P2 = −P1R12R22
−1, (4.52)

that is, from (4.42), (4.48), and (4.52) when

fU =
[

gVD−1 −gVD−1R12R22
−1

]

That is,

f = gQ (4.53)

where

Q = VD−1
[

I −R12R22
−1

]

UT . (4.54)

The minimum error, ǫ2 + ǫ3, in terms of g is

ǫ2 + ǫ3 = gQR1Q
TgT . (4.55)
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4.4.5 Minimizing the Total Error

After minimizing the error, ǫ2 + ǫ3, in terms of g, the total error, ǫ, becomes

ǫ = (g − δ)R(g − δ)T + gQR1Q
TgT . (4.56)

This error is minimized when

2R(g − δ)T + 2QR1Q
TgT = 0. (4.57)

That is,

g = δ(I + QR1Q
TR−1)−1. (4.58)

4.4.6 Initialization: Unbiased Estimate

In the Sections 4.3 and 4.4, we determine the IIR MMSE estimate and the FIR MMSE

estimate using the channel estimate. However, equations (4.29) and (4.31) include

parameters that depend on the input signal of which we have no a prior knowledge.

Thus, we cannot use the covariance matrix R and R1 to minimize the error. What we

can do is to find a suboptimal estimate using the unbiased or zero-forcing constraint,

then use the statistics of this estimate of x as a proxy for the actual statistics of x.

Let x̂u be the FIR MMSE Unbiased Estimate given that channel parameters are

given:

x̂u = f1 ∗ y1 + · · · + fq ∗ yq. (4.59)

Our problem becomes

Given fTN1+N2
(ĥ) = δ, minimize ǫ2 = σ2ffT .

We can solve this problem by following the procedure we did to determine the MMSE

estimate in Section 4.4. For this problem, g = δ. The matrix, σ2I substitutes R1

(4.39) since we minimize only ǫ2. Thus, the matrix R12 becomes a zero matrix since

UTR1U = σ2I (4.43).

61



From (4.53) and (4.54), the solution of the problem is

f = δVD−1
[

I 0
]

UT (4.60)

The matrix, VD−1
[

I 0
]

UT is the right pseudo inverse matrix of TN1+N2
(ĥ).

Thus,

f = δTN1+N2
(ĥ)

T
(

TN1+N2
(ĥ)TN1+N2

(ĥ)
T
)−1

, (4.61)

that is, the (N1 + 1)th row of TN1+N2
(ĥ)

T
(

TN1+N2
(ĥ)TN1+N2

(ĥ)
T
)−1

.

4.4.7 Procedure of the CROSS Algorithm

1. Estimation the channel coefficients using the LS channel estimation method

given in Section 2.3.2.

2. Initialization: Determine zero-forcing inverse channel filters (4.61)

3. Iteration

(a) Estimate the input signal using the previously estimated inverse channel

filters

x = f1 ∗ y1 + · · · + fq ∗ yq (4.62)

(b) Calculate the matrix Ŷx from the estimated channel and the estimated

input signal (2.12) (2.17) where ŷi = x̂ ∗ ĥi

(c) Take SVD of 1√
N−2K

Ŷx to determine its singular values, λi, and singular

vectors, ui, and then calculate the variance of ci (4.2)

(d) Calculate R (4.37), Re (4.38), and R1 (4.39) using the estimated input

signal

(e) Take SVD of TN1+N2
(ĥ) (4.40)

(f) Partition the matrix UTR1U (4.43) and determine inverse channel filters

(4.53) and (4.54)
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Chapter 5

Analysis

5.1 Simulation

Consider the following experiment: A single source inside the room generates an

acoustic signal. The acoustic signal is measured by two microphones inside the room.

Microphones are located at some distance from each other to achieve achieve the large

channel diversity. The purpose of this experiment is estimating the acoustic signal

using the measured signals.

In order to simulate the above experiment, we first measured two realistic channels.

One channel represents the transfer function from a source in the middle of the room

to a point near the source, and the other channel represents the transfer function

from a source in middle of the room to the corner of the room. We first find the

minimum mean square error estimate of the channel using both the input signal, x,

and the measured signal, y. That is, we determined hi, i = 1, 2, using the following

criteria.

hi = arg min
hi

||hi ∗ x − yi||22 (5.1)

where x[n] and yi[n] are given.

We call this estimation problem sighted when the x signal is used to obtain the es-

timate as opposed to blind problem when we estimate the channel without knowledge

of the input signal.
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To analyze the performance of the LS channel estimation method and the CROSS

algorithm, in a controlled setting, we use the realistic channel estimates found through

the experiment and we artificially generate the input signal and corresponding mea-

sured signals by convolving a generated input with the given channels and adding

white Gaussian noises.

The simulation then uses LS channel estimation and the CROSS algorithm to

recreate the input signal and the channel responses. We then compare these realistic

but controlled simulations of the algorithm with the analytically predicted perfor-

mance.

5.1.1 Typical Room Channels

We determine the typical channel of the room using the sighted channel estimation

method. We sample the measured signals at a 11.025kHz rate. Then, we truncate the

impulse response of the channel to retain a reasonably significant part. The order of

the retained impulse response is 99. The two channels that are used for simulations

are shown in the time domain and in frequency the domain in Figure 5-1 and Figure

5-2. In Figure 5-1, 100 samples corresponds to 9ms. In Figure 5-2, the value one in a

normalized frequency corresponds to 5.5kHz. The high frequency group delay of h1

is 8.1ms. This is the time it takes sound to travel 2.77m. This is the distance from

the middle of the room to the corner of the room. The high frequency group delay of

h2 is 0.1ms, which corresponds to the distance 0.34m. This is the distance from the

speaker to the second microphone.

5.1.2 Artificially Generated Measured Signals

We generate a zero-mean wide-sense stationary input signal and convolve it with the

impulse responses of each of the two channels. To get simulated measured signals, y1

and y2, we add zero-mean wide-sense stationary noises. That is,
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Figure 5-1: Two Typical Room Channels(Time Domain)
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Figure 5-2: Two Typical Room Channels(Frequency Domain)

y1 = x ∗ h1 + w1, (5.2)

y2 = x ∗ h2 + w2. (5.3)

We use zero-mean white input signal with variance 1 and zero-mean white Gaus-

sian noises with variance σ2.
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5.2 Least Squares Channel Estimation Method

We run the LS channel estimation method[5] to estimate the two channels from the

artificially generated measured signals y1 and y2 to perform simulations and compare

the performance of the LS method with the theoretical upper bound of the asymptotic

performance(A.32) derived from the distribution (2.21):

min
c

E[(cĥ − h)T (cĥ − h)] =
||h||2 ∑2K+1

i=1
σ2(λ2

i +σ2)

(N−2K)λ4
i

1 +
∑2K+1

i=1
σ2(λ2

i +σ2)

(N−2K)λ4
i

(5.4)

where N is the number of measured signal samples of each of y1 and y2 used to

estimate the channel and λi is the ith singular value of 1√
N−2K

Yx. Let zi = hi ∗x. As

is given in (2.12) and (2.17), the matrix Yx is

Yx =











z2[K] · · · z2[2K] −z1[K] · · · −z1[2K]
...

...

z2[N − K] · · · z2[N ] −z1[N − K] · · · −z1[N ]











. (5.5)

If we use exactly two measured signals and the input signal is zero-mean white

Gaussian, λi goes to λ̂i, where λ̂i is the ith singular value of TK(h). This is derived

in Section A.4. The matrix TK(h) is a 2(K + 1) × (2K + 1) block Toeplitz matrix:

TK(h) =



































h1[0] h1[1] · · · h1[K] 0 · · ·
h2[0] h2[1] · · · h2[K] 0 · · ·

0 h1[0] h1[1] · · · h1[K] 0 · · ·
0 h2[0] h2[1] · · · h2[K] 0 · · ·

. . .

· · · 0 h1[0] h1[1] · · · h1[K]

· · · 0 h2[0] h2[1] · · · h2[K]



































. (5.6)

The upper bound of the asymptotic performance is
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min
c

E[(cĥ − h)T (cĥ − h)] =
||h||2 ∑2K+1

i=1
σ2(λ̂2

i +σ2)

(N−2K)λ̂4
i

1 +
∑2K+1

i=1
σ2(λ̂2

i +σ2)

(N−2K)λ̂4
i

. (5.7)

This result is derived in Appendix A.

In Figure 5-3, we draw the errors from the simulation and the theoretical upper-

bound of the asymptotic performance (5.4). We plot these quantities for N = 1000.

The dashed line represents the error from the simulation and the solid line represents

the theoretical upper bound of the asymptotic performance (5.4). We can see the

errors have a few dB difference.
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Figure 5-3: The Performance of the LS method

When the noise variance is small compared to most values of λ2
i , the error (5.7)

can be approximated as

min
c

E[(cĥ − h)T (cĥ − h)] =
σ2

N − 2K
||h||2

2K+1
∑

i=1

1

λ̂2
i

. (5.8)

The error is proportional to the summation,
∑2K+1

i=1
1

λ̂2
i

.

In Figure 5-4, we plot the each term inside the summation, 1

λ̂2
i

. From the Figure,

we can conclude that the error is dominated by the few smallest singular values.

The asymptotic distribution of the normalized (||ĥ|| = 1) channel estimate (A.43)
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Figure 5-4: The Singular Values of TK(h)

can be simplified as

ĥ =
h

||h|| +

q(K+1)−1
∑

i=1

ĉiûi (5.9)

where ûi is the ith right singular vector of





TK(h2)

−TK(h1)





T

and ĉi are zero-mean and

uncorrelated with variance σ2

N−2K
1

λ̂2
i

. The (2i − 1)th row of TK(h) is the negative

of (K + 1 + i)th row of





TK(h2)

−TK(h1)



 and the (2i)th row of TK(h) is the ith row of





TK(h2)

−TK(h1)



. Thus, the singular values of TK(h) are equal to the singular values of





TK(h2)

−TK(h1)



.

Since the error is dominated by the few smallest singular values, the channel

estimate is distorted by the few singular vectors, ûi, corresponding to the few smallest

singular values. The distortion on the first channel, ĥ1 − h1

||h|| , is a linear combination

of vectors whose components are the first half components of ûi, and the distortion

on the second channel, ĥ2 − h2

||h|| , is a linear combination of vectors whose components

are the second half components of ûi.

In Figure 5-5, we draw, in frequency domain, the actual channel, h1 and h2, and

the channel estimate ĥ1 and ĥ2. The frequency 5.5 kHz is normalized by one and we

68



draw the magnitude in a log scale, which is dB. They are almost the same. In this

case, the noise variance is -100dB.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−40

−30

−20

−10

0

10
the first channel

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−40

−30

−20

−10

0

10
the first channel estimate

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−30

−20

−10

0

10
the second channel

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−30

−20

−10

0

10
the second channel estimate

Figure 5-5: Actual Channel and Channel Estimate in Frequency Domain

In Figure 5-6, we draw, in frequency domain, the error of the channel estimate

and the first half and the second half of the first singular vectors, ûi, corresponding

to the minimum singular value. The frequency 5.5 kHz is normalized by one and we

draw the magnitude in a log scale, which is dB. The figures looks almost the same.

This result supports that the error is dominated by the first few singular values.
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Figure 5-6: The Error in the Frequency Domain

The channel has a small magnitude in high frequency. However, the error in the

channel estimate has a large magnitude in the high frequency. Thus, the input signal
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estimate determined by using the channel estimate will have larger error in the high

frequency than the error in the other frequencies.

5.3 The CROSS Algorithm: Inverse Channel Fil-

ters

Using the estimated channel with 1000 samples of each generated noisy output sig-

nal, we perform the CROSS algorithm and determine inverse channel filters. In

this simulation, we do not perform any iteration. The errors in the signal estimate,

ǫ = E
[

1
T

∑T
n=1(x̂[n] − x[n])2

]

, associated with the different number of filter taps are

shown in Figure 5-6. Our simulation uses the input signal with length T = 105. Since

the power of the input signal is equal to one, SNR = 1
ǫ
. From the top except the bot-

tom one, the number of taps of inverse channel filters are 20, 30, 40, 45, 48, 49, 50,∞.

The errors corresponding to the number of taps, 49, 50,∞, are lined up together and

indistinguishable on this plot. That is, in our case, we need 49 taps to achieve the

optimal performance, which is the performance of IIR zero-forcing inverse channel

filters. The bottom line on the plot is the analytically computed error of the input

signal estimate with the IIR inverse channel filters and the correct channel estimate.

This error can be computed by the equation (4.24):

ǫ =
σ2

2π

∫ π

−π

1

|H1(ω)|2 + · · · + |Hq(ω)|2dω. (5.10)

In this example, when iterations are performed, the errors remain the same. In

Figure 5-8, we plot the error of the IIR zero-forcing estimate and IIR MMSE estimate.

We use ’o’ to represent the error of the zero-forcing estimate and ’x’ to represent the

error of the MMSE estimate. The errors are the same. As is shown in Figure 5-7,

the optimal performance is achieved using 49 taps inverse channel filters without any

iteration. That is, we cannot improve the performance using iterations in this case.
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Figure 5-7: The Performance of the CROSS Algorithm with the different number of
inverse channel taps
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Figure 5-8: The Performance of the CROSS Algorithm: IIR Zero-Forcing vs IIR
MMSE

5.4 Iteration

As we have shown in Section 4.4, especially in Section 4.4.5, without any a prior

knowledge of the input signal, we cannot minimize the total mean square error, ǫ =

ǫ1 + ǫ2 + ǫ3. What we can do is to find a suboptimal estimate using the zero-forcing

constraint. No statistics of x are needed to solve for this estimate and we use this

process to initialize the CROSS algorithm.

After initialization, statistics of the resulting estimate of x can be used in one or

more further iterations to reduce the total error, ǫ, and thus improve the estimate.
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In the previous section, we recognize that in that particular example, the iteration

process did not benefit us by reducing the error in the input signal estimate. In

this section, we investigate a case in which the iteration process reduces the error

significantly or, more specifically, a case in which there is a large difference between

the MMSE estimate and the zero-forcing estimate.

The error in the channel estimate (5.8) has an order O(σ2). The error in the input

signal can be written as the sum of three parts as is shown in Section 4.1. One part

of the error in the signal estimate, ǫ1, has an order O(1) (4.6) and the other parts

of the error, ǫ2 and ǫ3, have an order O(σ2) since ǫ2 is the function of E[w2
i ] and

ǫ3 is the function of E[e2
i ]. If the noise variance is quite small, since ǫ1 dominates

the total error, ǫ, and the performance of MMSE estimate is almost the same as the

performance of zero-forcing estimate.

The IIR MMSE and zero-forcing estimates with a correct channel estimate have

the following performances:

1. MMSE (4.21)

ǫ =
1

2π

∫ π

−π

σ2

|H1(ω)|2+···+|Hq(ω)|2 ||X(ω)||2p
σ2

|H1(ω)|2+···+|Hq(ω)|2 + ||X(ω)||2p
dω. (5.11)

2. Zero-forcing (4.24)

ǫ =
σ2

2π

∫ π

−π

1

|H1(ω)|2 + · · · + |Hq(ω)|2dω. (5.12)

If σ2

|H1(ω)|2+···+|Hq(ω)|2 << ||X(ω)||2p, then the error in the zero-forcing estimate is

almost the same as the error in the MMSE estimate.

The following example is the case in which iteration process reduces the error.

1. The channel coefficients are

h1[n] = δ[n] + δ[n − 1] + δ[n − 2] + δ[n − 3],

h2[n] = δ[n] − δ[n − 1] + δ[n − 2] − δ[n − 3].
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2. The input signal is a wide-sense stationary Gaussian process. Its autocorrelation

is

Rx[n] =
1√
19

(δ[n − 2] + 2δ[n − 1] + 3δ[n] + 2δ[n + 1] + δ[n + 2]).

In Figure 5-9, we draw performances. The solid line represents the error of the

zero-forcing estimate, the dashed line represents the error after one iteration, and the

dotted line represents the error of the MMSE estimate. The error is reduced by one

iteration.
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Figure 5-9: Reduced Error by one Iteration

5.5 Remarks

We have implemented the LS channel estimation method and have shown that the

error of the channel estimate is proportional to the inverse of the number of samples

of the measured signals used to produce the estimate. When the channel has a small

diversity, some key singular values associated with the channel are small, and the

error is dominated by the error on the direction of the singular vectors associated

with the small singular values.

We implemented the CROSS Algorithm to determine the inverse channel filters

and the originating signal. We ran the algorithm and compare the error with the

theoretical error we can achieve with the infinite number of inverse channel taps.
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The error of the channel estimate dominates the error of the input signal estimate.

As plotted in Figure 5-7, there is a big gap between the errors from the channel

estimate and the real channel.
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Chapter 6

Averaging Row Space Intersection

In this chapter, we present the direct method of estimating the input signal, where

there is no need to estimate the channels. We determine this estimate from the row

spaces of several matrices generated from the measured signals, y1, · · · , yq. Using

the isomorphic relations in Section 6.1, we can determine exactly the row spaces of

the matrices of the input signal from the measured signals in the noiseless case. In

the presence of noise, we can estimate these row spaces. Our approach consists of

estimating several row spaces of the matrices of the input signal that have one row

in common and estimating the entries of the row that generates an estimate of the

input signal. We assume that the order estimate presented in Chapter 2 is correct so

that we can assume that the order of the system is known in advance.

6.1 Isomorphic Relations between Input Row Space

and Output Row Space

We can represent our signal model as a matrix form (2.4):











Yk[n]
...

Yk[n − N]











= TN(h)











Xk[n]
...

Xk[n − N − K]











+











Wk[n]
...

Wk[n − N]











. (6.1)
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Let

RS(·): row vector space of the matrix,

Yk,N[n] =











Yk[n]
...

Yk[n − N]











, (6.2)

Xk,N[n] = TN(h)











Xk[n]
...

Xk[n − N]











. (6.3)

In the noiseless case, any row of Xk,N+K[n] can be represented as a linear combi-

nation of the rows of Yk,N[n]. If TN(h) is left-invertible, every row of Yk,N[n] can be

represented as a linear combination of the rows of Xk,N+K[n]. This implies that the

vector space generated by the rows of Yk,N[n] is equal to the vector space generated

by the rows of Xk,N+K[n]. That is,

Lemma 1:

In a noiseless case, if TN(h) is left-invertible,

RS





















Yk[n]
...

Yk[n − N]





















= RS





















Xk[n]
...

Xk[n − N − K]





















. (6.4)

6.2 Naive Approach: Noiseless Case

Assume that the channels satisfy the diversity constraint presented in Section 1.1.3.

Then, TN(h) is left-invertible for all N ≥ K. From Lemma 1, in the noiseless case,

row spaces of the input signal matrices can be determined by the measured signals.

Two input signal matrices,











Xk[n]
...

Xk[n − N − K]











and











Xk[n + N + K]
...

Xk[n]











, have only

one common row, Xk[n]. From the assumption presented in Section 1.1.2, the linear
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complexity of the input signal is much larger than the channel order, all the rows of

the two input signal matrices are linearly independent. Intersecting two row spaces of

the two matrices produces the row space generated by the common row Xk[n]. That

is, the basis of the intersection space is a constant multiple of the row vector Xk[n].

In the noiseless case, we can determine the two row spaces from the measured

signals as

RS





















Xk[n]
...

Xk[n − N − K]





















= RS





















Yk[n]
...

Yk[n − N]





















, (6.5)

RS





















Xk[n + N + K]
...

Xk[n]





















= RS





















Yk[n + N + K]
...

Yk[n + K]





















. (6.6)

By intersecting two row spaces of measured signal matrices, RS





















Yk[n]
...

Yk[n − N]





















and RS





















Yk[n + N + K]
...

Yk[n + K]





















, we can determine the row vector Xk[n] to within a

constant factor multiplication.

6.3 Previous Works: Row Space Intersection

In a noisy case, we cannot correctly determine the row space of an input signal matrix.

The naive approach, intersecting only two row spaces of the two measured signal

matrices, does not decrease SNR much. Not only the two matrices











Xk[n]
...

Xk[n − N − K]










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and











Xk[n + N + K]
...

Xk[n]











, but also, for all 0 ≤ i ≤ N + K, input signal matrices











Xk[n + i]
...

Xk[n − N − K + i]











have a common row Xk[n]. Intersecting all N + K + 1 row

spaces generated by the input signal matrices produces the row space generated by

the common row Xk[n]. That is,

N+K
⋂

i=0

RS





















Xk[n + i]
...

Xk[n − N − K + i]





















= RS(Xk[n]). (6.7)

We can estimate the row spaces of the input signal matrices from the measured

signal (6.4). As a result,

N+K
⋂

i=0

RS





















Yk[n + i]
...

Yk[n − N + i]





















≈ RS(Xk[n]). (6.8)

The algorithms that use this row space intersection are developed in [10] and [11].

The algorithm given in [10] computes the union of the vector spaces that are orthog-

onal to the row spaces of the input signal matrix estimated by the row spaces of the

measured signal matrix. The algorithm then determines the vector that is orthogonal

to the union. In the noisy case, it computes the singular vector corresponding to the

minimum singular value of the matrix generated by the union.

The algorithm given in [11] estimates the row spaces of the input signal matrix

from the measured signal and then estimates the Toeplitze matrix of the input signal

that minimizes the sum of distances between the row space of the Toeplitze matrix

and the row spaces calculated from the measured signal.

We also use the row space intersection idea given in (6.8). However, our focus is

determining the inverse channel filters that generate an input signal estimate.
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6.4 FIR Estimate

We constrain the inverse channel filters, f1[n], · · · , fq[n], to be nonzero only for n ∈
[−N1, N2]. We choose N1 + N2 ≥ K so that TN(h) is left-invertible. Let

f =
[

f1[−N1] f2[−N1] · · · fq[−N1] f1[−N1 + 1] · · · fq[N2]
]

.

6.4.1 Vector Spaces to be Intersected

The estimate of the input signal, x̂, can be written as

x̂[n] = (f1 ∗ y1 + · · · + fq ∗ yq)[n]

= f



































y1[n + N1]

y2[n + N1]
...

yq[n + N1]

y1[n + N1 − 1]
...

yq[n − N2]



































= f











y[n + N1]
...

y[n − N2]











. (6.9)

Then,

X̂k[n] = f











Yk[n + N1]
...

Yk[n − N2]











. (6.10)

Thus,

X̂k[n] ∈ RS





















Yk[n + N1]
...

Yk[n − N2]





















. (6.11)
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6.4.2 Estimate of the Vector Space

In the noiseless case, the isomorphism (6.1) implies

RS





















Xk[n + N1 + i]
...

Xk[n + i − N2 − K]





















= RS





















Yk[n + N1 + i]
...

Yk[n − N2 + i]





















(6.12)

In a noisy case, the equality (6.12) is only an approximation.

If the number of columns k +1 is a large number, the dimension of the row vector

space is the same as the number of rows:

dim











RS





















Xk[n + N1 + i]
...

Xk[n − N2 − K + i])































= N1 + N2 + K. (6.13)

That implies the right singular vectors corresponding to the first N1 + N2 + K

singular values are a basis of the row vector space.

Thus, we estimate a basis of RS





















Xk[n + N1 + i]
...

Xk[n − N2 − K + i]





















as the right singular

vectors of RS





















Yk[n + N1 + i]
...

Yk[n − N2 + i])





















corresponding to the first N1 +N2 +K singular

values. Let Vi be the matrix whose rows are the first N1 +N2 +K right singular vec-

tors. We use RS(Vi) as the estimate of the vector space RS





















Xk[n + N1 + i]
...

Xk[n − N2 − K + i]





















.

The asymptotic distribution of the singular vectors can be derived from [16]. The

mean values of the singular vectors are the same as the singular vectors of the matrix,










Xk[n + N1 + i]
...

Xk[n − N2 − K + i]











, and the variance of these singular vectors are proportional
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to 1
N

where N is the number of measurement samples we use. Thus, the estimate of

the vector space is a consistent estimate.

6.4.3 Averaging Row Space Intersection

In the noiseless case,

Xk[n] ∈ RS(Vi) (6.14)

for i ∈ [−N1, N2 + K], and

RS(Xk[n]) =

N2+K
⋂

i=−N1

RS





















Xk[n + N1 + i]
...

Xk[n − N2 − K + i]





















=

N2+K
⋂

i=−N1

RS(Vi). (6.15)

Let X̂k
i [n] be the projection of X̂k[n] on RS(Vi). In the noiseless case, X̂k

i [n] =

X̂k[n] is true for any i ∈ [−N1, N2 + K].

We use the following error function, ǫf . We will find inverse channel filters,

f1, · · · , fq, that minimize the error function given the magnitude of the estimate

X̂k[n] is one:

ǫf =

N2+K
∑

i=−N1

||X̂k[n] − X̂k
i [n]||2. (6.16)

This error function is the sum of squares of the differences between the estimate

and its projections. As a matter of fact, the constraint, the magnitude of the estimate

is one, is chosen arbitrary. This constraint is not directly related to the object function

that we should minimize is the error, ǫ, in the definition (1.6). Thus, our constraint

can be arbitrary. For example, our constraint can be ||f || = 1.

However, the constraint ||X̂k[n]|| = 1 has its own meaning: The power of the

estimate of the input signal is one. Thus, we will find inverse channel filters that

maximize the ratio of the power of the estimated signal to the projection error that
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is the sum of squares of the differences between the estimate and its projections.

The constraint on the magnitude of the estimate can be written as

||X̂k[n]|| = ||f











Yk[n + N1]
...

Yk[n − N2]











|| = 1, (6.17)

that is,

||X̂k[n]||2 = ||f











Yk[n + N1]
...

Yk[n − N2]





















Yk[n + N1]
...

Yk[n − N2]











T

fT || = 1. (6.18)

Let’s decompose every row vector of











Yk[n + N1]
...

Yk[n − N2]











into the sum of two vectors:

one belongs to the RS(Vi) and the other is orthogonal to RS(Vi). This leads to











Yk[n + N1]
...

Yk[n − N2]











= PiVi + V⊥
i (6.19)

where V⊥
i Vi

T = 0.

Then,

PiViVi
T =











Yk[n + N1]
...

Yk[n − N2]











Vi
T , (6.20)

so

Pi =











Yk[n + N1]
...

Yk[n − N2]











Vi
T (ViVi

T )−1. (6.21)

Therefore, the projection of X̂k[n] on RS(Vi) is
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X̂k
i [n] = f











Yk[n + N1]
...

Yk[n − N2]











Vi
T (ViVi

T )−1Vi. (6.22)

We can rewrite the error function in the equation (6.16) as

N2+K
∑

i=−N1

||X̂k[n] − X̂k
i [n]||2

=

N2+K
∑

i=−N1

f





























Yk[n + N1]
...

Yk[n − N2]











−











Yk[n + N1]
...

Yk[n − N2]











Vi
T (ViVi

T )−1Vi















































Yk[n + N1]
...

Yk[n − N2])











−











Yk[n + N1]
...

Yk[n − N2]











Vi
T (ViVi

T )−1Vi



















T

fT

= f

N2+K
∑

i=−N1





























Yk[n + N1]
...

Yk[n − N2]











−











Yk[n + N1]
...

Yk[n − N2]











Vi
T (ViVi

T )−1Vi















































Yk[n + N1]
...

Yk[n − N2]











−











Yk[n + N1]
...

Yk[n − N2]











Vi
T (ViVi

T )−1Vi



















T

fT .

Therefore, we can rewrite the error, ǫf , and the constraint on the magnitude of

the estimate as

ǫf = fRy1f
T , (6.23)

fRyf
T = 1 (6.24)
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where

Ry =











Yk[n + N1]
...

Yk[n − N2]





















Yk[n + N1]
...

Yk[n − N2]











T

. (6.25)

and

Ry1 =

N2+K
∑

i=−N1





























Yk[n + N1]
...

Yk[n − N2]











−











Yk[n + N1]
...

Yk[n − N2]











Vi
T (ViVi

T )−1Vi















































Yk[n + N1]
...

Yk[n − N2]











−











Yk[n + N1]
...

Yk[n − N2]











Vi
T (ViVi

T )−1Vi



















T

. (6.26)

Since Ry is positive semidefinite, we can write it as Ry = QQT where Q is a

square matrix.

The error becomes

ǫf = fQQ−1Ry1Q
−TQT fT . (6.27)

The constraint becomes

||fQ|| = 1. (6.28)

The row vector f that minimizes fQQ−1Ry1Q
−TQT fT given ||fQ|| = 1 satisfies

the following:

fQ is the left singular vector corresponding to the minimum singular value of the

matrix, Q−1Ry1Q
−T .

We can conclude that the inverse channel filters, f1, · · · , fq minimize the error, ǫf ,

when

f = lQ−1 (6.29)

where l is the left singular vector corresponding to minimum singular value of Q−1Ry1Q
−T .
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6.5 Summary: Algorithm

6.5.1 Overall Procedure

We can summarize the row space intersection process to determine f1[n], · · · , fq[n]

with nonzero coefficients in n ∈ [−N1, N2] which minimize the error, ǫf , in the fol-

lowing:

1. Estimate, for i ∈ [−N1, N2 +K], the N1 +N2 +K dimensional row vector spaces

RS





















Xk[n + N1 + i]
...

Xk[n − N2 − K + i]





















. We call them RS(Vi).

2. Determine inverse channel filters f1, · · · , fq that minimizes ǫf .

6.5.2 The Estimate of the Input Row Vector Spaces, Vi

The rows of Vi are the right singular vectors corresponding to the first N1 + N2 + K

singular values of











Yk[n + N1 + i]
...

Yk[n − N2 + i]











(6.19).

6.5.3 MMSE Inverse Channel Filters, f1, · · · , fq

1. Determine the covariance matrix of measured signals, Ry, and the sum of dis-

tance matrices, Ry1 (6.25) and (6.26).

Ry =











Yk[n + N1]
...

Yk[n − N2]





















Yk[n + N1]
...

Yk[n − N2]











T

. (6.30)
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and

Ry1 =

N2+K
∑

i=−N1





























Yk[n + N1]
...

Yk[n − N2]











−











Yk[n + N1]
...

Yk[n − N2]











Vi
T (ViVi

T )−1Vi)















































Yk[n + N1]
...

Yk[n − N2]











−











Yk[n + N1]
...

Yk[n − N2]











Vi
T (ViVi

T )−1Vi



















T

(6.31)

2. Normalize the Error: Determine Q

Do a singular value decomposition on Ry. Since Ry is a positive semidefinite

matrix, Ry = UDUT where U is a unitary matrix and D is a diagonal matrix

with nonnegative entries, λ1, · · · , λq(N1+N2+1). We can determine Q as

Q = UD1/2 (6.32)

where D1/2 is a diagonal matrix with entries, λ
1/2
1 , · · · , λ

1/2
q(N1+N2+1).

3. Minimize the Error

Do a singular value decomposition on Q−1Ry1Q
−T . Let l be the left singular

vector corresponding to minimum singular value The error is minimized when

fQ = l (6.27) and (6.28).

4. Determine inverse channel filters, f1, · · · , fq

The coefficients of the inverse channel filters (6.29) are

[

f1[−N1] f2[−N1] · · · fq[−N1] f1[−N1 + 1] · · · fq[N2]
]

= lQ−1. (6.33)
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Chapter 7

Conclusion

In this thesis, we apply blind equalization concepts to the problem of estimating

acoustic source signals as measured by multiple microphones in typical room settings.

Previous approaches to this problem have fused the information from the multiple

sensors through an a posteriori probabilistic model. The approach here represents a

new approach to data fusion in this problem setting. This approach builds on results

obtained previously in the context of data communication theory.

We present two different algorithms for recovering a signal observed by multiple

sensors. The two algorithms recover the signal that is observed with additive noise

through different linear distortions by multiple sensors. The algorithms might be

useful in fusing different modalities of sensors as long as the LTI model holds. The

proposed algorithms determine inverse channel filters with a predestined support.

We apply our algorithms in simulations of the problem of estimating an originat-

ing acoustic signal generated by the speaker located in the middle of a room. The

measurements are generated using realistic linear distortions that would be produced

by two microphones, one located in front of the speaker and the other located at the

corner of the room.

The CROSS algorithm is an indirect method, which uses an estimate of the acous-

tic channel. Using the estimated channel coefficients from a Least-Squares (LS) chan-

nel estimation method, we propose an initialization process (unbiased or zero-forcing

estimate) and an iteration process (MMSE estimate) to produce optimal inverse filters
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accounting for the room characteristics, additive noise and errors in the estimation

of the parameters of the room characteristics. Using a measured room channel, we

analyze the performance of the algorithm through simulations and compare its per-

formance with the theoretical performance.

Compared to the MMSE estimate given in [9] that assumes correct channel es-

timates, the CROSS algorithm determines the optimal inverse channel filters which

account for the inevitable errors in the channel estimates as well as the linear dis-

torting channel and additive noise. Also, our algorithm can deal with deterministic

input signals as well as the wide-sense stationary input signal generally assumed in

the data communication theory setting.

The notion of channel diversity is generalized. In the absence of noise, a sufficiently

rich input signal can be determined to within a constant multiplier if and only if

the transfer functions of the channel have no common zeros [1]. This is called the

diversity constraint. However, in the presence of noise, to our knowledge, the diversity

constraint is not sufficient and does not clearly indicate the performance of the input

signal estimate or the channel estimates. We define a measure of the channel diversity

that is the minimum ratio of the energy of the measured signals to the energy of the

input signal. This measures the worst case amplitude response of the channel.

Using the newly defined diversity measure, we explain the effective channel order.

Also, we generalize the measure by considering a constrained constraining the vector

space of possible input signals. We generalize the problem of blindly estimating the

input signal and propose it in a new form.

The ARSI algorithm which does not use a channel estimate is a direct way of

estimating the originating signal. The algorithm uses multiple row spaces of the ma-

trix of the input signal estimated from the measured signals. The input signal is

determined by intersecting those multiple row spaces. The same idea is also used in

direct methods given in [10] and [11]. However, under a condition of fixed support

of the inverse channel filters, our algorithm, the ARSI method, uses more row spaces

than the other algorithms. Since our algorithm use more vector spaces for the inter-

section, the error in the presence of noise is averaged and thus reduced. However, the
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theoretical performance of the algorithm is not yet derived.
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Appendix A

Derivation of the distribution of

the Channel Estimate

We modify the proof of Theorem 13.5.1 given in [16] and derive the asymptotic dis-

tribution of the channel estimate from the Least Squares channel estimation method.

The real channel h is, in fact, a constant multiple of the right singular vector of Yx

associated with the minimum singular value. Since Yxh = 0 (2.18), the minimum

singular value of Yx is equal to zero. The estimate ĥ is the right singular vector of

Y associated with the minimum singular value.

The difference between our proof and the proof of Theorem 13.5.1 given in [16]

is centered around assumptions about the input signal. Our proof accounts for a

deterministic input signal, which includes a nonzero-mean input signal. The proof of

Theorem 13.5.1 given in [16] assumes that the case the covariance matrix, 1
n
YTY, is

distributed according to Wishart Distribution[16] implying that, at least, the input

signal should have zero-mean.

A.1 Notation

We use the following notation:

n = N − 2K.
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The eigenvalue decompositions of the symmetric matrices are

1

n
Yx

TYx = USxU
T , (A.1)

1

n
UTYTYU = BSBT (A.2)

where Sx and S are diagonal and U and B are unitary.

S0 = Sx + σ2 q(q − 1)

2
I (A.3)

√
n(S − S0) = D (A.4)

√
n(

1

n
UTYTYU − S0) = F (A.5)

√
n(B − I) = G (A.6)

F0 = lim
n→∞

F (A.7)

G0 = lim
n→∞

G (A.8)

A.2 Asymptotic Distribution of G

Using the notation, we can derive the following equalities.

S0 +
F√
n

=
1

n
UTYTYU

= BSBT

= (I +
G√
n

)(S0 +
D√
n

)(I +
G√
n

)T .

Thus,

F = GS0 + D + S0G
T +

1√
n

(GD + GS0G
T + DGT ) +

1

n
(GDGT ).
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As n goes to ∞,

F0 = G0S0 + D + S0G0
T (A.9)

Since B is a unitary matrix,

I = BBT = (I +
G√
n

)(I +
G√
n

)T .

That is,

G + GT +
1√
n
GGT = 0.

As n goes to ∞,

G0 + G0
T = 0 (A.10)

From (A.10),

G0(i, j) = −G0(j, i) (A.11)

G0(i, i) = 0 (A.12)

From (A.9), for i 6= j,

F0(i, j) = G0(i, j)S0(j, j) + D(i, j) + S0(i, i)G0(j, i) = (S0(j, j) − S0(i, i))G0(i, j)

since D is diagonal.

That is, for i 6= j,

G0(i, j) =
F0(i, j)

S0(j, j) − S0(i, i)
. (A.13)

In summary, the right singular vectors of Y are

UB = U +
UG√

n
(A.14)

where the approximate of G for large n is G0 with

G0(i, i) = 0,G0(i, j) =
F(i, j)

S0(j, j) − S0(i, i)
. (A.15)
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The real channel ĥ is the right singular vector of Y corresponding to the minimum

singular value, which is the last column vector of UB. The estimate h
||h|| is the right

singular vector of Yx corresponding to the minimum singular value, which is the last

column of U. Thus,

ĥ =
h

||h|| +
1√
n

q(K+1)
∑

i=1

G(i, q(K + 1))ui (A.16)

where ui is the ith column of the U.

A.3 Asymptotic Distribution of F

We derive the distribution of F0(i, j).

From Y = Yx + Yw,

UTYTYU = UTYx
TYxU + UTYx

TYwU + UTYw
TYxU + UTYw

TYwU.

Thus, from (A.5),

F =
1√
n
UTYTYU −

√
nS0

=
√

nSx +
1√
n
UTYx

TYwU +
1√
n
UTYw

TYxU +
1√
n
UTYw

TYwU −

√
n{Sx +

q(q − 1)

2
σ2I}

=
1√
n
UTYx

TYwU +
1√
n
UTYw

TYxU +
1√
n

(UTYw
TYwU − n

q(q − 1)

2
σ2I).

Let

F = Fx + Fw (A.17)
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with

Fx =
1√
n
UTYx

TYwU +
1√
n
UTYw

TYxU, (A.18)

Fw =
1√
n

(UTYw
TYwU − n

q(q − 1)

2
σ2I). (A.19)

A.3.1 Distribution of Fw

We can permute the rows of the matrix, Yw, the noise part of Y given in equations

(2.16) and (2.17) and congregate all the entries measured at the same time. Let Ỹw

be the permuted matrix. Then, we can represent it as

Ỹw =











Ỹw[K]
...

Ỹw[N − K]











. (A.20)

For example, for q = 2,

Ỹw[i] =
[

w2[i] · · · w2[i + K] −w1[i] · · · −w1[i + K]
]

. (A.21)

For example, for q = 3,

Ỹw[i] =










w2[i] · · · w2[i + K] −w1[i] · · · −w1[i + K] 0 · · · 0

w3[i] · · · w3[i + K] 0 · · · 0 −w1[i] · · · −w1[i + K]

0 · · · 0 w3[i] · · · w3[i + K] −w2[i] · · · −w2[i + K]











.
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Then, we can represent Fw as

Fw =
1√
n

(UTYw
TYwU − n

q(q − 1)

2
σ2I)

=
1√
n

(UT ỸT
wỸwU − n

q(q − 1)

2
σ2I)

=
1√
n

n+K
∑

i=K

(UT Ỹw[i]
T
Ỹw[i]U − n

q(q − 1)

2
σ2I). (A.22)

Each column of Ỹw[i] has q(q−1)
2

nonzero elements and the second moment of each

entry is equal to the noise variance σ2.

Since the noise is white, for l 6= m,

E[Ỹw[i]
T
Ỹw[i](l,m)] = 0. (A.23)

Therefore,

E[Ỹw[i]
T
Ỹw[i]] =

q(q − 1)

2
σ2I. (A.24)

From Theorem 3.4.4. given in [16], the limit of Fw i.e. limn→∞ Fw, has mean 0

and covariances E[Fw(i, j)Fw(k, l)] = σ(i, k)σ(j, l) + σ(i, l)σ(j, k) where σ(i, j) is the

(i, j)th entry of the matrix E[UT Ỹw[K]
T
Ỹw[K]U], that is, σ(i, j) = 0 for i 6= j and

σ(i, i) = q(q−1)
2

σ2.

Thus, the second order moment of Fw(i, q(K + 1)) for i = 1, · · · , q(K + 1) − 1 is

E[Fw(i, q(K + 1))Fw(j, q(K + 1))] =







0 for i 6= j

( q(q−1)
2

σ2)2 for i = j
(A.25)

A.3.2 Distribution of Fx

From (A.1), we can represent the singular value decomposition of 1√
n
Yx as

Yx = VSx
1/2UT

where V is a unitary matrix.
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Then, the matrix Fx (A.9) becomes

Fx =
1√
n
UTUSx

1/2UTYwU +
1√
n
UTYw

TVSx
1/2UTU

=
1√
n
Sx

1/2UTYwU +
1√
n
UTYw

TVSx
1/2. (A.26)

Since Sx is diagonal, the (i, q(K + 1))th element of Fx is equal to

Fx(i, q(K + 1)) =
1√
n

(Sx(i, i))
1/2{VTYwU}(i, q(K + 1)) +

1√
n

(Sx(q(K + 1), q(K + 1)))1/2{VTYwU}(q(K + 1), i) (A.27)

As we have mentioned in the beginning of this Chapter, the minimum singular

value of Yx is zero. That is, Sx(q(K + 1), q(K + 1)) = 0. Thus, the (i, q(K + 1))th

element of Fx is

Fx(i, q(K + 1)) =
1√
n

(Sx(i, i))
1/2{VTYwU}(i, q(K + 1))

=
1√
n

(Sx(i, i))
1/2vi

TYwuq(K+1) (A.28)

where vi is the ith column of V and uq(K+1) is the last column of U.

The second order moment of Fx(i, q(K + 1)) for i = 1, · · · , q(K + 1) is

E[Fx(i, q(K + 1))Fx(j, q(K + 1))] =

1

n
(Sx(i, i))

1/2uq(K+1)
T E[Yw

Tvivj
TYw]uq(K+1)

T (Sx(j, j))
1/2. (A.29)

Since U and V are unitary, using (A.24),

E[Fx(i, q(K + 1))Fx(j, q(K + 1))] =







0 for i 6= j

n+1
n

Sx(i, i)
q(q−1)

2
σ2 for i = j

(A.30)
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A.3.3 Distribution of the Channel Estimate

From (A.30), the entries of the last column, F(i, q(K + 1)) for i = 1, · · · , q(K +

1) − 1, are uncorrelated to each other and their variances are E[F(i, q(K + 1))2] =

n+1
n

Sx(i, i)
q(q−1)

2
σ2 + ( q(q−1)

2
)2σ4.

Finally, from (A.15), for i = 1, · · · , q(K +1)− 1, G0(i, q(K +1)) are uncorrelated

and their variances are

E[G0(i, q(K + 1))2] = lim
n→∞

Sx(i, i)
q(q−1)

2
σ2 + ( q(q−1)

2
)2σ4

Sx(i, i)2
(A.31)

since Sx(q(K + 1), q(K + 1)) = 0.

That is, the distribution of the channel estimate from LS method (A.16) is

ĥ =
h

||h|| +

q(K+1)−1
∑

i=1

ciui (A.32)

where ci are zero-mean and uncorrelated.

The limit of E[nc2
i ] is

q(q−1)
2

σ2(Sx(i,i)+
q(q−1)

2
σ2)

Sx(i,i)2
and ui are the right singular vectors

of 1√
N−2K

Yx.

A.3.4 Asymptotic Performance

Since we can only determine the channel estimate to within a constant multiplication,

we use the following error metric:

ǫh = min
c

(cĥ − h)T (cĥ − h). (A.33)

When cĥ is the projection of h on the direction of ĥ the argument in RHS of

(A.33) is minimized. Thus, the parameter c is determined as

c =
hT ĥ

ĥT ĥ
= hT ĥ (A.34)

as ĥ has a unit norm.
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The error, ǫh, becomes

ǫh = hTh − (hT ĥ)2. (A.35)

Given ĥ, the calculation of the performance is possible using (A.33). However, the

calculation of asymptotic average performance performance, limn→∞ E[ǫh], using the

asymptotic distribution (A.32) seems unplausible. Instead, we calculate the upper

bound of the asymptotic average performance.

lim
n→∞

E[ǫh] = lim
n→∞

E[min
c

(cĥ−h)T (cĥ−h)] ≤ min
c

lim
n→∞

E[(cĥ−h)T (cĥ−h)]. (A.36)

Using (A.32), the parameter c that minimizes the expected value in RHS of (A.36)

is

c =
||h||

1 +
∑q(K+1)−1

i=1 E[c2
i ]

. (A.37)

The upper bound, ǫu, is

ǫu =
||h||2 ∑q(K+1)−1

i=1 E[c2
i ]

1 +
∑q(K+1)−1

i=1 E[c2
i ]

(A.38)

That is,

ǫu =
||h||2 ∑2K+1

i=1
σ2(Sx(i,i)+σ2)
(N−2K)Sx(i,i)2

1 +
∑2K+1

i=1
σ2(Sx(i,i)2+σ2)
(N−2K)Sx(i,i)2

. (A.39)

A.4 Asymptotic Performance in the Case of Zero-

Mean White Gaussian Input Signal

In this section, we assume that the number of measurements is two and the input

signal is zero-mean white Gaussian, which is the case we simulate and analyze in

Chapter 5. We simplify the asymptotic performance (A.39).

The entries of the diagonal matrix Sx are the eigenvalues of 1
n
Yx

TYx. Let zi =

hi ∗ x. If there are two measurement signals, using (2.12) and (2.16), the matrix Yx
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is

Yx =











z2[K] · · · z2[2K] −z1[K] · · · −z1[2K]
...

...

z2[N − K] · · · z2[N ] −z1[N − K] · · · −z1[N ]











. (A.40)

We can represent the matrix Yx as

Yx
T =





TK(h2)

−TK(h1)















x[0] · · · x[N − 2K]
...

...

x[2K] · · · x[N ]











, (A.41)

where TK(hi) is a (K + 1) × (2K + 1) Toeplitz matrix defined as

TK(hi) =

















hi[0] hi[1] · · · hi[K] 0 · · ·
0 hi[0] hi[1] · · · hi[K] 0 · · ·

. . .

· · · 0 hi[0] hi[1] · · · hi[K]

















(A.42)

The matrix 1
n











x[0] · · · x[N − 2K]
...

...

x[2K] · · · x[N ]





















x[0] · · · x[N − 2K]
...

...

x[2K] · · · x[N ]











T

converges to

I2K+1 as n goes to infinity.

Thus, 1
n
Yx

TYx goes to





TK(h2)

−TK(h1)









TK(h2)

−TK(h1)





T

.

Therefore, as n goes to infinity, the diagonal entries of Sx goes to the eigenvalues

of TK(h)TK(h)T , λ̂2
i . The block Toeplitz matrix TK(h) satisfies the following: The

(2i − 1)th row of TK(h) is the ith row of TK(h1) and the (2i)th row of TK(h) is the

ith row of TK(h2).

The asymptotic distribution (A.32) can be rewritten as

ĥ =
h

||h|| +

q(K+1)−1
∑

i=1

ĉiûi (A.43)

100



where ûi is the ith right singular vectors of





TK(h2)

−TK(h1)





T

and ĉi are zero-mean and

uncorrelated with variance
∑2K+1

i=1
σ2(λ̂2

i +σ2)

(N−2K)λ̂4
i

.

The upper bound of asymptotic performance (A.39) can be simplified as

ǫu = min
c

E[(cĥ − h)(cĥ − h)T ] =
||h||2 ∑2K+1

i=1
σ2(λ̂2

i +σ2)

(N−2K)λ̂4
i

1 +
∑2K+1

i=1
σ2(λ̂2

i +σ2)

(N−2K)λ̂4
i

. (A.44)
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Appendix B

Relevance of the Definition of the

Diversity

B.1 Proof of the Properties

In this section, we prove that the definition presented in (3.7) or equivalently (3.14)

satisfies all the desired properties given in Section 3.1.

1.

D(δ[n]) = min
x

√

∑∞
n=−∞ x[n]2

∑∞
n=−∞ x[n]2

= 1 (B.1)

2. If the transfer functions H1(z), · · · , Hq(z) have a common zero at z = a,

then h1[n] ∗ an = · · · = hq[n] ∗ an = 0. Therefore, the diversity is zero. If

H1(z), · · · , Hq(z) do not have any common zero, TN(h) is left invertible for any

N > K. Thus, the minimum singular value λN+K+1(TN(h)) 6= 0 for N ≥ K.

Thus, the diversity, which is equal to the limit limN→∞ λN+K+1(TN(h)), is

greater than or equal to zero. From Theorem 1 and Lemma 2 in Section B.2,

we can prove the limit is not zero:

lim
m→∞

λ2m+K+1(T2m(h)) ≥ λ2K+K+1(T2K(h)) > 0 (B.2)

3. If h1 has at least two taps, it has at least one zero. From Property 2, D(h1) = 0.
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4.

D(h1[n], · · · , hi[n − k], · · · , hq[n])

= min
x

√

∑∞
n=−∞ {(h1 ∗ x)[n]2 + · · · + (hi ∗ x)[n − k]2 + · · · + (hq ∗ x)[n]2}

∑∞
n=−∞ x[n]2

= min
x

√

∑∞
n=−∞ {(h1 ∗ x)[n]2 + · · · + (hi ∗ x)[n]2 + · · · + (hq ∗ x)[n]2}

∑∞
n=−∞ x[n]2

= D(h1[n], · · · , hi[n], · · · , hq[n]) (B.3)

5.

D(ch1, · · · , chq) = min
x

√

∑∞
n=−∞ {c2(h1 ∗ x)[n]2 + · · · + c2(hq ∗ x)[n]2}

∑∞
n=−∞ x[n]2

= |c|min
x

√

∑∞
n=−∞ {(h1 ∗ x)[n]2 + · · · + (hq ∗ x)[n]2}

∑∞
n=−∞ x[n]2

= |c|D(h1, · · · , hq) (B.4)

6.

D(h1, · · · , hq) = min
x

√

∑∞
n=−∞ {(h1 ∗ x)[n]2 + · · · + (hq ∗ x)[n]2}

∑∞
n=−∞ x[n]2

≤ min
x

√

∑∞
n=−∞ {(h1 ∗ x)[n]2 + · · · + (hq ∗ x)[n]2 + (hq+1 ∗ x)[n]2}

∑∞
n=−∞ x[n]2

= D(h1, · · · , hq, hq+1) (B.5)

B.2 Convergence of the Minimum Singular Value

of the Toeplitz Matrix

In this section, we prove that λN+K+1(TN(h)) converges as N → ∞, which is neces-

sary to define the diversity through the form given in (3.14). The following lemmas

will lead to the proof of the convergence.
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Let σN = λN+K+1(TN(h)).

Lemma 1: Upper Bound

The minimum singular values σN for any N have an upper bound.

(Proof)

From (3.26), for any N ,

σN ≤ ||TN(h)1|| =
√

h1[0]2 + · · · + hq[0]2. (B.6)

Lemma 2:

For any k such that 0 ≤ k < N2,

σN1N2+k ≥ σN1 . (B.7)

(Proof)

Let H be

H =
[

h[0] · · · h[K]
]

= T1(h). (B.8)

We can represent TN1N2+k(h) using N2 TN1
(h)s and k Hs where no two Hs are

consecutive. That is,

TN1N2+k(h) =















































TN1
(h)

H

TN1
(h)

H
...

TN1
(h)

TN1
(h)

...

TN1
(h)















































. (B.9)

Let v be the right singular vector of TN1N2+k(h). Then, the minimum singular
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value is

σN1N2+k = ||TN1N2+k(h)v||. (B.10)

We can determine the lower bound of the minimum singular value from the fol-

lowing multiplication:

TN1N2+k(h)v =















































TN1
(h)

H

TN1
(h)

H
...

TN1
(h)

TN1
(h)

...

TN1
(h)















































v =















































TN1
(h)v1

Hv∗1

TN1
(h)v2

Hv∗2
...

TN1
(h)vk+1

TN1
(h)vk+2

...

TN1
(h)vN2















































(B.11)

where v1, · · · ,vN2
are the column vectors whose components of v1, · · · ,vN2

are the

components of v. The components can overlap and they cover all the components of

v.

Then, the minimum singular value, σN1N2+k, has a lower bound as

σN1N2+k ≥
√

||TN1
(h)v1||2 + · · · + ||TN1

(h)vN2
||2

≥
√

σ2
N1
||v1||2 + · · · + σ2

N1
||vN2

||2

≥ σN1

√

||v||2 = σN1 . (B.12)

Lemma 3:

The limit, limm→∞ σ2m , exists.

(Proof)

Let N2 = 2 and k = 0. From Lemma 2, σ2N1 ≥ σN1 . The sequence σ2m is

nondecreasing and upper bounded from Lemma 1. Thus, limm→∞ σ2m exists.
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Lemma 4:

For any N and k,

σN2+k ≥ σN . (B.13)

(Proof)

Any number greater than or equal to N2 can be divided by N with quotient q

greater than or equal to N and residue r less than N . Let N2 = q and k = r. From

Lemma 2, σN2+k = σqN+r ≥ σN .

Theorem 1:

The limit, limN→∞ σN , exists.

(Proof)

Let mN = ⌊log2(
√

N)⌋. Then, 22mN ≤ N < 2(2mN+2). As N goes to infinity, mN

also goes to infinity. From Lemma 4,

σ2mN ≤ σN ≤ σ2(4mN +4) . (B.14)

Thus,

lim
N→∞

σ2mN ≤ lim
N→∞

σN ≤ lim
N→∞

σ2(4mN +4) . (B.15)

From Lemma 3, the limits in both sides exist and are the same: limN→∞ σ2mN =

limN→∞ σ2(4mN +4) . The limit of the minimum singular value limN→∞ σN also exists

and is the same as limN→∞ σ2mN .
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