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Abstract. Recently, a set of conditions has been developed under which
a sequence is uniquely specified by the phase or samples of the phase of
its Fourier transform. These conditions are distinctly different from the
minimum or maximum phase requirement and are applicable to both
one-dimensional and multi-dimensional sequences. Under the specified
conditions, several numerical algorithms have been developed to
reconstruct a sequence from its phase. In this paper, we review the re-

d cent theoretical results pertaining to the phase-only reconstruction prob-
an lem, and we discuss in detail two iterative numerical algorithms for per-
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1. INTRODUCTION

Under a variety of conditions a signal can be completely
reconstructed from partial information about its Fourier
transform. For example, if a signal is known to be causal (i.e., zero
for negative values of its argument), it can be exactly recovered
from the real part or, except for its value at the origin, from the im-
aginary part of its Fourier transform. If it satisfies the minimum
phase condition, it can also be exactly recovered from the
magnitude or, to within a scale factor, from the phase of its Fourier
transform. Other possible conditions have been explored under
which the signal reconstruction can be accomplished from partial
information.

Reconstruction of a signal from such partial information is im-
portant and useful in a broad set of important practical applica-
tions. For example, in some cases of optical image processing or in
measurement of diffraction patterns, only spectral magnitude in-
formation can be recorded or is available, and thus it is of interest
to recover a signal from spectral magnitude information alone.!
Related problems are the reconstruction of a signal from intensity
measurements in two domains?# and the reconstruction of a signal
when it is known only over a specified band in the frequency do-
main and a specified interval in the time domain.’ In other situa-
tions, either the spectral magnitude or phase may be badly
distorted, and restoration must rely on the undistorted component.
For example, in the class of problems referred to as blind decon-
volution,® a desired signal is to be recovered from an observation
which is the convolution of the desired signal with some unknown
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distorting signal. Since little is usually known about either the
desired signal or the distorting signal, deconvolution of the two
signals is generally a very difficult problem. However, in the special
case in which the distorting signal is known to have a phase which is
identically zero, the phases of the observed signal and the desired
signal are identical. In such situations, it may be of interest to con-
sider signal reconstruction from phase information alone. It is also
likely that signal reconstruction from only the Fourier transform
phase can be useful in the estimation of the frequency response of a
linear time-invariant system if, for example, the symmetry of an in-
put to the system can be controlled.

In this paper we focus specifically on the problem of reconstruct-
ing a signal from Fourier transform phase information alone. In
general, of course, a sequence is not uniquely defined by its phase,*
as is illustrated by the observation that a sequence convolved with
any zero-phase sequence will produce another sequence with the
same phase. Thus, without some assumptions about the sequence,
the phase may, at best, uniquely specify a sequence only to within
an arbitrary zero-phase factor. One well-known set of conditions
for reconstruction from phase is the minimum phase condition.
Recently,” we have developed new conditions under which a se-
quence is uniquely defined by the phase of its Fourier transform.
These conditions are applicable to both one-dimensional (1-D) and
multidimensional (M-D) sequences. Furthermore, we have
developed several numerical algorithms to reconstruct a sequence
from its associated phase under the specified conditions. In this
paper we review the recent theoretical results pertaining to the
phase-only reconstruction problem, and we discuss in detail two
iterative numerical algorithms for performing the reconstruction.

2. SIGNAL RECONSTRUCTION FROM FOURIER
TRANSFORM PHASE

As mentioned in the introduction, a sequence is not uniquely de-
fined by the phase of its Fourier transform without some additional
knowledge about the sequence. In this section, we summarize four
recently developed theorems embodying conditions under which a
finite length signal is recoverable from its associated phase.
Justification of the theorems is presented in Ref. 7.

Theorem 1: A 1-D sequence which is finite in length and has a

*Throughout this paper reference to the phase associated with a sequence should be ex-
plicitly interpreted as the phase of the Fourier transform of the sequence.
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z-transform with no zeros in conjugate reciprocal pairs or on the

unit circle is uniquely specified to within a scaling factor by the

phase of its Fourier transform (or by the tangent of the phase).
The condition which excludes zeros from the unit circle is made
only for convenience. The condition which excludes zeros in con-
jugate reciprocal pairs, however, is necessary to eliminate the possi-
ble ambiguity due to zero-phase components. This theorem is also
applicable to all-pole sequences since the convolutional inverses of
these sequences are finite in length.

Although Theorem 1 is formally stated for 1-D sequences, an ex-
tension to M-D sequences has been accomplished by using the
projection-slice theorem.® This theorem establishes the result that
an M-D sequence having a rational z-transform may be mapped in-
to a 1-D sequence (projection) by means of an invertible transfor-
mation. For example, a 2-D finite extent sequence with n rows and
m columns can be mapped into a 1-D finite extent sequence of
length nm by concatenating the columns, which represents one par-
ticular projection of the sequence. In general, the transformation in
which an M-D sequence is represented by a 1-D projection has the
property that the phase of the projection is equal to a slice of the
phase of the M-D sequence, and thus, in particular, the phase of
the projection is uniquely defined by the phase of the M-D se-
quence. Consequently, the multidimensional phase-only problem
can be mapped into a one-dimensional phase-only problem, and the
phase-only reconstruction theorem for 1-D sequences may be used.

The approach of transforming M-D sequences into 1-D projec-
tions provides at least a partial solution to the multidimensional
phase-only problem. However, this approach circumvents the fun-
damental issues involved in multidimensional phase-only signal
reconstruction. For example, it imposes constraints on a projection
of an M-D sequence rather than directly on the M-D sequence. In
addition, although it may not be possible to perform a phase-only
reconstruction of an M-D sequence from a particular projection,
this does not preclude the possibility that there exists another pro-
jection or mapping for which the reconstruction is possible.
Therefore, with this approach it is difficult to determine which
multidimensional sequences may be reconstructed from their
phase. However, Theorem 1 can be extended to M-D sequences
through the following theorem:®

Theorem 2: An M-D sequence which has finite support and a
z-transform with no symmetric factors* is uniquely specified to
within a scale factor by the phase (or tangent of the phase) of its

M-dimensional Fourier transform.

Clearly, Theorem 1 is a special case of this theorem. However, the
proof of the general M-dimensional theorem is more abstract than
that required in the one-dimensional case.

Although the phase-only reconstruction theorems specify a set of
conditions under which a sequence is uniquely specified to within a
scale factor by the phase of its Fourier transform, it is assumed in
these theorems that the phase is known for all frequencies. Since
any practical algorithm for reconstructing a sequence from the
phase will base the reconstruction on only a finite set of samples of
the phase, the following theorem extends Theorem 1 to consider the
uniqueness of a sequence based only on phase samples.

Theorem 3: A sequence which is known to be zero outside the
interval 0 = n =< (N-1) and which has a z-transform with no
zeros on the unit circle or in conjugate reciprocal pairs is unique-
ly specified to within a scale factory by (N-1) samples of the
phase of its Fourier transform (or the tangent of the phase) at
distinct frequencies in the interval 0<w <.
This theorem forms the basis for demonstrating the existence and
uniqueness of solutions to the signal reconstruction algorithms
which are described in the next section. The extension of this
theorem to multidimensional sequences is as follows:
Theorem 4: An M-D sequence which is known to be zero outside

*A symmetric factor is defined to be of the form
F(@z) = +K Fe))

for some integer-valued vector k.

the region* 0 < n < N and a z-transform with no symmetric
factors is uniquely specified to within a scale factor by the phase
of its M-point discrete Fourier transform, provided M > 2(N-1).

3. ALGORITHMS FOR SIGNAL RECONSTRUCTION
FROM PHASE

In the previous section, we stated that a finite duration signal which
has no zeros on the unit circle or in conjugate reciprocal pairs is
uniquely specified by samples of its associated phase function. In
this section, we describe several numerical algorithms to
reconstruct a one-dimensional signal from its phase function when
the signal satisfies these constraints. The extension of these
algorithms to the multidimensional case is straightforward, and the
details may be found in Ref. 9. In describing these algorithms, x[n]
is used to denote a 1-D sequence, and §,(w) is used to denote the
phase associated with x[n]. The sequence x[n] is assumed to be zero
outside the interval 0 = n < N-1 with x[0] #0 and to have no zeros
on the unit circle or in conjugate reciprocal pairs. The additional
constraint that x[0]#0 is not necessary, but its inclusion is not
overly restrictive in practice and simplifies the algorithms.

One algorithm for reconstructing x[n] to within a scale factor
from its phase 0,(w) involves solving a set of linear equations and
leads to a closed form solution. Specifically, from the definition of
0, (w), it can be shown’ that x[n] satisfies the equation

N-1
Y x[nJsin[8,(w) + nw] = -x[0]sin fy(w) - 6}
n=1
When sampled at (N-1) distinct frequencies in the interval 0<w <,
N-1 linear equations are obtained for the unknowns x[n]. It can
be shown’ that given x[0}, these linear equations can be solved to
uniquely determine x[n] for 1 =n=N-1, and this unique solution is
the desired one.

Even though the algorithm corresponding to solving the above
set of linear equations may be used in principle to recover a signal
from its phase function, its application in practice may be quite
limited, if N is large, due to the potential computational problem
inherent in solving a large set of linear equations. For example, if
an image of 256 x 256 pixels is mapped to a one-dimensional finite
length sequence by concatenating columns, the algorithm requires
solving a set of 216-1 linear equations. Solving such a large set of
equations will generally lead to numerical instability and severe
round-off errors. As an alternative we consider two iterative
algorithms for carrying out the reconstruction, in which the
estimate of x[n] is improved in each iteration. The first algorithm is
in a form similar to the Gerchberg-Saxton algorithm? and iterative
algorithms developed by Quatieri. 10 The second algorithm is a revi-
sion of the first algorithm which noticeably improves its con-
vergence characteristics.

3.1. Iterative algorithm A

This algorithm involves repeated transformation between the time
and frequency domains in which the known constraints are im-
posed in each domain. Specifically, we denote the M point discrete
Fourier transform (DFT) of x[n] by

i0, (k
— 1Xao |
w=_""x

M

X(k) = X(w) @

With M = 2N, we begin the iterative procedure with an initial guess
of the unknown DFT magnitude |Xy(k)|. From |X(k)| and the
given phase samples 8,(k), the first estimate of x[n], which we
denote by x,[n], is formed as

*If k and 0 are two vectors of length m then k < { means that kj < § for i=1,...,m.
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i), -

x,[n] = IDFT[|X(k)|e
where IDFT denotes the M point inverse discrete Fourier transform
operation. Since an M point DFT and IDFT with M = 2N is used
in the above procedure, x,[n] is an M point sequence which is
generally non-zero for N = n < M-1. From x,[n], we then form
another sequence y,[n] by imposing the constraint that the last
(M-N) points be zero and that the first point be equal to some ar-
bitrary constant, i.e.,

x;[n] for0 < n = N-1
yy[n} = B forn =0 . @
0 for N = n = M-1

The magnitude |Y1(k)] of the M point DFT of vyin] is then con-
sidered to be a new estimate of | X(k)| and a new estimate of x[n] is
formed as

%,[n] = IDET[] Y, ()| ¥y

%)
i.e., the known phase samples 6,(k) are substituted in place of the
phase associated with y,[n]. Equations (3), (4), and (5) complete
one iteration, and repetitive application of this procedure defines
the iteration. This iterative algorithm is illustrated in Fig. 1.

It has recently been shown theoretically!! that this iterative
algorithm always leads to a converging solution, provided the DFT
length M is greater than 2N-1, and that the unknown sequence
satisfies the constraints noted above. Furthermore, consistent with
this theoretical result, it has been empirically observed that the
algorithm always converges. Several examples of this iterative
algorithm will be shown in Section 4.

Since the DFT and IDFT are the major computational elements
of the iteration, the algorithm does not have the same numerical in-
stability or severe round-off errors for relatively large N that would
occur in solving Eq. (1) through the use of a matrix inversion of size
(N-1) x (N-1). However, as will be discussed in Section 4, the
above iterative algorithm requires, in general, a large number of
iterations before the converging solution is reached. Since each
iteration requires one M point DFT and IDFT, considerable com-
putation time can be saved by improving the convergence
characteristics. In the next section, we consider a modification of
the algorithm to provide more rapid convergence.

3.2. Iterative algorithm B

The iterative algorithm described above may be represented
mathematically as

Xp i1 = Txy, ®)
where x5 [xp[O] xpll], - .., xpIMI] and x|,y = [x,[0],
ﬁ\/l]] correspond to the vectors that represent

1] .
t e+elst1mates of Phe unknown vector x! = [x[0], x[1], . . ., x[M]]
after p and p + 1 iterations, respectively, and where T is a nonlinear
operator which corresponds to the combination of the time-limiting
and phase-substitution operators in Fig. 1. Motivated by the
various relaxation techniques developed for iterative algorithms, 12
consider the vector r, defined by

rp=xp+1—xp=Txp—xp. )
Now suppose that the iteration (6) is modified as follows:

xp+1=xp+apl‘p, &
where o, is a scaler which will be referred to as the relaxation

parameter and may be allowed to vary as a function of p. Using (7),
an equivalent representation of the iteration (8) is
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= L ity xp["]
|
|
!
|
| SET xp [n]=0
| FOR N Sn< M-I
|
| Y v [n]
| )
; M- POINT DFT
|
16, (k)
T Y Yo =[v ke P
!
I} B, (k) = 6, (k)
' i6, (k)
. }
| y Xp+1(K)=]Yp(k)|e *
|
|
} M- POINT IOFT
|
|
I o1 1]

Fig. 1. Block diagram of the iterative algorithm for reconstructing a
signal from its phase.

Xpi1 = (1 —ozp)xp + oszxp o)

An important property of (9) is that the tangent of the M samples
of the phase associated with X541 equals the tangent of the M
samples of the phase associated with x for any choice of the relaxa-
tion parameter «,. This follows from the observation that the
Fourier transforms of both x, and Tx_ have the same M phase
samples as those of xas a resulp of the definition of the operator T.
Therefore, since x is uniquely specified by N-1 independent samples
of the tangent of its associated phase, a convergent solution to (9)
will, under the appropriate constraints, correspond to a scaled ver-
sion of x.

Several special cases of (9) are immediately apparent. If o, is a
fixed constant «, then (9) corresponds to the basic iteration (6)
when oy =1, while =0 yields the trivial result Xp+1 = Xp In-
termediate values of ay, i.e., 0<ay<1, correspond to an under-
relaxed version of (6).

A common limitation with iterations in the form of (9) is in the
determination of the optimum value of the relaxation parameter o,
which maximizes the rate of convergence of the iteration. However,
in the context of signal reconstruction from its phase, it is possible
to derive a relatively simple method for computing the value of «
which is optimum in a certain sense.'? Specifically, consider parti-
tioning (8) as follows:

Xp+1 p p

—————— =|—] ta,|— |, 10
2 2 2

S I G
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where x (_23 1 x@), and r@ are vectors of length (M-N) correspond-

ing to the interval over which x (the desired vector) is known to be
zero. Noting that a convergent solution is obtained if and only if
xp(%)l = (), a reasonable approach for selecting o, is to choose that
value o, = &, which minimizes | xp@l 12, i.e.,

p
d 2) 2
BN =0, (11)
ap N
% T %
where |x (i)l |? is the square of the length of the vector x (er)l-

Geometrically, &, defines that vector x (%)1 which is closest to the
origin. Using (10?, the solution to (11) is given by

2) .2
o <xp ,rl())>
Lk

(12)

where < xg), @ > is the inner product of the vectors x(2) and
r'?. Assuming tﬁat the DFT length used in the iteration is Nf= 2N,
the number of multiplications required to compute &, is M, and the
number of multiplications required to determine x; , ; in (10) is
also M. Therefore, this approach requires an additional 2M
multiplications per iteration over the basic iteration (6). Since the
number of multiplications required for each iteration in (6) is on
the order of Mlog,M, if M > > 1 this additional computation is
negligible. However, an important consideration in the implemen-
tation of (9) is the requirement for additional memory since two
vectors of length M, namely, x_ and Tx_, need to be stored.

An important practical and theoretical question concerns the
conditions under which the relaxed algorithm (9) will converge. It
may easily be shown that if «, does not take on values outside the
interval (0,1), then the iteration will always converge.!! However,
when o, is defined by (12), there is no assurance that o, will not
take on values outside (0,1). In fact, using (12), it has been ob-
served that although o always appears to assume non-negative
values, values greater than 10 are not uncommon. Nevertheless, in
all of the examples which have been considered, convergence of the
iteration has always been achieved.

The iteration of Eq. (8) may be considered as a first-order ac-
celeration of the basic iteration given by Eq. (6) since it incor-
porates one previous estimate, Xp» of x to modify the current
estimate Txp. It is possible to generalize the iteration of Eq. (8) so
that it incorporates more than one previous estimate to modify the
current estimate Tx . Specifically, by expressing Xpypasa linear
combination of x_ and the differences between TX, and previous
estimates of x, it is straightforward to show that the tangent of the
M phase samples of x,, , ; equals the tangent of M phase samples of
x for any choice of the relaxation parameters. In addition, the
relaxation parameters can be obtained by generalization of Eq.
(11). Even though it is expected that a higher order acceleration will
improve the convergence rate, its implementation requires addi-
tional memory to store the previous estimates of x.

Finally, it should be noted that the use of the adaptive relaxation
(9) of the basic iteration (6) as well as its generalized form (14) is not
limited to the above iterative algorithm. There are two properties,
however, which permitted the development of the iterations (9) and
(14). Therefore, any other iteration which has these same properties
may be similarly extended. The first property is that a part of the
unknown vector X is known a priori. For example, in the phase-
only signal reconstruction problem, x[n] is known to be zero out-
side the interval 0 < n < N-1 so that the last (M-N) components of
x are known to be zero. This property allows for the explicit evalua-
tion of the “‘optimum’’ relaxation parameter (12) or relaxation vec-
tor (17). The second property is that a linear combination of two or
more estimates may be formed without affecting the constraints im-
posed by the iteration. In the above iteration, for example, linear

combinations preserve the desired phase constraint. Another ex-
ample!3 in which these two properties are satisfied so that a similar
extension is possible is the band-limited extrapolation procedure
proposed by Gerchberg’ for obtaining super-resolution of images.

4. EXAMPLES

In this section, we illustrate an example in which an image is
reconstructed iteratively from the phase of its Fourier transform.
The example presented includes a reconstruction based both on the
basic iteration (6) as well as the first-order acceleration technique (9).

Shown in Fig. 2(a) is an original image, 128 x 128 pixels in extent,
which is to be reconstructed from its phase. Using a 256 X 256 point
two-dimensional DFT, the phase-only representation of this image,
which is obtained by setting the DFT magnitude equal to a con-
stant, is shown in Fig. 2(b). With this phase-only image as the initial
estimate in the iteration, the estimates obtained after 10, 20, 50,
and 100 iterations are shown in Fig. 3 (each image has been ap-
propriately scaled for display).

As has been discussed in Sec. 2, the motivation behind algorithm
B is to provide more rapid convergence at the expense of a modest
increase in computation at each iteration as well as an increase in
memory requirements. In Figs. 4(a)-(d) are shown the images
reconstructed from the phase of the image in Fig. 2 using algorithm
B with the first-order acceleration after 5, 10, 20, and 30 iterations.
The DFT length and initial estimate of x(n;,n,) used in generating

Fig. 2. Original image and its phase-only representation obtained
by setting the Fourier transform magnitude equal to a constant.
(a) original image; (b) phase-only image.
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Fig. 3. lterative reconstruction from phase. (a) 10 iteration;; (b) 20 Fig. 44.~I>terartrive '}econstruction from phase using adaptive relaxa-
iterations; (c) 50 iterations; (d) 100 iterations. tion. (a) 5 iterations; (b) 10 iterations; (c) 20 iterations; (d) 30 itera-
tions.
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Fig. 5. Normalized mean square error versus the number of itera-
tions for the standard iteration (algorithm A) and the adaptive relax-
ation algorithm (algorithm B).

these images are the same as in Fig. 3. Both visual and quantitative
comparisons between Figs. 3 and 4 indicate that the number of
iterations required in algorithm B to achieve approximately the
same performance is significantly less than the number of iterations
required in algorithm A. In particular, in Fig. 5 we have plotted the
log of the normalized mean square error é“ as a function of p
where é" is defined as

Ni1 o Nyl ,
1 X(Il »1L ) X (nlsnz) 2
& = b)) r ; ¥ P , (13)
NN, n;=0 n,=0 x %

where N; =N, =128, and o, and o}, are the standard deviations of
x(nl,nz) and x (nl,nQ) respectlvely This error criterion was chosen
since it is 1nvar1ant to scaling of either x or x.,. Note, in particular,

that the error decreases much more rapidly w1th the adaptive relax-
ation algorithm B. A similar result has been obtained in various
other examples.
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