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Iterative Techniques for Minimum Phase Signal 
Reconstruction from Phase or Magnitude 

Absstract-In this  paper, we  develop iterative  algorithms  for  recon- 
structing  a  minimum  phase  sequence  from  the phase or magnitude  of its 
Fourier  transform.  These  iterative  solutions involve repeatedly  impos- 
ing  a  causality  constraint  in  the  time  domain  and  incorporating the 
known phase or magnitude  function  in  the  frequency  domain.  This  ap- 
proach is the basis of  a new means  of  computing  the  Hilbert  transform 
of  the  logmagnitude  or  phase  of  the  Fourier  transform  of  a minimum 
phase  sequence which does not require phase  unwrapping. Finally, we 
discuss the  potential use  of this  iterative  computation  in  determining 
samples of the unwrapped  phase of a  mixed  phase sequence. 

U 
I. INTRODUCTION 

NDER certain conditions  a signal can be reconstructed 
from  a  partial specification in the time domain, in the 

frequency domain, or in  both domains. A minimum or maxi- 
mum phase signal, in particular, can be recovered from  the 
phase or magnitude of  its Fourier transform [l] . The conven- 
tional reconstruction algorithm involves applying the Hilbert 
transform to the log-magnitude or phase of the Fourier trans- 
form to obtain the unknown  component. 

In this  paper, we take an alternative approach by developing 
iterative algorithms for reconstructing a minimum (or maxi- 
mum) phase signal from  the phase or magnitude of its Fourier 
transform. Specifically, we develop algorithms which impose 
causality in  the time domain and  the given  phase or magnitude 
in the frequency domain, in an iterative fashion. 

Iterative algorithms similar to those we discuss here have 
been useful in a number of areas where partial information in 
the  two domains is available. In  particular,  the algorithms 
presented in  this paper are  similar in style to the Gerchberg- 
Saxton algorithm [2] and an iterative algorithm by Fienup 
[3] , in alternately incorporating partial information in the 
time and frequency domains. The Gerchberg-Saxton algo- 
rithm recovers a two-dimensional complex signal by iteratively 
imposing the  finite  extent of the signal in the space domain 
and its magnitude in  both the space and frequency domains. 
Similarly, Fienup's algorithm recovers a real two-dimensional 
signal by iteratively imposing the  finite  extent and positivity 
of the signal in  the space domain and its magnitude in  the  fre- 
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quency domain. Another  iteration in this same style recovers 
a  finite length mixed phase signal from  the phase of its Fourier 
transform by imposing a  finite length constraint  in  the time 
domain and the  known phase in the frequency domain [4]. 

In  this  paper, we  begin in Section I1 with  a discussion of a 
number of equivalent conditions  for  a sequence to be mini- 
mum phase. In Sections I11 and lV, we  use these conditions  in 
developing two iterative reconstruction algorithms for mini- 
mum phase signals, one for reconstruction when  the phase is 
known  and  the  other  for  reconstruction  when  the magnitude is 
known. 

In Section V, we  discuss the discrete Fourier transform 
(DFT) realizations of the algorithms and illustrate the  recon- 
struction process with examples. 

In Section VI, we propose the use of the algorithms of Sec- 
tions I11 and IV in implementing the Hilbert transform. Of 
particular importance is reconstruction of the log-magnitude 
from phase since the proposed iterative approach requires only 
the principal value of the phase, while the direct DFT imple- 
mentation of the Hilbert transform requires the unwrapped 
phase [5]. The proposed technique,  therefore, avoids prob- 
lems typical of phase unwrapping such as detection of the dis- 
continuities in the principal value  of the phase [l] , [6] . Also, 
in Section VI, we  suggest the use of this new approach to im- 
plementing the Hilbert transform as the basis for  a phase un- 
wrapping algorithm. 

11. THE MINIMUM PHASE CONDITION 
In general, a signal cannot be uniquely specified by only the 

phase or magnitude of  its Fourier transform. However, one 
condition under which the magnitude and phase are related is 
the minimum phase condition  and under this  condition a signal 
can  be uniquely recovered from  the magnitude of its  Fourier 
transform or to within  a scale factor,  from  the phase of its 
Fourier transform. In this section, we discuss a  number of 
equivalent conditions for a signal to be minimum phase. These 
conditions will be of particular importance in Section 111 in de- 
veloping the iterative algorithms. 

In the following discussion we restrict the z transform of 
the sequence h(n) to be a rational function, which we express 
in the  form 

Mi MO n (1 - ~ 1 )  rI (1 - b k z )  

H(Z) = AZno = k = 1  

Pi PO (1) n (1 - C k z - l )  n (1 - dkZ)  
k= 1 k = l  

where la,/, Ibkl, Ickl, and l d k l  are  less than  or equal to 
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unity, zno is a linear phase factor, and A is a scale factor. 
When, in addition, h(n) is stable, i.e., En Ih(n)l < 00, Ick 1 and 
Idk\ are strictly less than one. 

A complex function H(z) of a complex variable z is defined 
to be minimum phase  if it and its reciprocal H-’ (z) are both 
analytic for Iz I > 1. A minimum phase sequence is then de- 
fined as a sequence whose z transform is minimum phase. For 
H(z) rational, as in (2), the minimum phase condition excludes 
poles or zeros on or outside the  unit circle in the z plane or at 
infinity. As a consequence, the  factors of the  form (1 - bkz)  
corresponding to zeros on or outside the  unit circle and  the 
factors of the  form (1 - dkz)  corresponding to poles on or out- 
side the  unit circle  will not be present.  Furthermore,  in (l), 
no = 0 to exclude poles or zeros at infinity. Thus,  for H(z) 
minimum phase, (1) reduces to 

Mi n (1 - akz-’)  
k = l  

Pi 
H(z) = A  (2) 

rJ (1 - c k z - l )  
k = l  

where lak] and I ck I are both strictly less than  unity. 
From (2) other  conditions can be formulated for a signal to 

be minimum phase. Two conditions  in particular which we 
discuss  below are particularly useful in the  context of the  iter- 
ative algorithms to be discussed in Sections I11 and IV. 

Minimum Phase Condition A 
Consider h(n) stable and H(z) rational in the form of  (1) 

with  no zeros on  the  unit circle. A necessary and sufficient 
condition  for h(n) to be minimum phase  is that h(n) be causal, 
i.e., h(n) = 0, n < 0, and no in (1) be zero. 

From (2), it follows that these conditions are necessary. To 
show that  they are sufficient, we want to show that  they force 
(1) to reduce to (2). Clearly, factors of the form (1 - dkz) ,  
ldkl < 1 in the denominator introduce poles outside the  unit 
circle which would violate the causality condition since h(n) is 
restricted to be stable. With no = 0 in (l), factors of the form 
(1 - bkz)  would introduce positive powers of z in the  Laurent 
expansion of H(z), requiring h(n) to have some nonzero values 
for negative  values of n,  thereby again  violating the causality 
condition. Therefore, these factors  cannot be present and 
with no = 0, (1) reduces to (2). Finally, because our  condition 
assumes h(n) is stable and that H(z) has no zeros on the  unit 
circle, h(n) is minimum phase. 

The above minimum phase conditions require that h(n) be 
causal and that the unwrapped phase function have no linear 
phase component. Another slightly different set of necessary 
and sufficient conditions  for a signal to be minimum phase can 
be stated as follows. 

Minimum Phase Condition B 
Consider h(n) stable and H(z) rational in the form of (1) 

with no zeros on the  unit circle. A necessary and sufficient 
condition  for h(n) to be minimum phase  is that h(n) be causal, 
Le., h(n) = 0, n < 0 and h(0) = A  where A is the scale factor of 
(1 1. 

Again, from (2) it follows that these conditions are  necessary 
since (2) has no poles or zeros outside the  unit circle or at in- 
finity, guaranteeing causality, and from the initial value theo- 
rem h(0) = lim H(z) = A .  To demonstrate that these con- 
ditions are sufficient, we note  that again causality of h(n) will 
eliminate factors of the form (1 - dkz)  in the denominator of 
(1). Furthermore, since the conditions require that h(n) be 
causal, the initial value theorem can be applied with  the result 
that 

z + m  

h(0) = lim H(z) = lim AZno n (1 - 
Z ’ m  2’- k = l  

Since h(0) = A ,  

M ,  

and since Ibk 1. < 1  this requires that no = 0 and the bk’s be 
equal to zero. Thus, again (1) reduces to (2). 

Another condition which can  be shown to be equivalent to 
minimum phase condition A or B or our original definition of 
a minimum phase sequence is that  the log-magnitude and un- 
wrapped phase  of H ( a )  are related through the Hilbert trans- 
form [ l ]  . The Hilbert transform relation guarantees that  a 
minimum phase sequence can be uniquely specified from the 
Fourier transform magnitude and, to within a scale factor, 
from the Fourier transform phase. 

One technique for minimum phase signal reconstruction 
from phase or magnitude relies on a DFT implementation of 
the Hilbert transform [5]. In  the  next  two sections, we take 
an alternate approach which invokes an iterative computation. 
Motivated by the minimum phase condition A, when the phase 
is  given  we impose, in an iterative fashion, causality in the time 
domain and the  known phase in the frequency domain. When 
the resulting sequence satisfies minimum phase condition A 
and has  the given phase, it must equal h(n) to within a scale 
factor. Likewise, motivated by  the minimum phase condition 
B, when the magnitude is  given,  we impose, in an iterative 
fashion, causality and the initial value h(0) in the time domain, 
and the known magnitude in the frequency domain. When the 
algorithm results in  a sequence which satisfies minimum phase 
condition B and has the given magnitude, it must equal h(n). 

111. AN ITERATIVE ALGORITHM FOR SIGNAL 
RECONSTRUCTION FROM PHASE 

The iterative algorithm for reconstructing a minimum phase 
signal from its phase function is shown in Fig. 1. The function 
hk(n) represents the signal estimate on the kth iteration and 
& +  (n) = h&) u(n) where u(n) is the  unit  step  function. 
The function e,(u) is the known phase and M k +  (w) and 
r3k+l (a) are the Fourier transform magnitude and phase of 
h;c+ (n), respectively. 

The algorithm begins with  an initial guess Mo(w) of the de- 
sired Fourier transform magnitude and the inverse Fourier 
transform of Mo(u) exp [jeh(u)] is taken. This step yields 
h,(n), the initial estimate of h(n). Next, causality is imposed 
so that ho(n) is set to zero for n < 0 to obtain g,(n). The 
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Fig. 1.  Iterative algorithm to recover h(n) from  its  phase. 

phase of the Fourier transform of i l ( n )  is then replaced by 
the given phase and  the procedure is repeated. 

We now show that  the mean-square error between h(n) and 
hk(n)  or, equivalently, between their respective Fourier trans- 
forms, H ( o )  = Mh(o) exp [ je,  (a)] and &(o) =Mk(w) exp 
[jOh(w)] , is nonincreasing on successive iterations. The mean- 
square error on  the kth iteration  from Parseval's Theorem can 
be written as 

"x Ih(n)- ik+l(n)[ '* 
n 

Next, from Parseval's Theorem, we write (8) as 

-Mk+i(a)exp [ i e k + i ( ~ ) l 1 2  d o .  
With the triangle inequality for vector differences, we have at 

Therefore, from (9) and (lo), and  the  identity 

lexp [jeh(o)]  1' = 1:  

- Mk + 1 (a) exP [jeh(o)112 d o  

2g 1, IH(o)-Hk+l(o)1' do 

> E k +  1 * (1 1) 

l n  

Since Ek is, therefore, nonincreasing and  has a lower bound of 
zero, Ek must converge to a unique limit [7] . The nonincreas- 
ing nature of E,, however, is not sufficient to guarantee that 
the  iterates hk(n) converge. Nevertheless, Va  converging solu- 
tion  with a rational z transform exists, we  can show that 

where a! is a positive constant. 
To see this,  note  from (6), (7), and (10) that the  equality in 

(1 1) holds if and Only if hk(n) = h;, + 1 (n) = 0 for n < 0, and 
eh(o)  = ek + (0). Therefore, since O,(w) contains no linear 
phase component (i.e., no = 0), if hk(n) converges to a se- 
quence whose z transform is  of the  form in (l), the converging 
solution must satisfy the minimum phase condition A. Conse- 
quently,  the converging solution is minimum phase with phase 
eh(o ) ,  and (12) must hold.' 

When h(n) is  of finite  duration (i.e., H(z) has no poles), we 
can impose not only causality, but also a finite  duration  con- 
straint within the  iteration. Under these particular constraints, 
the  DFT realization of our iterative procedure (see Section V) 
always converges to a limit of  the form in (12) [8]. 

Iv. AN ITERATIVE ALGORITHM FOR SIGNAL 
RECONSTRUCTION FROM MAGNITUDE 

In this section we present ~ iterative algorithm for recon- 
struction of a minimum phase signal from  the magnitude of its 
Fourier transform. The algorithm is shown in Fig. 2. The 
function h&) represents the signal estimate on the kth itera- 
tion and & + (n)  is defined by 

'The  constant 01 in (12) is  constrained to be  positive  since a negative 
value introduces an additive  factor of II into the phase function. 
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F- I 

h k ( n l  

IMPOSE CAUSALITY 
AND h (01 

- 
I I h k ( n )  n > 0 

h t + l ( n )  = h ( O 1  n = 0 
0 n c O  

F 

M ~ + ~  ( w ) e x p  [,ek+, ( W I ]  

M k + l ( ~ I - - + M h ( ~ )  

I ~ , ( w ~ e x p [ j e , + , ( w ) ]  

Fig. 2. Iterative algorithm to recover h(n) from its magnitude. 

The function M h ( a )  is the known magnitude and Mk+ (a) 
and O k  + (a) are the Fourier transform magnitude and phase 
of & + (n), respectively. 

The algorithm begins with  an initial guess Oo(a) of the de- 
sired phase, and the inverse transform of Mh(a) exp [jeo(a)] 
is taken. This step yields ho(n), the initial estimate of h(n). 
Next,  on  the basis  of the minimum phase condition B, causal- 
ity  and  the  known value  of h(0) are imposed so that ho(n) is 
set to zero for n < 0 and set to h(0) for n = 0, to obtain il (n). 
The magnitude of the Fourier transform of i l ( n )  is then re- 
placed by  the given magnitude and the procedure is repeated. 

It has not been possible to show that  the mean-square error, 
as considered in Section 111, is nonincreasing for  this algo- 
rithm. However, an  error  function that is nonincreasing is the 
mean-square difference between the  known magnitude and the 
estimate M k ( a )  on each iteration, i.e., 

To show that Ek is nonincreasing, we first use the  identity 
lexp [ j O k ( a ) ]  1' = 1 to express Ek as 

1 "  
Ek = 4, I'h(a> - M k ( a ) 1 2  I exp [ i ek (a ) l I2  

From Parseval's Theorem, (15) is  given in the  time domain by 

Ek = Ihk(n) - $k(n)l2. (1 6) 
n 

From (1 3), it follows that 

" 
>' J p " ) - & + 1 ( 4 1 2  dm 

27l -" 
2 E k + 1 -  (2 1) 

Since Ek is nonincreasing and has a lower bound of zero, it 
must converge to a  limit  point [7] . 

As with  the algorithm in Section 111, although we have 
shown that  the  error Ek is nonincreasing, we have not shown 
that  the  iterates hk(n) converge.  However, ifthe iterates con- 
verge to a sequence whose z transform is rational with  no zeros 
on the  unit circle and which is  causal with initial value h(O), 
from the minimum phase condition B, the converging solution 
must be minimum phase. Consequently, if in addition  the 
magnitude of the Fourier transform of the converging solution 
equals Mh(w), the  solution is the unique minimum phase se- 
quence associated withMh(a), i.e., h(n). 

The convergence of hk(n) has yet  to be rigorously proven 
even when a finite length constraint is imposed within  the  iter- 
ation [8] . Empirically, however, we have found  the DFT real- 
ization of the algorithm to always converge. In  the  next sec- 
tion, we shall illustrate the convergence of h,(n) to h(n) with 
an example. 

V. REALIZATIONS OF THE ITERATIVE ALGORITHMS 
USING THE DFT 

Since the iterative algorithms will be implemented on a digi- 
tal computer, we  can compute  a Fourier transform at only a 
finite number of points.  In particular, we shall  use the DFT. 

One consequence of the DFT realization is that  our desired 
sequence h(n) must be of finite  duration. Imposing a  finite 
duration  constraint  within  the iterations, however, does not 
change the nonincreasing nature of the error functions, as can 
be  seen from (8) and (19). 

A second consequence of the  DFT realization is that only 
uniformly spaced samples of the phase and magnitude func- 
tions are available.  Nevertheless, it is again  possible to show 
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Fig. 3. Convergence  of h&) in example 1: (a) original, (b) 1 iteration, 
(c) 5 iterations, (d) 45 iterations. 

that the nonincreasing  nature of Ek is not altered when we use 
samples of thl: magnitudes  and  Fourier  transforms in the  ex- 
pressions for E,  in (5) and  (14) .[9] , [ 101 . 

Finally, questions  of convergence need to be  addressed. 
Consider first, minirhum phak reconstruction  from phase sam- 
ples.  When H(z) is constrained to have no conjugate reciprocal 
Zero pairs and no zeros on the. unit circle, a  unique  sequence 
h(n) of  length M (to  within  a scale factor) is guaranteed when 
given M - 1 or  more phase  samples  of Bh(w) in the  open fre- 
quency interval (0, T )  [9] . A minimum phase sequence, in 
particular, satisfies these constraints. Therefore,  the  DFT real- 
ization of the iterative algorithm to reconstruct a minimum 
phase sequence  from  its phase  samples can be implemented 
with  a  DFT of length N >  2M. Furthermore, this iteration 
will  converge to ah(n) for 0 <n < N  - 1 where a is positive 

Consider next,  the  dual  problem of  developing a  DFT real- 
ization of the iterative algorithm to recover a  minimum phase 
sequence  of lengthM from  a  magnitude  function. In this case, 
there exists only  one M point  sequence, i.e., the minimum 
phase sequence h(n) when h(0) is specified  along with M or 
more  uniformly spaced  samples of the  magnitude  in  the half- 
open  frequency interval [0, .) [lo]. Therefore,  a  DFTrealiza- 
tion of the  iteration  can  be  implemented  with  DFT  length N 2 
2M - 1. If the algorithm converges to a causal sequence of 
length M with initial value h(0) and  the  known  magnitude 
samples, the converging solution must  equal h(n) for 0 < n < 
N -  1. 

To iilustrate, we  now consider  two  examples  where the DFT 
length is 512 points, which is twice the  length of h(n). In  the 
first example, the initial magnitude guess is unity,  and in the 
second example the initial phase  guess is zero. 

Example 1: Signal Reconstncction from Phase 
Consider a 256-point  minimum  phase signal h(n) illustrated 

in Fig. 3.2 The phase is known  and we wish to reconstruct 

2The z transform of this signal consists of two complex  pole pairs 
and one  complex  zero pair all within  the  unit circle. For n > 256, 
h(n) has  decayed to effectively  zero. 

181 

0 1000 2000 3000 4000 
------c- 

H Z  

Fig. 4. Convergence of log IHk(w)l (in  decibels) in example 1:  (a) origi- 
nal, (b) 1 iteration,  (c) 5 iterations,  (d) 45 iterations. 
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Fig. 5 .  Convergence of hk(n)  in example 2: (a) original, (b) 1 iteration, 
(c) 5 iterations, (d) 25 iterations. 

h(n). The functions h,(n) and log [hfk(id)] are depicted  in 
Figs. 3 and  4 along with  the originals for k equal to  1,5, and 
45. The signal hk@) (to  within  a multiplicative constant)  and 
the  spectrum log [Mk(w)] (to within  an additive constant) are 
indistinguishable from the originals after 45 iterations. 

Example 2: Signal Reconstruction from Magnitude 
In this example, we consider  the sequence  of example 1, but 

where the  Fourier  transform  magnitude is  given. The  func- 
tions hk(n) and Bk(w) are depicted in Figs. 5  and 6 with  the 
originals for k equal to 1, 5,  and  25.  The  functions hk(n) 
and 13,(w) are indistinguishable from  the originals after 25 
iterations. 

VI. A BASIS FOR IMPLEMENTATION OF THE HILBERT 
TRANSFORM AND PHASE UNWRAPPING 

In this section, we propose  two  computational  algorithms 
based on  the procedures of Sections I11 and IV: 1) an iterative 
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Fig. 6 .  Convergence  of ek(w)  (in radians) in  example 2: (a) original, 
(b) 1 iteration, (c) 5 iterations, (d) 25 iterations. 

approach to computing the Hilbert transform, and 2) the po- 
tential use  of l )  as the basis of a phase unwrapping algorithm. 

For  a minimum phase signal, the log-magnitude and phase of 
the Fourier transform are related through  the Hilbert trans- 
form and  the direct implementation of the Hilbert transform 
using the  DFT has been extensively investigated [5] . One  dis- 
advantage of this implementation is that in computing the log- 
magnitude from the phase, samples of the unwrapped phase 
are required and are  often difficult to compute. 

An alternative to the direct implementation of the Hilbert 
transform exploits the iterative algorithms of Sections I11 and 
IV. When the phase  is  given, through the use of the algorithm 
in Section 111, ah(n) is first obtained  from  the phase and, in 
particular, does not require samples of the unwrapped phase. 
From ah@) the log-magnitude of orH(w), representing the Hil- 
bert transform of the phase to within an additive factor is then 
computed.  Furthermore,  with a fixed DFT length, by increas- 
itig the number of iterations we can come arbitrarily close to 
samples of the log-magnitude. The direct approach, on the 
other  hand, requires an increase in the DFT length for  an  in- 
crease  in accuracy [l ] , [6] . 

A similar procedure can, of course, be applied through the 
use  of the iterative algorithm in Section IV to implement the 
Hilbert transform of a given log-magnitude function. If h(0) is 
not known a priori [recall (13)] , it can be obtained (at least in 
theory) from the magnitude, although in practice h(0) can  be 
computed only approximately [l]  . However, it was found 
empirically that  the  iterates always converge to h(n) when 
only causality is imposed in the time domain (i.e., h(0) is  as- 
sumed unknown) and  the initial phase e,(w) is set to zero. 

This indirect approach to computing the Hilbert transform 
suggests a  potential alternative to available  phase unwrapping 
algorithms [1] , [6] . Let O(w) denote  the desired unwrapped 
phase of the Fourier transform H(w) and O,(w) its value 

2) Apply the iterative algorit+ of Section I11 with a causal- 
ity constraint and with phase t9,(w) to obtain  a minimum 
phase sequence hmp(n). 

3) Compute log (Hmp(o)I where Hmp(o)  is the Fourier 
transform of hmp(n). 
4) Apply the Hilbert transform to log IHmp(w)l to obtain 

the unwrapped phase function B(w) - now. 
5) Add the linear phase component to obtain  the desired 

unwrapped phase. 
Of particular interest is step 2 which yields the same mini- 

mum phase sequence h,,(n) that would be obtained by a Hil- 
bert transform of the unwrapped phase,  but bypasses the need 
for phase unwrapping. This algorithm has performed success- 
fully on  a  number of simple mixed-phase :sequences (i.e., two 
and  three poles and/or zeros) when the linear phase compo- 
nent was known  exactly.  Furthermore, it yielded the  correct 
phase function when poles and zeros were placed close to the 
unit circle. 

There are several potential difficulties in  the use of this algo- 
rithm.  First,  the minimum phase sequence hmp(n) derived 
from the  iteration is of infinite extent regardless of whether 
the original sequence h(n) is of finite duration [lo] . There- 
fore,  a possible problem with aliasing  arises. The DFT length 
must be sufficiently large so that  the minimum phase se- 
quence h,,(n) decays effectively to zero. In particular, when 
hmp(n) = 0 for n >M,  the DFT length, from our discussion in 
Section V, should be at least 2M. 

One possible procedure for removing the effects of aliasing 
invokes the principal value  of the phase t9,(w) in a style simi- 
lar to that in [6]. In particular, we might consider adding a 
step 6 of the following form.3 

6 )  At each frequency,  subtract 2n from the unwrapped 
phase estimate until  the result is between -n and n. Then add 
this multiple of 2n so found to the principal value of the origi- 
nal phase function Bp(w). This will  give an unwrapped phase 
free of the aliasing errors  introduced in the iterative process. 

A second potential difficulty is the requirement that the 
linear phase factor of H(z) be known.  Often, a priori knowl- 
edge  of such a factor is difficult to obtain. One means of ob- 
taining a linear phase estimate is to numerically integrate the 
phase  derivative [I]  . The sensitivity4 of our proposed phase 
unwrapping algorithm to deviations from the  true linear phase 
in such an estimate is  an  area which needs to be explored if a 
practical algorithm is to evolve. 

VII. SUMMARY AND CONCLUSIONS 
In  this paper, we  have developed iterative algorithms for re- 

constructing a minimum phase sequence from either the phase 
or magnitude of its Fourier transform. When the phase  is 
known,  the mean-square error between the desired Fourier 
transform and its estimate was  shown to be nonincreasing on 
successive iterations. Likewise, when the magnitude is  given, 

modulo 2n’ Furthermore, that the linear phase ‘Om- 3The authors acknowledge with  thanks  this suggestion  by Dr. R. W. 
ponent of H(w), i.e., no in (l) ,  is known. The proposed phase Schafer. 
unwrapping algorithm proceeds as follows. 4When the residual  linear  phase  is  negative (so that no in zno is  nega- 

1) R~~~~~ the linear phase component to obtain the  prin- tive), a causal  converging solution of the form in (1) derived from step 

CiPal value of the phase  of H(w) exp [-inowl 7 denoted  by ber of zeros outside  the unit circle cannot be greater than In,,/. When 
2 of our proposed algorithm will  be  mixed  phase. In this case, the num- 

e ^ p W  
- 

no is positive, no causal  converging solution of the form in (1) can exist. 
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on successive iterations  the mean-square error between the 
known magnitude and  its estimate is nonincreasing. In addi- 
tion, we noted  that convergence  of the  iteration  with  known 
phase samples (i.e., the DFT realization) has been demon- 
strated,  but convergence of the  iteration  with magnitude sam- 
ples has been observed only empirically. 

Finally, we suggested two  computational algorithms based 
on the iterative procedures: 1) a new means of implementing 
the Hilbert transform which avoids the need of  an unwrapped 
phase, and 2) a new procedure for phase unwrapping. 

The iterative algorithms, as presented, rely on  exact knowl- 
edge of the magnitude, phase, and  the initial value of the de- 
sired signal. Sensitivity to the inexactness of these quantities, 
to quantization noise, and  other forms of degradation is  not 
understood  and is an  important area for  future research. 

In practice, we  have found  that  the iterative algorithms con- 
verge sometimes slowly (e.g., after several hundred iterations) 
and sometimes quickly (e.g., after a few iterations). Conse- 
quently, determining rates of convergence in terms of charac- 
teristics of the minimum phase signal and initial magnitude or 
phase estimates, and  methods of speeding up convergence need 
to be explored. 

Another area being considered is the interchange of the sig- 
nal reconstruction problems. In particular, we have found 
empirically that  when Mh(o) and Oh(o) are interchanged 
through j log H(o), a slightly modified version of the iterative 
algorithm of Section 111, requiring a phase function, wiu re- 
cover h(n) from  its magnitude. Likewise, when the phase is 
known, h(n) is recovered by a procedure similar to the  itera- 
tion  in Section IV which requires a magnitude function. These 
results have led to some interesting theoretical speculations 
about  the duality of the reconstruction problems and their 
iterative solutions. 
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