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Efficient Rational Sampling Rate Alteration
Using IIR Filters

Andrew I. Russell

Abstract—The problem of changing the sampling rate of a signal
by a rational factor of L=M is discussed. It is shown that infinite
impulse response (IIR) filters can be efficiently implemented using
the polyphase decomposition. The computational cost of the recur-
sive and nonrecursive parts of the interpolation filter are consid-
ered separately, and a gain in efficiency of a factor ofLM=(L +
M � 1) is achieved for the recursive part. This gain is only signif-
icant when bothL andM are larger than one.

Index Terms—IIR filters, multirate signal processing, polyphase
decomposition, rational sampling rate converter.

I. INTRODUCTION

SAMPLING rate conversion is the process of taking a se-
quence,x[n], which is associated with a sampling rate,fx,

and converting it to another sequence,y[n], which is associated
with a different sampling rate,fy . In other words, if we have
x[n] which could have been obtained by sampling a particular
bandlimited continuous-time signal at a rate offx, theny[n]
could also have been obtained by sampling the same signal at a
rate offy . This letter deals specifically with rational sampling
rate conversion, so the conversion ratiofy=fx = L=M , where
L andM are relatively prime integers.

A. Notation and Definitions

The notation and terminology used in this letter follows
Vaidyanathan [1]. We utilize only type-1 polyphase decom-
position, so all polyphase components referred to should be
assumed to be of type-1. Fig. 1 summarizes the identities for
multirate systems which are used here.

B. Problem Statement

In its simplest form, a rational sampling rate converter can be
represented by the system in Fig. 2, whereH(z) is the system
function of a low-pass filter, with a cut off frequency!c =
minf�=L; �=Mg.

We wish to findH(z) such that its frequency response ap-
proximates an ideal lowpass filter to within some given spec-
ification, and which requires the least amount of computation
when implemented.
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Fig. 1. Identities for multirate systems.

Fig. 2. Simplistic system for rational sampling rate conversion.

C. Background

Generally,H(z) is chosen to be finite impulse response (FIR)
because it is known that FIR filters can be implemented very
efficiently using the polyphase decomposition, as described by
Vaidyanathan [1]. Bellangeret al. [2], [3] as well as Crochiere
and Rabiner [4] have discussed the use of infinite impulse re-
sponse (IIR) filters for sampling rate conversion, but they did
not explicitly consider the case of rational noninteger conver-
sion. We will show that this is the only case in which there is a
gain in efficiency over the direct implementation for the recur-
sive part.

II. THE EFFICIENT IMPLEMENTATION

Let us consider an IIR filter with rational transfer function,
H(z). In the most general sense,H(z) is given by

H(z) =

NZX
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and hasNZ zeros andNP poles. The number of multiplies
needed to calculate one sample ofy[n] (multiplies per output
sample,or MPOS) using the direct implementation isM (NZ +
1) +MNP .

We now use the substitution

1� �iz
�1
�

1� �i
Dz�D
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k=0

�ikz�k

(2)

for each of theNP poles inH(z), with D = L for NL of the
poles, andD = M for NM of the poles, whereNL + NM =
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Fig. 3. H(z) replaced by a cascade of three filters that operate at different
rates. This system is equivalent to the system shown in Fig. 2.

NP . This will increase the numerator order byNL(L � 1) +
NM (M � 1), soH(z) is now

H(z) =

NNX

k=0
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�k

NLY

k=1

(1� 
kLz�L)
NMY

k=1
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whereNN = NZ+NL(L�1)+NM (M �1), and each� now
becomes a
 or a�. This can be viewed as the cascade of three
filters:

1) HN (z), which is the numerator part and thus FIR;
2) HL(z

L), which includes the part of the denominator that
is only a function ofzL;

3) HM(zM ), which includes the part of the denominator that
is only a function ofzM :

This cascade is shown in Fig. 3.
The identities from Fig. 1 can then be used to com-

mute HL(zL) with the interpolator and to commute
HM(zM ) with the decimator.HN (z) can then be re-
placed by its LM -component polyphase form, so that
Ek(z) is the kth polyphase component ofHN (z), i.e.,
Ek(z) is the z-transform ofek[n] = hN [LMn + k]. Since
HN (z) =

P
LM�1

k=0
z�kEk(z

LM ), we can replaceHN (z) with
a parallel structure where each branch is a term in the sum.
Then, for thekth term,z�k can be replaced byz�LkazMkb,
whereLa �Mb = 1, anda andb are positive integers. Such
an a and b always exist sinceL andM are relatively prime.
Applying the identities and exploiting the commutivity of
relatively prime interpolators and decimators [1, Sec. 4.2],
gives the system shown in Fig. 4.

WhenH(z) is implemented using this structure, the number
of MPOS required isNM + (1=L)(NN + 1) + (M=L)NL =
(1=L)(NZ + 1) + ((L +M � 1)=L)NP . This gives a savings
of a factor ofLM for the numerator and a factor ofLM=(L +
M � 1) for the denominator. The gain in efficiency is the same
regardless of how many poles ofH(z) are assigned toHL(z)
and how many toHM(z). However, complex-conjugate pole
pairs should not be separated since this would make the filter
coefficients complex.

III. EXTENSION TO PREVIOUS WORK

The substitution (2) was known by Bellangeret al. [2].
Also, the efficient implementation for the FIR part,HN (z),
was known by Vaidyanathan [1], and in a different form,
by Bellangeret al. [2], [3], and Crochiere and Rabiner [4].
However, in [2]–[4] the IIR case was never explicitly analyzed
for rational conversion. Only integer interpolation,M = 1,

Fig. 4. Structure used for the efficient implementation ofH(z). This system
is equivalent to the system shown in Fig. 3.

and integer decimation,L = 1, were analyzed. This means
thatLM=(L +M � 1) = 1, and so there is no computational
savings for the recursive part. Also, in [2] and [3] it is assumed
thatNZ = NP . This leads to the misleading conclusion that
the computation cannot be reduced beyond half of that for the
direct implementation (see [2, p. 113] and [3, p. 281]). The
value of a half comes from the fact that the computation for
the recursive part stays the same, while the computation for
the nonrecursive part is drastically reduced. However, we have
shown that when bothL andM are larger than one, then there
is a gain in efficiency for both the recursive and nonrecursive
parts.

IV. CONCLUSION

It was shown that IIR filters that can be designed by well-
known methods can be efficiently implemented for the case of
a rational sampling rate converter. There is a gain in efficiency
over the direct implementation by a factor ofLM for the numer-
ator and a factor ofLM=(L+M�1) for the denominator, where
L=M is the conversion ratio. This approach is suboptimal, but
is useful in practice because the design of the filter is relatively
easy compared to methods for designing optimal multirate fil-
ters.
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