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Effects of FFT Coefficient Quantization on Sinusoidal Signal Detection
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Detection of a sinusoid of unknown frequency in wide band
noise is performed efficiently by the FFT. The detector performs
a hypothesis test on the magnitude of the FFT output. When
the FFT is implemented, errors due to arithmetic roundoff and
coefficient quantization limit the accuracy of the transform and
degrade the detection performance. When the FFT is used as a
detector of an unknown sinusoidal signal, the coefficient quanti-
zation error is significant and increases with the FFT length. We
analyze the decimation in time, radix-2 FFT. The FFT output
error is defined to be the maximum magnitude of the difference
between the true FFT and the FFT computed with the quan-
tized coefficients. An upper bound on the error is derived by
a deterministic analysis and is verified to be close to the actu-
ally measured error. Using the functional form of the bound and
scaling it to fit the measured error, an empirical formula for the
error is derived. The probability of detection of the quantized-
coefficient FFT is computed using the empirical error formula.
The probability of detection curves are presented as a function of
the FFT length. The simulations indicate that when a sufficient
number of bits is used to quantize the coefficients, the probability
of detection does not significantly degrade.

1 Introduction

The problem of detecting a weak sinusoid in wide band noise
from a received signal of long duration arises in many different
contexts, such as the detection of gravity waves|1] and the search
for extraterrestrial intelligence(2]. The detection of an unknown
complex sinusoid can be performed by applying hypothesis test-
ing to the magnitude of the DFT. The maximum likelihood esti-
mate of the unknown frequency corresponds to the frequency bin
with the largest magnitude. Since the DFT effectively operates as
a bank of matched filters in which the data length corresponds to
the integration time, the probability of detection of the sinusoid
increases with the transform length. In detecting gravity waves
or searching for extraterrestrial intelligence, transform lengths of
216 or longer are often required.

In implementing these transforms using the FFT, errors due
to arithmetic roundoff and coefficient quantization limit the ac-
curacy of the transform and degrade the detection performance.
The effect of arithmetic roundoff on the FFT has been analyzed
and is well documented|[3,4]. In the context of detection of an un-
known sinusoidal signal, arithmetic roundoff can be represented
as additive white noise in the transform output. Analysis of co-
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efficient quantization on detection performance is less straight-
forward and is analyzed in this paper. Specifically, we develop a
deterministic bound on the error in the transform, which is then
used in conjunction with experimental measurements of error to
obtain an empirical formula for the error in the output of the
FFT due to coefficient quantization.

A brief summary of detection of a complex sinusoidal signal
using the DFT is presented in Section 2. Section 3 presents a
deterministic, worst case analysis of the FF'T output error due
to coefficient quantization. We analyze two different implemen-
tations of the decimation in time, radix-2 FFT. The first imple-
mentation uses a table of precomputed coefficients and the second
implementation computes the coefficients recursively. In Section
4, the degradation in probability of detection resulting from co-
efficient quantization is presented. In Section 5, we summarize
our conclusions.

2 Detection of Complex Sinusoidal Sig-
nals using the DFT

In discussing the detection of a complex sinusoid in additive white
Gaussian noise(WGN), the following model for the received sig-
Ae?™ 4 w(n)  if signal exist
w(n) if signal is absent
where A and wp are unknown and w(n) is zero mean WGN. For
this signal model, the DFT performs as the matched filter for
each discrete frequency[5]. The maximum likelihood estimate of
wo is the DFT bin with the largest magnitude, if wp is a multiple
of 2216,7).

With X (k) denoting the DFT of z(n) so that

nal, z(n), is used: z(n) =

N-1
X(k)= 3 e(m)Wx" (1)
n=0

where W,’\‘," = e TFF and with the assumption that wy = %’kg,
where ko is an integer, the probability density function for the
magnitude of X(k) is

2Tz ifk+k
p(z)={ wge ) ey

oz lo()e” e u(z) itk =k

where 2z = /X2 +X'2, Io(.) is the modified Bessel function of
zeroth order and u(z) is the unit step function. The probability
density function of the magnitude is Rayleigh for k # ko and
Rician for k = kq[8].



The density functions for k = kg and k # ko are increasingly
disjoint as N increases and the probability of detection increases.
The probability of detection, denoted Pp, and the probability of
false alarm, denoted Pr, are derived using (2) and are given by

Pp;/ —-—e 2~u2dz
and - 4 . .
z 2A. _24aN)
PDZ/,7 Wfo(ﬁ)e aNe? dz 3

where 7 is the threshold. For constant false alarm rate, the
threshold value is n = \/—2No2In(Pr). Therefore, when Pr is
fixed, Pp increases as N increases. However, in the presence
of coefficient quantization, the error in the transform output in-
creases with increasing N. In the next section, we derive a bound
on this error, which we then use in Section 4 to derive the proba-
bility of detection as a function of N with coefficient quantization.

3 Coefficient Quantization Noise

Analyses of coefficient quantization effects have been presented
by other authors [9,10,11,12,13]. In the following discussion, we
consider the decimation in time, radix-2 FFT algorithm. The
Wk, for p = 0,1,--+, & — 1, can be either
precomputed and stored in a table, or recurswely computed at
each stage of the FFT computation. In the recursive implemen-
tation, only logy N complex values must be stored for use as the
initial values of the recursion. For large N, this results in signifi-

required coefficients

cant savings in storage. However, as we show, using a table of %
precomputed coefficients is more accurate than using recursively
computed coefficients.

In the decimation in time FFT, the coefficients W§* in (1)
are realized through combinations of coefficients assocmted with
smaller length DFT. Specifically, it can be shown that for the
decimation in time algorithm, (1) is effectively replaced by

= kb kb kb M-l
X(k) — z z(n)W HnW 1n2 _“WNM—l.n (4)
n=0
where M = logy N, 1t = bgntbyn2++ +bar-1,n2M 71, and b =

Oorlfor:=0,1,--- M-1 (16 (bM»l,nbM—Z,n i bl,nbO,n) is the
binary representation of n). When the coefficients are quantized,
(4) becomes

N-1

3 2(n)(WR" +eop) -

n=0

kbpg_y  2M 1
U7 S

X(k) = +er-1) (5)
where the difference between the true and the quantized coeffi-
cients is denoted by ¢, ;. Because there is no quantization error
in representing 1 or —1, epr— 3, =0

In analyzing the error, it is convenient to use matrix no-
tation. Specifically, we express (1) as X = Fz where z =
(2(0),2(1), -+, 2(N = 1)7, X = (X(0), X(1),+--, X(N - )T
and F is the N x N matrix of coefficients with (kn)* element
Jin = WP Correspondingly, (5) is written as X = Fz where
F is formed by the quantized coefficients and an error vector is
defined ase=X-X = (f‘ — F)z. We choose the maximum FFT
output error over all frequency bins as the measure for determin-
ing the degradation of the probability of detection of a sinusoid.
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Therefore, the error measure used is the infinity norm of e:

llelloo = max [e(k)| (6)
where e(k) = X (k) — X(k). To derive an error measure which is
independent of the input z, we use the inequality

l|Avlloo < [[Alloll2/loo ™M
where A is a matrix, vis a vector, and the matrix norm is de-
fined as ||Allc = maxy Y N_!|akn|. Using (7), we then have
max; |e(k)] < HI:" F|lsolizl|co- The (k,n)™* element of the dif-
ference matrix (F — F)n is

N kb n _in2M-1
(F=Fln = W tegp)e - (WEM22"7 4 ey 10 -
W“u n ka, w2, VV]I:II’M—I.n"v'M_l (8)

Precomputed coefficients: First, we consider using a ta-
ble of % precomputed coefficients. Each coefficient W is quan-
tized such that |e; x| < V2A where A is

size.

3 of the quantizer step
We assume that |e; k| is small enough such that second
and higher order error terms in (8) can be ignored. With this

approximation, (8) becomes

. Kby R kbpg—y n2M-1
(F= Flin ~ bopeop(Wy "Wyt om0y
by g (Wt Bant gy Ba-1a?™T
n N N
kb " kbpg_on2M—2
M1 -1k (Wy " - - Wy ™M™ ) (9)

Applying the triangle inequality to (9) and using the fact that
lei k] < V2A and ep- 1,k = 0, we can write that

[(F = F)in] € V2A(bop + b1+ +brr-z,s)

Consequently,

IF = Flloo = max Z|(F F),m|<\fAZbon+ “+br-zn

n=0 n=0

As n ranges from 0 to N — 1, b; , for each ¢ will be one for half
the terms and zero for the remaining half. Consequently, since

= logy N, ||F — Fliew < v28% (logy, N — 1). Therefore, the
maximum magnitude output error (6) of the quantized-coefficient
FFT using a table of % values is bounded by

max le(K)] < V2AT (logy N ~ Dl (10)

Recursively computed coefficients:  Next, we derive
the error bound for the FFT output for which the coefficients
are computed recursively using log2 N stored initial values. At
the i** stage, the initial value Wi M is used to generate all the
However, because W]f,M—'
is quantized, recursive computation increases the FFT output
error. We assume that the quantization error for the initial
value W} M ks lei1] < V2A. As the recursion is used to com-
pute the next coefficient, the coefficient quantization error in-
creases linearly. For example, assuming that ||| < 1 and

required coefficients for that stage.

using the triangular inequality, the error in computing W;," is
|WE + ) (WE +ep) ~WEWE & ||2¢,Wh || < 24/2A If L terms
of quantized Wy s are multiplied, the error is bounded approxi-
mately by Lv/2A because we assume that the quantization step



size is small enough to ignore non-linear error terms.

Again, applying the triangular inequality to (9) [|F - F|lec =
maxg SN bonleo k] + -+ bar—1nlerr—1,4]- The error |e x| ob-
tains its maximum when k = ¥ —1 such that |¢, u I < \/_A(ﬂ'
1%"1,%-1‘ < ﬂA(% — 1), etc. Because b;,, = 1 for & terms

only and log, —1 terms are summed || — Ffloo < vV2AZ (¥ +
% +---+ 1) — M). Therefore, the maximum magnitude output
error, (6), of the quantized-coefficient FFT using a recursion is
bounded by

(11)

max [le(K)) < VEA (N = 1~ logy N)lele
The error of the FFT output is proportional to Nlog, N, as
shown by (10}, when the table of coefficients is used. The er-
ror of the FFT output is proportional to N?, as shown by (11),
when the recursion is used. Therefore, although more storage is
required, using a precomputed table of coefficients proves to be
more accurate.

To verify and measure the closeness of the above derived
bounds to the exact FFT output error, (10) is checked by comput-
ing e explicitly for z = (1,e/%0, .-, e/0(N=INT The result of the

log, MEASURED | BOUND | PREDICTED

1 0 .0 .086

2 011 .011 .091

3 .022 .044 107

4 071 132 147

5 .201 .353 .249

6 .536 .883 .494

7 1.228 2.122 1.064
8 2.603 4.949 2.368
9 5.567 11.313 5.301
10 11.360 25.455 11.818
11 26.284 56.568 26.158
12 58.228 124.450 | 57.443

Table 1: |le|joo values
simulations employing an 8 bit uniform quantizer is shown in Ta-
ble 1. The values under MEASURED are obtained by explicitly
searching for the maximum error. The upper bound predicted by
(10) is listed under BOUND. These simulations indicate that the
predicted bound is approximately twice the actually measured
values. This suggests that the bound can be scaled to predict
the FFT output error. We use the functional form of the bound
and incorporate the measurements to derive an empirical formula
for the FFT output error. By minimizing the squared error, we
solve for & and # to fit a linear model:
N

AE(logz N — 1) + 8 = measured ||¢]|oo (12)
The least squares solution is « = .65 and # = .08. The values un-
der PREDICTED are computed using (12). There is an excellent
agreement between the predicted and the measured values par-
ticularly for larger value of N. To check the bound for even larger
FFT, the error for an FFT of length 2® is computed. Because
the FFT length is rather large, our search for wo was limited to
a small frequency range. The search for the maximum resulted
in |le]lo = 1356.65. The upper bound given by (10) is 2715.3
and ||€f|co is predicted to be 1251.45 by (12). Figure 1 plots the
measured ||¢|co, the predicted (12), and the bound (10) for 8 bit
uniform quantizer.
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4 Probability of Detection

The FFT output error due to coefficient quantization degrades
the probability of detection. Each FFT bin has the probability
of detection as given by (3). Because the FFT effectively imple-
ments a bank of matched filters, the definitions of the probability
of detection and the probability of false alarm are modified. We
define the probability of detection over all FFT bins, denoted
Py, as deciding that a signal exist at k = kq. The probability of
false alarm over all FFT bins, denoted Py, is defined as deciding
that a signal exist at k # ko where the frequency of the signal is
wy = N T ko. )
The quantized-coefficient FFT for input Ae’*"" + w(n) is
given by
X(k)=

z Ae’w""W"”+ Z

T kn
WN

where WE" denotes the quantized coefficients shown in (5). If the
coefficients have no quantization error then YN - Ae/vonWkn =
ANGS(k — ko). Let 2 = |X(k)|. For k # ko, | SN=3 AemWhr| <
All€l|co- We assume the equality for a conservative P, estimation.

Therefore the probability density function of 2 is

2+ Alelld

( 2No?

p(2) = AHEHoo)exp( o )
For k = ko, Hzf L Acion R > AN — flelloo)-
choose the equality for a conservative estimate of P;. Therefore

the probability density function of 2 becomes

Again we

z 2% 4+ A%(N - |lelloo)?

z

P(2) = g ol g AN = o)) exp(~ 2 L=l o)
The probability of false alarm over all FFT bins is
_ % z H 2+ A%ell?, . .
Pro= [T gl exp(- g s
Alle
= Q lello 7 ) (13)

VNo 'VNo

where Q(.) is the Marcum’s Q-function[14]. The probability of
detection over all FFT bins is



Fa = ./,,WNEEIO(TVE‘,‘:A(N*IMIOO))
i Ol I

-exp( 2N )d2
_ oA~ ldle) n
- QAN _lde) 2, (19

We use the empirical formula (12) derived by assuming an 8
bit uniform quantizer in (13) and (14). Figure 2 shows Py, given
by (14), as a function of FFT length. It is generated using A =
0.1, 0% = 1.0, and a constant false alarm rate of Py = 0.01, given
by (13). This figure indicates that even though the error ||e]|co
increases as the data length increases, P; improves also. The
simulation shows that 8 bit quantization only slightly degrades
the probability of detection.

5 Conclusions

We derived a bound for the FFT output error when the FFT co-
efficients are quantized. This deterministic analysis demonstrates
that using a table of precomputed coefficients is more accurate
than recursively computing the coefficients. Simulations were
performed to verify the bound. We used the measured values to

P
1. T

~liogn

Figure 2: P;vs N

scale the bound to to derive an FFT output error prediction for-
mula. Using the error formula, the probability of detection and
the probability of false alarm were derived. We showed that if
the coefficients are quantized using a large number of bits, for in-
stance 8 bits, then the degradation in the probability of detection
is minimal.
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