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Abstract

The sampling of continuous-time signals based on local bandwidth is considered in this the-
sis. In an intuitive sense, local bandwidth refers to the rate at which a signal varies locally.
One would expect that signals should be sampled at a higher rate in regions of higher local
bandwidth, and at a lower rate in regions of lower local bandwidth. In many cases, sampling
signals based on local bandwidth can yield more efficient representations as compared with
conventional uniform sampling, which does not exploit local signal characteristics.

In the first part of the thesis, a particular definition for a linear time-varying lowpass
filter is adopted as a potential model for local bandwidth. A sampling and reconstruction
method permitting consistent resampling is developed for signals generated by such filters.
The method does not generally result in perfect reconstruction; however, the reconstruction
error is shown to decrease with the variation in the cut-off frequency of the filter. Moreover,
perfect reconstruction does result for a special class of self-similar signals.

In the second part of the thesis, a definition for local bandwidth based on the time-
warping of globally bandlimited signals is reviewed. Using this definition, a method is de-
veloped for sampling and reconstructing signals according to local bandwidth. The method
employs a time-warping to minimize the energy of a signal above a given maximum fre-
quency. A number of techniques for determining the optimal time-warping are examined.

Thesis Supervisor: Alan V. Oppenheim
Title: Ford Professor of Engineering
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Chapter 1

Introduction

1.1 Motivation

Continuous-time signals are traditionally sampled uniformly to obtain a discrete-time rep-

resentation. The theoretical basis for uniform sampling is provided by the classical uniform

sampling theorem (see [1] for a general discussion), which states that a continuous-time

signal with a maximum bandwidth of 2W cycles per second is completely determined by

its samples taken 1/2W seconds apart. The signal is reconstructed from its samples using

bandlimited interpolation. Specifically, a signal x(t) bandlimited to [−W,W ] cycles per

second can be expressed as

x(t) =
∞∑

k=−∞
x

(
k

2W

)
sin(2πWt− kπ)

2πWt− kπ
. (1.1)

For non-bandlimited signals, it is a common practice to process the signal with an anti-

aliasing lowpass or bandpass filter before sampling, at the cost of some distortion.

For many classes of signals, however, uniform sampling may not yield as efficient a rep-

resentation as alternative sampling methods. The uniform sampling theorem only assumes

knowledge of the bandwidth of the signal. If more detailed information about the signal

is available, it is often possible to design sampling strategies that exploit the additional

information. For example, if a signal x(t) can be expressed as an expansion involving its
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samples x(tk) and basis functions ϕk(t),

x(t) =
∞∑

k=−∞
x(tk)ϕk(t), (1.2)

then x(t) is completely specified by the samples x(tk). In particular, the sampling times tk

need not be uniformly spaced, and x(t) need not be bandlimited.

In this thesis, we specifically consider sampling based on the concept of local bandwidth.

For the purposes of the present discussion, the term local bandwidth refers to some measure

of the rate at which the signal varies locally, e.g. within a nearby interval. Intuitively, we

would expect that a signal should be sampled at a higher rate in regions where it varies more

quickly, and at a lower rate where it varies more slowly. The intuition leads to a generally

non-uniform sampling in which the sampling rate is adapted to the local bandwidth.

As an example, consider sampling the linear frequency-modulation (FM) signal shown

in Figure 1-1. FM signals are typically described in terms of an instantaneous frequency,

i.e. the instantaneous rate of oscillation, which in our example increases linearly with time.

In the upper panel of Figure 1-1, we illustrate a uniform sampling of the signal. Since linear

FM signals are not bandlimited except in degenerate cases, it is not possible to attain perfect

reconstruction using bandlimited interpolation. We observe that the number of samples per

cycle decreases as the instantaneous frequency increases, so intuitively we would expect a

bandlimited reconstruction to be less accurate where the signal varies more quickly. In the

lower panel, the signal is sampled non-uniformly at a rate proportional to its instantaneous

frequency, which we interpret as its local bandwidth. In this case, the number of samples

per cycle remains approximately constant. Given that the total number of samples taken

is the same in the two approaches, we may reasonably expect the second to yield a more

efficient representation.

FM signals arise in a number of contexts, including FM radio and radar waveforms

[2]. Many other classes of signals lend themselves to a characterization in terms of local

bandwidth. For example, natural images are often decomposed into uniform regions, corre-

sponding to lower local bandwidth, and edges and textures, corresponding to higher local

bandwidth [3]. Music can also be thought of as possessing a local bandwidth that depends

on the pitches present in a given time interval. For instance, the highest harmonic frequency

with significant energy may be taken as the local bandwidth at each point in time.
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Figure 1-1: Example of a linear FM signal sampled uniformly (upper panel) and non-
uniformly according to local bandwidth (lower panel). The number of samples is the same
in both cases.

Although the intuition behind sampling according to local bandwidth is seemingly rea-

sonable, more effort is required in developing the underlying theory. In particular, a mathe-

matical definition of local bandwidth is not straightforward because it restores time locality

to the concept of bandwidth, a quantity that is by definition completely non-local. A central

aim of the thesis is to formulate a definition for local bandwidth, thus providing a frame-

work for the development of sampling and reconstruction strategies. These strategies may

be applied to signals that are well-characterized in terms of local bandwidth as possible

alternatives to uniform sampling.

1.2 Desirable properties of a definition for local bandwidth

In this section, we summarize some properties that a definition for local bandwidth should

possess. These properties will provide a basis for evaluating potential definitions.

A signal is said to be globally bandlimited if it has a finite global bandwidth, in which

17



case the uniform sampling theorem provides an exact reconstruction from uniform samples

of the signal. Generalizing, we refer to a signal as locally bandlimited if its local bandwidth

is finite and if it can be perfectly reconstructed from its samples. The locations of the

sampling times should depend upon the local bandwidth, i.e. they should be more closely

spaced in regions of high local bandwidth, and vice versa. In the context of sampling, it is

highly desirable to have a perfect reconstruction property for locally bandlimited signals.

If a definition does not allow perfect reconstruction for an appropriately defined class

of locally bandlimited signals, it should still have the property that the reconstruction

error decreases as the variation in local bandwidth becomes more gradual. In the limit of

constant local bandwidth, the signal should also be globally bandlimited and hence exactly

reconstructable using the uniform sampling theorem. Accordingly, if the local bandwidth

is approximately constant, we expect the reconstruction error to be small.

The choice of sampling grid and reconstruction should permit consistent resampling. In

other words, if x̂(t) is the reconstruction from samples x(tk), k ∈ Z of the original signal

x(t), then x̂(tk) = x(tk) at the sampling instants tk even if x̂(t) �= x(t) at other values of t.

A definition for local bandwidth should also correspond to the local rate of variation of

the signal, and should provide a measure of the local variation as a function of time.

1.3 Potential models for local bandwidth

In this section, two models are introduced as possible definitions for local bandwidth, the

first based on linear time-varying lowpass filters, and the second based on the time-warping

of bandlimited signals.

1.3.1 Signals generated by linear time-varying lowpass filters

A globally bandlimited signal may be associated with the output of an ideal linear time-

invariant lowpass filter. It is therefore natural to consider a locally bandlimited signal as the

output of a linear time-varying lowpass filter. For brevity, we will omit the qualifiers “linear”

and “ideal”, as all lowpass filters considered in this thesis are linear, and all time-invariant

lowpass filters are ideal unless otherwise noted.

Intuitively, a time-varying lowpass filter is a generalization of a time-invariant lowpass

filter in which the cut-off frequency w(t) is permitted to vary with time, as represented

18



schematically in Figure 1-2. However, Figure 1-2 is not well-defined mathematically, as it

−w(t) w(t)

ω

Figure 1-2: Schematic representation of a time-varying lowpass filter.

suggests that the frequency response of the filter is also a function of time. It is unclear

how the input-output relations of a time-invariant lowpass filter should be generalized to

the time-varying case. In Chapter 3, we will obtain a consistent definition for a time-varying

lowpass filter based on a set of desirable properties.

In [4], Horiuchi considered the sampling of signals with time-varying spectra of finite

frequency support, viz. bandlimited time-varying spectra. Horiuchi derived an expansion

for such signals analogous to the uniform sampling theorem and observed that the expansion

does not correspond to a representation of the signal in terms of its samples, except in some

special cases. As we will show, the output of a time-varying lowpass filter as defined in

Chapter 3 has a bandlimited time-varying spectrum. Following [4], in Chapter 4 we consider

the sampling and reconstruction of signals generated by time-varying lowpass filters.

1.3.2 Time-warped bandlimited signals

Clark et al. [5] considered a class of signals that can be mapped into bandlimited signals

through an invertible transformation of the time axis, interpreted more informally as a time-

warping. These signals are referred to as time-warped bandlimited signals, since they can

also be regarded as the result of applying the inverse time-warping to bandlimited signals.

Figure 1-3 shows an example of a bandlimited signal and the corresponding time-warped

signal. The local bandwidth of the time-warped signal is defined in terms of the local

dilation or compression relative to the bandlimited signal, and is higher at earlier times and

lower at later times.

It was shown in [5] that the class of time-warped bandlimited signals can be exactly

represented by the set of non-uniform samples that are the image under the time-warping

of uniform samples of the associated bandlimited signal. In Chapter 5, this result is reviewed

for one-dimensional (1-D) signals, although [5] also extended it to two-dimensional (2-D)

19
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Figure 1-3: Example of a bandlimited signal (upper panel) and the corresponding time-
warped signal (lower panel).

signals.

Zeevi and Shlomot [6] showed that the class of time-warped bandlimited signals is a

reproducing kernel Hilbert space, and developed a projection filter for signals (1-D or 2-D)

to be sampled on a specified non-uniform grid. They also extended the results of [5] to

a class of stochastic processes and related the time-warping to certain parameters of the

stochastic process.

Both [5] and [6] suggested the use of time-frequency distributions, such as the short-

time Fourier transform or the Wigner-Ville distribution (see e.g. [7]), in estimating a time-

warping that maps an arbitrary signal into an approximately bandlimited signal. Accord-

ingly, Brueller et al. developed an iterative algorithm in [8], based on the thresholding of

time-frequency distributions, that yields a time-warping and an approximately bandlimited

signal. The time-warping was incorporated in a non-uniform sampling and reconstruction

procedure, and an application to synthetic aperture radar was suggested. In Chapter 6, we

discuss alternative approaches to the determination of such a time-warping.
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1.4 Outline of thesis

In Chapter 2, the theory of linear time-varying systems is reviewed so as to establish notation

and a framework for analyzing time-varying lowpass filters in Chapters 3 and 4.

In Chapter 3, we develop a particular definition of a time-varying lowpass filter that

satisfies a number of desirable properties. We then analyze the spectral input-output rela-

tion for time-varying lowpass filters, treating separately the cases of aperiodic and periodic

cut-off frequency.

Chapter 4 considers the sampling of signals with bandlimited time-varying spectra, i.e.

signals generated by time-varying lowpass filters as defined in Chapter 3. We develop a non-

uniform sampling and reconstruction method based on the time-varying cut-off frequency.

It is shown that this reconstruction is not exact in general, but that the reconstruction error

decreases with the variation in the cut-off frequency, as supported by numerical simulations.

The method does however yield a perfect reconstruction for a class of self-similar signals

with bandlimited time-varying spectra.

In Chapter 5, we review a definition of local bandwidth based on the time-warping of

globally bandlimited signals. The definition specifies a class of locally bandlimited signals

that can be perfectly reconstructed from samples taken according to local bandwidth. We

also discuss the pre-filtering and pre-warping of signals to be sampled on a specified non-

uniform grid.

Chapter 6 develops an approach to sampling and reconstruction based on the definition

of local bandwidth in Chapter 5. In particular, a time-warping is sought that minimizes

the energy of a signal above a given maximum frequency. We examine a number of analyt-

ical and numerical techniques to determine the optimal time-warping. Simulations of the

numerical algorithms are summarized.
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Chapter 2

Linear Time-Varying Systems

In this chapter, the theory of linear time-varying (LTV) systems is reviewed in order to

establish notation and a framework for analyzing time-varying lowpass filters in Chapters 3

and 4. Following Claasen and Mecklenbräuker [9], we summarize some of the more common

forms for the input-output relation of an LTV system.

2.1 Impulse response

LTV systems may be characterized by their responses to impulses, as is the case for linear

time-invariant (LTI) systems. The input x(t) is decomposed into an integral over weighted

and shifted impulses:

x(t) =
∫ ∞

−∞
x(τ)δ(t− τ)dτ.

Let h1(t, τ) denote the response, evaluated at time t, to the impulse δ(t − τ). Applying

superposition, the output y(t) is given by

y(t) =
∫ ∞

−∞
x(τ)h1(t, τ)dτ. (2.1)

Equation (2.1) is typically referred to as the superposition integral. For a general LTV

system, the impulse response h1(t, τ) can depend on both the excitation time τ and the

observation time t. In contrast, for an LTI system, the impulse response depends only on

the time difference t − τ , i.e. h1(t, τ) reduces to a function of the form h(t − τ) and (2.1)

reduces to the convolution integral.

Figure 2-1 shows the (t, τ) plane, the domain of the 2-D function h1(t, τ). The response

23



h1(t, t0) to the impulse δ(t − t0) is represented by a horizontal dashed line along τ = t0.

From (2.1), the output evaluated at t = t1 is the integral of the product of x(τ) with the

vertical slice h1(t1, τ) indicated by a dotted line in Figure 2-1.

τ

t

t0

t1

h1(t, τ)

Figure 2-1: Slices of the impulse response h1(t, τ). The dashed horizontal line represents
the response h1(t, t0) to the impulse δ(t− t0). The dotted vertical line represents the slice
h1(t1, τ) involved in computing the output value y(t1).

2.2 Time-varying frequency response

Complex exponentials are an important class of signals in LTI system theory because they

are eigenfunctions of all LTI systems. The response of an LTI system to a complex exponen-

tial ejωt is the same exponential scaled by its eigenvalue H(ω), i.e. the frequency response

evaluated at frequency ω. The concept of frequency response can be generalized to LTV

systems, as we now summarize.

Complex exponentials are not eigenfunctions of all LTV systems. Nevertheless, the

decomposition of signals into complex exponentials can still be useful. For example, we

may wish to analyze an LTV system in the context of LTI systems to which it is connected,

and/or the input signals may be better characterized in the frequency domain.

Using the inverse Fourier transform, the input x(t) is decomposed into a superposition

of complex exponentials:

x(t) =
1
2π

∫ ∞

−∞
X(ω)ejωtdω,
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where X(ω) denotes the Fourier transform of x(t). To describe the response of an LTV

system to a complex exponential, Zadeh [10] introduced the time-varying frequency response

H2(t, ω), defined by

response to ejωt ≡ H2(t, ω)ejωt. (2.2)

From (2.2), the output y(t) is

y(t) =
1
2π

∫ ∞

−∞
X(ω)H2(t, ω)ejωtdω. (2.3)

Equation (2.3) relates the output signal y(t) to the input spectrum X(ω). It can be recast

as a relation between y(t) and the input signal x(t). We define the following Fourier pair:

h2(t, τ) =
1
2π

∫ ∞

−∞
H2(t, ω)ejωτdω, (2.4a)

H2(t, ω) =
∫ ∞

−∞
h2(t, τ)e−jωτdτ. (2.4b)

Substituting (2.4b) into (2.3),

y(t) =
1
2π

∫ ∞

−∞
X(ω)

∫ ∞

−∞
h2(t, τ)e−jωτdτ ejωtdω,

=
∫ ∞

−∞

[
1
2π

∫ ∞

−∞
X(ω)ejω(t−τ)dω

]
h2(t, τ)dτ,

=
∫ ∞

−∞
x(t− τ)h2(t, τ)dτ,

which has the form of a convolution. The convolution is commutative, i.e. replacing τ with

t− τ ,

y(t) =
∫ ∞

−∞
x(τ)h2(t, t− τ)dτ. (2.5)

The function h2(t, τ) can also be interpreted as an impulse response, for which t is the

observation time and t − τ is the excitation time. Comparing (2.5) and (2.1), the impulse

responses h1(t, τ) and h2(t, τ) correspond to the same LTV system if

h1(t, τ) = h2(t, t− τ). (2.6)

To obtain an alternative to (2.3), we define H1(t, ω) as the Fourier transform of h1(t, τ)
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with respect to τ , but with a positive sign in the complex exponential ejωτ :

H1(t, ω) =
∫ ∞

−∞
h1(t, τ)ejωτdτ. (2.7)

Then it follows from (2.6) that H1(t, ω) = H2(t, ω)ejωt, which yields

y(t) =
1
2π

∫ ∞

−∞
X(ω)H1(t, ω)dω (2.8)

upon substitution into (2.3).

It is sometimes convenient to consider the output y(t) as having a time-varying spectrum

Ỹ (t, ω) defined by the following relations:

Y (t, ω) = X(ω)H2(t, ω), (2.9a)

y(t) =
1
2π

∫ ∞

−∞
Y (t, ω)ejωtdω. (2.9b)

Taking the inverse Fourier transform of Ỹ (t, ω), we obtain a 2-D signal ỹ(t, τ), i.e.

ỹ(t, τ) =
1
2π

∫ ∞

−∞
Ỹ (t, ω)ejωτdω, (2.10a)

Ỹ (t, ω) =
∫ ∞

−∞
ỹ(t, τ)e−jωτdτ. (2.10b)

The variables τ and ω form a Fourier pair. The 1-D signal y(t) is the diagonal slice of ỹ(t, τ)

obtained by setting τ = t, i.e. y(t) = ỹ(t, t). In Chapter 4, we will make explicit use of the

time-varying spectrum Ỹ (t, ω) and the 2-D signal ỹ(t, τ).

In Figure 2-2, we again show the (t, τ) plane, the domain of the impulse response h2(t, τ).

The dotted vertical line indicates the slice h2(t1, τ) that is involved in computing the output

value y(t1). The impulse response h2(t, t − t0), obtained by substituting x(τ) = δ(τ − t0)

into (2.5), is marked in Figure 2-2 by a dashed diagonal line.

2.3 Bifrequency function

We have discussed representations of LTV systems relating the output signal y(t) to the

input signal x(t), and the output signal to the input spectrum X(ω). It is also desirable to
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τ

t
t0

−t0

t1

h2(t, τ)

Figure 2-2: Slices of the impulse response h2(t, τ). The dotted vertical line represents
the slice h2(t1, τ) involved in computing the output value y(t1). The diagonal dashed line
represents the response h2(t, t− t0) to the impulse δ(t− t0).

obtain representations that directly relate the output spectrum Y (ω) to the input spectrum.

Taking the Fourier transform with respect to t of both sides of (2.8),

Y (Ω) =
∫ ∞

−∞
y(t)e−jΩtdt =

1
2π

∫ ∞

−∞
X(ω)H̃1(Ω, ω)dω. (2.11)

The function H̃1(Ω, ω) is referred to as the bifrequency function and is related to h1(t, τ)

and H1(t, ω) by

H̃1(Ω, ω) =
∫ ∞

−∞

∫ ∞

−∞
h1(t, τ)e−jΩtejωτdt dτ, (2.12)

=
∫ ∞

−∞
H1(t, ω)e−jΩtdt. (2.13)

We note that (2.11) can also be derived using the projection-slice theorem from 2-D signal

processing [3].

An alternative bifrequency function H̃2(Ω, ω) results from taking the Fourier transform

of H2(t, ω) with respect to t:

H̃2(Ω, ω) =
∫ ∞

−∞
H2(t, ω)e−jΩtdt. (2.14)
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Since H1(t, ω) = H2(t, ω)ejωt, we have H̃1(Ω, ω) = H̃2(Ω − ω, ω). Substituting into (2.11),

Y (Ω) =
1
2π

∫ ∞

−∞
X(ω)H̃2(Ω − ω, ω)dω. (2.15)

In Section 3.3.1, we will find it more convenient to use (2.15) rather than (2.11) in analyzing

the spectral input-output relation for a time-varying lowpass filter.

For the special case of periodically time-varying systems, there exists an alternative

expression relating Y (ω) to X(ω). If the system varies periodically with period T , the

time-varying frequency response H2(t, ω) is also periodic in t and can be expanded in the

following Fourier series:

H2(t, ω) =
∞∑

k=−∞
Hk(ω)ejk(2π/T )t. (2.16)

Substituting (2.16) into (2.3), performing a change of variables, and identifying the resulting

integrand as Y (ω), we obtain

Y (ω) =
∞∑

k=−∞
Hk

(
ω − 2πk

T

)
X

(
ω − 2πk

T

)
, (2.17)

i.e. the output spectrum is the sum of weighted and shifted copies of the input spectrum.

For LTI systems, only the k = 0 term is present. In Section 3.3.4, we will use (2.17) to

analyze periodically time-varying lowpass filters.

It is also possible to relate the output spectrum Y (ω) to the input signal x(t). Taking

the Fourier transform with respect to t of both sides of (2.1),

Y (Ω) =
∫ ∞

−∞
x(τ)H̄1(Ω, τ)dτ, (2.18)

where

H̄1(Ω, τ) =
∫ ∞

−∞
h1(t, τ)e−jΩtdt. (2.19)

However, the relation in (2.18) is not commonly used, and we will not require it in later

chapters.
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Chapter 3

Linear Time-Varying Lowpass

Filters

In this chapter, we present a specific definition for a time-varying lowpass filter based on a

set of desirable properties. We derive a relation between the input and output spectra of

a time-varying lowpass filter, treating separately the cases of aperiodic and periodic cut-off

frequency.

3.1 Desirable properties

There are many well-defined ways in which a lowpass filter can be made to vary with time.

In this section, we summarize some properties that a time-varying lowpass filter should

possess, to be used as criteria before adopting a specific definition.

1. We assume that a time-varying lowpass filter is described in terms of a single time-

varying parameter, namely the cut-off frequency w(t). Furthermore, w(t) has a finite

minimum and maximum value, i.e. 0 < wmin ≤ w(t) ≤ wmax < ∞ ∀ t for some wmin

and wmax.

2. A time-varying lowpass filter should be time-varying in the following sense: The

response of the filter to the impulse δ(t − t0) should depend not only on w(t0), the

cut-off frequency at the excitation time, but also on w(t) at other times t �= t0.

3. A time-varying lowpass filter should exactly reproduce the complex exponential input

ejω0t when w(t) > ω0, and should produce an output of zero when w(t) < ω0. This
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property is analogous to the behaviour of a time-invariant lowpass filter with cut-off

frequency w and input ejω0t, for which the response is ejω0t for w > ω0 and zero for

w < ω0.

4. The output of a time-varying lowpass filter is not necessarily bandlimited, except in

the special case of a constant cut-off frequency w(t) = w. Accordingly, if w(t) is

approximately constant, i.e. if w(t) = w+∆w(t) where ∆w(t) is a small perturbation

relative to w, we expect most of the output spectrum to be concentrated within a

finite bandwidth. In the limit as ∆w(t) approaches zero, the output should become

bandlimited.

5. A time-varying lowpass filter should be idempotent, i.e. if y(t) is the output of a time-

varying lowpass filter, and z(t) is the output of an identical time-varying lowpass filter

with y(t) as input, then z(t) = y(t). If a time-varying lowpass filter is to be interpreted

as a filter that shapes the local bandwidth of its output, then the output should be

unchanged by a second, identical shaping.

3.2 Definition

In this section, we develop a specific definition for a time-varying lowpass filter based on the

generalization of a time-invariant lowpass filter and the properties summarized in Section

3.1.

For a time-invariant lowpass filter with cut-off frequency w, the output y(t) is the

convolution of the input x(t) with the impulse response h1(t, τ) of the filter,

h1(t, τ) = h(t− τ) =
sin(w(t− τ))
π(t− τ)

, (3.1)

using the notation of Chapter 2. Hence,

y(t) =
∫ ∞

−∞
x(τ)

sin(w(t− τ))
π(t− τ)

dτ. (3.2)

A natural generalization of (3.1) is to allow the cut-off frequency to vary with the

excitation time τ , i.e. w = w(τ). However, as we will show, this generalization does not

satisfy Property 2 of Section 3.1.
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Letting w = w(τ), (3.1) becomes

h1(t, τ) =
sin(w(τ)(t− τ))

π(t− τ)
. (3.3)

Substituting (3.3) into (2.1),

y(t) =
∫ ∞

−∞
x(τ)

sin(w(τ)(t− τ))
π(t− τ)

dτ. (3.4)

Figure 3-1 provides a pictorial interpretation of (3.4). On the left-hand side, the input

x(t) is decomposed into weighted and shifted impulses. Each impulse drives a time-invariant

lowpass filter with a cut-off frequency that depends on the location of the impulse. The

output y(t) is formed by superimposing the filter outputs. For clarity, Figure 3-1 shows

branches corresponding to specific values of τ in (3.4), with the understanding that the

continuous nature of τ implies an uncountable number of branches.

x(t0)δ(t− t0)

x(t1)δ(t− t1)

x(t2)δ(t− t2)

h0(t) =
sin(w(t0)t)

πt

h1(t) =
sin(w(t1)t)

πt

h2(t) =
sin(w(t2)t)

πt

y(t)

Figure 3-1: Block diagram representation of equation (3.4).
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From (3.3) and Figure 3-1, we observe that the response to the impulse δ(t−t0) depends

only on w(t0) and not on other values of w(t), and thus Property 2 of Section 3.1 is not

satisfied. Consequently, we are led to consider an alternative generalization of a time-

invariant lowpass filter, specifically in terms of its frequency response.

A time-invariant lowpass filter with cut-off frequency w has a frequency response H(ω)

given by

H(ω) =


1, |ω| < w,

0, |ω| > w.

(3.5)

In terms of H(ω) and the input spectrum X(ω), the output y(t) is expressed as

y(t) =
1
2π

∫ ∞

−∞
X(ω)H(ω)ejωtdω,

=
1
2π

∫ w

−w
X(ω)ejωtdω. (3.6)

We generalize (3.5) to a time-varying frequency response H2(t, ω) by allowing w to vary

with the observation time t, i.e. w = w(t) and

H2(t, ω) =


1, |ω| < w(t),

0, |ω| > w(t).
(3.7)

An example of such a time-varying frequency response is sketched in Figure 3-2.

w(t)

−w(t)

t

ω

Figure 3-2: Sketch of the time-varying frequency response H2(t, ω) for a time-varying low-
pass filter. H2(t, ω) is unity in the shaded region and zero elsewhere.
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Substituting (3.7) into (2.3),

y(t) =
1
2π

∫ w(t)

−w(t)
X(ω)ejωtdω. (3.8)

Equation (3.8) can be rewritten as

y(t) =
∫ ∞

−∞
x(τ)

sin(w(t)(t− τ))
π(t− τ)

dτ, (3.9)

where the corresponding impulse response h2(t, τ) defined by (2.4a) and (2.5) is given by

h2(t, τ) =
sin(w(t)τ)

πτ
. (3.10)

The time-varying spectrum Ỹ (t, ω) of y(t), defined in (2.9a), takes the specific form

Ỹ (t, ω) =


X(ω), |ω| < w(t),

0, |ω| > w(t).
(3.11)

Since for each value of t, Ỹ (t, ω) is non-zero only on the finite interval −w(t) < ω < w(t), we

refer to y(t) as having a bandlimited time-varying spectrum. Substituting (3.11) in (2.10a),

the 2-D signal ỹ(t, τ) is expressed as

ỹ(t, τ) =
1
2π

∫ w(t)

−w(t)
X(ω)ejωτdω, (3.12)

with y(t) = ỹ(t, t).

We can interpret (3.12) as describing a filter bank with an infinite number of branches,

as illustrated in Figure 3-3. The input x(t) is simultaneously processed by a continuum

of time-invariant lowpass filters, indexed by the continuous variable t and having cut-off

frequencies w(t). As in Figure 3-1, we show only a few specific branches for clarity. From

(3.12), we identify ỹ(t, τ) as the output of the tth filter evaluated at time τ . The diagonal

slice ỹ(t, t) corresponds to the output y(t).

We verify that the generalization of a time-invariant lowpass filter specified by (3.8) and

(3.9) satisfies Properties 2 and 3 of Section (3.1). From (3.9), the response to the impulse
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x(t)

w(t0)−w(t0)

w(t1)−w(t1)

w(t2)−w(t2)

ỹ(t0, τ) ↔ Ỹ (t0, ω)

ỹ(t1, τ) ↔ Ỹ (t1, ω)

ỹ(t2, τ) ↔ Ỹ (t2, ω)

t

τ

ỹ(t, τ)
y(t)

Figure 3-3: Filter bank interpretation of ỹ(t, τ) for a time-varying lowpass filter.
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x(t) = δ(t− t0) is given by

y(t) =
sin(w(t)(t− t0))

π(t− t0)
,

which does depend on values of w(t) for t �= t0. To evaluate the response to the complex

exponential x(t) = ejω0t, we substitute X(ω) = 2πδ(ω − ω0) in (3.8):

y(t) =
1
2π

∫ w(t)

−w(t)
2πδ(ω − ω0)ejωtdω,

=


ejω0t, w(t) > ω0,

0, w(t) < ω0,

which verifies Property 3.

Henceforth, we will define a time-varying lowpass filter to be the filter specified by

equations (3.7) through (3.12). As we will show in the next section, this definition also

satisfies Property 4, but not Property 5 of Section 3.1.

3.3 Spectral input-output relations

We derive relations between the input and output spectra of a time-varying lowpass filter

based on the definition adopted in Section 3.2. In Section 3.3.1, we analyze the case in which

the cut-off frequency varies aperiodically with time, from which some additional properties

of our definition are inferred. The analysis of Section 3.3.1 is applied to the specific case of a

linear cut-off frequency in Section 3.3.2 and simulation results are presented in Section 3.3.3.

In Section 3.3.4, we treat the case of periodic cut-off frequency, and discuss its relationship

to the short-time Fourier transform in Section 3.3.5.

3.3.1 Aperiodic cut-off frequency

For the general case of an aperiodic cut-off frequency, we first determine the bifrequency

function H̃2(Ω, ω) defined by (2.14). The spectral input-output relation follows using (2.15).

From (3.7) and Property 1 of Section 3.1,

H2(t, ω) =


1, ∀ t, |ω| < wmin,

0, ∀ t, |ω| > wmax.

(3.13)
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Taking the Fourier transform,

H̃2(Ω, ω) =


2πδ(Ω), |ω| < wmin,

0, |ω| > wmax.

(3.14)

It remains to specify H̃2(Ω, ω) in the region wmin < |ω| < wmax where H2(t, ω) alternates

between 1 and 0 depending on the exact shape of w(t).

Toward this end, we decompose H2(t, ω) into a sum of step functions as follows: Let

t1(ω), t2(ω), . . . , tL(ω)(ω) denote the values of t at which w(t) = |ω|, labelled in increasing

order, and excluding tangent points. Then for each value of ω, wmin < |ω| < wmax, H2(t, ω)

alternates between 1 and 0 at the times t�(ω) as illustrated in Figure 3-4. We can therefore

w(t)

|ω|

H2(t, ω)

wmin

wmax

t1(ω)

t2(ω)

t3(ω)

t4(ω)

1

0

Figure 3-4: Sketch of w(t) and |ω| for the case wmin < |ω| < wmax. H2(t, ω) alternates
between 1 and 0 at the times t�(ω).

express H2(t, ω) as the following sum of step functions with alternating signs:

H2(t, ω) =
L(ω)∑
�=1

(−1)�+1u (t− t�(ω)) , wmin < |ω| < wmax, (3.15)
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where we have assumed that limt→−∞H2(t, ω) = 0. A similar expression can be written for

the case limt→−∞H2(t, ω) = 1.

Taking the Fourier transform of (3.15) with respect to t,

H̃2(Ω, ω) = 2πH0(ω)δ(Ω) ± 1
jΩ

L(ω)∑
�=1

(−1)�e−jΩt�(ω), wmin < |ω| < wmin, (3.16)

where the plus sign corresponds to limt→−∞H2(t, ω) = 1, the minus sign to

limt→−∞H2(t, ω) = 0, and H0(ω) is given by

H0(ω) =


1, lim

t→−∞H2(t, ω) = 1 and L(ω) even,

1
2
, L(ω) odd,

0, lim
t→−∞H2(t, ω) = 0 and L(ω) even,

wmin < |ω| < wmax. (3.17)

For |ω| < wmin and |ω| > wmax, we define H0(ω) as

H0(ω) =


1, |ω| < wmin,

0, |ω| > wmax.

(3.18)

Combining (3.14) and (3.16), and using the definition of H0(ω) in (3.17) and (3.18),

H̃2(Ω, ω) =


2πH0(ω)δ(Ω), |ω| < wmin and |ω| > wmax,

2πH0(ω)δ(Ω) ± 1
jΩ

L(ω)∑
�=1

(−1)�e−jΩt�(ω), wmin < |ω| < wmax.
(3.19)

Figure 3-5 shows a sketch of the bifrequency function H̃2(Ω, ω). The heavy vertical

line represents a column of impulses along the line segment (Ω = 0, |ω| < wmax). The two

shaded horizontal bands represent the second term in (3.19) for the case wmin < |ω| < wmax.

The diagonal dotted line indicates the slice H̃2(Ω0 − ω, ω) involved in determining Y (Ω) at

the single frequency Ω = Ω0 according to (2.15).

Substituting (3.19) into (2.15), we obtain the desired spectral input-output relation for
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Ω

ω

wmin

wmax

−wmin

−wmax

Ω0

Figure 3-5: Sketch of the bifrequency function H̃2(Ω, ω) for an aperiodically time-varying
lowpass filter.

a time-varying lowpass filter:

Y (Ω) = H0(Ω)X(Ω) ± 1
2πj

∫ |ω|=wmax

|ω|=wmin

X(ω)
Ω − ω

L(ω)∑
�=1

(−1)�e−j(Ω−ω)t�(ω)

 dω, (3.20)

where the plus sign corresponds to limt→−∞H2(t, ω) = 1 and the minus sign to

limt→−∞H2(t, ω) = 0 as before.

We consider separately the two terms on the right-hand side of (3.20). The first term,

Y1(Ω) = H0(Ω)X(Ω), (3.21)

can be interpreted as the effect of an LTI filter with frequency response H0(Ω) on the input.

Since H0(Ω) = 0 for |Ω| > wmax, Y1(Ω) is bandlimited to wmax, the maximum cut-off
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frequency of the filter. The second term,

Y2(Ω) = ± 1
2πj

∫ |ω|=wmax

|ω|=wmin

X(ω)
Ω − ω

L(ω)∑
�=1

(−1)�e−j(Ω−ω)t�(ω)dω, (3.22)

represents the redistribution of the input frequency content in the bands wmin < |ω| < wmax

over all frequencies Ω in the output spectrum. As a result, if w(t) is not constant, Y2(Ω)

and Y (Ω) are generally not bandlimited.

To show that our definition of a time-varying lowpass filter satisfies Property 4 of Section

3.1, we first derive an upper bound on the non-bandlimited component Y2(Ω) and show

that the bound decreases to zero as the cut-off frequency approaches a constant. |Y2(Ω)| is

bounded as follows:

|Y2(Ω)| =

∣∣∣∣∣∣ 1
2πj

∫ |ω|=wmax

|ω|=wmin

X(ω)
Ω − ω

L(ω)∑
�=1

(−1)�e−j(Ω−ω)t�(ω)dω

∣∣∣∣∣∣ ,
≤ 1

2π

∫ |ω|=wmax

|ω|=wmin

|X(ω)|
|Ω − ω|

∣∣∣∣∣∣
L(ω)∑
�=1

(−1)�e−j(Ω−ω)t�(ω)

∣∣∣∣∣∣ dω.
The magnitude of the summation may be bounded as∣∣∣∣∣∣

L(ω)∑
�=1

(−1)�e−j(Ω−ω)t�(ω)

∣∣∣∣∣∣ ≤ L(ω) ≤ Lmax,

where

Lmax = max
wmin<|ω|<wmax

L(ω). (3.23)

Hence,

|Y2(Ω)| ≤ Lmax
2π

∫ |ω|=wmax

|ω|=wmin

|X(ω)|
|Ω − ω|dω. (3.24)

The bound in (3.24) is proportional to Lmax, which is the maximum number of level

crossings of w(t). As the variation in w(t) decreases, Lmax generally decreases as well. For

example, if w(t) is a polynomial of order p, then Lmax ≤ p since the equation w(t) = |ω| can

have at most p real solutions. Furthermore, the domain of integration wmin < |ω| < wmax

is determined by the range wmax − wmin of w(t). As w(t) approaches a constant, both

wmax − wmin and |Y2(Ω)| approach zero. We have thus verified Property 4.

Two additional properties of the non-bandlimited component Y2(Ω) may be inferred
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from (3.24). First, by virtue of the 1/|Ω−ω| factor in the integrand of (3.24), |Y2(Ω)| tends

to decay as Ω increases or decreases from the range wmin < |Ω| < wmax. Second, if |X(ω)| is

small for wmin < |ω| < wmax, i.e. if there is little frequency content in the range over which

w(t) varies, then |Y2(Ω)| is also small. In particular, if X(ω) = 0 for wmin < |ω| < wmax,

then Y2(ω) = 0, and Y (ω) = X(ω) for |ω| < wmin and is zero otherwise. This result is

intuitively reasonable: the filter admits frequencies below wmin, blocks frequencies above

wmax, and no input frequency components exist between wmin and wmax.

Our definition of a time-varying lowpass filter does not however satisfy Property 5 of

Section 3.1. In analogy with (3.8), the output z(t) of a second, identical time-varying

lowpass filter with y(t) as input can be written as

z(t) =
1
2π

∫ w(t)

−w(t)
Y (ω)ejωtdω.

We have z(t) = y(t) if Y (ω) = X(ω) for |ω| < wmax. But according to (3.20) and (3.17),

Y (ω) may differ from X(ω) in the range wmin < |ω| < wmax since H0(ω) may be non-

unity. Even in the range |ω| < wmin, in general Y (ω) �= X(ω) because of the contribution

of Y2(Ω). Hence, a time-varying lowpass filter with non-constant cut-off frequency is not

idempotent. The case of constant cut-off frequency is an exception, since it corresponds to

a time-invariant lowpass filter which is idempotent.

3.3.2 Linear cut-off frequency

As an example of an aperiodic choice for w(t), we choose w(t) to be linear over the interval

[0, T ] and constant elsewhere, i.e.

w(t) =


wmin, t ≤ 0,

wmin + αt, 0 ≤ t ≤ T,

wmax = wmin + αT, t ≥ T.

(3.25)

We assume for simplicity that the slope α is positive; a similar analysis could be conducted

for α < 0.
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For this choice of w(t), L(ω) = 1 in equation (3.15), and t1(ω) is given by

t1(ω) =
|ω| − wmin

α
, wmin < |ω| < wmax.

Thus,

H2(t, ω) = u

(
t− |ω| − wmin

α

)
, wmin < |ω| < wmax, (3.26)

H̃2(Ω, ω) = πδ(Ω) +
1
jΩ

exp
{
−jΩ |ω| − wmin

α

}
, wmin < |ω| < wmax. (3.27)

The function H0(ω) defined by (3.17) and (3.18) is given by

H0(ω) =


1, |ω| < wmin,

1
2
, wmin < |ω| < wmax,

0, |ω| > wmax.

(3.28)

From (3.20), the Fourier transform Y (Ω) of the output is expressed as

Y (Ω) = H0(Ω)X(Ω) +
1

2πj

∫ |ω|=wmax

|ω|=wmin

X(ω)
Ω − ω

exp
{
−j(Ω − ω)

|ω| − wmin
α

}
dω,

= H0(Ω)X(Ω)

+
1

2πj
exp
{
−j (Ω − wmin)2

4α

}∫ wmax

wmin

X(ω)
Ω − ω

exp

{
j

α

(
ω − Ω + wmin

2

)2
}
dω

+
1

2πj
exp
{
j
(Ω + wmin)2

4α

}∫ −wmin

−wmax

X(ω)
Ω − ω

exp

{
− j

α

(
ω − Ω − wmin

2

)2
}
dω.

(3.29)

The second equality is obtained by dividing the domain of integration into positive and

negative ranges of ω and by completing the squares in the exponents.

3.3.3 Discrete-time simulation with a linear cut-off frequency

A discrete-time simulation was implemented in MATLAB for time-varying lowpass filters

with linearly increasing cut-off frequencies. The simulation demonstrates that the corre-

sponding output spectra are spread over an increasingly wider range of frequencies as the

slope of the cut-off frequency increases.
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The input was chosen to be an impulse, i.e. x[n] = δ[n] and correspondingly X(ejω) = 1,

in order to focus on the spectral characteristics of the filters. The output is given by the

discrete-time analogues to (3.10) and (3.9), i.e. replacing t by n, τ by m, and integration

by summation,

h2[n,m] =
sin(w[n]m)

πm
, (3.30)

y[n] =
∞∑

m=−∞
x[m]h2[n, n−m],

=
∞∑

m=−∞
δ[m]

sin (w[n](n−m))
π(n−m)

,

=
sin(w[n]n)

πn
. (3.31)

The time index n was restricted to the range [−L,L] with L = 2000 and the output sequences

were truncated outside of this range.

The cut-off frequency takes the specific form

w[n] = w0 + αn, −L ≤ n ≤ L, (3.32)

where w0 = 0.3π and the slope α = {0.0, 2.5, 5.0, 7.5, 10.0} × 10−5π. For instance, if

α = 10.0 × 10−5π, then the minimum cut-off frequency is 0.1π and the maximum is 0.5π.

For each value of α, the output y[n] and the 8192-point, zero-padded DFT Y [k] of y[n]

were computed. Figure 3-6 plots the magnitude of Y [k], interpolated for the purposes of

display, for the various choices of α.

As α increases, we observe that the output spectra decay more slowly and at higher

frequencies. In particular, the curve corresponding to α = 0 represents a constant cut-off

frequency, while the curve corresponding to α = 10 × 10−5π represents a five-fold increase

over the interval [−L,L]. Thus, the results are consistent with Property 4 of Section 3.1

and with the analysis of Section 3.3.1.

3.3.4 Periodic cut-off frequency

In this section, we consider the specific case of a cut-off frequency that varies periodically

with time. We derive a spectral input-output relation for this class of time-varying lowpass
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Figure 3-6: Magnitude of the output DFT Y [k] in decibels (dB) for discrete-time time-
varying lowpass filters with linearly increasing cut-off frequencies.

filters.

We use T to denote the period of the cut-off frequency w(t). For every value of ω,

H2(t, ω) is also periodic in t with period T . As a consequence, (2.17) applies, with the

Fourier series coefficients Hk(ω) partially given by

Hk(ω) =


δ[k], |ω| < wmin,

0, |ω| > wmax,

(3.33)

where we have used Property 1 of Section 3.1. It remains to determine Hk(ω) for wmin <

|ω| < wmax.

For wmin < |ω| < wmax, H2(t, ω) can be decomposed into a sum of periodic square waves.

As in Section 3.3.1, we consider the times t�(ω), , = 1, 2, . . . , L(ω), at which w(t) = |ω|, but

only within a single period [t0(ω), t0(ω)+T ] since w(t) is periodic. Furthermore, L(ω) must
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be even, and t0(ω) can be chosen such that H2(t0(ω), ω) = 0 without loss of generality. It

follows that H2(t, ω) = 1 between t2�−1(ω) and t2�(ω) for , = 1, 2, . . . , L(ω)/2, as illustrated

in Figure 3-7. Thus, H2(t, ω) can be expressed as

H2(t, ω) =
L(ω)/2∑
�=1

s [t2�−1(ω), t2�(ω)] , wmin < |ω| < wmax, (3.34)

where

s [t2�−1(ω), t2�(ω)] =


1, t2�−1(ω) < t < t2�(ω),

0, t0(ω) < t < t2�−1(ω) and t2�(ω) < t < t0(ω) + T,

(3.35)

and s[t2�−1(ω), t2�(ω)] is periodic with period T .

w(t)

|ω|

H2(t, ω)

t0(ω)

t1(ω)

t2(ω)

t3(ω)

t4(ω)

t0(ω) + T

s[t1, t2] s[t3, t4]

t̄1(ω) t̄2(ω)

1

0

Figure 3-7: Decomposition of H2(t, ω) into periodic square waves s[t2�−1(ω), t2�(ω)] for the
case of periodic cut-off frequency.
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Define

t̄�(ω) =
t2�−1(ω) + t2�(ω)

2
, (3.36)

D�(ω) =
t2�(ω) − t2�−1(ω)

T
, (3.37)

to be the point of symmetry and the duty cycle respectively of the square wave s[t2�−1(ω), t2�(ω)]

(see Figure 3-7). Then Hk(ω) can be expressed in terms of t̄�(ω) and D�(ω) as

H0(ω) =
L(ω)/2∑
�=1

D�(ω) ≡ D(ω), wmin < |ω| < wmax, (3.38a)

Hk(ω) =
L(ω)/2∑
�=1

sin (kπD�(ω))
kπ

e−jkω0 t̄�(ω), wmin < |ω| < wmax, k �= 0, (3.38b)

where ω0 ≡ 2π/T is the fundamental frequency of w(t) and D(ω) is the overall duty cycle

of H2(t, ω). Hk(ω) decays as 1/|k| as expected for the sum of periodic square waves.

Combining (3.33) and (3.38a),

H0(ω) =


1, |ω| < wmin,

D(ω), wmin < |ω| < wmax,

0, |ω| > wmax.

(3.39)

For k not equal to zero, Hk(ω) = 0 for |ω| < wmin and |ω| > wmax. As a result, the

summation in (2.17) includes only the following ranges of non-zero k:

⌈
ω − wmax

ω0

⌉
≤ k ≤

⌊
ω − wmin

ω0

⌋
,⌈

ω + wmin
ω0

⌉
≤ k ≤

⌊
ω + wmax

ω0

⌋
,

k �= 0, (3.40)

which we will abbreviate using A. Substituting (3.38b) forHk(ω) in (2.17) and incorporating

(3.39) and (3.40), we obtain the desired spectral input-output relation:
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Y (ω) = H0(ω)X(ω) +
∑
A

X (ω − kω0)
L(ω−kω0)/2∑

�=1

sin (kπD�(ω − kω0))
kπ

e−jkω0 t̄�(ω−kω0)

 .
(3.41)

As in Section 3.3.1, the component Y1(ω) defined by (3.21) is bandlimited to wmax by

virtue of (3.39). The second term in (3.41),

Y2(ω) =
∑
A

X (ω − kω0)
L(ω−kω0)/2∑

�=1

sin (kπD�(ω − kω0))
kπ

e−jkω0 t̄�(ω−kω0)

 , (3.42)

consists of contributions from shifted copies of X(ω). As in the aperiodic case, Y2(ω)

represents the redistribution of the input frequency content in the bands wmin < |ω| < wmax

over all output frequencies.

We verify that Property 4 of Section 3.1 holds in the case of periodic cut-off frequency.

As in Section 3.3.1, we determine an upper bound on the non-bandlimited component Y2(Ω)

and show that the bound decreases to zero as the cut-off frequency approaches a constant.

From (3.42),

|Y2(ω)| =

∣∣∣∣∣∣
∑
A
X (ω − kω0)

L(ω−kω0)/2∑
�=1

sin (kπD�(ω − kω0))
kπ

e−jkω0 t̄�(ω−kω0)

∣∣∣∣∣∣ ,
≤
∑
A

|X (ω − kω0)|
∣∣∣∣∣∣
L(ω−kω0)/2∑

�=1

sin (kπD�(ω − kω0))
kπ

e−jkω0 t̄�(ω−kω0)

∣∣∣∣∣∣ ,
≤
∑
A

|X (ω − kω0)|
L(ω−kω0)/2∑

�=1

|sin (kπD�(ω − kω0))|
|k|π

∣∣∣e−jkω0 t̄�(ω−kω0)
∣∣∣ .

Since | sin(·)| ≤ 1,

|Y2(ω)| ≤
∑
A

|X (ω − kω0)| L(ω − kω0)
2π|k| ,

|Y2(ω)| ≤ Lmax
2π

∑
A

|X (ω − kω0)|
|k| , (3.43)

where Lmax now denotes the maximum number of level crossings within a single period.

Consequently, as w(t) varies more slowly in time, Lmax and |Y2(ω)| both decrease.

According to (3.40), the maximum number of terms in the summation over A is
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2
⌈
wmax−wmin

ω0

⌉
, which is approximately proportional to the range wmax −wmin of w(t). As

w(t) approaches a constant, there will be fewer terms in the summation and the bound on

|Y2(ω)| will be tighter.

Additionally, we observe from (3.40) that 1/|k| ∼ ω0/|ω − w|, where |ω − w| represents

the distance between the output frequency ω and frequencies within the range of w(t).

Therefore, |Y2(ω)| decays as ω increases or decreases away from the range of w(t). Further-

more, if |X(ω)| is small for wmin < |ω| < wmax, |Y2(ω)| is likewise small, and if X(ω) = 0

for wmin < |ω| < wmax, Y2(ω) = 0 as in the aperiodic case.

3.3.5 Relationship to the short-time Fourier transform

In this section, we show that the short-time Fourier transform (STFT) of the output of any

time-varying lowpass filter (as defined in Section 3.2) is related to the Fourier transform of

the output of a certain periodically time-varying lowpass filter. The latter can be analyzed

as in Section 3.3.4.

The STFT is one of many time-frequency distributions that characterize the frequency

content of a signal as it evolves in time. In the case of a time-varying lowpass filter, the

STFT may be useful in estimating the time-varying spectrum of the output. The STFT

Ŷ (t, ω) of a signal y(t) can be defined (see [7]) as the windowed Fourier transform of y(t):

Ŷ (t, ω) =
∫ t+T/2

t−T/2
y(τ)v(τ − t)e−jωτdτ, (3.44)

where the window v(t) is supported only on [−T/2, T/2]. Equivalently, in the frequency

domain we have

Ŷ (t, ω) =
1
2π

∫ ∞

−∞
Y (θ)V (ω − θ)e−j(ω−θ)tdθ, (3.45)

i.e. Ŷ (t, ω) is the convolution of Y (ω) with the Fourier transform V (ω)e−jωt of the time-

shifted window.

From (3.44), we observe that the STFT Ŷ (t, ω), when evaluated at a single instant t = t0,

does not depend on values of y(t) outside the interval I = [t0 − T/2, t0 + T/2]. Therefore,

y(t) can be chosen arbitrarily outside of I without affecting the value of Ŷ (t0, ω). The same

observation extends to the frequency domain relation (3.45).

Now consider y(t) to be the output of a time-varying lowpass filter with cut-off frequency
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w(t). Since Ŷ (t0, ω) depends only on y(t) for t ∈ I, and from (3.8) or (3.9), y(t), t ∈ I

depends only on w(t), t ∈ I, we conclude that Ŷ (t0, ω) is independent of w(t) for t /∈ I.

The foregoing discussion suggests the following approach: We consider a new cut-off

frequency w̃(t) that is the periodic replication of the segment of w(t) in I. Specifically, we

define

ŵ(t) =


w(t), t0 − T

2 ≤ t ≤ t0 + T
2 ,

0, otherwise,
(3.46)

w̃(t) =
∞∑

r=−∞
ŵ(t− rT ). (3.47)

The Fourier transform Y (ω) corresponding to w̃(t) can be determined according to the

analysis of Section 3.3.4. The value of Ŷ (t0, ω) corresponding to the original time-varying

lowpass filter with cut-off frequency w(t) is then related to Y (ω) through (3.45).
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Chapter 4

Sampling of Signals With

Bandlimited Time-Varying Spectra

In Chapter 3, we adopted a particular definition of a time-varying lowpass filter and showed

that the output of such a filter possesses a bandlimited time-varying spectrum. In this

chapter, we develop a non-uniform sampling and reconstruction for signals with bandlim-

ited time-varying spectra. Our approach does not achieve perfect reconstruction in general;

however, the reconstruction error is shown to decrease with the variation in the cut-off

frequency. Furthermore, perfect reconstruction does result for a class of self-similar signals

with bandlimited time-varying spectra. We also consider uniform sampling at a rate cor-

responding to the maximum cut-off frequency and show that exact reconstruction is not

possible using the time-varying lowpass filter of Chapter 3.

4.1 Series expansion for signals with bandlimited time-varying

spectra

In this section, we review a series expansion for signals y(t) with bandlimited time-varying

spectra, as originally derived by Horiuchi in [4]. The expansion forms the basis for the

sampling and reconstruction discussed in Section 4.2.

We can equivalently consider y(t) to be the output of a time-varying lowpass filter (as

defined in Section 3.2) with input x(t). For every value of t, the time-varying spectrum

Ỹ (t, ω) in (3.11) is zero for |ω| > w(t), and hence ỹ(t, τ) in (3.12) is a 1-D function of τ
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bandlimited to a maximum frequency of w(t). Using the uniform sampling theorem, ỹ(t, τ)

can be represented as

ỹ(t, τ) =
∞∑

k=−∞
ỹ

(
t,
kπ

w(t)

)
sin [w(t)(τ − kπ/w(t))]
w(t)(τ − kπ/w(t))

, (4.1)

where the samples ỹ(t, kπ/w(t)) are taken in the τ dimension at the Nyquist rate corre-

sponding to w(t). The samples still vary continuously with t since there is no sampling in

the t dimension. Setting y(t) = ỹ(t, t), we obtain the following series expansion:

y(t) =
∞∑

k=−∞
ỹ

(
t,
kπ

w(t)

)
sin [w(t)t− kπ]
w(t)t− kπ

. (4.2)

Equation (4.1) assumes that the samples of ỹ(t, τ) corresponding to k = 0 occur at τ = 0

for all values of t. More generally, (4.1) still holds if the k = 0 samples occur at τ = τ0(t)

for some τ0(t) that may vary with t. Equation (4.2) then becomes

y(t) =
∞∑

k=−∞
ỹ

(
t,
kπ

w(t)
+ τ0(t)

)
sin [w(t)t− kπ − w(t)τ0(t)]
w(t)t− kπ − w(t)τ0(t)

. (4.3)

Equation (4.3) requires that a second function τ0(t) be specified in addition to the cut-off

frequency w(t). However, we are interested in an expansion that depends on the specific

signal only through its samples and through w(t). Thus, we will henceforth take τ0(t) = 0.

4.2 Non-uniform sampling and consistent reconstruction

In this section, we develop a sampling and reconstruction method based on the expansion

in (4.2) for signals with bandlimited time-varying spectra. Our choice of reconstruction

permits consistent resampling and can thus be interpreted as a projection. We show that our

method does not in general result in perfect reconstruction. Nevertheless, the reconstruction

error decreases with the variation in the cut-off frequency, as demonstrated in numerical

simulations.

4.2.1 Sampling grid

We assume that the 2-D signal ỹ(t, τ) is only available along the slice τ = t where it

corresponds to y(t). Consequently, the coefficients ỹ(t, kπ/w(t)) in (4.2) do not correspond
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to samples of y(t) except at certain values of t. We seek instead an expansion in which the

coefficients ỹ(t, kπ/w(t)) are replaced with samples of y(t), i.e. an expansion of the form

ŷ(t) =
∞∑

k=−∞
y(tk)

sin [w(t)t− kπ]
w(t)t− kπ

, (4.4)

where tk is the kth sampling instant. In this section, we determine the sampling instants

that are naturally suggested by (4.2).

In Figure 4-1, the loci of the sample locations (t, kπ/w(t)) are sketched in the (t, τ)

plane. The k = 0 locus is the line τ = 0, i.e. the t-axis. The dashed diagonal line represents

the slice corresponding to y(t) = ỹ(t, t). Hence, y(t) is equal to ỹ(t, kπ/w(t)) only at the

intersections marked by filled circles.

t

τ

y(t)

ỹ(t, τ)

k = −2 k = −1 k = 0 k = 1 k = 2

Figure 4-1: Loci of sample locations (t, kπ/w(t)) and slice corresponding to y(t) = ỹ(t, t) in
the (t, τ) plane.

Based on Figure 4-1, we consider sampling y(t) at the intersections, i.e. the values of
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t at which y(t) = ỹ(t, kπ/w(t)). Then the sampling instants tk are the solutions to the

following equation:

w(tk)tk − kπ = 0, k ∈ Z. (4.5)

We show that (4.5) has at least one solution for every k, i.e. that each tk exists. We

assume that w(t) is continuous as well as being positive and bounded. Then the function

w(t)t is surjective onto the real line, i.e. it must take on all real values as t ranges from

−∞ to +∞. Consequently, for all k, there is at least one value of tk that satisfies (4.5). In

addition, we have that

w(t)t |t=0= 0,

which implies that (4.5) always has the solution t0 = 0.

In order for (4.5) to have only one solution for every k, i.e. for tk to be unique, w(t)t

must not equal kπ for more than one value of t. To ensure this, we can impose the additional

constraint that w(t)t increases monotonically, so that no two values of t yield the same value

of w(t)t. As a result, w(t)t is also injective and hence invertible. The derivative of w(t)t

must then be positive, leading to the following constraint:

d

dt
[w(t)t] = w(t) + tẇ(t) ≥ 0,

ẇ(t)
w(t)


≤ −1

t
, t < 0,

≥ −1
t
, t > 0,

(4.6)

where w(t) > 0 and ẇ(t) = dw(t)
dt . The constraint in (4.6) becomes more restrictive for

larger |t|.

If, for certain values of k, there exist multiple solutions tk1, tk2, . . . to (4.5), the kth

coefficient in (4.4) is not determined uniquely. For example, the kth coefficient may be

chosen as an arbitrary linear combination of all samples y(tki) such that tki satisfies (4.5).

However, for simplicity of analysis, we will assume henceforth that a single sample y(tk) is

chosen to be the kth coefficient, even when multiple solutions exist.

The solutions to (4.5) generally form a non-uniform sampling grid. As Figure 4-2 sug-

gests, the sampling rate should increase with the cut-off frequency w(t) as we would in-

tuitively expect. The function w(t)t is sketched with a solid curve and the levels kπ are
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indicated by horizontal dashed lines. At the intersection between w(t)t and kπ, the sam-

pling instant tk is marked on the t axis. In regions where w(t) is low, w(t)t rises slowly, and

the sampling instants are spaced farther apart. When w(t) is high, w(t)t increases quickly,

and the sampling instants are more closely spaced.

t

w(t)t

−π

π

2π

lower w(t) higher w(t)
sparser sampling denser sampling

Figure 4-2: Sketch of w(t)t showing the dependence of the sampling rate on w(t).

4.2.2 Synthesis functions

Equation (4.4) can be interpreted as a sampling and reconstruction of y(t). Specifically, the

sampling of y(t) can be represented as the product of y(t) with a train of impulses:

s(t) =
∞∑

k=−∞
y(tk)δ(t− tk), (4.7)

where the sampling instants tk are given by (4.5). We wish to express the reconstruction in

(4.4) as the output of an LTV reconstruction filter with input s(t). The impulse response

h̄1(t, τ) of the required filter is given by

h̄1(t, τ) =
sin [w(t)t− w(τ)τ ]
w(t)t− w(τ)τ

. (4.8)
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Using (2.1), we verify our choice of h̄1(t, τ) by determining the corresponding output:

∫ ∞

−∞
s(τ)h̄1(t, τ)dτ =

∞∑
k=−∞

y(tk)
∫ ∞

−∞
δ(τ − tk)

sin [w(t)t− w(τ)τ ]
w(t)t− w(τ)τ

,

=
∞∑

k=−∞
y(tk)

sin [w(t)t− w(tk)tk]
w(t)t− w(tk)tk

,

=
∞∑

k=−∞
y(tk)

sin [w(t)t− kπ]
w(t)t− kπ

,

= ŷ(t),

where we have used (4.5).

The reconstruction filter with impulse response h̄1(t, τ) is not a time-varying lowpass

filter in the sense of Section 3.2. For comparison, the impulse response h1(t, τ) of a (scaled)

time-varying lowpass filter with the same cut-off frequency w(t) is

h1(t, τ) =
sin [w(t)(t− τ)]
w(t)(t− τ)

�= h̄1(t, τ). (4.9)

For convenience, we rewrite (4.4) as

ŷ(t) =
∞∑

k=−∞
y(tk)ϕk(t), (4.10)

where ϕk(t) denotes the kth synthesis function:

ϕk(t) =
sin [w(t)t− kπ]
w(t)t− kπ

. (4.11)

It follows from (4.5) that the functions ϕk(t) possess an interpolating property with respect

to the sampling times tk:

ϕk(tm) = δ[k −m]. (4.12)

As will be shown in the next section, the interpolating property allows for consistent re-

sampling of ŷ(t).

From the interpolating property, we prove that the functions ϕk(t) are linearly indepen-

dent, i.e. if ∞∑
k=−∞

akϕk(t) = 0 ∀ t, (4.13)
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then ak = 0 for all k. Evaluating the left-hand side of (4.13) at an arbitrary sampling

instant tm and using (4.12),

∞∑
k=−∞

akϕk(tm) =
∞∑

k=−∞
akδ[k −m],

= am = 0

for all m as desired.

4.2.3 Consistent resampling and projection

It is shown that the reconstruction ŷ(t) in (4.4) can be consistently resampled on the grid

{tk, k ∈ Z} defined by (4.5), i.e. ŷ(tk) = y(tk) for all k. Thus, our reconstruction fulfills one

of the desired properties summarized in Section 1.2. We then show that ŷ(t) is a projection

of y(t) onto the reconstruction space spanned by the functions {ϕk(t), k ∈ Z}.

Using (4.4), the samples ŷ(tm), m ∈ Z, at the times tm satisfying (4.5) are expressed as

ŷ(tm) =
∞∑

k=−∞
y(tk)ϕk(tm),

=
∞∑

k=−∞
y(tk)δ[k −m],

= y(tm), (4.14)

where we have used the interpolating property in (4.12). Therefore, the samples ŷ(tm) are

consistent with the original samples y(tm).

We define P to be an operator that consists of sampling on the grid {tk, k ∈ Z} followed

by reconstruction using the synthesis functions {ϕk(t), k ∈ Z}, i.e.

P (y(t)) =
∞∑

k=−∞
y(tk)ϕk(t) = ŷ(t). (4.15)

The operator P is depicted in Figure 4-3, where h̄1(t, τ) as defined in (4.8) is the impulse

response of the reconstruction filter.

By definition, in order for P to be a projection operator, P must be idempotent. Con-
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y(t)

∞∑
k=−∞

δ(t− tk)

h̄1(t, τ) P (y(t))

P

Figure 4-3: The operator P .

sequently, P (ŷ(t)) = ŷ(t) must hold, which is verified below:

P (ŷ(t)) =
∞∑

k=−∞
ŷ(tk)ϕk(t).

Using the consistent resampling property in (4.14),

P (ŷ(t)) =
∞∑

k=−∞
y(tk)ϕk(t),

which is equal to ŷ(t) from (4.10). Thus, P may be interpreted as a projection onto the

reconstruction space spanned by {ϕk(t), k ∈ Z}. Since the signal y(t) may not lie in the

reconstruction space, the first projection ŷ(t) = P (y(t)) generally incurs some error, which

we will examine in Sections 4.2.5 and 4.2.6.

4.2.4 Conditions for perfect reconstruction

In this section, we derive necessary conditions for perfect reconstruction, i.e. conditions

under which ŷ(t) = y(t) for all t. A class of signals satisfying a sufficient condition for

perfect reconstruction is discussed in Section 4.5.

We first express the reconstruction in the form ŷ(t) = r(w(t)t) for a signal r(t),

r(t) =
∞∑

k=−∞
y(tk)

sin(t− kπ)
t− kπ

, (4.16)

that is bandlimited to a maximum frequency of 1. The signal r(t) is the bandlimited

interpolation obtained by assuming that the samples y(tk) were taken uniformly. To attain

56



perfect reconstruction, i.e. y(t) = r(w(t)t), y(t) must be a time-warped bandlimited signal

in the sense to be discussed in Chapter 5, with r(t) as the corresponding bandlimited signal.

A more explicit form for the condition for perfect reconstruction can be obtained by

first replacing ω with w(t)ω as the variable of integration in (3.8):

y(t) = w(t)
∫ 1

−1
X(w(t)ω)ejω(w(t)t)dω.

Expressing ŷ(t) as

ŷ(t) =
∫ 1

−1
R(ω)ejω(w(t)t)dω,

the condition for perfect reconstruction is equivalent to

∫ 1

−1
[w(t)X(w(t)ω) −R(ω)] ejω(w(t)t)dω = 0 ∀ t ∈ R, (4.17)

in which the Fourier transform R(ω) also depends on X(ω) through the sample values y(tk).

Equation (4.17) imposes a restriction on the signals x(t), i.e. the inputs to the time-varying

lowpass filter, that result in signals y(t) that can be perfectly reconstructed.

We conclude that not all signals with bandlimited time-varying spectra can be sampled

and perfectly reconstructed using the method we have developed. Given our method, it

is unsatisfying to interpret signals with bandlimited time-varying spectra as being locally

bandlimited since the perfect reconstruction property of Section 1.2 does not hold in general.

Our method does however satisfy the property that the reconstruction error e(t) ≡ ŷ(t)−y(t)
decreases to zero as the cut-off frequency w(t) approaches a constant, as is shown in the

next section.

4.2.5 Bound on reconstruction error

We first derive a bound on the reconstruction error and show that the bound decreases

to zero as w(t) becomes constant. First, using (3.8) and (3.12), we express both sets of

coefficients in terms of X(ω):

y(tk) =
1
2π

∫ w(tk)

−w(tk)
X(ω)ejωtkdω,

ỹ

(
t,
kπ

w(t)

)
=

1
2π

∫ w(t)

−w(t)
X(ω)ejωkπ/w(t)dω.
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Let ek(t) be the error in the kth coefficient, i.e.

ek(t) ≡ y(tk) − ỹ

(
t,
kπ

w(t)

)
=

1
2π

∫ w(t)

−w(t)
X(ω)

(
ejωtk − ejωkπ/w(t)

)
dω +

1
2π

∫ |ω|=w(tk)

|ω|=w(t)
X(ω)ejωtkdω. (4.18)

The magnitude of ek(t) can be bounded using the triangle inequality:

|ek(t)| ≤ 1
2π

∣∣∣∣∣
∫ w(t)

−w(t)
X(ω)

(
ejωtk − ejωkπ/w(t)

)
dω

∣∣∣∣∣+ 1
2π

∣∣∣∣∣
∫ |ω|=w(tk)

|ω|=w(t)
X(ω)ejωtkdω

∣∣∣∣∣ . (4.19)

The first term on the right-hand side of (4.19) can be bounded using the Cauchy-Schwarz

inequality:

1
2π

∣∣∣∣∣
∫ w(t)

−w(t)
X(ω)

(
ejωtk − ejωkπ/w(t)

)
dω

∣∣∣∣∣
≤ 1

2π

(∫ w(t)

−w(t)
|X(ω)|2dω

)1/2(∫ w(t)

−w(t)
|ejωtk − ejωkπ/w(t)|2dω

)1/2

,

=
1
2π

(
2
∫ w(t)

0
|X(ω)|2dω

)1/2 [
4w(t)

(
1 − sin[w(t)tk − kπ]

w(t)tk − kπ

)]1/2
,

=
1
π

√
2w(t)

(∫ w(t)

0
|X(ω)|2dω

)1/2(
1 − sin[w(t)tk − kπ]

w(t)tk − kπ

)1/2

, (4.20)

where |X(ω)| is an even function of ω because x(t) is real. The second term on the right-

hand side of (4.19) can be bounded as follows:

1
2π

∣∣∣∣∣
∫ |ω|=w(tk)

|ω|=w(t)
X(ω)ejωtkdω

∣∣∣∣∣ ≤ 1
2π

∫ |ω|=w(tk)

|ω|=w(t)
|X(ω)|dω,

=
1
π

∫ ω=w(tk)

ω=w(t)
|X(ω)|dω. (4.21)

Combining (4.19), (4.20), and (4.21),

|ek(t)| ≤ 1
π

√2w(t)
(

1 − sin[w(t)tk − kπ]
w(t)tk − kπ

)1/2
(∫ w(t)

0
|X(ω)|2dω

)1/2

+
∫ w(tk)

w(t)
|X(ω)|dω

 .

(4.22)

58



Expressing w(t) as w(t) = w + ∆w(t), we wish to show that the bound on |ek(t)| in

(4.22) goes to zero as ∆w(t) goes to zero, i.e. as w(t) approaches a constant. Considering

first the second term on the right-hand side of (4.22), the limits of integration converge as

∆w(t) → 0, and hence the integral tends to zero.

We show that the first term on the right-hand side of (4.22) also decreases to zero as

∆w(t) → 0. The first term is proportional to the quantity λ, defined as

λ ≡
(

1 − sin[w(t)tk − kπ]
w(t)tk − kπ

)1/2

. (4.23)

Rewriting the quantity w(t)tk − kπ that appears in (4.23),

w(t)tk − kπ = tk[w(t) − w(tk)],

= tk[∆w(t) − ∆w(tk)], (4.24)

where we have used (4.5) to substitute for kπ in the first line. Thus, as ∆w(t) approaches

zero, w(t)tk−kπ and λ also approach zero. However, if |tk| is large, |∆w(t)−∆w(tk)| must

be very small in order for their product to be small. Thus, for large |tk|, i.e. for samples

distant from the origin, λ is more sensitive to deviations from a constant cut-off frequency.

We remark that it seems unnatural for |ek(t)| to become more sensitive to the variation

of w(t) as |k| increases. The fact that |ek(t)| is better controlled for sampling times close to

the origin may be a consequence of setting τ0(t) = 0 in Section 4.1. We recall that t0 = 0

is always a solution to (4.5), and hence is always included in the sampling grid. It may be

possible to address the bias toward the origin by introducing a non-zero τ0(t).

The total reconstruction error e(t) may be bounded in terms of ek(t):

|e(t)| =

∣∣∣∣∣
∞∑

k=−∞
ek(t)

sin [w(t)t− kπ]
w(t)t− kπ

∣∣∣∣∣ ,
≤

∞∑
k=−∞

|ek(t)| |sin [w(t)t− kπ]|
|w(t)t− kπ| ,

≤
∞∑

k=−∞

|ek(t)|
|w(t)t− kπ| , (4.25)

where we have used the triangle inequality and the fact that | sin(·)| ≤ 1. Each coefficient

error ek(t) is weighted by 1/|w(t)t − kπ|. If w(t) is approximately constant, w(t)t − kπ ≈
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w(t)(t − tk), which corresponds to a 1/|t− tk| decay. Assuming that |ek(t)| itself does not

increase faster than O (|t− tk|), the error due to the kth sample decays as |t− tk| increases.

4.2.6 Discrete-time simulation

In this section, we present MATLAB simulations of the sampling and reconstruction of

signals with bandlimited time-varying spectra, in which the sampling is based on (4.5)

and the reconstruction on (4.4). We verify that the reconstruction error increases as the

variation in w(t) increases.

The cut-off frequency w(t) is chosen to be a linear function parameterized by an intercept

w0 = 0.1π and a slope α ranging from 0 to 5× 10−5π. For the purposes of simulation, w(t)

is sampled at t = n, n ∈ Z, yielding the sequence

w[n] = w0 + αn, −L ≤ n ≤ L. (4.26)

The time index n is restricted to the range −L ≤ n ≤ L with L = 1000, so that all signals

in the simulation are of length 2L + 1. Consequently, when α = 5 × 10−5π, w[n] ranges

from 0.05π at n = −L to 0.15π at n = L.

For each choice of w[n] corresponding to a different choice of α, 1000 test sequences,

denoted by y[n], were generated according to the following equation:

y[n] =
L∑

m=−L
h[n,m]x[m], −L ≤ n ≤ L, (4.27)

where x[n] is a realization of a white noise sequence consisting of samples uniformly dis-

tributed on [−1, 1], and h[n,m] is a matrix implementing a time-varying lowpass filter with

cut-off frequency w[n]. We consider y[n] to be a sequence of samples from a signal y(t) with

a bandlimited time-varying spectrum.

The matrix h[n,m] is formed according to the following procedure: For each value of

n, −L ≤ n ≤ L, a 2L+ 1-point lowpass filter with cut-off frequency w[n] is designed using

the Parks-McClellan algorithm. Let b[m;w[n]], 0 ≤ m ≤ 2L denote the impulse response of

this lowpass filter, indexed so that it is symmetric about m = L. Then, for each value of n,
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the vector h[n,m] is obtained by circularly shifting b[m;w[n]] by n− L:

h[n,m] = b [(m− n+ L)mod(2L+ 1);w[n]] , −L ≤ n,m ≤ L. (4.28)

In terms of the output y[n], the circular shift in (4.28) is equivalent to linearly shifting

b[m;w[n]] and periodically replicating x[n] outside of −L ≤ n ≤ L with period 2L+ 1.

For each test sequence y[n], the sampling and reconstruction of the underlying signal

y(t) were simulated. Substituting w(t) = w0 + αt into (4.5) yields a quadratic equation

specifying the sampling instants tk for y(t). The restriction −L ≤ tk ≤ L limits the sample

numbers to the range kmin ≤ k ≤ kmax, where

kmin =
⌈
w(−L)(−L)

π

⌉
,

kmax =
⌊
w(L)L
π

⌋
. (4.29)

The restriction −L ≤ tk ≤ L and the particular values chosen for w0 and α allow one of

the roots of (4.5) to be eliminated, leaving

tk =


√
w2

0 + 4παk − w0

2α
, α �= 0,

kπ

w0
, α = 0,

(4.30)

as the single sampling instant for each value of k. When tk is not an integer, the sample

y(tk) is computed by interpolating between the uniform samples y[n] using cubic spline

functions. The parameter w0 = 0.1π was chosen in part so that y(t) varies slowly compared

to the unit sample spacing for y[n].

The discrete-time reconstruction ŷ[n] of y[n] is obtained by setting t = n in (4.4) and

restricting k to kmin ≤ k ≤ kmax:

ŷ[n] =
kmax∑
k=kmin

y(tk)
sin [w[n]n− kπ]
w[n]n− kπ

, −L ≤ n ≤ L. (4.31)

For each test sequence, we evaluate the energy in the error sequence e[n] ≡ ŷ[n] − y[n]
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normalized by the energy in y[n], i.e.

ε =

L/2∑
n=−L/2

e2[n]

L/2∑
n=−L/2

y2[n]

. (4.32)

The computation in (4.32) is performed only over the range −L/2 ≤ n ≤ L/2 in order to

mitigate end effects caused by the finite number of terms in (4.31).

For each value of α, the normalized error energy ε is averaged over all the corresponding

test sequences. In Figure 4-4, the average normalized error energy is plotted as a function

of α. As suggested by the analysis in Section 4.2.5, the error increases with α, which

corresponds to the rate of variation of w(t). In fact, the dependence appears to be nearly

linear.
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Figure 4-4: Average normalized error energy as a function of slope α for the case of linearly
increasing cut-off frequency.
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4.3 Non-uniform sampling and reconstruction using a time-

varying lowpass filter

In this section, we consider a different method of reconstructing from the non-uniform

samples y(tk) of y(t). Specifically, the sampling instants tk are still given by (4.5), but the

reconstruction filter is a second time-varying lowpass filter having the same cut-off frequency

w(t) as the time-varying lowpass filter that generated y(t). This choice of reconstruction

filter is analogous to the reconstruction of globally bandlimited signals. A signal globally

bandlimited to w may be viewed as the output of a time-invariant lowpass filter with cut-off

frequency w. The signal may be reconstructed from uniform, Nyquist rate samples using a

second time-invariant lowpass filter with the same cut-off frequency w.

For convenience, we apply a normalizing weighting to the impulse train s(t) specified in

(4.7):

s(t) =
∞∑

k=−∞

π

w(tk)
y(tk)δ(t− tk). (4.33)

The Fourier transform S(ω) of s(t) is given by

S(ω) =
∞∑

k=−∞

π

w(tk)
y(tk)e−jωtk , (4.34)

which can be related to X(ω) by using (3.8) to substitute for y(tk):

S(ω) =
∞∑

k=−∞

1
2w(tk)

∫ w(tk)

−w(tk)
X(θ)ej(θ−ω)tkdθ. (4.35)

The reconstruction ŷ(t) is obtained by processing s(t) with a time-varying lowpass filter

having cut-off frequency w(t). Replacing X(ω) with S(ω) in (3.8), we have

ŷ(t) =
1
2π

∫ w(t)

−w(t)
S(ω)ejωtdω. (4.36)

The error e(t) ≡ ŷ(t) − y(t) is found by subtracting (3.8) from (4.36). It can be bounded

by the integral of the absolute difference |S(ω)−X(ω)| over the frequency band |ω| < w(t),
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i.e.

|e(t)| =
1
2π

∣∣∣∣∣
∫ w(t)

−w(t)
(S(ω) −X(ω))ejωtdω

∣∣∣∣∣ ,
≤ 1

2π

∫ w(t)

−w(t)
|S(ω) −X(ω)|dω. (4.37)

We show that S(ω) = X(ω) for |ω| < w(t) when w(t) is constant, i.e. w(t) = w0, and

hence that e(t) = 0. With this assumption, w(tk) = w0 in (4.35), allowing the summation

over k to be exchanged with the integral, and tk = kπ/w0. Therefore,

S(ω) =
∫ w0

−w0

X(θ)

{
1

2w0

∞∑
k=−∞

ej(θ−ω)kπ/w0

}
dθ.

Recognizing the quantity in braces as the Fourier series expansion of a periodic impulse

train in frequency with period 2w0,

S(ω) =
∫ w0

−w0

X(θ)

{ ∞∑
k=−∞

δ(θ − ω − 2kw0)

}
dθ.

For |θ| < w0 and |ω| < w0, the integral is non-zero only for k = 0. Hence S(ω) = X(ω) for

|ω| < w0 and e(t) = 0 as desired.

4.4 Uniform sampling and reconstruction using a time-varying

lowpass filter

In Section 4.2, we showed that a signal y(t) with a bandlimited time-varying spectrum

cannot in general be exactly reconstructed using (4.4) from its non-uniform samples taken

according to (4.5). In this section, we consider sampling y(t) uniformly at a rate correspond-

ing to the maximum cut-off frequency wmax. Even in this case, y(t) cannot be perfectly

reconstructed from its samples using the time-varying lowpass filter defined in Section 3.2.

A bound on the reconstruction error is derived.

The sampling instants tk that we now consider are given by

tk =
kπ

wmax
, (4.38)
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corresponding to the Nyquist rate associated with wmax. The sampling of y(t) on the grid

{tk, k ∈ Z} is represented as a product with an impulse train scaled by π/wmax, i.e.

s(t) =
π

wmax

∞∑
k=−∞

y

(
kπ

wmax

)
δ

(
t− kπ

wmax

)
. (4.39)

Since the samples of y(t) are taken uniformly, the Fourier transform S(ω) consists of copies

of Y (ω) replicated at intervals of 2wmax:

S(ω) =
∞∑

k=−∞
Y (ω − 2kwmax). (4.40)

To obtain a reconstruction ŷ(t), we consider processing s(t) with a time-varying lowpass

filter having cut-off frequency w(t). Using (3.8) and (4.40), ŷ(t) can be expressed as

ŷ(t) =
1
2π

∫ w(t)

−w(t)
S(ω)ejωtdω,

=
1
2π

∞∑
k=−∞

∫ 2kwmax+w(t)

2kwmax−w(t)
Y (ω)ej(ω−2kwmax)tdω. (4.41)

Alternatively, using (3.9) and (4.39),

ŷ(t) =
∫ ∞

−∞
s(u)

sin[w(t)(t− u)]
π(t− u)

du,

=
∞∑

k=−∞
y

(
kπ

wmax

)
sin [w(t)(t− kπ/wmax)]
wmax(t− kπ/wmax)

. (4.42)

Based on (4.41), we derive a bound on the reconstruction error e(t) ≡ ŷ(t)− y(t). From

Section 3.3.1, Y (ω) can be written as

Y (ω) = H0(ω)X(ω) + Y2(ω), (4.43)

where H0(ω) is given by (3.17) and (3.18) and Y2(ω) by (3.22). Substituting (4.43) in (4.41),

ŷ(t) =
1
2π

{∫ w(t)

−w(t)
H0(ω)X(ω)ejωtdω +

∞∑
k=−∞

∫ 2kwmax+w(t)

2kwmax−w(t)
Y2(ω)ej(ω−2kwmax)tdω

}
,

(4.44)

using the fact that H0(ω) = 0 for |ω| > wmax according to (3.18).
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Subtracting (3.8) from (4.44),

e(t) =
1
2π

{∫ |ω|=w(t)

|ω|=wmin

[H0(ω) − 1]X(ω)ejωtdω +
∞∑

k=−∞

∫ 2kwmax+w(t)

2kwmax−w(t)
Y2(ω)ej(ω−2kwmax)tdω

}
,

(4.45)

where the range of integration in the first integral is now wmin < |ω| < w(t) since H0(ω) = 1

for |ω| < wmin. For arbitrary choices of X(ω) and non-constant w(t), the right-hand side

of (4.45) is generally non-zero, and the reconstruction is not exact. Using the triangle

inequality to bound e(t),

|e(t)| ≤ 1
2π

{∣∣∣∣∣
∫ |ω|=w(t)

|ω|=wmin

[H0(ω) − 1]X(ω)ejωtdω

∣∣∣∣∣+
∞∑

k=−∞

∣∣∣∣∣
∫ 2kwmax+w(t)

2kwmax−w(t)
Y2(ω)ej(ω−2kwmax)tdω

∣∣∣∣∣
}
,

≤ 1
2π

{∫ |ω|=w(t)

|ω|=wmin

[1 −H0(ω)]|X(ω)|dω +
∞∑

k=−∞

∫ 2kwmax+w(t)

2kwmax−w(t)
|Y2(ω)|dω

}
. (4.46)

As in Section 4.2.5, we wish to show that the bound on |e(t)| decreases to zero as w(t)

approaches a constant. The first term on the right-hand side of (4.46) goes to zero as the

range of w(t), and therefore the range of integration, approach zero. The summation over

k represents the integral of |Y2(ω)| over an infinite set of frequency bands having width

2w(t) and centre frequencies ω = 2kwmax, k ∈ Z. As discussed in Section 3.3.1, |Y2(ω)|
is bounded according to (3.24) and approaches zero as w(t) approaches a constant. The

integral of |Y2(ω)| behaves similarly.

4.5 Self-similar signals with bandlimited time-varying spec-

tra

In Section 4.2.5, it was observed that a signal y(t) with a bandlimited time-varying spectrum

is in general not perfectly reconstructable according to the procedure summarized in (4.5)

and (4.4). However, as demonstrated in this section, perfect reconstruction does result for

a class of self-similar signals with bandlimited time-varying spectra. We also discuss the

stochastic analogue to these results.
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4.5.1 Definition and perfect reconstruction property

Comparing the expansions in (4.4) and (4.2), a sufficient condition for perfect reconstruction

is met if ỹ(t, kπ/w(t)) is independent of t, so that ỹ(t, kπ/w(t)) = y(tk) for all t and

ŷ(t) = y(t). More generally, if the quantity w(t)γ−1ỹ(t, kπ/w(t)) is independent of t, where

γ is a real constant, an exact expansion can be obtained for y(t) in terms of its samples

y(tk) and the cut-off frequency w(t). The conditions under which this holds will define a

class of self-similar signals with bandlimited time-varying spectra.

Using (3.12), we write ỹ(t, kπ/w(t)) as

ỹ

(
t,
kπ

w(t)

)
=

1
2π

∫ w(t)

−w(t)
X(ω)ejωkπ/w(t)dω.

Replacing ω with w(t)ω as the variable of integration,

ỹ

(
t,
kπ

w(t)

)
=
w(t)
2π

∫ 1

−1
X(w(t)ω)ejωkπdω. (4.47)

We consider cases in which X(w(t)ω) can be separated into a product of two functions:

X(w(t)ω) = Xa(w(t))Xb(ω), (4.48)

which allows (4.47) to be rearranged as follows:

ỹ (t, kπ/w(t))
w(t)Xa(w(t))

=
1
2π

∫ 1

−1
Xb(ω)ejωkπdω. (4.49)

Then the left-hand side of (4.49) is independent of t.

Specifically, we restrict our attention to Fourier transforms X(ω) that obey a power-law:

X(ω) =
C

|ω|γ , (4.50)

where C and γ are real constants. Then X(w(t)ω) satisfies (4.48) with Xa(w(t)) = w(t)−γ

and Xb(ω) = X(ω). Substituting into (4.49),

(w(t))γ−1 ỹ

(
t,
kπ

w(t)

)
=

1
2π

∫ |ω|=1

|ω|=ε
C

|ω|γ e
jωkπdω, (4.51)

where ε is an arbitrarily small positive constant so that the range of integration does
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not include ω = 0. Thus, if X(ω) is a power-law spectrum as in (4.50), the quantity

w(t)γ−1ỹ(t, kπ/w(t)) is independent of t. Signals with power-law spectra are known as

self-similar signals or homogeneous signals and are discussed in detail in [11].

From (3.8), the signal y(t) corresponding to (4.50) is given by

y(t) =
1
2π

∫ |ω|=w(t)

|ω|=εw(t)

C

|ω|γ e
jωtdω. (4.52)

We refer to signals of the form in (4.52) as self-similar signals with bandlimited time-varying

spectra. In Section 4.5.2, we discuss the stochastic analogue to (4.52).

We now show that self-similar signals with bandlimited time-varying spectra can be

perfectly reconstructed from samples taken at the times specified by (4.5). Toward this

end, we first use (4.5) to substitute w(tk)tk for kπ on the right-hand side of (4.51). Next,

replacing ω with ω/w(tk) as the variable of integration,

(w(t))γ−1 ỹ

(
t,
kπ

w(t)

)
= (w(tk))

γ−1

{
1
2π

∫ |ω|=w(tk)

|ω|=εw(tk)

C

|ω|γ e
jωtkdω

}
. (4.53)

From (4.52), we recognize the quantity in braces as y(tk). Rearranging (4.53),

ỹ

(
t,
kπ

w(t)

)
= (w(t))1−γ (w(tk))

γ−1 y(tk). (4.54)

Substituting (4.54) into (4.2), we arrive at the desired reconstruction:

y(t) = (w(t))1−γ
∞∑

k=−∞
(w(tk))

γ−1 y(tk)
sin [w(t)t− kπ]
w(t)t− kπ

. (4.55)

Hence y(t) is completely determined by its samples y(tk) and the cut-off frequency w(t).

4.5.2 Stochastic analogue

The uniform sampling theorem can be extended to wide-sense stationary (WSS) random

processes with bandlimited power spectral densities (PSD) (see [1] for a discussion). Specif-

ically, the autocorrelation function of the random process is completely specified by its

uniform samples taken at the Nyquist rate associated with the PSD. Accordingly, this leads

us to consider the stochastic analogue to a signal with a bandlimited time-varying spectrum.

Taking (3.8) and replacing y(t) with the autocorrelation function Ryy(τ) and X(ω) with
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the PSD Sxx(ω), we define

Ryy(τ) =
1
2π

∫ w(τ)

−w(τ)
Sxx(ω)ejωτdω (4.56)

to be an autocorrelation function with a bandlimited lag-varying PSD. In order for Ryy(τ)

to be a valid autocorrelation, it must be an even function of τ , i.e. Ryy(τ) = Ryy(−τ).
Thus, w(τ) must also be an even function.

Consider cases in which the PSD Sxx(ω) is distributed according to a power-law:

Sxx(ω) =
C

|ω|γ . (4.57)

WSS random processes having PSDs of the form in (4.57) are known as 1/f processes, a

rich class of random processes discussed extensively in [11]. Substituting (4.57) into (4.56),

Ryy(τ) =
1
2π

∫ |ω|=w(τ)

|ω|=εw(τ)

C

|ω|γ e
jωτdω, (4.58)

where ω = 0 has been excluded from the range of integration as in (4.52). The stochastic

analogue to (4.55) follows:

Ryy(τ) = (w(τ))1−γ
∞∑

k=−∞
(w(τk))

γ−1Ryy(τk)
sin [w(τ)τ − kπ]
w(τ)τ − kπ

, (4.59)

where the sampling times τk satisfy (4.5). Hence, an autocorrelation function Ryy(τ) of the

form in (4.58) is completely determined by its samples Ryy(τk) and the cut-off frequency

w(τ).

An autocorrelation function of the form in (4.56) does not correspond however to a

random process obtained by filtering a WSS random process with a time-varying lowpass

filter. In fact, such a random process is not even WSS, as we show by determining its

autocorrelation function. From (3.9), the output y(t) of a time-varying lowpass filter with

cut-off frequency w(t) when driven by a WSS random process x(t) is given by

y(t) =
∫ ∞

−∞
x(t− u)

sin[w(t)u]
πu

du. (4.60)

Let y1(t) and y2(t) denote the outputs of two time-invariant lowpass filters with cut-off
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frequencies w(t1) and w(t2) respectively when driven by x(t):

y1(t) =
∫ ∞

−∞
x(t− u)

sin[w(t1)u]
πu

du, (4.61)

y2(t) =
∫ ∞

−∞
x(t− u)

sin[w(t2)u]
πu

du. (4.62)

In particular, y1(t1) = y(t1) and y2(t2) = y(t2). The processes y1(t) and y2(t) are jointly

WSS and their cross-correlation Ry1y2(τ) is given by

Ry1y2(τ) ≡ E [y1(t+ τ)y2(t)] =
sin[w(t1)τ ]

πτ
∗ sin[w(t2)(−τ)]

π(−τ) ∗Rxx(τ),

where E[·] denotes the ensemble expectation. Since the sinc function is even,

Ry1y2(τ) =
sin[w(t1)τ ]

πτ
∗ sin[w(t2)τ ]

πτ
∗Rxx(τ).

The convolution between the two sinc functions, one with maximum frequency w(t1), the

other with maximum frequency w(t2), yields a sinc function with maximum frequency

min{w(t1), w(t2)}, a result obtained straightforwardly in the Fourier domain. Thus,

Ry1y2(τ) =
sin[min{w(t1), w(t2)}τ ]

πτ
∗Rxx(τ). (4.63)

Consider evaluating the autocorrelation Ryy(t, s) at the specific times t = t1, s = t2.

Ryy(t1, t2) = E [y(t1)y(t2)] = E [y1(t1)y2(t2)] = Ry1y2(t1 − t2),

Ryy(t1, t2) =
∫ ∞

−∞
sin[min{w(t1), w(t2)}τ ]

πτ
Rxx(t1 − t2 − τ)dτ. (4.64)

Since min{w(t1), w(t2)} is not a function of t1 − t2 except for special choices of w(τ), t1,

and t2, Ryy(t, s) is generally not a function of t− s only, and hence y(t) cannot be WSS.
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Chapter 5

Time-Warped Bandlimited Signals

In Chapter 4, we concluded that the output of a time-varying lowpass filter as defined

in Section 3.2 should not be regarded as a locally bandlimited signal, since the perfect

reconstruction property of Section 1.2 does not hold in general for the sampling and recon-

struction method developed in Section 4.2. As an alternative approach, in this chapter we

consider a definition for local bandwidth based on the time-warping of globally bandlim-

ited signals. This definition was proposed by Clark, Palmer, and Lawrence in [5], and by

Zeevi and Shlomot in [6]. We also discuss the pre-filtering and pre-warping of signals to be

sampled on a specified non-uniform grid.

5.1 Definition of local bandwidth based on time-warping

In this section, we closely follow the ideas in [5] and [6]. We define a continuous-time signal

f(t) to be locally bandlimited if there exists a continuous, invertible function α(t) such that

the signal

g(t) = f(α(t)) (5.1)

is bandlimited to a maximum frequency ω0, i.e.

G(ω) = 0, |ω| > ω0. (5.2)

The signal g(t) is obtained from f(t) by the transformation t → α(t) of the time variable.

More informally, we will refer to this transformation as a time-warping, and to α(t) as the

warping function.
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The signal f(t) can be expressed in terms of g(t) as

f(t) = g(γ(t)), (5.3)

where the warping function γ(t) is the unique inverse of α(t), i.e.

γ(α(t)) = α(γ(t)) = t. (5.4)

In order for ω0 to be uniquely specified, the following additional constraint on the

warping function α(t) is imposed:

lim
t→±∞

α(t)
t

= 1, (5.5)

which also implies

lim
t→±∞

γ(t)
t

= 1. (5.6)

Together with the constraints that α(t) be continuous and invertible, (5.5) and (5.6) restrict

α(t) and γ(t) to be monotonically increasing with t.

To illustrate the necessity of (5.5), suppose that g1(t) = f(α1(t)) is bandlimited to ω1

for some α1(t) satisfying (5.5), so that f(t) is locally bandlimited. Let α2(t) = α1(at), where

|a| �= 1 is a real constant, and g2(t) = f(α2(t)) = g1(at), i.e. g2(t) is a globally time-scaled

version of g1(t). Using the time-scaling property of Fourier transforms,

G2(ω) =
1
|a|G1

(ω
a

)
. (5.7)

Hence, g2(t) is bandlimited to |a|ω1 �= ω1, and we may equally well use α2(t), g2(t), and

|a|ω1 to define f(t) as a locally bandlimited signal. Note that

lim
t→±∞

α2(t)
t

= lim
t→±∞

α1(at)
t

= lim
t→±∞ a

α1(at)
at

= a,

so that g2(t) does not satisfy (5.5). The constraint in (5.5) may be interpreted as fixing the

value of ω0 by excluding any global dilation or compression from the warping function. For

simplicity, global time reversal, corresponding to a = −1, is also excluded.

Since g(t) is globally bandlimited, we exploit the uniform sampling theorem to show that
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f(t) is perfectly reconstructable from knowledge of its samples and the warping function.

Specifically, g(t) can be expanded as

g(t) =
∞∑

k=−∞
g(kT )

sin(ω0t− kπ)
ω0t− kπ

, (5.8)

where T = π/ω0 is the Nyquist sampling period. Rewriting (5.8) as an expansion for f(t),

f(t) = g(γ(t)) =
∞∑

k=−∞
f(tk)

sin(ω0γ(t) − kπ)
ω0γ(t) − kπ

, (5.9)

where the sampling instants tk are given by

tk = α(kT ), (5.10)

so that g(kT ) = f(tk). Equation (5.9) may be interpreted as an exact reconstruction

of the locally bandlimited signal f(t) from its samples. The synthesis functions in the

reconstruction are time-warped sinc functions obtained by replacing t with γ(t).

From the warping function γ(t), we can construct a quantity that has the units of

frequency and that provides an intuitive measure of the rate at which the signal f(t) varies.

As motivation, consider first the special case in which γ(t) = at with a a positive constant

(and ignoring (5.6) for the moment), corresponding to a time compression if a > 1 and a

dilation if a < 1. Using the property in (5.7), if g(t) is bandlimited to ω0, then f(t) = g(γ(t))

is bandlimited to aω0, i.e. to a higher maximum frequency for compression and a lower one

for dilation. We also observe that the time-scaling a is given by γ′(t), the derivative of γ(t).

In the more general case in which γ(t) is not a linear function of t, γ′(t) indicates

the amount by which g(t) is locally compressed or dilated to yield f(t). Specifically, f(t)

on the infinitesimal interval [t0, t0 + dt] is the image of g(t) on the interval [γ(t0), γ(t0) +

γ′(t0)dt], which corresponds to compression if γ′(t0) > 1 and to dilation if γ′(t0) < 1. The

monotonically increasing property ensures γ′(t0) > 0. Thus, f(t) on the interval [t0, t0 + dt]

can be said to vary more quickly by the factor γ′(t) than g(t) on the corresponding interval.

Since the maximum frequency ω0 is a measure of the variation in g(t), we may interpret

the quantity

ω0γ
′(t) (5.11)
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as a local measure of the variation in f(t). We emphasize, however, that for the purposes

of sampling and reconstructing f(t), the warping function γ(t) and its inverse α(t) are the

fundamental quantities.

In some contexts, we may only require γ(t) and not its inverse α(t). Such an example

is presented in Section 5.2. In these cases, γ(t) does not need to be invertible, although

it must still be surjective onto the real line. Accordingly, we consider the following, less

restrictive definition of a locally bandlimited signal: A signal f(t) is said to be locally

bandlimited if there exists a continuous, surjective warping function γ(t) satisfying (5.6)

such that f(t) = g(γ(t)) and g(t) is bandlimited to ω0 as in (5.2). Given this definition,

(5.9) remains valid as an expansion for f(t) in terms of its samples. However, the sampling

instants tk are now specified implicitly by

γ(tk) = kT. (5.12)

Since γ(t) is surjective, (5.12) always has at least one solution. However, the solution may

no longer be unique, in which case g(kT ) = f(tk) for all values of tk satisfying (5.12), and

any one of the samples f(tk) may be chosen as the kth coefficient in (5.9). In addition,

we note that in principle, g(t) can still be recovered from f(t) if γ(t) is surjective but not

invertible, because the value of g at any time γ(t), γ(t) ∈ R, is taken by f(t) at time t.

The locally bandlimited signal f(t) = g(γ(t)) is generally not globally bandlimited. To

show this, we relate the Fourier transform F (ω) to G(ω) as follows:

F (ω) =
∫ ∞

−∞
f(t)e−jωtdt,

=
∫ ∞

−∞
g(γ(t))e−jωtdt,

=
∫ ∞

−∞

{∫ ω0

−ω0

G(λ)ejλγ(t)dλ
}
e−jωtdt,

where the limits of integration over λ incorporate the fact that G(λ) is zero outside the

interval [−ω0, ω0]. Interchanging the order of integration,

F (ω) =
∫ ω0

−ω0

{∫ ∞

−∞
ejλγ(t)e−jωtdt

}
G(λ)dλ,

F (ω) =
∫ ω0

−ω0

P (ω, λ)G(λ)dλ, (5.13)
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where P (ω, λ) is the Fourier transform of the angle-modulated signal

pλ(t) = ejλγ(t). (5.14)

Since pλ(t) is in general not a bandlimited signal, f(t) is also not bandlimited.

5.2 Pre-filtering and pre-warping for a specified non-uniform

sampling grid

In this section, we consider the pre-processing of signals that are to be sampled on a specified

non-uniform grid. We present a strategy in which the signal is filtered and time-warped

such that the samples taken on the non-uniform grid are equal to uniform, Nyquist-rate

samples of a bandlimited version of the signal, which may then be reconstructed.

A possible alternative approach makes use of the non-uniform sampling theorem, which

essentially states that a bandlimited signal may be perfectly reconstructed from its non-

uniform samples provided that the average sampling rate exceeds the Nyquist rate, and that

the sampling times do not differ too greatly from a uniform sequence (see e.g. [12, 13, 14]).

In an approach employing the non-uniform sampling theorem, the signal is lowpass filtered

to a sufficiently low bandwidth so that it can be exactly represented on the non-uniform

grid. The bandlimited version of the signal is then reconstructed by performing Lagrange

interpolation between its non-uniform samples.

As an alternative approach, we now consider the system shown in Figure 5-1, consisting

of pre-filtering, pre-warping, sampling, and reconstruction. In Figure 5-1, x(t) denotes the

original signal, g(t) the output of a time-invariant lowpass filter with cut-off frequency ω0,

and f(t) = g(γ(t)) the result of time-warping g(t). The overall effect of the pre-filtering

and pre-warping is to map an arbitrary signal x(t) into a locally bandlimited signal f(t) in

the sense of Section 5.1. The signal f(t) is sampled at the specified times tk, k ∈ Z. We

note that the time-warping approach of Figure 5-1 does not require the sampling grid to be

close to a uniform sampling grid in any sense. In the reconstruction, the samples f(tk) can

be viewed as the coefficients of a uniform impulse train that drives a time-invariant lowpass

filter with cut-off frequency ω0, yielding g(t) as the output.

Based on the sampling grid {tk, k ∈ Z}, we wish to specify the cut-off frequency ω0 and

75



x(t)

g(t)

g(t) f(t) f(tk)

LTI LPF

LTI LPF

cut-off ω0

cut-off ω0

time-warping

γ(t)

t = tk

π

ω0

∑
k

f(tk)δ
(
t− kπ

ω0

)

Figure 5-1: Pre-filtering and pre-warping for signals to be sampled on a non-uniform grid.
“LTI LPF” denotes a time-invariant lowpass filter.

a continuous, surjective warping function γ(t) subject to (5.6) and such that the samples

f(tk) are equal to uniform, Nyquist-rate samples of g(t). In particular, (5.6) implies that

the average sample spacing cannot change when the non-uniform sampling grid {tk, k ∈ Z}
is mapped through γ(t) into a uniform, Nyquist-rate sampling grid, i.e.

π

ω0
= lim

k→∞
tk
k
,

where the right-hand side represents the average sample spacing in {tk, k ∈ Z}. Thus,

ω0 = π lim
k→∞

k

tk
. (5.15)

We also require that

f(tk) = g(γ(tk)) = g

(
kπ

ω0

)
, (5.16)

and hence

γ(tk) =
kπ

ω0
. (5.17)

Comparing (5.17) with (5.12), we infer that f(t) may be exactly represented by its samples

on the grid {tk, k ∈ Z}. From these samples, g(t) may also be perfectly reconstructed, as is
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done in this context.

Equation (5.17) only constrains the values of γ(t) at t = tk, k ∈ Z. As an example, we

may choose γ(t) to be a linear interpolation between the points (tk, kπ/ω0), as illustrated

in Figure 5-2 and given by

γ(t) =
π

ω0

k (tk+1 − t) + (k + 1) (t− tk)
tk+1 − tk

, tk ≤ t ≤ tk+1, k ∈ Z. (5.18)

Although this piecewise linear choice is invertible, in general, it is not necessary for γ(t) to

be invertible because its inverse α(t) is not required.

t

γ(t)

(
t−1,− π

ω0

)

(t0, 0)

(
t1,

π
ω0

)

(
t2,

2π
ω0

)

Figure 5-2: Example of a piecewise linear warping function γ(t).

To reconstruct the bandlimited signal g(t), we may consider the samples f(tn) to be the

coefficients of a uniform impulse train with spacing π/ω0. The impulse train is the input

to a time-invariant lowpass filter with cut-off frequency ω0, resulting in the output

∞∑
k=−∞

f(tk)
sin[ω0(t− kπ/ω0)]
ω0(t− kπ/ω0)

=
∞∑

k=−∞
g

(
kπ

ω0

)
sin[ω0t− kπ]
ω0t− kπ

,

= g(t),

using (5.16) and (5.8). Thus, the method of pre-filtering and pre-warping allows a bandlim-

ited version of the original signal to be perfectly reconstructed, which is the same result
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obtained using the non-uniform sampling theorem. In addition, the signal f(t) may also be

recovered by time-warping g(t) with γ(t) at the output.
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Chapter 6

Sampling and Reconstruction

Using an Optimal Time-Warping

In this chapter, we develop a sampling and reconstruction strategy based on the definition

of local bandwidth in Chapter 5. In particular, the strategy employs a time-warping that

minimizes the energy of a signal above a certain maximum frequency. We examine a number

of analytical and numerical approaches to the problem of determining the optimal time-

warping. We also present a method for determining a time-warping based on the zero-

crossings of the signal to be sampled.

6.1 Sampling and reconstruction method

In this section, we present a method for sampling and reconstructing a signal based on the

relationship between time-warping and local bandwidth discussed in Section 5.1. Figure

6-1 depicts the sampling and reconstruction system to be considered, where f(t) denotes

the signal to be reconstructed from its samples.

In the first step, we determine the warping function α∗(t) that minimizes the energy

above a maximum frequency ω0 of g(t) = f(α(t)) over all possible α(t). Defining the energy

as

εg =
1
2π

∫ ∞

|ω|=ω0

|G(ω)|2dω, (6.1)
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where G(ω) is the Fourier transform of g(t), we have

α∗(t) = argmin
α(t)

εg. (6.2)

The possible warping functions α(t) are constrained to be continuous, invertible functions

satisfying (5.5), as discussed in Section 5.1. Consequently, the inverse γ∗(t) of α∗(t) also

has these properties. In Section 6.2, we consider some approaches to the optimization in

(6.2). Once α∗(t) is determined, the signal g∗(t) is obtained by warping f(t) with α∗(t), i.e.

g∗(t) = f(α∗(t)).

f(t) g∗(t)

ĝ(t)ĝ(kT )

ĝ(kT )

f̂(t)
time-warping

time-warping

α∗(t)

LPF

LPF

cut-off ω0

cut-off ω0

t = kT

T
∑
k

δ(t− kT )

γ∗(t)

Figure 6-1: System for sampling and reconstructing f(t) using an optimal warping function
α∗(t).

We assume that there is a constraint on the average sampling rate, so that the sampling

period T in Figure 6-1 can be regarded as fixed. It follows that the maximum frequency ω0

should be chosen as

ω0 =
π

T
. (6.3)

If the minimum value of εg is zero, then f(t) is locally bandlimited as defined in Section

5.1. Accordingly, the system should yield an exact reconstruction of f(t), i.e. the overall

output f̂(t) = f(t), as will be shown.

We consider two choices for the system in Figure 6-1 corresponding to the inclusion or

exclusion of the anti-aliasing lowpass filter indicated by a dashed box. In Section 6.1.1,
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we analyze the case in which the anti-aliasing filter is included, while in Section 6.1.2 we

analyze the case in which it is excluded.

6.1.1 Inclusion of an anti-aliasing filter

With the inclusion of an anti-aliasing filter having cut-off frequency ω0, the uniform samples

ĝ(kT ) are given by

ĝ(kT ) =
ω0

π

∫ ∞

−∞
f(α∗(t))

sin(ω0t− kπ)
ω0t− kπ

dt. (6.4)

Equivalently,

ĝ(kT ) =
ω0

π

∫ ∞

−∞
f(t)

sin(ω0γ∗(t) − kπ)
ω0γ∗(t) − kπ

γ′∗(t)dt, (6.5)

as a result of changing the variable of integration from t to γ∗(t). The samples ĝ(kT ) do

not correspond to samples of f(t) except when f(t) is locally bandlimited, in which case

g∗(t) is globally bandlimited to ω0 and is unchanged by the lowpass filter. In this special

case,

ĝ(kT ) = g∗(kT ) = f(α∗(kT )),

= f(tk), (6.6)

where the sampling instants tk are those in (5.10).

The bandlimited signal ĝ(t) is reconstructed from its samples, represented by a weighted

impulse train, using a second time-invariant lowpass filter with cut-off frequency ω0. The

reconstruction f̂(t) of f(t) is obtained by time-warping ĝ(t) with γ∗(t):

f̂(t) =
∞∑

k=−∞
ĝ(kT )

sin(ω0γ∗(t) − kπ)
ω0γ∗(t) − kπ

. (6.7)

In the case where f(t) is locally bandlimited and (6.6) holds, the right-hand side of (6.7)

matches the right-hand side of (5.9). Thus, f̂(t) = f(t) and perfect reconstruction is

achieved.

The only source of error in the system is the anti-aliasing filter used to process g∗(t).

Specifically, the energy in the error ĝ(t)− g∗(t) is equal to εg, which may also be expressed
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in terms of f(t) as follows:

εg =
∫ ∞

−∞
[ĝ(t) − g∗(t)]2dt,

=
∫ ∞

−∞
[f̂(α∗(t)) − f(α∗(t))]2dt.

Again invoking the change of variable t→ γ∗(t),

εg =
∫ ∞

−∞
[f̂(t) − f(t)]2γ′∗(t)dt. (6.8)

The optimal warping function α∗(t) minimizes the weighted error energy in (6.8), which is

the same optimality criterion used by Zeevi and Shlomot [6] in defining a projection onto

the space of locally bandlimited signals. If f(t) is already locally bandlimited, then εg = 0,

corresponding to the fact that f(t) is equal to its projection.

Define

εf =
∫ ∞

−∞
|f̂(t) − f(t)|2dt (6.9)

to be the unweighted energy in the reconstruction error f̂(t)− f(t). Using (6.8), εf may be

bounded above and below by
εg
γ′max

≤ εf ≤ εg
γ′min

, (6.10)

where γ′min and γ′max are the minimum and maximum values of γ′∗(t). We note that γ′∗(t)

is positive because γ∗(t) is monotonically increasing.

6.1.2 Exclusion of an anti-aliasing filter

With the exclusion of an anti-aliasing filter, g∗(t) is sampled directly and (6.6) holds re-

gardless of whether or not g∗(t) is bandlimited. Consequently, the reconstruction f̂(t) is

given by

f̂(t) =
∞∑

k=−∞
f(tk)

sin(ω0γ∗(t) − kπ)
ω0γ∗(t) − kπ

. (6.11)

If f(t) is locally bandlimited, we conclude by comparing (5.9) and (6.11) that f̂(t) = f(t).

If g∗(t) is not bandlimited, the sampling and reconstruction results in some error due to

82



aliasing of g∗(t). Weiss [1, 15] provides the following bound for the aliasing error:

|ĝ(t) − g∗(t)| ≤ 2
π

∫ ∞

ω0

|G∗(ω)|dω. (6.12)

Substituting γ∗(t) for t and noting that the right-hand side of (6.12) does not depend on t,

we obtain

|f̂(t) − f(t)| ≤ 2
π

∫ ∞

ω0

|G∗(ω)|dω (6.13)

as a bound on the reconstruction error. If f(t) is locally bandlimited, the right-hand side

of (6.13) is zero and we have perfect reconstruction.

6.2 Determination of the optimal time-warping

In this section, we discuss two approaches to determining the optimal warping α∗(t) that

minimizes εg over all possible warping functions α(t), as formulated in Section 6.1. In

Section 6.2.1, the calculus of variations is applied to the minimization. In Section 6.2.2, we

seek to minimize εg over a class of piecewise linear functions by minimizing with respect to

a set of parameters. We present a gradient-descent algorithm in Section 6.2.3 based on the

piecewise linear parameterization of Section 6.2.2.

6.2.1 Calculus of variations

In this section, we employ the calculus of variations (see for example [16]) in minimizing εg.

We consider εg to be the integral of a functional F [α(t)] by expressing εg as

εg =
∫ ∞

−∞

{∫ ∞

−∞
g(τ)h(t− τ)dτ

}2

dt, (6.14)

where h(t) is the impulse response of an ideal highpass filter with cut-off frequency ω0:

h(t) = δ(t) − sin(ω0t)
πt

. (6.15)

Substituting g(t) = f(α(t)) in (6.14),

εg =
∫ ∞

−∞

{∫ ∞

−∞
f(α(τ))h(t− τ)dτ

}2

dt. (6.16)
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We identify the squared quantity in braces as F [α(t)]:

F [α(t)] =
{∫ ∞

−∞
f(α(τ))h(t− τ)dτ

}2

. (6.17)

For ease of analysis, in this section we neglect the monotonically increasing constraint

on α(t), thus permitting an unconstrained optimization. In this case, the Euler-Lagrange

equation given below must be satisfied at all extrema of F [α(t)], i.e.

∂F
∂α

− d

dt

∂F

∂α′ = 0, (6.18)

where α′ denotes the derivative of α(t) with respect to t. Since F in (6.17) does not depend

explicitly on α′(t), the Euler-Lagrange equation reduces to

∂F

∂α
= 0. (6.19)

Evaluating (6.19) for the optimal warping α∗(t),{∫ ∞

−∞
f(α∗(τ))h(t− τ)dτ

}
×
{∫ ∞

−∞
f ′(α∗(σ))h(t− σ)dσ

}
= 0 ∀ t. (6.20)

We can interpret f ′(α∗(t)) as the result of warping f ′(t) with α∗(t), where f ′(t) is the

derivative of f(t) with respect to t. Using the chain rule for differentiation, f ′(α∗(t)) can

be related to g′∗(t), the derivative of g∗(t), as follows:

g′∗(t) =
d

dt
f(α∗(t)) = f ′(α∗(t))α′

∗(t),

f ′(α∗(t)) =
g′∗(t)
α′∗(t)

. (6.21)

A block diagram representation of (6.20) is shown in Figure 6-2. The upper and lower

branches represent the highpass filtering of f(α∗(t)) = g∗(t) and f ′(α∗(t)) respectively. We

observe that if f(α∗(t)) is bandlimited to ω0, the output of the top branch is zero for all t

and (6.20) is satisfied, in agreement with the fact that εg = 0 necessarily corresponds to a

minimum.

Note that (5.5) acts as a normalization rather than a constraint on α(t). Suppose that

either f(α∗(t)) or f ′(α∗(t)) is bandlimited to ω0 for some α∗(t), thus satisfying (6.20). If
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f(t)

f ′(t)

f(α∗(t))

f ′(α∗(t))

zero ∀ td

dt

time-warping

time-warping

α∗(t)

α∗(t)

highpass filter

highpass filter

cut-off ω0

cut-off ω0

Figure 6-2: Block diagram representation of the Euler-Lagrange condition in (6.20).

(5.5) does not hold, then α∗(at), |a| < 1 is permitted and also satisfies (6.20), since it

corresponds to a global dilation of a signal that is already bandlimited to ω0. Therefore,

(5.5) is required in order to normalize α∗(t).

In conclusion, the calculus of variations provides a necessary condition in (6.20) for a

time-warping to be optimal, but does not necessarily incorporate our additional constraint

that the time-warping be monotonically increasing.

6.2.2 Piecewise linear parameterization

The calculus of variations is useful for optimizing over functions of a continuous variable.

As an alternative, we may consider parameterizing the warping functions α(t) in terms of a

countable set of parameters and minimize εg with respect to the parameters. In this section,

we only treat the case of piecewise linear warping functions. Specifically, α(t) is restricted

to be of the form

α(t) =
∞∑

p=−∞
αpβ

(
t

δ
− p

)
, (6.22)

where δ is the horizontal length of every linear segment and the basis functions β(t/δ − p)

are defined in terms of the unit triangle function β(t):

β(t) =


1 − |t|, |t| ≤ 1,

0, |t| > 1,
(6.23)
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which is sketched in Figure 6-3. Equation (6.22) allows α(t) to be described in terms of the

t

β(t)

1

1−1

Figure 6-3: The unit triangle function β(t).

countable set of samples αp = α(pδ) taken at the boundaries between linear segments. An

example of a piecewise linear α(t) is shown in Figure 6-4.

The derivative α′(t) of α(t) in (6.22) is piecewise constant and is given by

α′(t) =
αp+1 − αp

δ
≡ ∆p

δ
, pδ < t < (p+ 1)δ, p ∈ Z, (6.24)

where ∆p = αp+1 − αp is the first forward difference of the parameter sequence αp.

In principle, the segment length δ can be made arbitrarily small so that α(t) approx-

imates a smooth function. It is convenient to choose δ = T/r, where T is the sampling

period in Figure 6-1 and r is a positive integer. Given this choice, the sampling instants tk

specified by (5.10) become

tk = α(kT ) = α(krδ) = αkr. (6.25)

Once the sequence αp is determined, the sequence tk is obtained by taking every rth element

of αp.

In order for α(t) to be monotonically increasing, the sequence αp must also increase

monotonically, or equivalently, ∆p must be positive for all p. As in Section 6.2.1, we again

neglect the monotonically increasing constraint and perform an unconstrained minimization

of εg. Given the parameterization of α(t) in (6.22), the minimization is accomplished by

setting to zero the partial derivative of εg with respect to each parameter αp. From (6.16)

and (6.22),

∂εg
∂αp

= 2
∫ ∞

−∞

{∫ ∞

−∞
f(α∗(τ))h(t− τ)dτ

}{∫ (p+1)δ

(p−1)δ
f ′(α∗(σ))β

(σ
δ
− p
)
h(t− σ)dσ

}
dt = 0,

(6.26)
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t

α(t)

(−δ, α−1)

(0, α0)

(δ, α1) (2δ, α2)

Figure 6-4: Example of a piecewise linear warping function α(t).

where the limits of the integral over σ are (p − 1)δ and (p + 1)δ because β(σ/δ − p) = 0

elsewhere. As before, α∗(t) denotes the optimal warping function, now restricted to be

piecewise linear. Substituting g∗(τ) for f(α∗(τ)) and (6.21) for f ′(α∗(σ)),

∫ ∞

−∞

{∫ ∞

−∞
g∗(τ)h(t− τ)dτ

}{∫ (p+1)δ

(p−1)δ

g′∗(σ)
α′∗(σ)

β
(σ
δ
− p
)
h(t− σ)dσ

}
dt = 0.

We use (6.24) to substitute for α′∗(σ) and divide the integral over σ into two halves. Rear-

ranging, we obtain an expression for the ratio ∆p/∆p−1:

∆p

∆p−1
= −

∫ ∞

−∞

{∫ ∞

−∞
g∗(τ)h(t− τ)dτ

}{∫ (p+1)δ

pδ
g′∗(σ)β

(σ
δ
− p
)
h(t− σ)dσ

}
dt

∫ ∞

−∞

{∫ ∞

−∞
g∗(τ)h(t− τ)dτ

}{∫ pδ

(p−1)δ
g′∗(σ)β

(σ
δ
− p
)
h(t− σ)dσ

}
dt

, p ∈ Z.

(6.27)

The left-hand side of (6.27) may be regarded as the ratio between the slopes of α∗(t) on

the intervals [(p− 1)δ, pδ] and [pδ, (p+ 1)δ]. Thus, (6.27) constrains the slopes on adjacent

intervals. The constraint is implicit because g∗(τ) and g′∗(σ) on the right-hand side of (6.27)

depend on α∗(t), and in particular on ∆p−1 and ∆p on the left-hand side.

Given the ratios in (6.27), two degrees of freedom remain in α∗(t): the value of a single

difference ∆p and the value of a single parameter αp, e.g. ∆0 and α0 without loss of

generality. Varying ∆0 corresponds to an overall amplitude scaling on α∗(t). Hence, ∆0 is

fixed in principle by enforcing (5.5). The value of α0 may be arbitrary since it corresponds
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to an overall time shift of g∗(t) and has no effect on its bandwidth.

Figure 6-5 shows a block diagram representation of the right-hand side of (6.27). The

functions β−(t) and β+(t) are the negative-time and positive-time halves of β(t) respectively,

i.e.

β−(t) =


β(t), t < 0,

0, t > 0,

β+(t) =


0, t < 0,

β(t), t > 0,

g∗(t)

g′∗(t)

β−
(
t

δ
− p

)

β+

(
t

δ
− p

)

N

D
d

dt

HPF

HPF

HPF

cut-off ω0

cut-off ω0

cut-off ω0

∫

∫

Figure 6-5: Block diagram representation of the right-hand side of (6.27), where N and D
refer to the numerator and denominator and “HPF” indicates an ideal highpass filter.

We have derived the constraint in (6.27) on the optimal, piecewise linear time-warping,

which is again not necessarily monotonically increasing. Equation (6.27) may not hold

for the optimal, monotonically increasing α∗(t), since the minimum may also occur on the

boundary of the region in the parameter space corresponding to monotonically increasing

αp.
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6.2.3 Gradient descent

In this section, we describe a numerical gradient-descent algorithm (see e.g. [17]) for de-

termining the warping function α∗(t) that minimizes εg. The algorithm is based on the

assumption of a piecewise linear warping function as discussed in Section 6.2.2. We present

the results of a MATLAB implementation of the algorithm using time-warped sinusoids as

inputs.

The algorithm takes as input L samples f [n] = f(nT ), n = 0, 1, 2, . . . , L − 1, of the

continuous-time signal f(t), where for convenience we will set T = 1. In this section, the

time index n takes the values 0, 1, . . . , L − 1 unless otherwise specified. The samples f [n]

are taken at a sufficiently high rate for the error due to aliasing to be negligible. The values

of f(t) at non-integer values of t are approximated by interpolating between the samples

f [n].

The algorithm also requires samples f ′[n] = f ′(t)|t=n of the derivative f ′(t) of f(t). If

the samples of the derivative are not provided separately, they may be approximated by

processing f [n] with a discrete-time differentiator.

We wish to determine a warping function α∗(t) such that the sequence g[n] = f(α∗(n))

has minimal energy εg above a desired maximum discrete-time frequency ω0. Specifically,

we define εg in terms of the K-point DFT G[k] of g[n] as

εg =
kmax∑
k=kmin

|G[k]|2, (6.28)

where kmin and kmax correspond approximately to the frequency interval [ω0, 2π − ω0], i.e.

kmin =
⌈
Kω0

2π

⌉
,

kmax =
⌊
K
(
1 − ω0

2π

)⌋
. (6.29)

If K > L, then g[n] is zero-padded before taking the DFT. The energy εg is equivalently

expressed in the time domain as the following circular convolution:

εg = K
K−1∑
m=0

[
L−1∑
n=0

g[n]h[((m− n))K ]

]2

,
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εg = K
K−1∑
m=0

[
L−1∑
n=0

f(α(n))h[((m− n))K ]

]2

, (6.30)

where ((m− n))K denotes (m− n)modK. The sequence h[m], m = 0, 1, . . . ,K − 1, is the

impulse response of a highpass filter with DFT

H[k] =


0, 0 ≤ k < kmin,

1, kmin ≤ k ≤ kmax,

0, kmax < k ≤ K − 1.

(6.31)

The warping functions α(t) to be considered are piecewise linear functions defined on

the interval [0, L] by

α(t) =
P∑
p=0

αpβ

(
t

δ
− p

)
, 0 ≤ t ≤ L, (6.32)

where δ is chosen to be a positive integer such that Pδ = L. For notational convenience, we

use the vector α = [α0, α1, . . . , αP ]T to represent a point in the parameter space. For α(t)

to be monotonically increasing, we must have αp+1 > αp, p = 1, 2, . . . , P − 1. Given the

finite interval [0, L], instead of requiring (5.5), we constrain the time-warping to preserve

the length of the interval by fixing α0 = 0 and αP = L so that α(L) − α(0) = L.

The algorithm requires the computation of the gradient ∇εg with respect to α, defined

as

∇εg =
[
∂εg
∂α0

,
∂εg
∂α1

, . . . ,
∂εg
∂αP

]T
, (6.33)

where we take ∂εg/∂α0 = ∂εg/∂αP = 0 since α0 and αP are fixed. For p = 1, . . . , P − 1, we

differentiate (6.30) with respect to αp, yielding

∂εg
∂αp

= 2K
K−1∑
m=0

{
L−1∑
n=0

f(α(n))h[((m− n))K ]

}{
L−1∑
n=0

f ′(α(n))β
(n
δ
− p
)
h[((m− n))K ]

}
.

(6.34)

Define the sequences dp[n] to be

dp[n] = f ′(α(n))β
(n
δ
− p
)
, p = 1, 2, . . . , P − 1, (6.35)

and denote the corresponding K-point DFTs by Dp[k]. Using Parseval’s relation, (6.34) is
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equivalently expressed as

∂εg
∂αp

= 2
K−1∑
k=0

(G[k]H[k])(Dp[k]H[k])∗,

= 2
kmax∑
k=kmin

G[k]D∗
p[k], p = 1, 2, . . . , P − 1. (6.36)

Figure 6-6 shows a block diagram for a system that computes ∇εg at a point α in

the parameter space. In a purely discrete-time implementation, the combination of time-

warping and sampling is approximated by interpolating between the given samples, namely

f [n] and f ′[n]. The rightmost block represents the inner product between the sequences

G[k] and Dp[k] as given in (6.36).

f(t)

f ′(t)
warping

warping

α(t)

α(t)

t = n

t = n

β
“n

δ
− p

”

g[n]

dp[n]
K-point

K-point

DFT

DFT

G[k]

Dp[k]
HPF

HPF

H[k]

H[k]

2〈·, ·〉 ∂εg

∂αp

Figure 6-6: System for computing the partial derivatives ∂εg/∂αp. The rightmost block
represents the inner product given by (6.36).

We now describe the gradient-descent algorithm in terms of an iterative procedure. We

use i to denote the iteration number and label quantities associated with iteration i using

a superscript (i).

The algorithm is initialized by setting α(0)
p = pδ for p = 0, 1, . . . , P , which yields α(0)(t) =

t and corresponds to no time-warping. Hence, g(0)[n] = f [n], and ε(0)g is the energy of f [n]

above ω0.

For each iteration i, the non-zero components of the gradient ∇ε(i)g are computed at

the point α(i) according to Figure 6-6. The new parameter vector α(i+1) is chosen in the

direction of the negative gradient from α(i), i.e.

α(i+1) = α(i) − ∆α · ∇ε(i)g , (6.37)
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where the step size ∆α minimizes the value of ε(i+1)
g over the range 0 ≤ ∆α < ∆αmax. The

maximum step size ∆αmax is given by

∆αmax = min
p

 α
(i)
p+1 − α

(i)
p(

∂εg

∂αp+1

)(i) −
(
∂εg

∂αp

)(i)

 , (6.38)

where the minimum is taken only over values of p, 1 ≤ p ≤ P−1, for which the denominator

in (6.38) is positive. The upper limit on the step size is a consequence of the monotonically

increasing constraint applied to α(i+1).

Given (6.37), determining α(i+1) reduces to determining the value of ∆α at which the

1-D function ε
(i+1)
g (∆α) has a minimum on the interval [0,∆αmax). A variety of methods

may be applied to this 1-D search. Operationally, the function ε
(i+1)
g (∆α) is evaluated by

first determining the warping function α(i+1)(t) corresponding to ∆α, and then computing

the sequence g(i+1)[n] = f(α(i+1)(n)), from which the energy ε(i+1)
g is computed.

Once the minimum of ε(i+1)
g (∆α) is obtained, the corresponding parameters α(i+1) are

used in the next iteration i + 1. The algorithm may be terminated upon convergence, i.e.

when α(i+1) ≈ α(i) to within some tolerance, or after a desired number of iterations.

The gradient-descent algorithm was implemented using MATLAB and tested using time-

warped sinusoidal signals as inputs. The input sequences f [n] were obtained by time-

warping a sinusoidal signal g0(t) = cos(ω1t), restricted to the interval [0, L], using warping

functions γ̄(t) that are piecewise linear between the points (t, γ̄(t)) = (ᾱp, pδ) for p =

0, 1, . . . , P . As a consequence, the inverse warping ᾱ(t) has exactly the form of (6.32).

More specifically, ᾱp was chosen as

ᾱp =
aL− 1 +

√
(aL− 1)2 + 4apδ
2a

, (6.39)

where the parameter a satisfies |a| ≤ 1/L to ensure monotonicity. Since ᾱ0 = 0 and ᾱP = L,

the length-preserving constraint is also satisfied. The corresponding γ̄(t) is a piecewise linear

approximation to the quadratic function (1−aL)t+at2. Hence, the samples f [n] = g0(γ̄(n))

correspond approximately to samples of a linear FM signal.

Table 6.1 lists the parameter values used in the simulations. The frequency ω1 was chosen

so that the signals f(t) = g0(γ̄(t)) vary slowly compared to the sampling period T = 1, and

hence the aliasing error associated with the samples f [n] is small. The parameter δ controls
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the fineness of the piecewise linear parameterization. It was observed that a smaller value of

δ, corresponding to a greater number of degrees of freedom, yields a lower minimum value

for εg.

parameter symbol value
sequence length L 1000
frequency of g0(t) ω1 0.01π
maximum frequency ω0 1.2ω1

DFT length K 32768
length of piecewise linear segments δ 4
number of parameters P 250
number of iterations I 100

Table 6.1: Parameter values used in MATLAB simulations of the gradient-descent algo-
rithm.

Figure 6-7 indicates how ε
(i)
g decreases with each iteration, as expected since the algo-

rithm follows the direction of the negative gradient. The vertical axis is normalized by the

total energy in g(100)[n], the sequence yielded by the 100th iteration. The upper and lower

curves correspond to a = −8 × 10−5 and a = −2 × 10−5 respectively. We observe that ε(i)g

converges to a minimum value within ∼ 10 iterations. The condition for convergence in the

simulations is ||α(i+1) − α(i)|| < 0.01, where || · || denotes the usual Euclidean distance.

Overall, the gradient-descent algorithm appears to be unsuccessful at inverting the warp-

ing functions used to generate the input sequences. Figure 6-8 plots the input sequence f [n]

with a = −8×10−5, the output g(100)[n] after 100 iterations, and the sequence g0[n] = g0(n)

from which f [n] was generated. For the purposes of display, we use continuous lines to in-

terpolate between values of discrete sequences. Figure 6-9 plots the warping function γ̄(t)

corresponding to f [n] in Figure 6-8, its exact inverse ᾱ(t), and the inverse α(100)(t) returned

by the algorithm. As the plots illustrate, g(100)[n] and α(100)(t) are very different from g0[n]

and ᾱ(t), the results that would have been obtained from inverting γ̄(t) exactly. We con-

clude therefore that α(100) represents a local minimum of εg that is close to the initial choice

of α(0). In order to avoid converging to the nearest, not necessarily optimal local minimum,

the gradient-descent algorithm may be combined with a finely-tuned initialization, or a

more powerful minimization technique may be employed.
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Figure 6-7: Plot of ε(i)g normalized by total energy in g100[n] for a = −8 × 10−5 (upper
curve) and a = −2 × 10−5 (lower curve).
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Figure 6-8: Output g(100)[n] (dashed line) obtained after 100 iterations of the gradient-
descent algorithm with input f [n] (solid line, a = −8 × 10−5). The desired result is g0[n]
(dotted line).
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Figure 6-9: Warping function γ̄(t) (solid line) used to generate f [n] in Figure 6-8, its exact
inverse ᾱ(t) (dotted line), and the inverse α(100)(t) (dashed line) obtained after 100 iterations
of the gradient-descent algorithm.
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6.3 Determination of a time-warping based on zero-crossings

In this section, we present an alternative algorithm for determining a warping function α(t)

that maps a signal f(t) into an approximately bandlimited signal g(t). However, rather

than using εg as the metric for the quality of the solution, the algorithm of this section

relies upon a more heuristic approach based on the zero-crossings of the signal. The results

of a MATLAB implementation and evaluation of the algorithm are summarized.

Before discussing the algorithm, we review some relationships between a bandlimited

signal and its zero-crossings. From Titchmarsh [18], if a function q(z) of a complex variable

z = t+ ju can be expressed as

q(z) =
1
2π

∫ ω0

−ω0

Q(ω)ejωzdω, (6.40)

then q(z) is real-valued, entire, and completely specified up to a scaling by an infinite

product involving its zeroes:

q(z) = q(0)
∞∏

m=−∞

(
1 − z

zm

)
, (6.41)

where q(0) is assumed to be non-zero for simplicity, and the zeroes zm are ordered such

that |zm| ≤ |zm+1|. Furthermore, the moduli of the zeroes are spaced on average according

to the Nyquist rate associated with ω0, i.e.

lim
m→∞

|zm|
m

=
π

ω0
. (6.42)

By restricting z to be real, we obtain a function q(t) of a real variable that is bandlimited

to ω0 and has as its zero-crossings the subset of {zm,m ∈ Z} for which zm is real.

Based on [18], Bond and Cahn [19] developed a construction for a bandlimited signal

having a specified set of N zero-crossings within the interval t ∈ [−T
2 ,

T
2

]
. The maximum

frequency ω0 of the constructed signal has a lower bound of πN/T . Outside of
[−T

2 ,
T
2

]
,

the zeroes are assumed to be real and to occur uniformly at the Nyquist spacing π/ω0. It

was observed in [19] that the amplitude of the constructed signal depends approximately

on the spacings between nearby zero-crossings: the amplitude tends to be higher if the

zero-crossings are farther apart, and lower if the zero-crossings are closer together.
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We contrast the result of [19] with Logan’s theorem [20], which states that a signal is

uniquely specified by its zero-crossings provided that the bandwidth of the signal is less than

one octave, i.e. an interval [B, 2B] for some frequency B, and that there are no common

zeroes between the signal and its Hilbert transform, except for simple real zeroes. Logan’s

theorem does not hold in general for baseband-limited signals, which are not uniquely

specified by their zero-crossings. In particular, the baseband-limited construction of [19] is

one of many signals having the same bandwidth and zero-crossings. It may be modified by

the addition of a finite number of complex zeroes without altering the bandwidth.

Using the results of [18] and [19], we develop an iterative algorithm based on the following

heuristic approach. The signal f(t) is given on a finite interval [0, L], from which its zeroes

zm, m = 1, 2, . . . ,M , can be determined. The zeroes zm are all assumed to be of first order,

a condition that can be achieved by the addition of an appropriate constant. We wish

to map f(t) into an approximately bandlimited signal g(t) by means of a time-warping.

Toward this end, we construct a bandlimited signal q(t) that has the same zero-crossings

zm (and only those zero-crossings) on [0, L] and zero-crossings outside of [0, L] with average

spacing equal to that in [0, L]. The signal q(t) is then normalized to f(t), e.g. by scaling

q(t) so that the energies of q(t) and f(t) are equal.

We consider the ratio

r(t) =


∣∣∣∣ q(t)f(t)

∣∣∣∣ , 0 ≤ t ≤ L, f(t) �= 0,∣∣∣∣ q′(t)f ′(t)

∣∣∣∣ , 0 ≤ t ≤ L, f(t) = 0,
(6.43)

where the right-hand side for f(t) = 0 is obtained using l’Hôpital’s rule. As Figure 6-10

suggests, in a region where r(t) < 1, f(t) has a larger amplitude than the bandlimited signal

q(t) with the same local set of zero-crossings. Following the observation of [19], in order

for a bandlimited signal to have the same amplitude as f(t), its zero-crossings should be

more widely spaced. Accordingly, f(t) should be locally dilated where r(t) < 1 to yield the

appropriate zero spacing. Similarly, if r(t) > 1, f(t) has an amplitude smaller than q(t) and

should therefore be locally compressed.

Thus, we choose the derivative α′(t) of the warping function to be of the form

α′(t) = a (r(t))p , 0 ≤ t ≤ L, (6.44)
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Figure 6-10: Sketch of f(t) (solid line) and a bandlimited signal q(t) (dashed line) sharing
the same zeroes.

where a and p are positive constants, and a is chosen to satisfy the length-preserving

constraint, i.e. with

α(t) =
∫ t

0
α′(τ)dτ, (6.45)

we have α(0) = 0 and α(L) = L. Note that α(t) is monotonically increasing since α′(t) > 0.

We obtain a new signal g(t) = f(α(t)) by time-warping f(t) with α(t). The procedure may

then be iterated with g(t) taking the place of f(t).

A discrete-time adaptation of the foregoing algorithm was implemented in MATLAB.

As in Section 6.2.3, the input to the algorithm is a sequence f [n] = f(t)|t=n of samples of

f(t), where the time index n takes the values 0, 1, 2, . . . , L. We again assume that f(t) varies

slowly enough for the aliasing error to be negligble, and that f(t) at non-integer values of

t may be approximated by interpolating between the samples f [n].

The iteration number is denoted by i and quantities associated with iteration i are

denoted by a superscript (i). The algorithm is initialized by setting g(0)[n] = f [n]. For each

iteration i, i = 0, 1, . . ., the following steps are performed:

1. The zero-crossings z(i)
m , m = 1, 2, . . . ,M , of g(i)(t) are determined, either by identifying

zeroes in the sequence g(i)[n], or by interpolating between samples whenever a sign

change occurs.

2. The bandlimited signal q(i)(t) is constructed from the zero-crossings z(i)
m by assuming
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that the pattern of zero-crossings repeats periodically with period L, i.e. q(i)(t) has

zero-crossings at z(i)
m + rL for all m and r ∈ Z. q(i)(t) is then sampled at t = n,

resulting in the sequence

q(i)[n] = Q(i)
M∏
m=1

sin
(π
L

(
n− z(i)

m

))
, (6.46)

with normalizing constant Q(i) chosen so that q(i)[n] and g(i)[n] have the same energy.

3. Samples of α
′(i)(t) are computed as

α
′(i)(n) =



∣∣∣∣∣q(i)[n]
g(i)[n]

∣∣∣∣∣
p

, g(i)[n] �= 0,∣∣∣∣∣ q(i)[n+ 1] − q(i)[n− 1]
g(i)[n+ 1] − g(i)[n− 1]

∣∣∣∣∣
p

, g(i)[n] = 0,

(6.47)

where p ≈ 0.25 as determined empirically. The right-hand side of (6.47) for g(i)[n] = 0

represents an approximation to the ratio of derivatives in (6.43). In addition, α
′(i)(n)

may be further regularized by imposing a maximum local dilation or compression

factor α′
max, e.g. through hard-limiting if α

′(i)(n) exceeds the range [1/α′
max, α

′
max].

4. Samples α(i)(n) of the warping function are computed by numerically integrating

α
′(i)(n). The sequence α(i)(n) is then normalized so that α(i)(0) = 0 and α(i)(L) = L.

5. The new sequence g(i+1)[n] is obtained by time-warping f(t), i.e.

g(i+1)[n] = f(α(i)(n)),

where samples of f(t) at non-integer times are approximated by interpolation.

The algorithm may be repeated for a desired number of iterations, or until it converges to

a final sequence g[n].

The algorithm was evaluated using time-warped sinusoidal signals as inputs. Specifically,

the sinusoidal signal g0(t) = cos(ω1t) with ω1 = 0.01π was time-warped using functions of

the form

γ̄(t) = (1 − aL)t+ at2, 0 ≤ t ≤ L, (6.48)

where |a| ≤ 1/L and L = 1000. As noted in Section 6.2.3, γ̄(t) is length-preserving
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and monotonically increasing. The input sequence f [n] is given by f [n] = g0(γ̄(n)),

n = 0, 1, . . . , L.

In Figure 6-11, we plot the input f [n] with a = 1/L = 10−3, the resulting sequence

g(50)[n] after 50 iterations of the algorithm, and the sequence g0[n] = g0(n) of samples of

the original sinusoid. The sequences g(50)[n] and g0[n] differ only by a small shift over most

of the displayed region. We conclude in this case that the algorithm is successful in inverting

the time-warping γ̄(t), yielding an approximately bandlimited sequence. Furthermore, the

agreement between g(50)[n] and g0[n] improves as |a| decreases, as expected since a smaller

value for |a| corresponds to a more modest time-warping.
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Figure 6-11: Input sequence f [n] (solid line), sequence g(50)[n] (dashed line) obtained after
50 iterations of the zero-crossings algorithm, and sinusoidal sequence g0[n] (dotted line)
used to generate f [n] with a = 10−3.

The algorithm was also applied to time-warped, bandlimited white noise. White noise

sequences consisting of samples uniformly distributed on [−1, 1] were filtered using a length

L+ 1 Parks-McClellan lowpass filter with cut-off frequency ω1, resulting in approximately

101



bandlimited sequences g0[n]. We assume that each sequence g0[n] corresponds to an under-

lying continuous-time signal g0(t) that can be evaluated by interpolating g0[n]. The input

sequences are given by f [n] = g0(γ̄(n)) with γ̄(t) specified in (6.48) and a = 7 × 10−4.

Figures 6-12 and 6-13 show plots of the input sequences f [n] corresponding to two

different white noise realizations, the output sequences g(20)[n] after 20 iterations, and the

sequences g0[n] from which the inputs were generated. In Figure 6-12, there is approximate

agreement between g(20)[n] and g0[n], a result that represents only about 20% of the trials.

The remainder of the trials are represented by Figure 6-13, where g(20)[n] is very different

from g0[n] and also exhibits undesirable artifacts near n = 0 and between n = 700 and

n = 800 caused by excessive local time-warping.
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Figure 6-12: Input sequence f [n] (solid line), sequence g(20)[n] (dashed line) obtained after
20 iterations of the zero-crossings algorithm, and bandlimited white noise g0[n] (dotted line)
used to generate f [n] with a = 7 × 10−4.

The poor performance of the algorithm as demonstrated in Figure 6-13 can be related to

the regularity of the occurrence of zero-crossings in the input signal. The inputs in Figures
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Figure 6-13: Input f [n] (solid line), output g(20)[n] (dashed line) after 20 iterations, and
bandlimited white noise g0[n] (dotted line) corresponding to a noise realization different
from the one in Figure 6-12.

6-12 and 6-11 have the property that zero-crossings occur between nearly every pair of

adjacent local extrema. We expect the algorithm to perform well in these cases as they

correspond to the intuition in Figure 6-10 on which the algorithm is based. In contrast,

f [n] in Figure 6-13 has fewer zero-crossings on [0, L], separated in some cases by several local

extrema. The lack of regular zero-crossings results in a poorly-controlled time-warping.
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