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In this paper two new algorithms for computing an nth-order Hankel transform are proposed. The

algorithms are based on characterizing a circularly symmetric function and its two-dimensional Fourier
transform by a radial section and interpreting the Hankel transform as the relationship between the radial
section in the two domains. By utilizing the property that the projection of a two-dimensional function in one
domain transforms to a radial section in the two-dimensional Fourier transform or inverse Fourier transform
domain, several efficient procedures for computing the Hankel transform exploiting the one-dimensional FFT

algorithm are suggested.

PACS numbers: 43.60.Gk, 43.30.Dr, 43.20.Fn, 02.30.Qy

INTRODUCTION

The need for numerical computation of the Hankel or
Fourier-Bessel transform naturally arises in a variety
of applications including optics, acoustics, electro-
magnetics and molecular biology.’™ Most typically the
Hankel transform arises as a consequence of the two-
dimensional Fourier transform of circularly symmetric
functions. For example, for a horizontally stratified
ocean bottom illuminated by an acoustic point source,
the plane-wave reflection coefficient and the reflected
pressure field are circularly symmetric and related
through a two-dimensional Fourier transform. Apply-
ing the Fourier transform to the measured field, the
plane-wave reflection coefficient can thus be calculated.
' Because of the circular symmetry, both the data and its
‘Fourier transform can be specified in terms of a radial
section or slice and the relationship between the radial
section in the two domains is the Hankel transform.

There are a variety of procedures that have been
proposed for computing a Hankel transform, taking
- advantage of the highly efficient FFT algorithm for
computing the Fourier transform. In Sec. I we review
some of these procedures. In Sec. II and III we propose
two new procedures. These new algorithms are based
on utilizing the fact that the projection of a two-dimen-
sional function in one domain transforms to a radial
section in the two-dimensional Fourier transform or -
inverse Fourier transform domain. As we develop in
Secs. II and III, this property, which we refer to as
the “projection-slice” theorem for two-dimensional
Fourier transforms, leads to a procedure for com-
puting the Hankel transform which exploits the effi-
ciency of the one-dimensional FFT algorithm, and
which avoids a number of the difficulties inherent in
other procedures. In Sec. IV we present several ex-
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amples, motivated by a consideration of problems in
ocean acoustics.

I. TECHNIQUES FOR COMPUTATION OF THE o
HANKEL TRANSFORM USING THE FFT ALGORITHM

The Hankel transform is closely related to the Fourier
transform and in fact is generally associated with the
two-dimensional Fourier transform of a circularly sym-
metric function. Specifically, let f(x,y) and F(u, v) de-
note a two-dimensional function and its Fourier trans-
form in Cartesian coordinates so that

F(u,v)=2%f_m fmf(x,y)exp(iux)exp(jvy)dxdv ®

or, with f(x,y) and F(u, v) expressed in polar coordi-
nates,

(p,¢)—2ﬂ f/vf?

x exp{j[cos(d — ¢)|rplrdrde, (2)

with £(r, 6) and §(p, ¢) denoting the two-dimensional
function and its Fourier transform in polar coordinates,
where 6 is measured relative to the x axis and ¢ is
measured relative to the u axis. If/af, is of the
form

A, 0)=g(r) exp(jm6), (3)

where g(») is in general a complex function in 7, and
m-is an integer, then (2) reduces to'

F(p, &)= (i)"G(p) exp(im¢), . (4)
where
G)= [ " g rp)er)rdr. , (5)

The inteéral'relationship of Eq. (5) corresponds to the
Hankel transform of order .

There are a variety of methods which have been pro-
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posed for numerically evaluating the Hankel transform
as given in Eq. (5), utilizing the efficiency of the FFT
algorithm. One common procedure is to utilize the

asymptotic expansion of the Bessel function. For ex-
ample, for x> 1, m v
J, (%)= (2/7%)" /2 cos{x— mn/2 — 1/4) (6)

so that Eq. (5) becomes

=/ 23\ mr
G( )uf <—> cos<1f —— == gy dr
P , \7Trp P37 74)

2 1/2 L=
S e

The integral in Eq. (7) corresponds to the cosine Four-
ier transform of »/2¢(r) and thus can be numerically
evaluated using the fast Fourier transform algorithm.
The result ig, of course, only approximate because of
the asymptotic expansion used for the Bessel function
and because of the sampling and truncation in 7 re-
quired by the FFT algorithm.

Another algorithm, proposed by Tsang ef al.,* is
based on rewriting Eq. (5) by defining a new function
A()\) as the inverse Fourier transform of g(v) timeés an
attenuation factor, i.e.,

gexplr)=[ j A,00) exp(j2m) d (8a)

am= [ " o) exp(vr) exp(—j2mr) dr . (8b)
In terms of A,(\), Eq. (5) then becomes

G (o) fo ) [;”Jm(Vp)AU(A)exp[-<v— j2mrldn dr
or

Glo)= [jA,,(x)IV()\, p)dn, | | ©)
where

L, p)= fo " expl—(v = 2 M, rp)r dr . (10)

The function I, (%, p) can be expressed in an analytic
form and the function A (1) can be obtained at discrete
values of » from Eq. (8b) utilizing the FFT algorithm.
The integration in Eq. (9) is then approximated by a
summation for each value of p at which the Hankel
transform is to be determined. o

A third algorithm utilizing the FFT has been proposed
by Siegman.® In this algorithm, Eq. (5) is converted to
a correlation by a change of variables. Specifically,
with :

¥ =7’oe; p= poe’3 ’
where 7, and p, are constants, Eq. (5) becomes

G(p,e) = [ J (700, €XPG + p)lg (v e” w2exp(27)d7 . (11)
Equation (11) is the cross correlation of J,[7,0,€*] and
glr,e* v, exp(2x) and can thus be evaluated using the FFT

algorithm. Since the use of the FFT in this context
requires equally spaced sampling of the functions to be
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correlated and provides equally spaced samples of the
result, both g{r) and G (p) will be sampled with ex-
ponential spacing. Thus, as » decreases, g(v) must be
available at decreasing sampling intervals, which is
often a disadvantage. ‘

The algorithms to be described in this paper also
exploit the efficiency of the FFT and appear, at least
in some situations, to have a number of advantages over
the methods outlined above. The methods are, in prin-
ciple, exact as compared with the method based on the
asymptotic expansion of the Bessel function. - Further-
more, one of the methods developed in Secs. II and III
generates equally spaced samples of the Hankel trans-
form, G(p), and the other accepts equally spaced
samples of g(r), thus avoiding the exponential spacing
inherent in the method in Ref. 5. In addition, it appears
to be computationally more straightforward than the
method proposed in Ref. 4.

As developed in more detail in the next section, our
proposed method of numerically evaluating (5) is based
on a property of two-dimensional Fourier transforms
which we refer to as the “projection-slice” theorem.®”
In essence, this theorem states that the one-dimen-
sional transform of a projection of a two-dimensional
function f(x,v) at any angle is a radial section or slice
at the same angle of its two-dimensional Fourier trans-
form F(u,v). Thus, for example, by using g(r) to first
compute a projection of f(x,y) the one-dimensional FFT
can be applied to obtain samples of G{p). Alternatively,
the one~dimensional transform can first be applied to
g(¥) to obtain a projection of F(u, v) after which one of
several possible reconstruction algorithms can be used
to obtain F(u, v) and thus G(p) from this projection. In
the following section, we consider these possibilities
in more detail.

il. THE PROJECTION-SLICE THEOREM FOR TWO-
DIMENSIONAL FUNCTIONS

Our method for evaluating the Hankel transform is
based on the projection-slice theorem for the two-
dimensional Fourier transform. Referring to Eq. (1),
let us consider the slice in F(u, v) corresponding to
v=0, or equivalently F(p, ¢) for $ =0. Then

Fu, 0):2%1“30 exp(jux)p(x)dx, (12)
where .
plx)= fmf(x,y)dy . 13)

The one-dimensional function p{(x) is defined as the pro-
jection of f(x,y) onto the x axis and F(u, 0) is a slice of
F{u,v) along the p axis. More generally, the one-
dimensional transform of the projection of f(x,y) onto

a line in the x—y plane at any angle is a slice of F(u,v)
along a radial line in the p—v plane at the same angle.
Thus, from (12) and (4), we can write that

s=m

G(p) f: exp(jox)p(x) dx . (14)

g
27 J-
Comparing (14) and (5) it follows that the mth order
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Hankel transform can be equivalently expressed (and
calculated) as 7™ times the one-dimensional Fourier
transform of the projection p(x). The two basic com-
putational steps in evaluating (5) are then the evaluation
of the projection p(x) as given by (13) and the evaluation
of the one-dimensional Fourier transform in Eq. (14).

An alternate approach is to use the projection-slice
theorem in reverse, that is, with the slice considered
in the x—y plane and the projection in the p—v plane.
Specifically,

1 +00 0
fle, ) =5~ f F(u, v) exp(—ju-) exp(=jvy)dx dy ,

(15)
so that
e, 0= i " exp(—jun)P () du, (16)
where
()= [ P, vy 1)

Equations (16) and (17) are the counterparts of Eqgs.
(12) and (13) and state that a slice along the x axis. of
f(x,v) is the inverse Fourier transform of a projection
of F(u, v) onto the u axis.

As with Eqs. (12) and (13), this generalizes to a slice
and projection at any angle. Now consider Eq. (2) re-
written as

F(p, ¢ “5n f def/(veexp{y [cos(6 - (b’)’p}’}’d’}’
(18)

The inner integral can be interpreted for each 0 as the
Fourier transform of the product of a slice, /r, 9), at
angle 0 and the function 7u(v), where u(r) is a unit step.
Thus, the inner integral can be expressed as a con-
volution of the transforms of each of the terms in the
product, i.e.,

wlpcos(o - 9)I2 [ £, 0) exvljlcos(0 - ewrpllrar,

o}

(19a)‘
where
wim= [ P, (- a)da, (19b)
Pla,0)= [ " v, 0) expljra) dr  (19¢)
H(oz)=.fg° v exp(jro)dr. (19d)
Equation (18) then becomes
F(o, )= [ wlocos(6 - $)]do (20)

From Egs. (3) and (4), to obtain the Hankel transform
we take ’

L, 0)=gr)exp(jimb)

and are interested in F(p, ¢) at ¢=0. In this case Egs.
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~ (19) and (20) lead to

Glp)= i "% (p, 0)———f2ﬂ [b cosf]exp(jmb)de, (2la)

w(n) = f P(e)H(n - a)da, (21b)
P@)= [ g expiirtar, (21c)
H(g):fmrexp(jrg)d'r (214)

Equations (21) have'a relatively straightforward inter-
pretation in terms of the processing involved. Equation
(21c) represents the Fourier transform of g(») which,
according to Eq. (21b) is filtered (convolved) with a
kernel H(¢). Equation (21a) then represents an opera-
tion referred to as back projection, Specifically, the
integration in Eq. (21a) can be viewed in the following
terms: For each 8 we form the two-dimensional func-
tion w(p cosf) exp(jm6) with p varying along a line at an
angle 6 in the p—v plane. This is referred to as a
back projection of the function w[p cosf]exp(jmB). All
of these back projections are then superimposed to ob-
tain G(p).

Filtering of the projection, as specified in Eg. (21b),
requires the kernel H(¢) which represents the impulse
response of the filter. From Eq. (21d) it follows that
thisis'in effect, a differentiator for which the impulse
response formally does not converge. However, in any
practical case, G(p) will be assumed to be of finite ex-
tent so that P(¢) will be bandlimited.

The above theoretical discussion offers two alter-
native procedures for exploiting the projection-slice
theorem for the two-dimensional Fourier transform in
computing the Hankel transform.® In the first, the
function g{(r) is used to compute the ‘projection in the -
x-—y plane which is then Fourier transformed to obtain
a slice in the u—v plane. In the second the function g{»)
is first Fourier transformed to obtain a projection in '
the p—v plane. This projection is then filtered,
followed by back projection according to Eq. (21a).

Thus far, in our work, we have only explored in de-
tail the first of these possibilities. In the next section -
we consider some of the computational considerations
associated with that specific procedure and in Sec. IV
we present some examples.

I1l. COMPUTATIONAL CONSIDERATIONS IN THE.

EVALUATION OF THE HANKEL TRANSFORM

In this section we consider in more detail the evalua-
tion of Eq. (5) using Eqs. (13) and (14).

The two basic computational steps in evaluating (5)
using this approach are the evaluation of the projection
p(x) and the evaluation of the one-dimensional Fourier
transform. Let us assume that G(p)=0, [p|>R,.
Then, from (13) p(x) is'bandlimited, and consequently,
by virtue of the sampling theorem,

G52 5 plav)exnlioksn), (22)
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provided that Ax<1r/R0. If we consider calculating G(p)
at N equally spaced values Ap = (1/N)(21/4x), then

Ay oL el
j’"G(kAp)=-2—£ 2 { Z pll+ 'VN,)Ax]} explj(2a/Nnk].
u n=| ra—%
(23)
Thus, G(24p), £=0,1,...,N -1, is proportional to the
discrete Fourier transform of the samples of p(x),

aliased in x. If the samples of p(x) represent a finite-
length sequence of length <(NAx), then (23) reduces to

=1
Z pndyx) exp<7 -—-nk)
n=0

Both (23) and (24) correspond to the discrete Fourier
transform, and consequently they can be evaluated
directly using the one-dimensional FFT.

(24)

The calculation of samples of p(x) is somewhat less
direct. Equation (13) can equivalently be written as

plx)= 2f gl (x? +y2)1/2]V (W)dy’ (25a)
-— * ’y‘ x
p(x)—2jl;l g(’}’)m Vm(;)d’l’, (25b)
7 /2
plx)=2 le f g(coi@)f:(:)ss?znee 6, - (25¢)

where V,{ ) is the mth-order Chebyshev polynomial.
Equation (25) incorporates the fact that since/(v, ) is
circularly symmetric in » and conjugate antisymmetric
in 6, only its even part contributes to p(x). As indi-
cated in Eq. (24), we wish to calculate equally spaced
samples of the projection p(x). If g(») is bandlimited,
this is most easily done through the use of Eq. (25a).
Specifically with g() and hence f(x,y) bandlimited,

f:f(x,y)dy =4y Z: flx, 2Ay),

provided only that Ay <27/R,. Equation (26) is basically
a consequence of the fact that for a bandlimited function
sampled at one-half the Nyquist rate or higher, its inte-
gral is directly proportional to the sum of its samples.-

Thus, p(ndx) as required in (23) or (24) is

p(nAx)= Ay f: gllnAx) + (rAy)*]/ 2}

b=

(26)

nlyx
> ((n"‘sz +k2Ay2)1/2> ) &0

Equations (23) and (27) together provide an exact ex-
pression for the numerical calculation of G (¢Ap) pro--
vided only that G(p)=0, ’p | >R,. If this is not the case,
then (24) will compute samples of G(p) aliased in p, i.e.,

w0

Y GlAp(e+qN)] j (28)
&

and an integration rule more complex than (26) must be
used to calculate p(x).

To evaluate (27) we assume that g[ (x%+9y%) ?] is known
on a rectangular grid in the x —y. plane. If g(¥) is only
available as samples in 7, then evaluation of (27) re-
quires intérpolation onto a rectangular grid.
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1IV. EXAMPLES

In this section we present several examples of the
computation of the zeroth-order Hankel transform using
the algorithm outlined in the previous sections. A flow
chart for the program used is given in the Appendix.

In this program and in the examples g(») is assumed
known as a function of the continuous variable ». To
compute G{p), g(») was multiplied by a Hanning window
w(r) of the form

wlr) = {0.5 +0.5 cpos(m'/ro),

0, otherwise.

Os7vsy, (29)

The sequence s[#] corresponding to samples of the pro-
jection p(x) of g(»)w(r) was computed as

slul=pln+3)ax].

This spacing of samples was chosen so that an even
sequence with an even number of points would result.
Similarly, the spacing iny was 24x, consistent with the
discussion in the previous section. Samples of G (p)
were then obtained by applying the fast Fourier trans-
form algorithm to s[x].

Example 1
sy <],
g(’y):{l.o, 0<7<1.0 (30a)
0.0, 1.0<r.
0,60 (o)
0.49
=
o
@ o
w
Z
T o2
-
w
X o4
<{
ey
0.03
-0.09
-0.20

000 1000 2000 3000 4000 5000 6000 7000 8000 9000 IOOTOO

P

060 ' (b)

HANKEL TRANSFORM

-0.09

—-0.20 -
000 1000 2000 3000 -4000 5000 6000 TOQOO 8000 S000 10000

P

Exact (a) and computed (b) Hankel transforms for ex-

FIG. 1.
ample 1.
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b4 =4
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—= 3257 - 32,57
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< <
T X

16.29 ) . 16.29

8.14 8.14
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FIG. 2. Exact (a) and computed (b) Hankel transforms for example 2.

Glp)=J,(p)/p - (30b)  Example 2
Ax=1/Ry=7/100, Ap=24x, 7,=2.0. ' g(r)=sin(0.27)/r . (31a)
Figure 1(a) corresponds to G(p) calculated directly ; 1
) K 75y 0<ps0.2,
from Eq. (30b) and Fig. 1(b) to G(p) as obtained by ap- G- [(0.2)2 - p?] (31b)
plying the Hankel transform algorithm to g(»). As we 0 0.2<
see, there is excellent agreement between the results ’ : esh v
in Figs. 1(a) and 1(b). Ax=7/0.6, Ay=24x, 7,=2678.2.
68,09 @ 68.00 (b)
5829
§ lé, 68.29
£ e
=z 48.57 -4 4857
g g
E 38.88 E 3888 R
2 2
w (23
<Z( 29.14 <Zt 29.14
@ o
F = }
é 19.49 é 19.49
z 4
§ A4 L % 9.7 k
0.00 - —_— 0.00 T d
0.00 006 Q.lz .18 024 030 036 0.42 048 054 060 0.00 006 0.2 o8 024 030 036 042 048 054 060
P P
180.00
) 180.00
P~ -
w8 ﬁ 128,57
@ ['4
g 7714 i
IS ’ e 7714
b -
% 25.71 %
T 000 T 25.71
E E 0.00 ) 3
S -esm @ -a257
() 0w
Z z
'3‘_: -7714 'n<_: 1714
) )
g = 128.57 g - 128.57
3 b '
~180.00 - -180.00 - =
000 006 0.2 o8 0.24 030 036 042 048 054 060 000 006 0.2 QI8 024 030 036 042 048 054 060
P P

FIG. 3. Magnitude and phase of the exact (a) and computed (b) Hankel transforms for example 3.
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FIG. 4. Flow chart for the Hankel transform program.
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This example was chosen because g(r} is exactly band-
limited and thus g(») will be of infinite extent, requiring
its truncation with a finite extent window. In addition it
has a singularity in the Fourier domain that should ac-
centuate the effects in G(p) due to the window applied to
g(r). The results are shown in Fig. 2 with Fig. 2(a)
corresponding to G(p) as computed directly from Eq.
(31b) and Fig. 2(b) to G(p) as obtained by applying the
Hankel transform algorithm to g(v).

Example 3
. 2, m2\l/2
glr)= exp[(i,’zo_fgz;?z) ] (32a)
G(p)=‘exp[j6(kg—p2)1/2] (32b)

(2= p?)"?
Ax=7/0.6, Dy=20x, ¥,=2678.2,

_ 27 %50

2129y 5=
I 1500 ¥, 20.

This example is associated with ocean acoustics and
arises in the relationship between the acoustic pres-
sure field and the reflection coefficient for a constant
velocity water column and a perfectly reflecting ocean
bottom. This example, in the context of ocean acous-
tics, is developed in considerable detail in the com-
panion paper by Frisk, Oppenheim, and Martinez.® The
results with the choice of parameters above are shown
in Fig. 3, with magnitude and phase of G(p) as computed
directly from Eq. (32b) shown in Fig. 3(a) and magnitude
and phase of G(p) as obtained by applying the Hankel
transform algorithm to g(¥) in Fig. 3(b). As is evident
in Figs. 3(a) and 3(b), there is excellent agreement
between the exact and computed results, except for the
oscillations in the computed phase as the magnitude
becomes very small (large p). In general, it would be
expected in any algorithm that phase computations will ..
be highly sensitive numerically as the value of the
magnitude becomes very small.

V. CONCLUSION

_In this paper we have proposed two alternative pro-
cedures in computing a Hankel transform. Most typi-
cally the Hankel transform arises as a consequence of
the two-dimensional Fourier transform of circularly
symmetric functions. Because of circular symmetry,
the methods proposed exploited the fact that both the
data and its Fourier transform could be specified in"
terms of a radial slice and the relationship between
the radial slice in the two domains was the Hankel
transform. ' g

This radial slice representation of a circularly sym-
metric function led directly to the application of the
projection-slice theorem for two-dimensional Fourier
transforms. Thus, the first method consisted of using
the data to first compute a projection of the circularly
symmetric function and then applying the one-dimen-
sional FFT to obtain samples of the Hankel transform.
In the second method the one-dimensional transform
was first applied to the data to obtain a projection after
which a back-projection algorithm was used to obtain
the Hankel transform.
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"‘APPENDIX

A flow chart for the program used to compute the
zeroth-order Hankel transform of g() is illustrated in
Fig. 4.

A description of the function and variables follows:

N number of samples; an integer power of two
Ax  sampling interval in x

p(x¥) projection onto x axis

Ay Ax/2

g(¥) circularly symmetric function

w{r) circularly symmetric window

In the evaluation of the projection, g(») is assumed
known on a two-dimensional grid as a function of the
continuous variable 7 = (x* +y%)*/2. Only the first quad-
rant must be sampled since the function is circularly
symmetric. The projection samples onto the negative
x axis are simply found by forming the image of the
positive x axis. These equally spaced samples are then

529 J. Acoust. Soc. Am., Vol. 68, No. 2, August 1980 .

used as the input to a one-dimensional FFT. A phase
shift correction to the output samples must be made
since the sequence as the input to the FFT is inter-
preted starting at the origin.
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