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ABSTRACT

Chaotic systems provide a rich mechanism for signal design
and generation for communications and a variety of signal
processing applications. Because chaotic signals are typ-
ically broadband, noise-like, and difficult to predict they
potentially can be utilized in various contexts for masking
information-bearing waveforms and as modulating wave-
forms in spread spectrum systems. In this paper, we
propose and demonstrate with a working circuit two ap-
proaches to communications based on synchronized chaotic
signals and systems. In the first approach a chaotic mask-
ing signal is added at the transmitter and regenerated and
subtracted at the receiver. The second approach utilizes
modulation of the coefficients of the chaotic system in the
transmitter and corresponding detection of synchronization
error in the receiver to transmit binary-valued bit streams.
We demonstrate both approaches using a transmitter cir-
cuit with dynamics that are governed by the chaotic Lorenz
system. A synchronizing receiver circuit which exploits the
ideas of synchronized chaotic systems is used for signal re-
cover.

1. INTRODUCTION

Chaotic systems are nonlinear deterministic systems which
can exhibit erratic and irregular behavior. The limiting
trajectories of dissipative chaotic systems are attracted to
a region in state space which forms a set having fractional
dimension and zero volume. Trajectories on this limiting set
are locally unstable, yet remain bounded within some region
of the system’s state space. These sets are termed “strange
attractors” and exhibit a sensitive dependence on initial
conditions in the sense that any two arbitrarily close initial
conditions will lead to trajectories which rapidly diverge.
A particular class of chaotic systems possesses a self-
synchronization property [1, 2]. A chaotic system is self-
synchronizing if it can be decomposed into at least two sub-
systems: a drive system and a stable response subsystem(s)
that synchronize when coupled with a common drive signal.
For some synchronizing chaotic systems the ability to syn-
chronize is robust. For example, the chaotic Lorenz system
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is decomposable into two separate response subsystems that
will each synchronize to the drive system when started from
any initial condition. This property leads to some interest-
ing applications, such as spread spectrum communication
and signal masking as discussed in [3, 4].

In section 2 we describe the synchronizing characteristics
of the Lorenz system of equations and their implementation
as an analog circuit. In section 3 we discuss and demon-
strate the implementation of the chaotic signal masking
technique introduced in [3, 4] utilizing the Lorenz circuit.
In section 4 we discuss and demonstrate an approach to bi-
nary communication utilizing coefficient modulation in the
Lorenz circuit.

2. THE CIRCUIT EQUATIONS

The Lorenz system consists of a set of autonomous ordi-
nary differential equations having a three-dimensional state
space. These equations arise in the study of thermal con-
vection {5] and are given by

i = oy—z)
Yy = rT—y—z2 (1)
z = zy-—bz

where o, r, and b are constant coefficients of the system. For
our investigations, we use the values o = 16,7 = 45.6, and
b = 4 which places the Lorenz system in a chaotic regime.

An interesting property of equation (1) is that it is de-
composable into two stable subsystems [1, 2]. Specifically,
a stable (z1,21) response subsystem can be defined by

£ =

i 0'(?/ - 1"1) (2)

1y — b=z
and a stable (y2, 22) response subsystem by

Y2 = TT— Y2 —I22
z"z = ZIY2— bzz (3)
Equation (1) can be interpreted as the drive system since
its dynamics are independent of the response subsystems.
Equations (2) and (3) represent dynamical response sys-
tems which are driven by the drive signals y(t) and z(¢) re-
spectively. The eigenvalues of the Jacobian matrix for the
(z1,21) response subsystem are equal to (—o,—b). Since
they are both negative, |z1 — z| and |21 — 2| — 0 as ¢ — oo.
Also, it can be shown numerically that the Lyapunov expo-
nents of the (y2,22) response subsystem are both negative
and thus |y2 — y] and |z2 — 2| — 0 as t — oo.

The two response subsystems can be used together to re-
generate the full-dimensional dynamics which are evolving
at the drive system. Specifically, if the input signal to the
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Figure 1: Circuit Data: (a) A sample function of u(t).
(b) Averaged power spectrum of u(t).

(y2, 22) subsystem is z(t), then the output y2(t) can be used
to drive the (z1,21) subsystem and subsequently generate
a “new” z(t) in addition to having obtained, through syn-
chronization, y(t) and z(t). It is important to recognize
that the two response subsystems given by equations (2)
and (3) can be combined into a single system having a three-
dimensional state space. This produces a full-dimensional
response system which is structurally similar to the drive
system (1). Further discussion of this result is given below
where we describe the circuit implementation.

A direct implementation of equation (1) with an elec-
tronic circuit presents several difficulties. For example, the
state variables in equation (1) occupy a wide dynamic range
with values that exceed reasonable power supply limits.
However, this difficulty can be eliminated by a simple trans-
formation of variables. Specifically, we define new variables
by u = £/10,v = y/10, and w = z/20. With this scaling,
the Lorenz equations are transformed into

v = o(v—u)
o = ru—v-—20uw (4)
w = bSuv—bw .

This system, which we refer to as the transmitter, can be
more easily implemented with an electronic circuit because
the state variables all have similar dynamic range and cir-
cuit voltages remain well within the range of typical power
supply limits. We emphasize that our analog circuit im-
plementation of (4) is exact, and not based on a piecewise
linear approach as was used in [6].

To illustrate the chaotic behavior of the transmitter cir-
cuit, an analog-to-digital (A/D) data recording system was
used to sample the appropriate circuit outputs at a 48 kHz
rate and with 16-bit resolution. Figure 1(a) and (b) show a
sample function and averaged power spectrum correspond-
ing to the circuit waveform u(t). The power spectrum is
broad-band which is typical of a chaotic signal. Figure 1(b)
also shows a power spectrum obtained from a numerical
simulation of the Lorenz equations. As we see, the per-
formance of the circuit and the simulation are consistent.
Figure 2(a) and (b) show the circuit’s chaotic attractor pro-
jected onto the uv-plane and uw-plane respectively. These
data were obtained from the circuit using the stereo record-
ing capability of the A/D system. Specifically, z-axis signals
were applied to the left channel and y-axis signals were ap-
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Figure 2: Circuit Data: (a) Chaotic attractor projected onto
uv-plane. (b) Chaotic attractor projected onto vw-plane.

plied to the right channel, and then simultaneously sampled
at a 48-kHz rate and with 16-bit resolution. The circuit’s
attractor is consistent with numerical simulation. A more
detailed analysis of the transmitter circuit is given in [7].

A full-dimensional response system which will synchro-
nize to the chaotic signals evolving at the transmitter (4) is
given by

gy = o(vr— ur)
by = tu— v, — 20uw, (5)
wy = BSuvy— bw,

This system is referred to as the “u-drive” system or as the
receiver in light of the various communications applications
made possible using this system. For simplicity in notation
we will refer to the transmitter state variables collectively
by the vector d = [u,v, w] and to the receiver variables by
the vector r = [ur, ur, zr] when convenient.

It is straightforward to show analytically that synchro-
nization in the Lorenz system is a global property of the
nonlinear error dynamics between the transmitter and re-
ceiver. First, the dynamical errors, e, are defined as

e = d-r .

Under the condition of perfect coefficient matching between
the transmitter and receiver a set of equations which govern
the error dynamics are given by

é1 = ofez—e1)
éz = —€z — 20u(t)e3 (6)
és = Dbu(t)es — bes

The origin of the error system is asymptotically stable
provided that o, > 0. This result follows by consider-
ing the three-dimensional Lyapunov function defined by
E(e,t) = L(2el + €3 + 4ef). The time rate of change of
E(e, t) along trajectories is given by

E(e,t) = ?1;8161 + ezé2 + 4ezés

—(e1 — Fe2)” — el — dbe (M)
0

which shows that E(e,t) decreases for all points in the
systems state space. Furthermore, since the divergence
of the vector field of (6) is a negative constant, equal to
—(o+b+1), it follows that any error volume will go to zero
exponentially fast.

3. CHAOTIC SIGNAL MASKING

In this section, we discuss and demonstrate with a working
circuit, chaotic signal masking. Our objective is to demon-
strate the signal masking idea described in {3, 4] and to
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Figure 3: Chaotic Signal Masking System.

further illustrate that synchronizing chaotic systems offer
potential opportunity for novel approaches to secure com-
munications. In signal masking, a noise-like masking signal
is added at the transmitter to the information-bearing sig-
nal m(t) and at the receiver the masking is removed. The
basic idea is to use the received signal to regenerate the
masking signal at the receiver and subtract it from the re-
ceived signal to recover m(t). This can be done with the
synchronizing receiver circuit since the ability to synchro-
nize is robust, i.e. is not highly sensitive to perturbations in
the drive signal and thus can be done with the masked sig-
nal. While there are many possible variations, consider, for
example, a transmitted signal of the form r(t) = u(t)+m(2).
It is assumed that for masking, the power level of m(t) is sig-
nificantly lower than that of u(t). The basic strategy then
is to exploit the robustness of the synchronization using r(t)
as the synchronizing drive at the receiver. The dynamical
system implemented at the receiver is

@y = 16(vr —ur)
oy = 45.67(2) — vr — 20r(t)w, (8)
W, = 5r(t)v, — 4w, .

If the receiver has synchronized with r(t) as the drive, then
u,(t) ~ u(t) and consequently m(t) is recovered as " (t) =
r(t) — ur(t). Figure 3 illustrates the approach.

In [3] the feasibility of the approach was demonstrated
through numerical simulation with almost perfect signal re-
covery. Using the working transmitter and receiver circuits,
we demonstrate the performance of this system in figure 4
with a segment of speech from the sentence “He has the
bluest eyes”. The waveforms were obtained by sampling the
appropriate circuit outputs at a 48 kHz rate and with 16-bit
resolution. Figure 4(a) and (b) show the original speech,
m(t), and the recovered speech signal, 7:(t), respectively.
Clearly, the speech signal has been recovered. Although
more distortion is evident in the recovered waveform with
the actual circuit implementation as compared with the nu-
merical simulation in [3], the output is very intelligible in
informal listening tests. Figure 5 illustrates that the power
spectra of the chaotic masking signal, u(t), and the speech
are highly overlapping with an average signal-to-masking
ratio of approximately -20dB.

4. CHAOTIC DIGITAL COMMUNICATION

In this section, we propose the use of synchronized chaotic
systems to transmit and recover binary-valued bit streams.
Synchronized chaotic systems are well suited to this applica-
tion because the chaotic signals they produce have noise-like
characteristics and the receiver is robust to uncertainties in
the transmitter’s initial condition.

The error dynamics of the Lorenz u-drive system are ex-
ponentially stable provided that the transmitter and re-
ceiver coefficients are identical. This suggests a way in
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Figure 4: Circuit Data: Speech Waveforms: (a) Original.
(b) Recovered.

which an information-bearing waveform could be embed-
ded in a chaotic carrier and extracted at the receiver. The
basic idea is to modulate a transmitter coefficient with the
information-bearing waveform and to transmit the chaotic
drive signal. Because of the modulation embedded in the
carrier a time-varying coefficient mismatch exists between
the transmitter and receiver. Upon reception, the coef-
ficient mismatch will produce a synchronization error be-
tween the received drive signal and the receiver’s regener-
ated drive signal with an error signal amplitude that de-
pends on the modulation present. Using the synchroniza-
tion error the coefficient mismatch can be detected and ex-
ploited in various ways for information transfer.

This modulation/detection process is illustrated in fig-
ure 6. In this figure, the coefficient “0” of the transmit-
ter equations (4) is modulated by the information wave-
form, m(t). The coefficients & and r could also be used
as the modulation coefficient, however, in [7] we show that
there are some advantages to choosing b as the modula-
tion coefficient. The information is carried over the chan-
nel by the chaotic signal um(t) and the received signal,
7(t) = um(t) + n(t), serves as the driving input to the re-
ceiver. At the receiver the modulation is detected by form-
ing the difference between r(t) and the reconstructed drive
signal, u,(t). If we assume that the signal-to-noise ratio of
(t) is large, the error signal e;(t) = r(t) — u,(t) will have a
small average power if no modulation is present. However
if, for example, the information waveform is a binary-valued
bit stream, with a “1” representing a coefficient mismatch
and a “0” representing no coefficient mismatch, then e;(t)
will be relatively large in amplitude during the time period
that a “1” is transmitted and small in amplitude during a
“0” transmission. The synchronizing receiver can thus be
viewed as a form of matched filter for the chaotic transmit-
ter signal u(t).

For purposes of demonstrating the technique, we use a
square-wave for the information-bearing waveform as illus-
trated in figure 7(a). The square-wave produces a variation
in the transmitter coefficient “b” with the zero-bit and one-
bit coefficients corresponding to 5(0) = 4 and 5(1) = 4.4
respectively. The resulting modulated drive signal, um(t),
is used as the drive input to the synchronizing receiver sys-
tem as depicted in figure 6. For transmission privacy it is
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important that the characteristics of the drive signal not
be significantly altered by the presence of the modulation.
A comparison of the averaged power spectrum of the drive
signal with and without the embedded square-wave present
shows that the power spectra are very similar and the pres-
ence of the embedded square-wave is not at all obvious [7].
Figure 7(b) shows the synchronization error power, el (1), at
the output of the receiver circuit. As expected, the coeffi-
cient mismatch between transmitter and receiver produces
significant synchronization error power during a “1” trans-
mission and very little error power during a “0” transmis-
sion. Also evident from this figure is the fast response time
of the receiver at the transitions between the zero and one
bits. Figure 7(c) illustrates that the square-wave modula-
tion can be reliably recovered by lowpass filtering the syn-
chronization error power waveform and applying a threshold
test.

5. CONCLUSIONS

In this paper, we described and demonstrated with a
working circuit, two approaches to private communications
based on chaotic signals and systems. Using a signal mask-
ing approach we have shown that analog signals can be pri-
vately transmitted and recovered at the intended receivers.
Also, signals represented as binary-valued bit streams can
be privately communicated by modulating a transmitter co-
efficient with the information-bearing waveform and detect-
ing the information with a synchronizing receiver circuit.
These approaches were demonstrated using a transmitter
circuit with dynamics that are governed by the chaotic
Lorenz system. A synchronizing receiver circuit which ex-
ploits the ideas of synchronized chaotic systems was used for
signal recover. We are actively investigating these methods
as well as alternative approaches to secure communications
based chaotic signals and systems.
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Figure 5: Circuit Data: Power Spectra of Chaotic Masking
and Speech Signals.
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Figure 6: Chaotic Communication System.
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Figure 7: Circuit Data: (a) Modulation Waveform.

(b) Synchronization Error Power. (c) Recovered Modula-
tion Waveform.
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