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Abstract

In this paper we propose hidden Markov models to model electropherograms from DNA

sequencing equipment and perform basecalling. We model the state emission densities using

artificial neural networks, and modify the Baum–Welch reestimation procedure to perform

training. Moreover, we develop a method that exploits consensus sequences to label training

data, thus minimizing the need for hand labeling. We propose the same method for locating an

electropherogram in a longer DNA sequence. We also perform a careful study of the

basecalling errors and propose alternative HMM topologies that might further improve

performance. Our results demonstrate the potential of these models. Based on these results, we

conclude by suggesting further research directions.

r 2003 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
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1. Introduction and background

In recent years DNA sequencing has become a popular tool in Biology,
significantly affecting the practice in the field. The impact of this method has
created a need to automate the translation of sequencing signals (electropherograms)
to the corresponding sequence of bases, a process known as basecalling.
If we skip the details on the chemistry, data generation, data collection and

preprocessing, basecalling is a simple problem to describe, but not easy to solve.
Indeed, basecalling is the process of converting a time signal, such as the one in
Fig. 1, to a string of A, T, C, and G—AAACCCCCTGAATATG in this particular
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example. Unfortunately, signals are not often as clean. Crosstalk is significant
between the four channels, and peaks merge, especially near the end of the
electropherogram. Other artifacts might show up, such as the ambiguity in the ATG
call near the end of the example in the figure. The task is probabilistic in nature, so a
good basecaller should also provide some measure of the quality of the read. These
measures are especially significant in genome sequencing projects since they are used
in subsequent genome assembly steps, such as [1,2].
The most successful basecaller is PHRED [3,4], currently used by the Human

Genome project. More recently researchers have attempted to provide some
statistical foundations to the problem and use statistical models to solve it
(see e.g. [5–7]). In fact, in [6] the process is modeled as a Markov chain and
analyzed using Markov chain Monte Carlo methods.
In this paper we use hidden Markov models (HMMs) to provide an alternative

statistical description to basecalling. Our approach has the advantage that it does
not assume a particular peak shape at the cost of requiring some initial training.
Since generating training data can be labor intensive, especially for new equipment,
we describe a quick method to do so. This method is generally useful in instances
where electropherograms need to be located in a larger sequence. This paper expands
on the work described in [8].

2. Motivation and theoretical background

A key observation is that the DNA basecalling problem is similar to the speech
recognition problem: a time signal should be translated to a sequence of symbols
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Fig. 1. A sample electropherogram. Basecalling is the task of converting this time signal to a sequence of

letters—AAACCCCCTGAATATG in this case.
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under a particular set of rules. This similarity makes HMMs—widely used in speech
recognition—potentially applicable to basecalling. The main difference is that in
speech recognition problems the grammar of a spoken language forms the rules. In
DNA sequencing problems the rules are simple: the sequence is an i.i.d. process
drawn from fA, T, C, Gg:
While an excellent tutorial on HMMs, is contained in [9], we provide a brief

overview here. This overview also establishes the notation used in the rest of the
paper. Furthermore, we introduce the combination of HMMs with neural networks
used in our implementation.

2.1. Markov chains and hidden Markov models

A Markov chain is a discrete random process q½t�; t ¼ 1;y;N with the property
that Pðq½t�jq½t � 1�; q½t � 2�;y; q½1�Þ ¼ Pðq½t�jq½t � 1�Þ: In other words, at any time
q½t� incorporates all the information about the past and is called the state of the
process. We assume that q½t� belongs in a discrete and finite set—the state space of
the process. To describe such a process, we need to specify the initial probabilities of
each state, and the transition probabilities from state to state:

pi ¼ Pðq½1� ¼ iÞ; ð1Þ

aij ¼ Pðq½t� ¼ ijq½t � 1� ¼ jÞ 8t > 1: ð2Þ

The Markov chain becomes hidden if we assume that the states are not observed
directly, but through some probabilistic output vector O½t� that is independent of
everything else conditional on the current state. The distribution of the observation
vector—also called emission probability—only depends on the current state. Thus,
for any time t there is a corresponding probability of each state given the observation
at that time:2

bi½t� ¼ Pðq½t� ¼ ijO½t�Þ ð3Þ

¼
PðO½t�jq½t� ¼ iÞ � Pi

PðO½t�Þ
; ð4Þ

where Pi ¼ Pðq½t� ¼ iÞ is the unconditional probability of being at state i at any time.
This formulation requires that bi½t� is a probability mass function that sums to 1 over
all i: On the other hand, the more conventional approach described in [9] defines
bi½t� ¼ PðO½t�jq½t� ¼ iÞ; making it a probability density function that integrates to 1
over all possible O½t�:
We denote the whole model by l; and use it to compute ai½t� ¼ ½PðO½1yt�; q½t� ¼

ijlÞ�=½PðO½1yt�Þ� and bi½t� ¼ ½PðO½ðt þ 1ÞyT �jq½t� ¼ i; lÞ�=½PðO½ðt þ 1ÞyT �Þ�; also
known as the forward and the backward variables, respectively. We can compute
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2Note that this formulation is different from the usual one, such as in [9]. The differences propagate in

the subsequent algorithms. This formulation allows us to accommodate artificial neural networks (ANNs)

for the emissions model in Section 2.2. More details on the modifications can be found in [10,11]
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these using the forward–backward algorithm:

aj ½t� ¼
pj

bj½1�
Pj

; t ¼ 1;

PN
i¼1 ai½t � 1�aij

h i bj½t�
Pj

; t > 1;

8>><
>>: ð5Þ

bi½t� ¼
1; t ¼ T ;PN

j¼1 aij

bj½t þ 1�
Pj

bj½t þ 1�; toT :

8><
>: ð6Þ

Finally, we can estimate gi½t� ¼Pðq½t� ¼ ijO½1yT �; lÞ and xij½t� ¼Pðq½t� ¼ i; q½t þ 1� ¼
jjO½1yT �; lÞ using

xij ½t� ¼
ai½t�aijðbj ½t þ 1�=PjÞbj½t þ 1�PN

k¼1

PN
l¼1 ak½t�aklðbl ½t þ 1�=PlÞbl ½t þ 1�

; ð7Þ

gi½t� ¼
ai½t�bi½t�PN
j¼1 aj ½t�bj½t�

¼
XN

j¼1

xij ½t�: ð8Þ

To model state emission densities, Gaussian mixture models provide fast training
and have been extensively studied. However, early experimentation with the data
showed that ANNs can capture the state emission statistics more accurately given
our data. Although better feature selection might improve the performance of
Mixture models, this is beyond the scope of our work.
The network we use is a typical feedforward layered network with sigmoid

activation functions. That means that the output yi of each node of each layer is
yi ¼ f w0 þ

P
j wjxj

	 

; where f ðxÞ ¼ ð1þ e�xÞ�1; xj are the inputs, and wj are the

weights to be estimated. To guarantee that the network produces a distribution
function, we use a final ‘‘softmax’’ layer such that, at the output, yi ¼ eaxi=

P
j e

axj—
where a is a training parameter, independent of i: The sum of the outputs of this
layer is always equal to 1, as desired. Had we used the formulation in [9] instead, we
would need to configure the network to integrate to 1 over all possible range
of inputs, a constraint not as simple to implement as adding a softmax layer at
the output.

2.2. Training the model

To train the overall model, we modify the Baum–Welch reestimation algorithm—
an instance of the Expectation–Maximization method. The forward–backward
algorithm, as described above, performs the Expectation step.
The Maximization step uses g and x to estimate the model parameters:

%pi ¼ gi½1�; ð9Þ
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%aij ¼

PT�1
t¼1 xij ½t�PT�1
t¼1 gj½t�

; ð10Þ

%Pi ¼
PT

t¼1gi½t�
T

: ð11Þ

At this step, we also need to update the emissions model, so we use ðO½t�; gi½t�Þ as
input–output vector pairs to train the ANN using the backpropagation method to
perform gradient descent.
The proposed algorithm should be considered as an instance of the generalized

EM algorithms. The generalization involves just improving on the lower bound of
the cost function at each M-step—through some iterations of the gradient descent—
instead of fully maximizing that bound as described in [12].
The training schedule is summarized in Fig. 2. Boufounos [10] and Hennebert et al.

[11] provide an extended discussion of the method, including further comments on
convergence. Note that the training algorithm preserves the structure of state
transition parameters. Indeed, any aij set to 0 initially will remain 0 after each
training iteration.

2.3. Estimating the state transitions

The last problem to solve is how to use a trained model to perform basecalling. As
we discuss in the next section, this is equivalent to estimating the most likely state
transition path given the data and the model. To do so we define two time variables:
di½t� ¼ maxq½1;y;t�1� Pðq½1;y; t � 1�; q½t� ¼ i;O½1;y; t�jlÞ; and ci½t� keeps track of the
state transitions in d: These can be computed using the Viterbi algorithm:

dj ½t� ¼
pj

bj½1�
Pj

; t ¼ 1;

maxi di½t � 1�aij

� �
ðbj½t�=PjÞ; t > 1;

8><
>: ð12Þ

cj½t� ¼
0; t ¼ 1;

argmaxi ½di½t � 1�aij �; t > 1:

(
ð13Þ
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Fig. 2. The modified Baum–Welch procedure.
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The most likely state sequence q�½t� can be back-traced from cj½t� using

q�½t� ¼
argmaxi d½T �; t ¼ T ;

cq�½tþ1�½t þ 1�; toT :

(
ð14Þ

The Viterbi algorithm is linear in number of states and observation sequence length,
making it very efficient and scalable. These features make the algorithm attractive
for basecalling.
A slight variation of the Viterbi algorithm can also be used to generate some

training data. The same variation is also useful to locate electropherograms in a
longer sequence. We discuss both applications in Section 4.

3. Model selection for DNA sequencing

To implement the system, we need to set the structure of the Markov chain. In this
section, we describe a simple model motivated by the shape of the data.
Furthermore, we propose alternative configurations, motivated by analyzing the
performance of simple model.

3.1. The basic models for recognition and training

We can model DNA sequences using the Markov chain (Fig. 3(a)), which
generates an i.i.d. sequence, as desired.3 In the higher level model, we represent each
state by the three-state model of Fig. 3(b), corresponding to the rise, the apex, and
the fall of the corresponding peak in the electropherogram. The resulting model is
shown in Fig. 3(c). On that model we use the Viterbi algorithm from the previous
section to perform basecalling. Indeed, we call a base every time the optimal state
transition path passes through a base.
Similarly, we need a model to train the system. This should be generated by

the sequences corresponding to the training data. For example the sequence
AATCA should produce the model in Fig. 4. We feed this model together with
the corresponding electropherogram to the Baum–Welch algorithm to train
the system. We use the same type of model in Section 4 to generate training
data using a variation of the Viterbi algorithm, and execute database queries
straight from the electropherogram. This model contains a number of states
linear in the order of the training data, requiring significant computation
and memory. However, this model is only used to train the system once, making
its size only a minor inconvenience. Furthermore, techniques such as splitting the
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3 It has been noted that in certain DNA regions base sequences are not i.i.d. Instead, certain sequences

are more likely to occur than others. However, we choose i.i.d. base distribution to make the model simple

and agnostic to the type of region being sequenced. If more information is available for a specific

electropherogram, it can be incorporated in the model to improve the results.
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data in pieces and optimal pruning of branches can be used to reduce the
computation.4
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Fig. 3. The model used for basecalling. (a) Model of an i.i.d base sequence (all transitions have

probability 1
4
), (b) the model for each base and the part of the peak corresponding to each state, (c) the

result of combining (a) and (b).

4Such techniques are abundant in the speech processing literature, since the models used for speech

recognition are quite complex compared to our model.
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3.2. Alternative model configurations

The topologies we propose are not the only possible ones, and probably not the best
ones. Certain effects are not captured by the model of Fig. 3. For example, as the
results verify, the statistics of the fall of the peak vary, depending on what base
follows. Fig. 5 shows that transitions from a base to itself, say an A to an A, look very
different than transitions from a base to a different one, say a T to a G. The peaks of
the later type fall all the way to zero, while the peaks of the former merge. The first
peak thus falls to a certain level and a soft dip is created before the second peak rises.
To accommodate such issues we suggest some model modifications Fig. 6. For

instance, Fig. 6(a) shows an additional state that can capture the merging of the
peaks described above.
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We can go a step further and assume a second-order underlying Markov chain.
This is equivalent to a first-order underlying Markov chain on the last two letters of
the sequence instead of only the last one. This 16-state chain will replace the one in
Fig. 3(a) with the one in Fig. 6(b). Similar to the simple model, each of the boxes in
the figure corresponds to a three-state sequence, as in Fig. 3(b), and the result is a
48-state HMM.
This model captures any effects that require a second-order Markov chain, such as

the merging of the peaks described above and the compression effects described in
[13]. For example, GC compressions make C peaks arrive earlier when a G peak is
preceding. The second-order model will capture this effect in the transition
probabilities and the observation density corresponding to the C|G state. Further
discussion on alternative models can be found in [10].

4. Generating training data and model training

One issue we encountered was the lack of labeled training data, especially for new
equipment. Hand labeling of electropherograms is very expensive and labor
intensive. Basecaller-labeled data, on the other hand, are inaccurate for training
purposes and create a chicken-and-egg problem. A useful by-product is a method to
locate electropherograms in longer sequences. This can be useful to execute queries
straight from the electropherogram into large sequence databases.
Instead of the labeled data, however, we can use electropherograms of fragments

of published consensus sequences. Yet, these preprocessed electropherograms might
not all start from the same location in the sequence and might not all have the same
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usable length. In order to generate labeled data, we need to find which portion of the
sequence corresponds to each electropherogram.
To locate electropherograms in the consensus sequences we use a variation of the

Viterbi algorithm. We apply it on a left-to-right model like the one in Fig. 4,
generated by the consensus sequence. This model is large and requires significant
computation, but we only need to label the data once. In any case, Moore’s law
makes this method cheaper and faster than hand-labeling.
The data generation involves partially training a HMM, with a set of parameters

denoted by lp; using very few labeled electropherograms. To obtain these, some
minimal human labor is necessary, either to locate them in the consensus sequence,
or to hand-label them. Based on lp we generate the left-to-right model with
parameters lc which corresponds to the consensus sequence. The difference is that
we assume that the initial probabilities are the same for all the states: pi ¼ 1=3N;
where N is the number of bases in the consensus sequence. Then we execute the
Viterbi algorithm on the electropherograms that we need to locate in the consensus
sequence. Essentially, we instruct the model to treat all the bases in the consensus
sequence as equally likely starting points of the electropherogram, and find where the
data fit best. Indeed, this results to the most likely path in the sequence, which we use
to label the data. The method we propose only requires a poorly trained model
because it exploits the significant side information embedded in the consensus
sequence.
With a fully trained model instead of a partially trained one, this method can also

be used to execute queries. Specifically, one could use the model to locate an
electropherogram in a longer sequence, without going through the basecalling step
and comparing the text sequences. In certain cases—such as low-quality reads—this
might result to higher accuracy in the query results. Details of the process are
described in [10].

5. Implementation and results

We implemented the proposed simple model in MATLAB and evaluated its
performance on 10 electropherograms of PBluescript sequences (different than the
training sequences), preprocessed with the standard software of the ABI 377
sequencing system with primer-dye chemistry. In this section we describe the
implementation details, and discuss the results.

5.1. Implementation

The input feature vector we use is a 33-sample window of the four-channel
electropherogram, centered at the current time point. The 132 points of the feature
vector are normalized to have a maximum of 1. An electropherogram decays slowly
and exponentially in height, so we use the normalization to make the features
consistent during the whole run.
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The neural network we use has three hidden sigmoid layers of size 120, 60, and 12
nodes from the input to the output, respectively. We chose three instead of the two
hidden layers usually used because the output layer is a softmax function that only
has one training parameter.

5.2. Evaluation and results

To measure the accuracy of basecallers there are three types of errors that should
be taken into account. Insertions occur if a base is called where nothing should have
been called. For example, a basecaller performs an insertion error if it calls AATCG
while it should have called AACG. Similarly, deletions occur if a base is not called
when it should have been. For example, a deletion error occurs if the true sequence is
AATCG but AACG is called. Finally, substitution errors occur if the basecaller calls
a different base for a specific location. An example is calling AATCG instead of
ATTCG.
The read quality deteriorates as the read length increases. Therefore, reporting

error rates at different read length for different systems provides no basis for
comparison. It is important to report these errors as a function of read length. In
fact, it can be misleading since at small read lengths most systems are essentially
error-free.
To evaluate our system we compare our calls to the consensus sequence [14] using

CROSS MATCH [3] to determine the number of insertion, deletion and substitution
errors. Fig. 7 shows the results. For comparison, we provide the performance of
PHRED version 0.990722g on the same data, over the same region of the
electropherograms. We are plotting the average number of errors of each type
versus the read length, as well as the average of the total number of errors. We
should note here that PHRED has been heavily optimized over the years.
Furthermore, it uses its own preprocessor, tuned to work well with the basecaller.
On the other hand, we should acknowledge that we are using a limited sample for a
thorough comparison. Still, the results provide a guidance about the potential of this
method, especially if the modifications described in Sections 3.2 and 6 are
implemented.
From the results we see that although the HMM basecaller performs better than

PHRED in terms of insertions and substitutions, it generates a significant number of
deletion errors. However, the overall performance is comparable, encouraging
further research and fine tuning.
In fact, close inspection of the deletion errors validates our suggestions in Section

3.2. As expected, the basecaller often merges bases of the same type and recognizes
them as only one peak. In other words our basecaller cannot tell apart two
subsequent peaks of the same base near the end of electropherogram that diffuse and
merge to form a double peak. For example it would call a GAATC as GATC. Thus,
the models in Fig. 6 should significantly improve performance. Indeed this model
should be able to incorporate the transition, for example, from an A peak to an A
peak in the statistics of the A|A state, thus reducing the number of such deletions—
which are the dominant type of error in the system.
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6. Future work

Improving basecalling results is very important in the sequencing community as it
saves significantly on sequencing cost. The results are promising, but further research
is needed to improve performance even further and make HMMs useful in the
community. In this section we try to identify areas where further research might be
fruitful.

6.1. Confidence measures

Although HMMs provide a direct probabilistic interpretation of the results in
terms of likelihoods, this interpretation is different than the PHRED confidence
scores described in [4]. Since the biological community is accustomed to these scores
being reported, acceptance of an alternative basecaller depends on providing
confidence measures on a similar scale. For example, sequence assembly methods
such as [1,2] rely on these scores to evaluate consensus sequences. Thus, further work
is needed to provide intuition and tools to compare these two measures.
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Such work is also necessary for other basecalling methods. A common language to
report error estimates has several potential benefits. For example, it will be possible
to combine results from different basecallers in order to assemble a sequence. It is
also possible that one error estimate for each base call is not enough, since there are
several types of errors. Certain basecallers might be biased towards performing one
type of error, as was evident in our results. Making error estimates for each kind of
error allows a basecaller to report such a bias to the assembly algorithm.

6.2. Model topology

Our system produced a significant number of deletion errors using the simple
model to perform recognition. Although we believe that the alternative models we
propose will improve the results, we still need to test them. Even with these models,
we have not exhausted the model space. Other models might exhibit even better
performance and further research is needed to determine them.

6.3. Features selection and emissions model

In this work we did not try to optimize our feature selection process. Instead, we
relied on the neural network to estimate the emission probability based on a window
of the data. With appropriate features and emissions model the data might be better
represented, improving performance or reducing complexity. For example, we might
be able to use Gaussian mixture models for emission densities and thus achieve faster
convergence in training, or Support Vector Machines to better describe the data.

6.4. Preprocessing

Another step of the process we have not examined is the preprocessing of the
electropherogram before it is fed to the basecaller. Several aspects of the
preprocessing steps could be better tuned for use with an HMM basecaller. For
example, the preprocessor low-pass filters the data to remove the noise and make
electropherograms look better to a human reader. Certain algorithms might rely on a
noise-free electropherogram to operate, but this process might be suboptimal for
other algorithms. In fact, low-pass filtering has the potential of destroying subtle but
important transition features in the data by smoothing them out. Our basecaller does
not depend on a noise-free signal to operate since a noise model can be incorporated
in the state emission statistics. Thus, it might be desirable to modify the
preprocessing steps to improve performance.

6.5. Extensions

The potential applications of HMMs in other areas of biology, such as SNP
detection and DNA fingerprinting are very promising. Furthermore, similar models
can be used for protein sequencing, aiding the field of proteomics. We believe that
the potential applications in other fields are numerous.
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7. Conclusions

We believe we have demonstrated the suitability and the potential of hidden
Markov models as a basecalling tool. We presented a very simple model that
matches the overall performance of PHRED, at least in a preliminary evaluation.
Still, our model provides significant room for improvement, especially in terms of
deletion errors. Thus, we proposed alternative models that should improve
performance. Nevertheless, a careful validation of the results is necessary, using a
variety of data, and a larger sample. Finally, we identified promising areas of
research that might be fruitful in improving the performance of the algorithm, as
well as extensions to other areas.
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