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A new technique for the measurement of the plane-wave reflection coefficient of a horizontally stratified
ocean bottom is described. It is based on the exact Hankel transform relationship between the reflection
coefficient and the bottom reflected field due to a point source. The method employs a new algorithm for
the numerical evaluation of the Hankel transform which is based on the “projection-slice” theorem for -
the two-dimensional Fourier transform. The details of the algorithm are described in the companion
paper. Although the algorithm is applied to the case of an isovelocity ocean, the general theory for
measuring the plane-wave reflection coefficient in a refracting ocean is developed. The technique provides
information about the reflection coefficient, not only for real incident angles, but also for complex angles,
thus potentially providing substantial additional structural information about the ‘bottom. The method is

shown to yield excellent results with synthetically generated data for the cases of a hard bottom and slow

isovelocity bottom.

PACS numbers: 43.30.Dr

INTRODUCTION

In a model of ocean acoustic propagation which as-
sumes horizontal stratification, the plane-wave reflec-
tion coefficients of the surface and bottom as a function
of horizontal wavenumber and frequency contain all the
information about the boundaries necessary for the
solution of acoustic problems in the water column. The
assumption of horizontal stratification requires that
the acoustic properties depend spatially only on depth.
While the surface is suitably approximated as a pres-
sure-release interface, the bottom cannot be generally
modeled as an impenetrable boundary. In general the
bottom may support both compressional and shear waves
and may have properties which are frequency dependent
(e.g. absorption). The reflection coefficient of the bot-
tom is a complex-valued function with magnitude and
phase€ variations.” For a source at finite distance from
the boundary, the behavior of the reflection coefficient
must in general be known for all horizontal wavenum-
bers in order to compute accurately the total acoustic
field.? This implies that the reflection coefficient must
be known for both real (0 <0< 7/2) and complex
(6 =/2 —ia, @ >0) incident angles, although it is con-
ventially studied only at the real angles.

If one assumes a multilayered bottom with specific
acoustic parameters, then one can compute the reflee-
tion coefficient by solving the wave equation in
each layer and imposing continuity conditions at the
layer interfaces. An example of this approach and a
review of the literature in this area are provided by
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the work of Hawker and Foreman.® These methods are
particularly useful in studying the effects of différent
bottom configurations on the behavior of the reflection
coefficient. They can alSo be used to determine the .
reflection coefficient in a particular bottom area for
which the input parameter data are known. /

In this paper we address the problem of measuring
the reflection coefficient, making only the assumption -
of horizontal stratification. This method relies on
correctly relating the bottom reflected field data to the
plane ~wave reflection coefficient. Since acoustic
sources do not radiate a.single plane wave and the water
column is in general an inhomogeneous medium, this is
not a trivial matter. If the relationship is improperly
made, one obtains unphysical results such as reflection
coefficients which depend on source-—receiver geometry
or those which have values greater than unity for real
incident angles.*’® This paper describes a measurement .
technique which is based on the exact Hankel transform
relationship between the reflection coefficient and the
bottom reflected field due to a point source. The me-
thod employs a new algorithm for the numerical evalu-
ation of the Hankel transform which is based on the
“projection-slice” theorem for the two-dimensional
Fourier transform. The algorithm is described in de-
tail in the companion paper.® The technique yields in-
formation about the reflection coefficient not only for
real incident angles, but also for complex angles, thus
potentially. providing substantial additional information
about the structure of the bottom. This is not possible
with conventional measurement techniques. We show
here that the method yields excellent results with syn-

' thetically generated data for the examples of a hard

bottom and slow 1sove1001ty fluid bottom.
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In Sec. I we review the general formalism within
which plane-wave reflection coefficients arise in ocean
acoustic propagation even in the case of an inhomo-
geneous ocean. In Sec. II, we describe the principle
in measuring the reflection coefficient of the ocean
bottom. In Sec. III, we present the application of our
Hankel transform algorithm to the problem of mea-
suring the reflection coefficient in an isovelocity ocean.
The method is then applied to the examples of a hard
bottom and slow isovelocity fluid bottom.

I. THE THEORY OF ACOUSTIC PROPAGATION IN'A
HORIZONTALLY STRATIFIED OCEAN USING
HANKEL TRANSFORMS

For harmonic time dependence [exp(—iwt)] and a
water column with sound speed c(r), thickness &, and
constant density, the spatial part of the acoustic pres-
sure field satisfies the inhomogeneous Helmholtz equa-
tion

[vz +#2(r)]p(r) = —47f(x),

where k(r) =w/c(r). Using the formalism of Green’s
functions,” we can in principle solve the problem for an *
. arbitrary source distribution f(r) and homogeneous
boundary conditions if we know the solution G for an
impulse at r =r, corresponding to the solution of the
equation :

1)

[v2 +2(r) ]G, T,) = —47(r - T,).

If we assume horizontal stratification and cylindrical
symmetry with the source at »=0 and z =z, as illus- '
trated in Fig. 1, then Eq. (2) becomes

®3)

As the first step in solving this equation, we take the
gero-order Hankel transform in 7 of both sides, where
the Hankel transform pair is defined as

o

@

Here J, is the zero-order Bessel function and k,' is the
horizontal wavenumber. Equation (3) then becomes

2

(& v -r2)gtkz 0= -0 20, O

where g(,,2,2,) is the Hankel transform of Glr,z,2,)
and we have used the relation

1d d _ 42
H{ -4 (r—d-;)F(v) } =k f(R,). (6)
The depth-dependent Green’s function® g is given by
2
g(kr,z,zo)=-fmﬁB(k,,Z)Ps(k,,Zo), O<zsz,, (Ta)
2
g(knzyzo) =- —W/(—ZJ pa(knz'o)ps(knz) ) ZO$Z'S]’L s (7b) :
where the Wronskian W(z,) is
W(zo) =P 5(2 ) P5(20) — Ph2oIPs(Z0) - (Tc)

Here py and pg are linearly independent solutions of the
homogeneous form of Eq. (5) and satisfy homogeneous
boundary conditions at the bottom and surface, respec-

_tively. These conditions can be expressed as the im-

pedance relations

5 .

Pa 8—€:E=YB’ at z =0, (8a)
5

bs '5% =yg, atz=h. (8b)

The input parameters yy and v contain the informa-
tion .about the boundaries necessary for the calculation
of g. They depend on horizontal wavenumber and fre-
quency, and furthermore yB(ys) depends on the acoustic
properties of the bottom (surface). Relative to the
water column, they depend on the fluid loading at each
interface, but are independent of the functional forms
of the sound speed profile c(z) and the solutions p , and
pg- Thus vy depends on the water ‘density and sound
speed ¢, at the water —bottom interface, while yg de-
pends on the water density and sound speed cg at the
water—surface interface (c.f. Fig. 1). We can there-

— _ ) : fore rewrite the condition in Eq. (8a) in terms of the
H{F ()} =/(k,) j(: TdTJ°(kT7)F(7) ? (42) plane wave reflection coefficient R associated with a
. ' half-space of sound speed Cp bounding the bottom. Sim-
- - ' ilarly, we can rewrite the condition in Eq. (8b) in terms
H{f(k,)} =F (7) ,/0- kr de, ol )f ). (4b) of the plane-wave reflection coefficient R ; associated
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with a half—space'of sound speed ¢¢ bounding the sur-
face. We therefore consider the following solutions
(with A and B being arbitrary constants):

pp)=Alexp(—ik,,z) +R 4(k,) exp(iky,2)], (92)
P () =B[exp(ikg,2z) +R¢(k,Jexp (—ikg,2)], (9b)
where

Fao=(6% = kDM g, = (6% — k),
kp=w/cy, and kg =w/cg.
The conditions in Eq. (8) can then be written as

pp_ i(L+Ry)

zp, —k——(l—:m’ at z=0, (10a)
B "pe B

bs -1 [1 +Rsexp‘(—2ikszh)] at z =h. (10b)

Vs T pL T kg, [T-R,exp(-2ikg,h)
Bucker,® in constructing a normal mode solution for an
inhomogeneous ocean, used a different approach to
arrive at the same result for incorporating the effect
of the boundaries through plane -wave reflection coef-
ficients. He inserted a thin isovelocity layer of speed
¢ at the surface and a layer of speed ¢ at the bottom.
Each layer then contained up-and down-going plane

waves related by plane-wave reflection coefficients.

He then shrank the layers to zero thickness at the end
of the calculation. In any case, the key point is that the
effect of the boundaries ¢ un be incorporated into the
theory in an exact manne_ using plane-wave reflection
coefficients even for the case of an inhomogeneous
ocean. ’

Let us now address the problem of constfucting by
and ps. In general, c(z) has a form which does. not
allow single functional forms of p, and p ¢ to hold

%
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throughout the water column. However let us assume
that c(z) can be decomposed into segments within each
one of which p, and p¢ can be expressed as a linear
combination of known analytic, linearly independent
solutions of the homogeneous version of Eq. (5). The
solutions p , and p; are then given by (c.f. Fig. 2)

A1B¢1(Z)+B13¢1(Z), 0$Z $h,l,

A23¢2(z)+BzB'zp2(z), hysz<h,, ’
Pplz)= ) (11a)

A 02} +B,  ¥,(2), h,, <z<h,

A,s$,(2)+B ¥, (z), O0<z<hy,

A,sh,(2) +B, g ¥,(2), hysz<h,,
ps(e)= ¢ ‘ (11b)

\Ans®nl@) +B s ¥,(2) , Ryoy <z<h.

The coefficients A;, and B, z(i =1, , #), are obtained
to within a multiplicative constant by imposing the con-
ditions of continuous pressure and normal particle ve-
locity at the segment interfaces and the impedance re-
lation (10a) at the bottom. Similarly the coefficients
A, and B, (=1, ...,n) are obtained to within a multi-
plicative constant by imposing continuity conditions at
the segment interfaces and the impedance relation
(10b) at the surface. In each case, the multiplicative
constant (i.e., one of the coefficients) is arbitrary, and
therefore we have 2z —1 unknowns and 2n -1 equations.
Usmg Eq. (10) we can relate B, ;/A,; to Ry and B,3/A ¢
to R, )

B, _ il -I:R Yb1'(0) = kg, (1 —R5)$:(0) |
A,r " Bl —Ry) 50— R ) 90 (12a)
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B.s _ il +Rgexp(—2iks:h)] ¢ah) +kg [l —Rgexp(~ 2k )] ulh)

(12b)

A

The depth-dependent Green’s function g is then con-
structed by selecting the appropriate solutions in Eq.
(11) depending upon the positions of z and 2, in the
water column and combining them according to the
formula in Eq. (7). Finally, the pressure field G is
obtained by taking the Hankel transform in %, of g.

Il. THE PRINCIPLE IN MEASURING THE PLANE-
WAVE REFLECTION COEFFICIENT OF THE OCEAN
BOTTOM S

In the previous section we saw that from knowledge
of the sound speed structure in the water column and
the plane-wave reflection coefficients of the boundaries,
we could compute the pressure field G due to a point
source by taking the Hankel transform in horizontal
wavenumber of the appropriate depth-dependent Green’s
function g. On the other hand, knowledge of the pres-
sure field as a function of range at fixed z and 2z, would
allow us to compute the Green’s function by taking the
transform of G in 7:

g(k,,2,2,) =f vdvd (ky)Glr,z,2,). (13)
0

It is the latter problem, namely that of inferring pro-
perties of the waveguide from measurements of the
field, which we wish to focus upon here. In particular,
we would like to determine the plane-wave reflection
coefficient of the ocean bottom. The notion of inferring
the reflective properties of the bottom by using the
exact Hankel transform relationship between g and G
was suggested by Stickler.* However, in dealing with
the case of an inhomogeneous ocean, he defined a re-
flection coefficient which is not the plane-wave reflec-
tion coefficient. On the other hand, we show explicitly
‘that knowledge of g can be used to determine the plane-
wave reflection coefficient of the bottom even when the
measurements are made in an inhomogeneous ocean.

In the previous section we saw that, for a particular
sound speed profile, we could calculate g once the
coefficients A, 5, B; 5,4,¢, and B, {i=1, ... ,n) were
known. These coefficients were determined by im-~
posing continuity conditions at the segment interfaces
and impedance relations at the boundaries. If we also
know g at some specified z and z,, then we have an
additional constraint which eliminates the need for one
of the boundary (or continuity) conditions. In fact we
can consider one of the conditions as an unknown and
solve for it. Specifically if we take the bottom impe-
dance relation as our unknown, we can then determine
R by inverting Eq. (12a):

_ Bia/ A )k p,0,(0) = i1(0)] —id1(0) +Rp, ¢, (0)

Bo= B, A, e, 0,(0) F207(0)] +ip/(0) +F 5, 63(0) °

(14)

11l. MEASUREMENT OF THE PLANE-WAVE
REFLECTION COEFFICIENT OF THE BOTTOM IN AN
ISOVELOCITY OCEAN :

In the remainder of the paper we shall focus upon the
case in which the ocean is characterized by a constant

6056 J. Acoust. Soc. Am., Vol. 68, No. 2, August 1980

"7 kg [l —Rgexp(-2ikg,h)|9,(h) +i[l +R ¢ exp( - 2iks,h) To! ()

H
sound speed ¢. For simplicity we shall also neglect the

effect of the ocean surface. This condition is satisfied
when the source output is sufficiently time-limited to
allow us to gate out the surface reflection and multiple
reflections within the water column. Thus our analysis
applies to a single frequency component of a broadband
pulse or more directly to a cw pulse of sufficient dura-
tion to establish steady-state conditions in the bottom
returns.

In an isovelocity ocean, we have only the solutions
¢, and ¥, [c.f. BEq. (11)]:

&, =exp(—ik,z), (15a)

b, =exp(ikz2) (15b)

where k, = (k? -—Iazi)l/2 and k =w/c. Neglecting the effect
of the ocean surface is equivalent to imposing a radia-
tion condition on pg at . Therefore A,;; =0 and pand
pg are given by

pp2)=A, lexp( —ik,z) +(B,z/A,5) exp(ikz)],  (16a)

ps(&) =B, exp(ik,z2). (16b)
The expression for g then becomes [c.f. Eq. (D]:
g(k,,z,2,) =ik {exp (ik,]| 2 = 2,|)
+(B,5/A g explik, (z +2,)]}, 0<z<c.
amn

Solving Eq. (17) for (B,,/A,,) and substituting the re-
sult into Eq. (14), we obtain for the bottom reflection
coefficient R (dropping the subscript B)

R(k,) = —expl — ik, (z +2,) [ exp(ik,| z - 2,|)

vin, [ rara ) 60,220 1. (18)

0

If the measured pressure field p,, is that due to a point
source of amplitude p, then Eq. (18) becomes

R(k,) = —exp[ —ik,(z +zo)](exp(ikz|z -z4])

+ik,p3t fwrero(k,'r)pM('r,z,zo)) . (19)
0

The total measured field can be decomposed into the
incident field and reflected field

P u7,2,20) =p,(r,2,%,) 7, 2,2,), (20a)
where
p1(r,2,20) =p L exp(ikR,)/R,) , (20b)

and R, =[7?+(z —2z,)?]/2. But the Hankel transform of
Py is given by
H{p.} =ik by explik, |2 =2o[) , (21)

so that our expression for R(k,) now in terms of the
reflected field only, becomes
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R(k,)=—ik,p;  expl —ik,(z +2,)]

XI rdvd (b y)pv,z,2,). (22)
o
With a broadband source it may be possible to time re-

solve p; and p .. However, with a cw pulse and near -
bottom geometry, the steady state field will in general
also include p;. In that case, we shall assume that we
know the source amplitude and experimental geometry
with sufficient accuracy to remove p; from p .

We note that the theoretica} development can be
phrased completely in terms of Fourier transforms
which are interpreted physically as plane wave decom-
positions.'® Converting from polar to Cartesian co-
ordinates, p, and p, become

pilx, v;2,2,)

Py ("
=ﬁf_m f_m dk, dk(k? - k2 —~ k2)1/2

x exp{ilk,x +ky + (B - k2 B2 2|z —zo| 1}, . (232)

=% [wj—wdkx dky(kz —ki .—ki)'l /ZR(kx, ky; k)

xexp{ilk,x +ky + (R k2 —B2)2(z +2) T}, (230)

where 7 =(x2+y?)"2 and k, = (k2 + k2)¥%, We have ex-
pressed pp(x,,2,2,) as pglx,y;2,2,) and R(k,, &, k) as
R(k,,k,; k) in order to identify z,z,, and % as para-
meters rather than variables. Taking the inverse of
Eq. (23b) we obtain

R(k,, ky; k) -
= (—i/2m)(R* — K2 — K2 )2t

x exp{ —i[(k* — k2 -k P2z +2,)]}

xfw fwdxdypx(x, v;z,z,)expl —i(k,x +k,p)].  (24)

Virtually all existing techniques for estimating the
_ reflection coefficient under the assumption of an iso-
velocity ocean and single bottom interaction rely on
Eq. (22) and its inverse

Prlr,z,2,) =ip, f k,dk,J,(k,7)
2}
X R (k, )k explik,(z +2,)]. (25)

Conventional methods are based on the geometriCal
acoustics approximation of this integral, which yields'®

» pR('r’Z,Zo):R(eo‘)_poexp[(ile)/Rl], (26)

where R, =[r2+(z +2,)?]'2 and 6, =tan™[r/(z +2,)]. This
result states that the reflected field is a spherical wave
emanating from the image source and multiplied by the
reflection coefficient evaluated at the specular angle

8, (c.f. Fig. 3). Thus R can be measured as a function
of angle by changing the source~receiver geometry and
therefore the specular angle. But Stickler*® has shown
that even for simple bottom types (e.g. isovelocity fluid
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half-space), the assumption of specular reflection can
lead to erroneous and unphysical results. These in-
clude reflection coefficients which depend on source-
receiver geometry and those with values greater than
one for real angles. The need for more exact evalua~-
tion techniques has therefore recently given rise to
several new approaches to the estimation problem.
Schoenberg'! has adapted the Backus-Gilbert inversion
method to this case. DiNapoli'?’!® has applied the Fast
Field Program (FFP) to the computation of the reflec-
tion coefficient from values of the reflected pressure
field. The FFP algorithm relies on the asymptotic
form for J,;

Jo(k,7)~ (2/Tk7) 2 cos(k,r —m/4) (27)

which then allows the Hankel transform to be approxi-
mated in terms of a Fourier transform. An alternative
is to use an algorithm, such as the one described in the
companion paper,® which does not require the use of
this approximation. It is based on the “projection-
slice” theorem for the two-dimensional Fourier trans-
form. This theorem states that the one-dimensional
Fourier transform of a projection of a function at some
angle is a slice at the same angle of the two~-dimen-
sional Fourier transform of the function. In our case,
where we have cylindrical syminetry, all of the pro-
jections are identical and the function is completely re-
presented by a single projection. The application of the
theorem then has a simple interpretation. From Eq.
(24) let us consider the slice k, =0 which corresponds
to choosing the x axis as the projection axis. Then we
have (with p,=1)

R(k,,05k) =(—i/2m) (B - E2)' # exp[ - i(k? - £2)*2(z +2,)]

xf dAx® (x; z,2,) exp(~ik, x) , (28a)

where
®(x;2,2,) =f dyb p(%, ¥32,%) (28b)
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is the projection of p, onto the ¥-axis. Again taking
advantage of eylindrical symmetry, we can s1mp11fy
Eq. (28b), so that

(P(x;z,zo)=2f dypel(#®+y2)1 22, 2,]. (28¢)

0
Thus, the computation of the two-dimensional Fou-

rier transform has been reduced to the computation of
an area (the projection) and a one-dimensional Fourier
transform. It may appear that we have complicated the
problem by viewing the one-dimensional range integra-
tion in Eq. (22) as a fwo-dimensional integration in
Cartesian coordinates. The power of this approach,
however, lies in its computational advantages. The
computation can be implemented by employing the al-
gorithm described in detail in the companion paper. I
pr is bandlimited, i.e., g(k,;2,2,) =0 for 2, > K, and the
samples of ®(x;z,2,) represent a finite-length sequence
of length < NAx, then the algorithm consists of a sum-
mation, a one-dimensional FFT, and multiplication by
the depth-dependent factor:

@(nox) =24y i: peil(nax)? + (1ay)2]/2}, (292) .
R(mak,)=(-i/2m) [k* — (mak, ]2

x exp{’ —i[k 2~ (mok, )l e T N

X Ax » ®(nax) exp( —i2mem/N) , (29b)

n

0
=

where Ak, =21/(NAx), and we require that ax < /K and
Ay < 27/K by virtue of the sampling theorem.

In fact p is not bandlimited since g is given by.

. glk,;2,2,) =R(k,)B(k,;2,2,), (30a)
where
B(k,;2,2,) = [i/ (R - K2)V?]

x expli(k® - 212 (z +2 )],
B (kn ’ o) = [1/(k12* - k2)1/2]
x exp[— (2 —k?)12(z +2,)],

0<k,<%, (30b)

R<k,<o.

(30c).

Using the relationship k,=ksinf, where 6 is the angle
of incidence, we see that the image source injects into
the medium plane waves at both real (0<%, <k) and
complex (& <k,<=) angles of incidence. The former
are pure propagating plane waves with angles 0 <9 < /2
while the latter are propagating waves in x and y and
exponentially damped in z and therefore called inho-
mogeneous plane waves. They can be represented in
terms of complex angles ¢ =7 /2 —ia (¢ >0). The func-
tion IB\ is sketched in Fig., 4. For real angles it has
an algebraic dependence on k,. For complex angles

|B| also exhibits an exponential behavior with a decay
rate that depends on source/receiver height and fre-
quency. At a fixed frequency, as the distance of source
and/or receiver from the boundary increases, |B| in
the inhomogeneous wave region decreases. If the
source and receiver are on the boundary, then the de-
pendence of |B‘ on k, is algebraic in both angular re-
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Bl

FIG. 4. The function | B].

gions. Based on the behavior of |B|, it has been
shown?® that a necessary, but not sufficient, condition
for neglecting the inhomogeneous wave contribution is
(x=21/k) »
z+2,> N/ (2V2 7). (31)
These results are consistent with the geometrical
acoustics approximation in which source and receiver

are many wavelengths from the boundary and the re-
flection of inhomogeneous waves is neglected.

Let us now discuss the behavior of R(k,). By virtue

- of energy conservation,? |R| is bounded by unity for

real angles but can be unbounded for complex angles

6 =7/2 —ia {«>0). In fact poles arise in R when nor-
mal modes are excited in slow speed regions of the
bottom via inhomogeneous-propagating wave conver-
sion. An example of such a region occurs in surficial
sediments, where the sound speed may decrease by
about 1%~3% relative to the speed in water. In thatcase

poles may appear in a narrow region 2 <k, <k(l -¢)*
. where ¢ is the fractional drop in speed. With in-

cfeasing depth, the sound speed is usually assumed

to be monotonically increasing. Thus, in most cases
we expect the poles to occur in the vicinity of the water
wavenumber.

We have seen that determining whether or not p is
bandlimited is not generally straightforward. The pro-
perties of g depend on the experimental frequency and
geometry and on the characteristics of the bottom. In
the situation where the combined source/receiver height
is many wavelengths and there are no slow speed re-
gions in the bottom, we can say that to a very good ap-
proximation g= 0 for k,> k. Then the sampling theorem
requires that we sample the field at least every hali-
wavelength. If there is a slow speed region in the sur-
ficial sediments, we must then sample at a somewhat
higher rate corresponding tothe caseg=0fork > k(1 - €)1,
If the poles of R are concentrated near 2 but the
source/receiver height is less than a wavelength,
the sampling rate must be increased substantially above
the half-wavelength value.
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In addition to the assumption that p, is bandlimited,
the algorithm has the requirement that the samples of
®(x;2,2,) represent a finite-length sequence of length
< NAx. But py is in general not range-limited, and
therefore the finite sequence is obtained by truncating
the pressure field at some range R .. This corres-
ponds to applying a circularly symmetric window w(7)
such that w(») =0 for v 2R, The algorithm therefore

yields an estimate R of the reﬂectmn coeff1c1ent where -

{c.f., Eqs. (24) and (28)]
5 f.ople =t y
Rl +B) 5 k)= 5 (B~ — 22

x exp[ ~i(k? ~ k2 - k2)' 2(z +2,)]

(32)

X[w /_‘wdxdyj)R[(x2 +y2)1/2;z,zo]

xw{(x2+ 32)Y%expl —i(k.x +kyy)] .
Thus R is the two-dimensional convolution of R with the
two-dimensional Fourier transform W of the window:

- ' 1
R [(k;+£) 2kl = o RIS +10) 25 R]* W(k2+ 2)V/2].

.(33)

The convolution process degrades the quality of the

results through the effects of wavenumber leakage and
decreased resolution. The selection of a window which
minimizes these effects is therefore an important step

. in the implementation of this technique.’* Incorporating -
‘the window, we find that Eq. (29) for the processmg al-

gorithm becomes

i y ’
® (nax) =28y Y peilnaxy +(1ayy]H2}
1=0
xw{[ (nax)? +(Iay)R]/2} '(34a)
Rimak,)=(—i/2m)[k? - (mak, ]~
x exp{ ~i[k? - (mak, P12z +2,)}
Ny-l _ .
X AX E ®P(nax)exp(—i2mnm/N,) , (34b)
n=0
provided Ax <7 /K and Ay < 2n/K. Here N, and (N, +1) -
are the total number of samples in the x and 9 direc-

tions, respectively. In terms of the computed Green’s
function &, we have

Ny-l
gmak,)= 92% Z ® (nax) exp( —i2mm/N,) , (35a)
R(mAk [k2 (mAkr)z]l /2 exp{ —i[kz _ (mAkT)z]”z

X (z +2 )}3(mAk,). (35b)

A A scéling property

Under certain conditions our measurement technique
exhibits the scaling property illustrated in Fig. 5. If
the frequency f, source/receiver height (z +z,) and
range aperture R__ in one experiment are appropria-
tely scaled by the factor A in a second experiment, then
the technique will yield identical estimates for the re-
flection coefficient. This result can be proved by using
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Rmax . DRmayx

(z+42) . A(z+z;))

.
f =

Experiment #| Experiment #2

FIG. 5. A scaling property.

Eq. (32) with the assumption

pR<gz—Zﬁf- s Z—A—, - Ak) ApR[(xz+y"’)”2 ,2,20, k1
(36)
and the properties
prlx,y) IR, g(k,, k), (37a)
pR<Z, %) EDFT A%(ak,,Ak), (37b)
Wik, ) =AW (Bk,, OF,) @)

Using Eq. (23) and the transformation %2, =k sind, it can
be shown that the assumption of Eq. (36) is valid only
when R is frequency-independent. This occurs when
the bottom is perfectly reflecting (R =+1) or when it is
a nonabsorbing isovelocity fluid (R is the Rayleigh re-
flection coefficient). A scaling property which is ap-
plicable for more general bottom types is currently
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_ tion for a perfectly reflecting hard bottom.
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being investigated.

To illustrate how the algorithm performs, we shall
apply it to two specific bottom examples. These cases
are discussed in detail in Ref. 14.

B. Perfectly reflecting hard bottom

In this section we shall apply our algorithm to the
case of a perfectly reflecting hard bottom for which g
is given by Eq. (30) with R =1. The reflected pressure
field is then given exactly by

_ exp{ik[x® +3% +(z +2,)2]'%}

38
R b2 +y? + (2 +ZO)2]1/2 (38)
The physical parameters in our example are
z=2,=10m, f=50 Hz, ¢=1500m/s,
£=0.20944 m™, (39)

The field was calculated using Eq. (38) over a range
aperture R, =2678.21 m at sample points such that

K=0.6 m™, Ax=7/0.6m, Ay=71/0.3m. (40)

A circular Hanning window was applied to the points;
The results for the magnitude and phase of the exact
and computed Green’s function are shown in Figs. 6
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and 7. The agreement in the magnitude is excellent for
the entire range of %2, considered. The phase result is
excellent until 2,~ 0.42, where it begins to deteriorate
substantially. This is due to the fact that the Green’s
function is close to zero in that region, and therefore
even small errors in the computed result can cause
wide variations in phase. The computed results for the
reflection coefficient are shown in Fig. 8. The be- -
havior in the vicinity of the water wavenumber arises
due to the singularity in g at that point [c.f. Eq. (30)]
and the corresponding steep slope in the vicinity of

that point. If & is even slightly misaligned in &, from

g, then these oscillations will appear when we divide the
two in order to obtain B. The degradation in the magni-
tude of R for large k, arises due to the division of very
small values of & and g. The degradation in phase
which appeared in § naturally persists in the phase of
R. These numerical deficiencies can be largely re-
medied by using double precision arithmetic (= 13 sig-

‘nificant figures on the Xerox Sigma 7). The substan-

tially improved results in this case are shown in Fig.
9. One of the striking features of our method is that

it yields results for the reflection coefficient in the
inhomogeneous wave region. This is impossible with
conventional methods which rely on the geometrical
acousties approximation and yield results only for real
angles of incidence.
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C. Slow isovelocity fluid bottom

Let us now consider the example of an isovelocity
fluid bottom with density p, and sound speed ¢,. The
reflection coefficient is given by the Rayleigh reflec-
tion coefficient!®

m(k? — ) — (k] — 13)' "
, I
m(k? —'ki)l 2 +(kf _ki) LV

R(k,)= (41)

where m =p, /p and k, =w/c,. We consider a slow bot-
tom because there exists a simple approximate exprés-
sion for the field in the geometrical acoustics approxi-
mation. In fact, surficial sediments may exhibit a
drop in sound speed relative to the speed in water. The
expression for p, is given by Eq. (26) which is valid

in the entire specular angle domain for this case. The
physical parameters in our example are

z=2z,=10m, f=50Hz, ¢=1540 m/s,
(42)
c,=1509.2 m/s=0.98¢c, £=0.204 m™, m=1.5.

We have chosen a ¢, which is 2% less than ¢ to simulate
a typical drop in sound speed at the water —bottom in-
terface. The aperture is R ,, =2678.21m, and the sam-
pling is that specified in Eq. (40). Again, a circular
Hanning window was applied to the points. The results
for the single-precision magnitude and phase of the
exact and computed Green’s function are shown in Figs.
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Frisk et a/.: Measuring the plane-wave refiection coefficient 610




140 .
(a)
1.20

1.00
080

060 7

040

0.20

REFLECTION COEFFICIENT MAGNITUDE

—

018 k 024 030 0.36 042 048 054 080

0.00 +—
000 006 Ol

HORIZONTAL ~ WAVENUMBER

18000
(b)
12857

714

2571

=257

=774

~12857

REFLECTION COEFFICIENT PHASE (DEGREES)

-180.00

0.00 0.06 0.2 0l8 k 0.24 030 036 042 0.48 054 080

HORIZONTAL ~ WAVENUMBER
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10 and 11. The exact and computed reflection coef-
ficients are shown in Figs. 12 and 13. The numerical
errors present in the hard bottom case are also evi-
dent here. However, in the regions where the numeri-
cal errors are small, the agreement is not as good as
in the hard bottom example. We believe that, because
of the relative accuracy obtained in the hard bottom
case, the additional discrepancies here may be due to
the geometrical acoustics approximation to the input
field. In fact, our results could be used to assess the
quality of this approximation. We again obtain good
results in the inhomogeneous wave region. Thus, for
real penetrable bottoms, this algorithm will yield in-
formation at complex angles of incidence.  This may
serve as a tool to provide substantial additional struc-
tural information about the bottom.

1V. CONCLUSION

We have described a new technique for the measure-
ment of the plane wave reflection coefficient of a hori-
zontally stratified ocean bottom. It is based on the
exact Hankel transform relationship between the re-
flection coefficient and the bottom reflected field due
to a point source. The method employs a new algori-
thm for the numerical evaluation of the Hankel trans-
form which is based on the “projection-slice” theorem
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FIG. 13. Magnitude (a) and phase (b) of the computed reflec-
tion coefficient for a slow isovelocity fluid bottom. i

for the two-dimensional Fourier transform. Although
the algorithm was applied to the case of an isovelocity
ocean, the general theory for measuring the plane wave
reflection coefficient in a refracting ocean was devel-

.oped. The technique provides information about the

reflection coefficient not only for real incident angles,
but also for complex angles, thus potentially providing
substantial additional structural information about the
bottom. The method was shown to yield excellent re-
sults with synthetically generated data for the cases
of a hard bottom and slow isovelocity bottom.
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