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Abstract

In this paper we present a class of sequential and adap-
tive algorithms for parameter estimation. These algo-
. rithms are based on the iterative Estimate-Maximize
(EM) algorithm. In some cases we will be able to de-
rive sequential algorithms that perform an exact EM
“step in each recursion; an example for these cases will
be given for the linear least-squares problem. In gen-
eral, however, we will have to approximate the EM it-
. eration in order to develop sequential algorithms. Pos-
sible application of this new class of algorithm to the
. two-microphone noise cancellation problem will be pre-
. sented.

1,’ Introduction

The Estimate-Maximize (EM) method is a class of itera-
tive batch algorithms for parameter estimation, [1]. In the EM
algorithm, the observations are considered “incomplete” with
respect to a more convenient “complete data” measurements.
The algorithm iterates between estimating the sufficient statis-
tics of the “complete data” given the observations and a current
estimate of the parameters (the E step) and maximizing the
likelihood of the complete data, using the estimated sufficient
statistics (the M step).

This EM method has been applied to several signal process-
-ing problems, e.g. [2], [3] and recently [4], [5] and ?6] In many
‘ signal pracessing applications it is desirable to use sequential or

adaptive algorithms; the data may arrive sequentially, a sequen-
tial processing may be more efficient and we may want to track
varying ‘parameters. For these reasons, we will suggest and in-
vestigate in this paper a new class of sequential and adaptive
algorithms, based on the EM concept.

Many sequential and adaptive algorithms are based on a
given iterative algorithm. A well known example is the stochas-
tic gradient algorithm, which is an adaptive version of the it-
erative gradient algorithm. As another example, the recursive
least-squares (RLS) algorithm and the (extended) Kalman algo-
rithm are sequential algorithms based on the iterative Newton-
Raphson method. Similarly, as will be demonstrated in this
paper, the iterative EM algorithm also suggests sequential and
adaptive algorithms.

The paper is organized as follows: In section 2 we will dis-
cuss sequential algorithms which exactly implement an EM re-
cursion. These algorithms, however, may be applied only when
the underlying estimation problem has a special structure. In
section' 3 we will use approximations and develop sequential and
adaptive algorithms, based on the EM method, that may be ap-
plied in general. In section 4, we will suggest an application of
the sequential EM algorithms to the noise cancellation problem.
This suggestion is motivated by the successful application of the
batch EM algorithm to this problem, [6], [7}.
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2 Sequential EM with exact EM map-
ping e
Throughout this paper, we will consider the observed data
as blocks, y,,¥,,...,4,, -, to be processed sequentially. The

complete data is denoted z;, z3,+..,Z,, - .., and is chosen so that
each block of observed data, y,,» corresponds to a block of com-

plete data, z,,, by :
Y, = Tn(gn) (1)
where T,(-) is a non-invertible transformation.

In this environment the log-likelihood of the observations,
after n + 1 data blocks have been observed, is given by,

@

Using the complete data, z;,-:,z,,;, and following the ba-

sic identity of the EM algorithm (see [1], equation (3.2)), the
log-likelihood of the observations may be written as,

Lni1(8) = Qni1(8;0') = Hpy1(8;6')

Ln+1(ﬂ) =log fyn#l"'yl (En-i»l’ nee a!_/l;ﬂ)

®

where :
Quir(0,8) = @
= E{]Og fX,,+1---X1(£n+1'?' "7;1;6) f gn_'_l,"'ygl;ﬂ'}
and
Haia(6,0') = (5)

(£n+1,'~,zlsﬂ)fg,,+,,'-~,y,;ﬂ'}

= E{IogfX"+1"'X1/¥"+1'”"E’_1'

E{-} denotes statistical expectation.

An EM algorithm for solving the maximum likelihood prob-
lem, given these n + 1 blocks of data, using the above definition
of complete data, is given by the following iteration,

glk+1)

(6)

_ k) —
arg?eae))(QnH(QyQ )

=argmax £ {log RO N C TSR 1)) f Ypprr 2 Yy 0P }

where k denotes the iteration index and n the data index.

A sequential EM algorithm with exact EM mapping is a
method that recalculates in each iteration, as more data is pro-
cessed, the exact steps of the EM algorithm for maximizing the
new likelihood function. For convenience, suppose we perform
a single EM iteration for each new observed data block, i.e. the -
iteration and the data indices are equivalent. This mapping is
given by (7) where k is replaced by n. This EM mapping is,
in general, a function of all given observed data blocks; thus, it -
may written abstractly as, - o

M

The exact EM iteration may be implemented recursively,
when the effect of the past data blocks, Y,0°"*» Y, can be sum-
marized into a small number of simple quantities. We may alge-
braically manipulate the given expression for the EM iteration
and achieve an equivalent expression, that may be written ab-
stractly as the mapping, - e

8 = Mair (639,40 59,)

(8)

where g indicates easily stored and updated functions of the past
observations.

o) = 0t (80 v, ’1’2(1/,;""’! )
+ 1
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We will assume that the structure of (8) may be achieved
for all n. In this case, we suggest the following sequential EM
algorithm:

e Start, n=0: Guess 8%). Initialize g(-,---) = 0
¢ For each new data block, y 1

— Exact EM mapping: Update parameters,
y)) O

) for the next step

0 = My (8, 000y,

— Update and record Q(gnﬂ’ RN
-n=—=>n+1

In each step, this algorithm implements the exact EM mapping
for maximizing the new likelihood L,4.1(6), and thus,

L1 (8™Y) > Lpia(6)

This algorithm has been presented abstractly so far. As an
illustration, consider a simple example, in which a linear least
squares problem is solved recursively using this algorithm.

Example: Sequential Least Squares EM algorithm

It is well known that the linear least-squares problem may be
posed as a statistical maximum likelihood problem, in the fol-
lowing way. Suppose we observe a vector, y = (y1,-- )T,

given by,
(10)

where § = (0,---,0;)T is the unknown parameter vector, n =
(n1,--+,n,)T is the noise vector, where {n;} are i..d random
variables distributed normally with zero mean and variance o2,

and A is a given (nx k) matrix, which may be written by columns
as A = a1, -, q] or by rows as AT = [q,--- ,an% In this

case maximizing the likelihood of the observatlou yield a least-
squares problem as,

y=A-0+n

Orir = argmaxlogfy(y,())—argmm* lly—A4-8])F (11)

An iterative EM algorithm for this ML problem is as follows.
Let the complete data be the vectors {z;}*_, where,

z; =a;-0; +n; (12)
n; is (n x 1) noise vector, whose components n;; are zero mean
Gaussian i.i.d random variables with variance §;0%. Assuming

that {n;} are uncorrelated and that E;F:l B; =1, we have

k
=23

J=1

(13)

As shown in [4], the E and M steps of an EM algorithm for
solving the least-squares problem of (11), using the complete
data above, are given by,

o E step:
2 =gV (y-agM), =1k (19)

® M step
6" = argmin ||zl - a -a.wfg’;gn) J=1,k
’ R A
(15)
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Combining these two steps we get the iteration,

B 8 i
Tl Tar) ATl 4007)

(16)

80 = g(n) 4 giag (

where diag(-,--,") is a diagonal matrix.

A sequential algorithm, based on the iteration (16), accord-
ing to the exact EM mapping method, may now be easily devel-
oped. Define a “correlation matrix”, 4,,, and a “cross-correlation
vector”, p_, for the least squares problem of order n in the fol-
lowing way,

ﬂn:—l-ATA = lia-aT
n n L=t
=1
p, = ATy = liawyi (17)
o " o

Given a new measurement, Y11, we can update 4, and p_ re-
cursively, as,

n

Ant1 T + et Gnialy,
n
P Ai 1 BT ag g Gne1 e (18)
The exact EM iteration (16) may be written as,
pn1) — glm) g ( L S ) 4
n B 1 Ans1(1,1) 7 Ansa(k, k) ( Prs1 !
(19)

which can be calculated recursively, since all required quanti-
ties are calculated recursively. The sequential least squares EM
algorithm (SLSEM) is completely specified by (18) and (19).

3 Sequential EM based on approximations

The sequential algorithms presented so far were suggested by
assuming that the underlying problem had a special structure.
In this section, we will address the general situation. Unfortu-
nately, sequential algorithms may not be derived directly from
the EM algorithm in the general case. We will therefore suggest
algorithms that approximate the EM iteration, in order to get a
recursive implementation.

3.1 General sequential considerations

The log-likelihood of the observations, given n+1 data blocks,
is given by (2). Define,

Lps1/n(8) (20)

The log-likelihood of the observations, eq. (2), may be written
recursively as,

=108 fy, o1 Yu i Wy y /U5 U3 )

Ln11(8) (21)

Ln(ﬂ) + Ln+1/n (Q)

or as,

L11(8) = L1(8) (22)

n
+ 3 Liai(9)
i=1
We note that analogous to (3), the term L,, may be written

as,
Ln(8) = Qn(6;¢') - Ha(8;6) (23)
where the complete data is defined to be z;,--,z,.

One approach for developing recursive EM algorithm will
refer to the recursive formula of the log-likelihood (21). For the
term Ly, /s, the complete data is z,,; and following the same
considerations which lead to (23), we may write,

Ln+l/n(ﬂ) = Qn-f-l/n(Q; Q’) - Hn+1/n(g;g') (24)

.Q(n))



f‘x‘md

where

Qn+1/n(0,8) = (25)
=E {log IXnsr /YooYy (Ens1 /Y, 5 433 0) ’ Yoo Yyl }
Hn+l/n(ﬂ’ Q’) = (26)

=E {108 IXir/Yngr ¥y (Ent1/Ypyys > Y5 0) ' Ypir"" '7111;@'}
Therefore,
Ln—H( ) = "(0) + Ln+1/n(0)

€) + Qrayjn(8;0) — [Ha(6;8) + Hop1nlt;

(27)
#)]

and Hn+1/n(ﬂ; Q’) < Hn+l/n(ﬂ,; Q’)
. (28)
One could try to achieve a recursive algorithm by maximizing

“either,
Qn(8;8™) + Quiyr/n(8; ™)

= Qn( g
; and we have,

Ha(8:0) < Ha(6';0)

(29)

or;
Q1(8:8™) + Qo1 (66™)) + - + Qpay/n(6;6™)

" since maximizing either (29) or (30) will generate a new value
6"*1) that increases the likelihood Ln+1(8). However, despite
their seemingly recursive structure, these maximizations cannot
be performed sequentially in general, because:

(30)

- e Calculating @11/ involves the past data y ,---,y,

o For each new parameter value, the conditional expecta-
tions needed for the terms Q1,Q2/1,"**,Q@n/n-1 Or the

term @, should be recalculated. This requires using the
past:data samples.

Alternative approach

The batch EM algorithm updates the parameter estimate by
maximizing Qn+1(f;¢'), where Q.1 is defined in (4). However,
using recursive formulas for the likelihood of the complete data
we may write,

Qni1(8:9) = Qrirjn+ Qr(8:8) = D" Quirfi(8: ) + Qu(6: )
i=1
(31)

. where
' (32)

Qisryil8:6) =

E{logfx,vﬂ/x,v- x,(Ziva /i 52150 |yn+1, . ,91,9'}

One may try to achieve a recursive algorithm by maximizing
(31). ‘Again, however, despite the seemingly recursive structure
of this max1mlzat10n, it cannot be performed sequentially in
general, since:

e Calculating Q~,»_H/‘- involves the observed data y_,---
and all the past complete data z;,---, z;.

1Yy

e For each new parameter value, the conditional expecta-
tions needed for the terms §Q;, QZ/I: - ,Q,,/,, 1, should be
recalculated. This requires using the past data samples.

3.2 : Approximate sequential algorithms

The problems mentioned above occurred in both approaches
when we tried to calculate sequentially the exact EM iteration

" for the general case. To overcome these problems and to achieve

sequential algorithms, we will approximate the desired EM it-
eration. The resulting algorithms are no longer EM algorithms;
nevertheless, as shown in [4], these algorithms are related to the
method of stochastic approximation and thus, the convergence
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results and the asymptotic behavior of stochastic approximation
methods are applied to these algorithms.
Consider the following sequential procedure,
e Start, n = 0: Initialize ¥o(8) = 0. Guess 0@
e For each new data Yprr?
— E-step: calculate

Qsyjn(8,80) = (33)

1Zn—qi )|

ST

E {IOg fX,,+1/X,.'-~Xn—q(-"én-kl/;n)' o

ynﬂ,yn,

— M-step: solve

intl) — argrgneax [Qn+l/n( 8 0" )) + 8.0

’ (34)
— Record for- next step
Vr1(9) = Qs1/n(8,0™) + B - 0a(0)
~-n=n+1

This algorithm approximates the procedures of maximizing
(30) or (31) as follows. First, the term Q7. /.(6; 6(")), given by

(33), approximates Qur1/a(8;8™) or Qnyr/n(8;0™). We will
use ¢ past complete data samples z,,, -+, Z,,_, so that the condi-
tional likelihood of the complete data is a simple function of the
parameters. We will use in this approximation m past observa-
tions values, y ,--+,y -, aslongas Q% is calculated recur-
In In-m n+l/n
sively. We note that, if the different observation blocks are in-
dependent, Qny1/n = Qut1/n = Qrit/n In general, the weaker
the successive observations blocks are correlated, the better this
approximation becomes. Second, the previous terms are not re--

calculated. We calculate each Q¢ , Ji using the corresponding

parameter value, Q('), and we simply accumulate these functions
and generate W, (#) recursively. Also using this algorithm, the
previous terms may be weighted, according to the choice of g,,.
By an appropriate choice, we may reduce the contribution of the
past data and track -varying parameters in the adaptive situa-
tion, or we may weight the'past data more heavily, to guarantee
convergence and consistency; for a sequential algorithm.

4 Application to the noise cancellation
problem

A new approach for solving the two-microphone noise can-
cellation problem has been suggested in [7] and [6]. In this ap-
proach, a statistical ML problem has been formulated for es-
timating the parameters required for the cancellation, and. an
iterative algorithm, based on'the EM method, has been sug-
gested and applied to'solve the ML problem. The observation
model in this formulation is summarized in Figure 1, i.e.

ult) = s(t) + A{w(t)} + ext)
v2(t) B{s(t)} + w(t) + es(t)

where, y; (t) and y;(t) are the observed signals, s(t) is the desired
(speech) signal, w(t) is the noise source signal, and e;(t) and
e2(t) are the measurement and modeling error signals in the two
microphones. For the statistical formulation, s(t) is modeled as
a sample from a Gaussian AR random process, while w(t), e1(t)
and ez(t) are white Gausslan noise processes. The systems A
and B are assumed to be linear FIR filters, whose orders are
ga and gy respectively. The mathematics and the algorithms are
formulated in terms of discrete time signals with the independent
variable t representing normalized sample time.

(35)
(386)

il



s

TG
SOURCE

Figure 1: The observations model

The suggested iterative EM algorithm is summarized in Fig-
ure 2. This is an intuitively appealing scheme; the algorithm
iterates between a two-channel Wiener filtering that estimates
s(t) and w(t) given the parameters of the systems and solving
sets of linear equations for updating the parameters.

_This approach improves upon the currently used methods for
noise cancellation, e.g. [8]. However, the algorithm of Figure 2
is a batch algorithm, which imposes certain difficulties. For
example 1t cannot smoothly track changing parameters in a non-
stationary environment and it processes the signals in blocks
which leads to discontinuities and other block-effect distortions
in the processed signals.

To overcome these problems, a sequential (adaptive) algo-
rithm is suggested for this two-microphone noise cancellation

problem, following the general sequential procedure of (33) and

(34). We will use the statistical model of Figure 1 above, and we
choose the complete data that led to the algorithm of Figure 2

ie.
2(t) = {n(2), y2(t), (1), w(?)} (87)

As in the case of the batch algorithm, the unknown parameters
will be the coefficients {a;} and {b;} of the systems A and B,
and the spectral parameters (LPC parameters) of the desired
(speech) signal s(t).

~ The sequential algorithm calculates in the E step the condi-
tional expectation of the conditional log-likelihood of the com-
plete data. This conditional log-likelihood depends on ¢ past
samples of the complete data. A natural choice for ¢, in the
noise cancellation problem, is the maximum of the orders of the
FIR filters A and B, i.e. ¢ = max|q,,q]. We may now write,

log f(=(t)/z(t - 1),- -, z(t — q);8) = (38)
IOg f(yl(t)/s(t)’ M ’s(t - q)a w(t)> b '>w(t - q); Q) +
I
+log f(ya(t)/s(t),-< -, s(t — q), w(t), -~ w(t - q);6) +
11
+log f(s(t)/s(t = 1),---,s(t - q);0) +
111
+ log f(w(t)/w(t - 1)1 ) w(t - q)i Q)
v
The term I depends only on {a;} as,
1 & !
=y yi(t) — s(t) — Z arw(t — k) (39)
€1 k=0

Signat
Couelatian
Estinate.

THE B STER

i, sona,
[T estuware

Condional Expectaton

Figure 2: Noise cancellation using the EM algorithm
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Similarly, the term I depends on {b;} as,

s 2
N [yz(t) —wl(®) - 3 bes(t - k)] (40)
€2 k=0

The terms I1] and IV depends on the spectral parameters of
the s(t) and w(t) respectively. The desired signal s(t) is assumed
to be an AR process of order r with unknown parameters G (the
gain) and {h;} (the AR coefficients). The term II1 will thus

be,
1 ’ :
- [s(t) - kz=:1 his(t — k)]

For implementing the E step we have to take the conditional
expectation of (39)-(41) given the observed data. We note that
this requires the expectation of the signal samples s(t), -, s(t—
¢) the noise samples w(t),- -, w(t — ¢) and cross terms such as
s(t) - s(t — k), w(t) - w(t — k) and s(t) - w(t — k). All these terms
may be calculated recursively from the entire past observation
data, using Kalman filter and Kalman smoothing formulas, and
the associated error covariance matrix formulas. This Kalman
filter is determined, of course, by the current parameter values.

The sequential M step, given by (34), requires adding the
expected values of (39)-(41) to the similar terms accumulated so
far, and update the parameters by maximizing the appropriate
terms (i.e. update {a;} by maximizing the accumulation of the
terms similar to (39)). This M step is reduced to solving a set
of linear equations. In order to avoid solving large sets of linear
equations in each step, we can use the fact that we have, in each
step, a current value of the parameters. Thus, we can perform
in the M step a gradient step, a Newton-Raphson step, or even a
step of the SLSEM algorithm, i.e. the EM algorithm suggested
previously for the linear least-squares problem, instead of re-
solving the linear least-squares problem for each new observed
data.

To summarize, the suggested sequential scheme for the noise
cancellation problem has the attractive structure of Figure 2,
where a recursive two-channel Kalman filter block replaces the
Wiener filter block, and recursive least-squares blocks replace
the batch least-squares blocks of the original batch EM algo-
rithm.
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