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All-Pole Modeling of Degraded  Speech 
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Abstruct-This  paper  considers the estimation of speech parameters 
in an all-pole  model when the  speech has been degraded by additive 
background noise. The  procedure,  based on maximum a posteriori 
(MAP) estimation techniques  is Fist developed in the absence of noise 
and  related to linear prediction analysis of speech. The  modification 
in the presence of background noise  is  shown to be nonlinear. Two 
suboptimal  procedures  are sugested which  have  linear  iterative im- 
plementations. A preliminary illustration and discussion based both 
on a  synthetic  example and  real  speech  data are given. 

P 
I.  INTRODUCTION 

ROCESSING of speech which has been degraded due to 
additive background noise  is of interest in a variety of 

contexts. For example,  many speech transmission and coding 
systems whose design  is predicated on a relatively noise-free 
environment degrade quickly in quality  and  performance in 
the presence of background noise [l] ,  [2]. Thus,  there is 
considerable interest  in and application for  the development 
of such systems which acknowledge and compensate for  the 
presence of noise. 

Furthermore, in many cases, intelligibility is  adversely 
affected by background noise so that a principal objective 
of a speech processing system may be to  improve intelligi- 
bility.  There have been numerous systems proposed to re- 
move or reduce background noise, with varying degrees of 
success [3] - [5]. In many cases, these systems provide an 
apparent  improvement  in signal-to-noise ratio,  but  on careful 
evaluation in  fact reduce intelligibility [6] - [8]. 

Most systems directed  at processing speech in the presence 
of background noise rely,  at least to some extent,  on a  model 
of the speech waveform as the response of the vocal tract, 
represented as a  quasi-stationary linear system, to a pulse- 
train  excitation  for voiced sounds or a noise-like excitation 
for unvoiced sounds. Thus, for example,  for voiced speech 
the spectrum has a  harmonic structure  and, if the fundamental 
frequency is known  or can be  measured,  comb filtering can be 
applied to remove the noise energy between the harmonics 
of the speech [3], [4]. While this procedure improves the 
signal-to-noise  ratio, intelligibility tests when the additive 
noise  is white or when it corresponds to a competing speaker 
have demonstrated that over a wide range of signal-to-noise 
ratios, intelligibility is in fact reduced by comb filtering 
~ 1 ,  ~ 7 1 .  

In this paper we attempt to capitalize more fully on  the 
underlying speech model and develop a complete analysis/ 
synthesis system for which,  in the analysis, the synthesizer 
parameters are estimated from the noisy speech waveform. 
The basic model used is the representation of  the vocal tract 
as a  quasi-stationary  all-pole system. This choice is motivated 
in part by  the success of this  model  in the framework of linear 
prediction speech analysis for  parametric analysis/synthesis of 
speech in the absence of background noise. 

The general class of estimation procedures to be considered 
is maximum a posterion (MAP) estimation [9] - [l 11 . As we 
will see, for speech parameter  estimation  there are a  number 
of variations of this class of procedures. Furthermore,  they 
are closely related to speech analysis based on linear predic- 
tion.  In  the first part of this paper we review and define these 
methods for parameter  estimation of speech without back- 
ground noise. With this as a  foundation we then consider 
corresponding estimation procedures with additive background 
noise. As we will discuss, the estimation procedures which 
result in linear equations  with no background noise become 
nonlinear when noise is introduced. However, by formulating 
the problem in an iterative form,  two suboptimal systems 
result which converge and in which the estimation procedure 
is linear at  each iteration. 

The overall objectives of this paper are to establish a theo- 
retical foundation  for estimation of parameters in an all-pole 
model in the presence of background noise and to  suggest 
some directions for  the simplification of the resulting non- 
linear procedures. Future work will include  a  more complete 
evaluation of  the effect on intelligibility of such systems with 
natural speech and background noise. 

11. STATISTICAL PARAMETER ESTIMATION FOR 
SPEECH IN THE ABSENCE OF NOISE 

Speech can be represented as the response of a  linear quasi- 
stationary  system, the vocal tract,to a periodic excitation for 
voiced speechrand a noise-like excitation  for unvoiced speech. 
A commonly used and physically reasonable short-time model 
for  the vocal tract is a linear system for which the transfer 
function V ( z )  is all-pole of the form 

V(z )  = 
D (1) 

1 

Manuscript received August 30,  1977; revised  December 20, 1977. 1 - 2 akZ-k 
This work  was  supported by  the Advanced  Research  Projects Agency, 
monitored  by ONR Contract N00014-75-C-0951-NR  049-308. 

The  authors are with  the Department of Electrical  Engineering  and 
Computer Science, Research  Laboratory of Electronics, Massachusetts Thus, On a short-time the speech waveform s(n> is 
Institute of Technology, Cambridge, MA 02139. assumed to satisfy a difference equation of the form 

k = l  

0096-3518/78/0600-0197$00.75 0 1978 IEEE 



198 IEEE TRANSACTIONS ON ACOUSTICS,  SPEECH,  AND  SIGNAL  PROCESSING, VOL. ASSP-26, NO. 3, JUNE 1978 

P 
s(n) = uk s(n - k )  .t u(n)  t e(n) 

k = l  

where u(n) is the  input excitation to  the system and e(n> 
represents the modeling error  in considering the speech gen- 
eration process as the  output  of  an all-pole system excited by 
a simplified source. For unvoiced speech, u(n)  is random 
noise. For voiced speech, u(n) over each analysis frame con- 
sists of one or several impulses with spacing corresponding to 
the fundamental  pitch period. Throughout our discussion, 
the basic problem is that  of estimating the vocal-tract param- 
eters ak from a sequence of observations of s(n>. Our  ap- 
proach is to consider the combined excitation u(n)  t e (n )  
in ( 2 )  as a single noise excitation  term which we represent 
as g * w(n)  where g is a gain factor.  Strictly speaking, this 
is only  a reasonable representation €or the excitation for 
unvoiced speech. For  the case in which there is no back- 
ground noise our discussion could alternatively be carried 
out assuming that for voiced speech, u(n)  is a known excita- 
tion term. If this is carried through,  it can be shown, in  fact, 
that because of the specific form of u(n)  as one or several 
impulses, its influence on  the estimation procedure is minor. 
This is substantiated experimentally by virtue of  the fact that, 
as we will see, with the excitation treated as random,  one set 
of estimation procedures corresponds exactly to linear pre- 
diction analysis whch is  well known to be successful for 
both voiced and unvoiced speech. 

Notationally (a summary of notation used throughout  the 
paper is  given  in the Appendix) it is  convenient to represent 
(2 )  in  matrix  form as 

b 

s ( n ) = U T * S ( n -  l , n - p ) + g . w ( n )  (3) 

where a is the parameter vector 

\a, 1 

and s (n l ,  n 2 )  denotes the vector o f  speech samples 

Consistent with  our discussion above, the excitation u(n)  + 
e(n)  has been replaced by g * w(n) where W ( E )  is taken  to be 
white Gaussian noise with zero mean and unit variance. We 
assume that  the vector of observations consists of N values 
s ( N -  l), s ( N -  2), . . . s(O), Le., s ( N -  1, 0), which we will 
denote by so. 

From (3) it is clear that s(n) depends on a total of 2p + 1 
parameters, specifically the p values in the coefficient vector 
a, the initial conditions s(- 1, -p )  which we will denote  by sz, 
and the gain factor g. Our basic approach is to consider all 
of the unknown  parameters as random with associated a 
priori Gaussian probability densities. The class of estimation 

procedures to  be considered are the maximum a posteriori 
(MAP) methods, whereby the basic approach is to choose the 
parameter estimates to maximize the probability density 
function of the parameters given the observations [9] - [ 101. 

Given the basic model of (3) and the observation vector 
s ( N -  1 ,  0) we wish to estimate only the coefficient, vector 
a. Thus the MAP estimation procedure corresponds to maxi- 
mizing the probability  density  function p(alrs~),  which in 
general, requires the solution of a set of nonlinear equations. 
Alternatively, we can choose to estimate all of the parameters, 
i.e., a, g ,  and sz by maximizing p(u ,  g ,  sylso) even though the 
only parameters of interest are the coefficients a. Thus, 
several strategies emerge for estimating 0 depending on how 
we choose to treat  or estimate the remaining parameters. In 
particular, we consider four cases. In Case 1, we jointly 
estimate all of the parameters a, g and sI assuming no a priori 
information.  The  estimate  for 6g that results corresponds 
exactly to the covariance method of linear prediction analysis. 
In Case 2 we  assume that sz is known and jointly estimate a 
and g assuming no a priori information. Depending on spe- 
cifically how we assume s~ is known,  this corresponds to 
estimating a using either the covariance method or  the corre- 
lation method of linear  prediction. In Case 3 we assume that 
g is known and jointly estimate a and sz, assuming no a priori 
information about SI. In Case 4 we consider estimating only 
a. The resulting set of equations is nonlinear except  in  the 
case where sz and g are both known. 

Case I :  In this case, we maximize p(a ,g ,  sIlso) with respect 
to a, g, and sz with the assumption that  no a priori informa- 
tion  on Q, g ,  or sz is available. This corresponds to the case 
when p(u,  g ,  SI) is constant. In obtaining p ( a ,  g? sllso), we 
use  Bayes' rule to obtain 

Since p(so) is not a  function of a,g ,  or sI and p(a ,g ,  sI) is as- 
sumed to be constant, maximizing p(u ,g ,  slls0) in(4) is equiv- 
alent to maximizing p(so la, g ,  SI).' Thus, as  is  well known 
[9], MAP estimation of  a,  g, and SI in the absence of a priori 
information reduces to maximum likelihood (ME) estimation 
of those parameters. The  conditional  density  function p(so I 
a, g ,  SI) can be evaluated by noting that 

P@O la, g ,  SI)  = P @ W  - 1, 0 )  I a, g, s(- 1, -PI> 

N- 1 

= Ty PMn> la ,g ,  s(n - 1, -PI> 
n = O  

As the variance  becomes  iarger, the density  function becomes 
wider and  flatter approaching a constant. More formally, however, 
we should assume that p (a, g ,  SI) is jointly Gaussian  whose  covariance 
approaches an arbitrarily large  value. In all cases  in this paper where 
we assume that  no a priori information of some parameters corresponds 
to uniform density of the parameters, it can be shown that the same 
theoretical  results  are  obtained  by first solving the case  when the 
variance is finite  and then letting the variance approach m. 
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From  the model of (3) and the assumption that w(n) is the coefficients ai to zero results in  a set of linear equations 
white Gaussian noise  with  unit variance, given by 

- (s(n) - UT s(n - 1,  n - p))2 1 
and  consequently 

N- 1 - ( s (n) -  &s(n - 1 ,  n - p))2 . 
n = O  1 

Maximizing p(s0 I a, g ,  sz) with  respect to g ,  we obtain 

1 N-1 
g2 = ; (s(n) - aT - s(n - 1, n - p))2 

n = O  

N -  1 
( s ( n ) - a T * s ( n -  l , n - p ) ) * s ( n - i ) = O ,  

n = p  

(8) i = l , . . . , p .  (1 5) 
Equation (15) corresponds  exactly to  the  equations obtained 
by  the covariance  method  of linear prediction analysis [12]- 

Case 2: Here, we  assume that  the initial conditions sI are 
known  and no a priori knowledge  of a and g is  available. 
We then maximize p(a, g I so ; sz) with  respect to a and g ,  

(9) where the semicolon  separates sI, a  known variable, from other 
variables. Since 

~ 4 1 .  

P(a ,g l so ; s z )  = p(soIa,g;sz)p(a,g;s~)/P(so;sz) (16) 

(10)  and assuming that p(a ,  g ;  sz) is constant, maximizing p(a, g I 
so; SI) is identical to maximizing p(so la, g ;  sz) corresponding 

Maximization of p(so I a, g ,  SI) with  respect to a and sz is 
equivalent to minimizing ep given by 

Thus  we  choose the parameters a and SI to satisfy the set of 
equations 

again to  the maximum  likelihood  estimation  of a and g. From 
(9), maximization of p(s0  la, g ;  SI) with  respect to g leads to 
(10) for g 2 .  Maximization  with  respect to a is identical to 
minimizing ep given by (1  1). However, the  minimization is 
now carried out with  respect to a alone. Comparing (13) and 
(14), we  see that  the  function  to be  minimized with  respect 
to a is  similar in both cases, differing only in the  lower limit 
of  the summation.  The linear set of  equations  for a is now 
given by 

n = O  

Let  us  rewrite (1 1)  as 
If the initial conditions are indeed  known,  then we in fact 

1 P - 1  

g n=O 
Ep = Yj- * ( s (n) -  U T  s(n - 1 ,  n - p))2 

6 n = p  

Only  the first of these  summations involves the initial condi- 
tions sz. Furthermore,  it is straightforward to show  algebra- 
ically, and intuitively reasonable, that  for  any solution  of 
the parameter  vector a, sz can  be  chosen so that  the first 
summation  in (13) is zero. Since these are the values which 
minimize ep  with  respect to sz, they would then correspond to 
our estimate for these  parameters.  Since we are only  in- 
terested in explictly estimating the coefficient vector a, it 
is not necessary to solve for SI. Since the first term  in  (13) 
will always be zero  when ep  is minimized, the minimization 
of  (13)  corresponds to minimizing  with  respect to a the 
function 

1 N-1 
7 1 ( s ( n ) - a = . s ( n - l , n - p ) ) Z  
g n = p  

Setting  the  partial derivatives of (14) with  respect to each  of 

have  available N t p observations s f  s(n), or  equivalently we 
use the first p observations to form  the initial condition sI 
and the remaining  observations to form the observation  vector 
so. If  we consider  the relationship between Case 1 and Case 2 
on  the basis  of the same total number of observations,  then 
in fact  they lead to identical functions to be minimized  and 
consequently identical estimates. 

In the above  case,  we  have  assumed that p ( a ,  g ;  sz) is con- 
stant  and sz is exactly  known.  Therefore,  maximization  of 
p(a, g I so; sz) was identical to maximizing p(so I a, g ;  sz). 
Because maximization  of p(sol a, g ;  sI) with  respect to a 
and g corresponds to maximum  likelihood  estimation for 
a and g given (or conditioned on)  the initial conditions s(- 1, 
-p) ,  it is sometimes  referred to as the conditional  maximum 
likelihood (CML) estimate  of a [ 141. 

As an alternative to using the first p observations in each 
analysis frame to form the initial condition vector, we  can 
assume that  the response was zero prior to the  observation 
interval. In  this case,  assuming that we  have a total  of N 
actual  observations, we augment  these  with p additional 
zero values. Now, if we further  extend  the  data  by p points 
and  augment s(Nt p - 1 ,  N )  with zeros, then maximization 
of p(a, g I s(N t p 7 1 ,  0)) with respect to a and g leads to 
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N + p - 1  
( s ( p z ) - a T * s ( n -  I , n - p ) ) . s ( n - i ) = O  

n =Q 

for i = l , 2 , * . * , p  (18) 

and s(N + p - 1, N )  and s(- 1, - p )  are  all 
the same equation given by  the correlation  method of linear 
prediction analysis [13] - [16]. In  the  context  of h e a r  
prediction analysis, the principal advantage of the correlation 
method over the covariance  method  has  been that, in that 
case, the solution of  the set of  equations involves the  in- 
version of  a  Toeplitz  matrix  for  which  there are particularly 
efficient methods [17], [18]. In  addition,  the resulting all- 
pole model is guaranteed to be stable. From (15) and (18) 
the resulting linear equations to  be solved in both methods 
are given by 

(s(n) - aT - s(n - 1, 12 - p) )  e s(n - i) = 0, 

i = l ; - . , p  (19) 

n 

and the summation  extends  from p to N - 1 for  the covari- 
ance  method and from 0 to N t p - 1 for  the  correlation 
method. 

Case 3: Now  we consider the case where g is known so that 
p(a,  sllso; g) is  maximized with  respect to a and SI and no 
a priori information is available about s1 SQ that p(s1l a; g) is 
constant. Again, from Bayes' rule, it follows that 

maximizing p ( a ,  s1l so ; g) is equivalent to 

maximizing p (so I a, g, SI) p(a) (20) 

where we  assumed that a is independent of g. Assuming that 
a has  a Gaussian density  with  mean Zand covariance  function 
PO, p(a )  is of  the form 

Combining (91, (281, and (21), it  can be seen that maximizing 
(20) is equivalent to minimizing ep given by 

t (a - a)T  - POI . (a - Q )  (22) 

ep in (22) is similar to ep in (1 1) or (13) but  with  the addi- 
tional term (a - * PO' (a - a'). Since this  extra  term 
is not  a  function  of SI, minimization of e p  in (22)  with  respect 
to SI requires that $1 be such that 

n =Q 

Therefore,  minimization  of ep  in (22) with  respect to Q re- 
duces to minimization  of ep  given by 

1 N-1 
- (s(n) - aT * s(n - 1) Iz - p))2 -2 
6 n = p  

+(.-.)9,' * ( a - . ) .  (23) 

Partial differentiation  with  respect t~ ai for i = 1, * - p re- 
sults in a set of linear equations. 

If no a priori information on a is  assumed so that pQ = U'I 
with o2 arbitrarily large, , the estimate of a, obtained in this 
case is identical to & obtained in Case 1 ~ 

Case 4: Now  we maximize p(a Iso) with  respect to a only. 
p(a  I S Q )  can be obtained  by integrating out  the auxiliary 
parameters so that 

over g and SI 

In general, maximization  of p(a I so> in (24) leads to a set of 
nonlinear  equations in a. However, it is easy to see that when 
g and sI are known,  maximizing p(a I so; g, sa) leads to a set 
of h e a r  equations  in a. Furthermore, 

and  therefore  maximizing p(a  I so ; g, sz) is equivalent to max- 
imizing p(r;ola; g, SI) * (a; g, 31). Assuming p ( a ;  g, sz) to  be 
independent  of g mmd $1 and  of the form given in (21), maxi- 
mizing p(@ Is0 ; g, s ~ )  in (25) is the same as minimizing the 
same ep  in (22>? which can be easily  seen by  comparing (20) 
and (25). Here,  however, we minimize ep with  respect to a 
alone,  which again corresponds to solving a set of linear 
equations.  The  difference  between 422) and (23) is in the 
limit of the summation,  analogous to the  difference  between 
(13) and (14). I f  we  assume no a priori information ofa, then 
the second  term in (23) is eliminated  and  the  estimate  for a 
obtained in this case is identical to  that  obtained in Case 2. 

In  the above discussion, we  saw that maximizing p(a 1 SO) 
leads to a set of linear equations  only  when g and s1 are 
known.  In practice we  might not  expect  to know  these  param- 
eters  exactly. However,  we  might expect to make  some 
reasonable guess of g and sz~ Alternatively, we  can  solve the 
h e a r  equations in Case 1; assume that these  estimates of g 
and are exact  and  maximize (25) with  respect to a. A 
third possibility for obtaining is to use the first p data 
points as sz and use the remaining N - p points as so, which 
leads to  the same estimate  of a as in Case 3. 

In  our  discussion in Case 3  and Case 4, the possibility of 
incorporating a priori information on a was included. Be- 
cause of the spectral and  temporal characteristics of speech, 
it is possible that a priori statistics for a can be developed 
which in fact aid  in the  estimation of a. For  example, since 
the vocal tract  cannot move arbitrarily fast,  the  estimate 
of a in any analysis frame  can potentidly utilize the result 
of the estimate in  previous  frames. This  remains  an  area for 

For Case 4 for which g and sI are  assumed known  it  can  be 
shown that p(a  I SO; g, $1) is Gaussian and thus, in particular, 
is symmetric  about  the  conditional  expectation E [a I so ; g ,  
s I ] .  It is well known [ I  11 that in such  a case the NAP es- 

study. 
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timate of a is identical to the  minimum  mean  square  error 
estimate.  Thus, as an alternative to  obtaining  the MAP es- 
timate  by solving the linear equations  obtained  by setting 
the partial derivatives of ep to zero, a recursive least squares 
procedure can be used [9],  [19],  [20]. Such  an  algorithm 
corresponds to representing (3) of  the speech  model by  the 
state  equations 

a(n t 1) = a(n) 

s(n t 1) = ST (n, n t 1 - p )  * a(n) t gw(n t 1). (26) 

In (26), a(n) represents the all-pole coefficient vector a at 
time n.  It can  be  shown [9],  [19] that when a is jointly 
Gaussian, the minimum  mean-square error estimate  of the 
states  in (26) can be obtained  from  an iterative solution 
given by 

a ( n t l ) = k ( n t l ) . ( s ( n + l ) - s T ( n , n t l - p )  

a (n)) 4- a (n) (27) 

and a(n) is the estimate of a based on  the a priori informa- 
tion  of a and the observed data  points ~ ( n ,  0) and k(n + l )  
is the Kalman filter gain which is a  function  of g2,  s(n - 1 ,  
n - p )  and the covariance  matrix  of a@). The  covariance 
matrix of a(n) can also be updated  and  the initial starting 
values a(- 1) and  covariance of a(- 1) are,  of  course,  the 
a priori mean  and  covariance  of a. For  each n ,  a (n) obtained 
in this  manner is identical to a estimated by minimizing the 
function 

- ( s ( l ) - & s ( Z -  1,l-p))Z +-a)= 
g2 I = O  

l n  

- PO’ (a - a). 

section, which  required the  solution  of  a set of linear equa- 
tions, leads in  this case to a set of  nonlinear  equations,  which 
is  generally undesirable. However,  as we will discuss, two 
“suboptimal”  procedures  can be developed  which have linear 
implementations. 

Again,  we  consider the speech to  be generated by  the model 
of (3) and the coefficient vector a as the basic  parameters to  
be estimated.  The  observation  vector y(N - 1, 0) consists of 
the  sum of speech  and  background noise, i.e., 

y ( N -  1,O) = S(N- 1 , O )  t d ( N -  1 ,  0) (29) 

where d(n)  is background noise. y(N - 1 ,  0) will be  alterna- 
tively denoted as y o .  Further, we  assume that d(n)  is un- 
correlated with s(n) and is generated  from  a  zero-mean  white 
Gaussian process.  There is no loss in generality in restricting 
the additive noise to be  white since in the more  general case 
d(n) can be whitened by  filteringy(n). 

Following  a  procedure similar to  that  of Case 4 in the 
previous section, we can  consider  choosing the parameters a to 
maximize p(a I yo).  In  the previous  section  when we assumed 
that g and sI were  known  and p(a) was Gaussian, the result- 
ing equations were linear. For  the  current  situation,  this 
will no longer  be  the case. Specifically, from (3) and (29), 

y ( n ) = a T * s ( n -  1 ,  n - p ) + g . w ( n ) t d ( n )  (30) 

or 

y ( n ) = a T . y ( n -  l , n - p ) t g - w ( n ) + d ( n )  

- U T  * d(n - 1 ,  y1 - p ) .  (3 1) 

Expressing p(yola ,  g, sI) in a  manner similar to (7), 

N- 1 

In particular, a ( N -  1) is the estimate of a obtained  from P(Yola,  g, S I )  = -n- p(y(n)  l a m  g * SI, y ( n -  1, 0)) 
minimizing (22) with  respect to  a. n = p  

111. STATISTICAL  PARAMETER ESTIMATION FOR 
SPEECH IN THE  PRESENCE OF NOISE 

In the previous  section, we established a  framework  for 
MAP parameter  estimation  of  speech in the  absence of back- 
ground noise. In  two  of  its  forms,  leading to (15) and (18), 
there  has  been  extensive  experience in the  context  of linear 
prediction  speech analysis with  considerable success and they 
are currently  the basis for  many  speech processing systems 
[12] - [ 141, [16]. It is  well known,  however, that these 
procedures  degrade  quickly in  the presence of additive back- 
ground noise [l], [2]. Consequently, it  is of  interest to 
consider  whether the same basic approach  and  philosophy 
can be  applied when the observations  are  recognized to be 
corrupted by background noise.2 As we  will see, the basic 
approach,  corresponding to Case 4 with  the  assumption that 
sI and g are known,  and Cases 1 ,  2, and 3 in  the previous 

are many techniques which have been  explored for modeling 
a  system on  the basis of  noisy observations. Many of these techniques 
[22], [23] differ in a variety of ways including choice of error  cri- 
terion, assumed form for the model, assumed knowledge  about  the 
input, etc. We restrict our discussion to an all-pole  model driven by 
white  noise. 

* ps p(u(n) la, g, SI, u(n - 1, 0)) 
nml 

’ P(Y(0 )  la,g, SI). (32) 

From (31), for n 2 p ,  p(y(n)  la, g, SI, y(n  - 1, 0)) is  Gaus- 
sian with  mean  of aT * y(n - 1 ,  n - p )  - U T  * E[d(n - 1 ,  
n - p )  (a ,  g, sI, y(n - 1 ,  O)] and variance of g2 t u$ t aT 
-Var[d(n- l , n - p ) l a , g , s I , y ( n -  1,O)l * a  whereE[d(n- 
1 , n - ~ ) I a , g , s 1 , y ( n -  1,O)l andVar[d(n- 1 , n - p ) l a , g ,  
SI, y(n - 1, O)] denote  the mean and variance of d(n - 1,  
n - p) conditioned on a, g, sz and y(n  - 1 ,  0). Since  the vari- 
ance is a  function  of a, and will  likewise be so for  the  remain- 
ing terms, the resulting equations  for  maximizing p(a  I yo)  
will by necessity be nonlinear. 

Even though we have  only  shown that maximizing p(a  I yo) 
which  corresponds to Case 4 is a  nonlinear  problem, it is 
easy to see that maximizing p ( a ,  g, sI lye), p(a, g I y o )  or 
p(u,  sI I y o )  corresponding to Cases 1,2,  and 3 in  the previous 
section is  also a  nonlinear  problem.  This is partly because 
each  of the  three  density  functions p(a, g, SI I yo), p(a, g I 
yo), or p(a, SI I yo) is a  product  of several terms,  one of 
which is 
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N- 1 n P ( Y h )  la, g, sz, - 1 ,  0)). 
n = p  

It was shown above that 

P(Y(n) la, g7 y(n  - 1, 0)) 

for p < n < N - 1 has variance which is a  function  of a. 
As an alternative to  true MAP estimation  of a which is 

obtained  by maximizing p(a I yo),  one can consider  a  "sub- 
optimal"  procedure  which is computationally  more  tractable. 
Specifically, we know  from  Section 11,  Case 4 how to estimate 
a from so from  a linear set of  equations assuming and g 
are known.  In  the case of  speech without background noise, 
when sI is  assumed known it is either extracted  from  the 
observations  or (artificially) taken to be zero. In the  current 
situation  the first option is no longer available. As we will 
see shortly,  however,  by initially assuming that SI is known, 
an approximate  procedure  develops in which sz does  not play 
an essential role. 

Although  we,  of  course, do  not have so, we  can  likewise 
consider MAP estimation of so from  the  observations y o ,  
given the coefficients a. This then suggests an iterative pro- 
cedure  whereby we  begin with  an assumed set of initial values 
a. for  the coefficient vector a and based on this, estimate 
so by maximizing p(s0 lao, y o ;  g, SI). Denoting  this first 
estimate  of so by 20 1 ,  we then  form  a first estimate a, of a. 
This  procedure can then  be  continued iteratively to obtain 
the final estimate 8- of  the coefficients. It is straightforward 
to see that this procedure  for  estimating a (and so) con- 
verges to a local maximum  of  the joint probability  density 
p(a ,  so I yo  ; g, sr). Specifically, since ai is obtained by 
maximizingp(a IPoi, yo;  g, sz), 

p(aI5?oi,Yo;g,sz)Iu=,-i.P(soIyo;g,sz)II,,=,,i 

>p(aIPoi,Uo;g,sl) I a = 2 i - l  

'P(solYo;g, $1) Iso=ioOi 

P ( 4  sol Yo ; g, S I )  I u = u  ^i , s o = s o i  

so that 

~ P ( ~ , ~ o I Y o ; g , ~ z ) I u = , - ~ - l , s o = s ^ o i .  (33) 

Furthermore, 

P(so(~i-i,Yo;g,sz)I~~=S^~~'P(aIYo;8~sr)lu=a^~-~ 

>P(soIai-l,Yo;g,sz)Iso=s^oi 

-P(alYo;g,sz) Iu=, - i - l  

P ~ ~ ~ ~ o I Y o ~ ~ ~ ~ z ~ I . = , - i ~ l , s o = s ^ o i  

so that 

>P(a, soIYo;g, sz) l u = a ^ i - l ,  so=ioi-l . (34) 

From  (33)  and  (34) 

P@,  soIYo;g, sz> la=&., so=;oi 

~P(~,~oI~o;g,~z)lu=,-i-l,so=ioi-l. (35) 

If the initial guess for a is such that  the local maximum to 

which  this  procedure converges  is in fact the global maximum, 
which will  always be the case  if p(a ,  so I yo  ; g ,  sz) is unimodal, 
then  this  procedure will in fact correspond to  that  joint MAP 
estimate  of the parameters a and so. Thus, in essence, this 
attempt  to simplify  the  problem  computationally  corresponds 
to augmenting  the  desired set of  parameters a with  the addi- 
tional parameters so which are really unwanted  parameters 
in  the sense that we are not particularly interested in ex- 
plictly estimating  them. 

From  our discussion in Section 11, we know that maxi- 
mizing p(a IPoi, y o ; g ,  sz) requires the  solution  of  a set of 
p linear equations for a. Maximizing p(soIai, yo;  g, sz) 
requires the  solution  of  a set of N linear equations corre- 
sponding to  the N values in the  vector so. Specifically, 
from Bayes' rule, p(so I ai, y o  ; g, sz) can be  denoted as 

p(soIai,yo;g,s~)=p(yoIai,so;g,sz) 

Denoting 

N -  1 

p(yoIai,so;g,sz)= n p(y(n)I&,so,y(n- 1,O);g,s1) 
n = 1  

~ ( ~ ( 0 1  I 4 2  so ; g, 81) 

and noting that p(y (n )  lai, so, y (n  - 1, 0); g, sz) is  Gaussian 
with  mean  of s(n)  and variance of u i  for 1 < n < N -  1 and 
p(y (0 )  I &, so; g, sz) is  Gaussian with  mean  of s(0) and vari- 
ance  of ai,p(yola"i, so; g ,  sI) can  be denoted as 

(37) 

Combining (9) and (37)  with  (36)  and  noting that p(yolai; 
g, sz) is not  a  function  of so, 

and 

6 n = o  

Maximizing p(sol ai, y o ;  g ,  sr) is equivalent to minimizing 
ep in (38b), and thus we choose so that satisfy the set of 
linear equations 

(39) 
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In the above, we  have reduced  the  nonlinear  problem to 
the successive solution  of sets of linear equations. N ,  how- 
ever, will generally be large (>>p), perhaps on  the order of 
several hundred.  Consequently, the problem is still com- 
putationally  tedious. However,  since ep in (38b) can be 
written as 

+ constant (40) 

and [ P i j ] - ’  is a covariance  matrix, p ( s 0  I&, yo) is jointly 
Gaussian in so [21], and  consequently  the MAP estimate of 
so, based on maximizing  this  probability  density, is equivalent 
to  the MMSE estimate of so. Furthermore, as N increases, 
the  procedure for obtaining  the MMSE estimate  of s(n) 
given by (39)  approaches  a  noncausal Wiener filter, Le., s(n) 
is estimated by filtering y(n)  with  a linear, time-invariant 
filter with  frequency  response 

where Ps(w) is the  power  density  spectrum  of s(n) given 
ai and g, or 

and a in (41b)  corresponds to ai. Thus, we can  approximate 
the MAP estimate 30i by applying the filter of (41) to the set 
of  observations y o ,  using the values for  the coefficient 
vector to determine Ps(o) .  To obtain  the  estimate  from 
Poi we  can either use the first p values  as the initial condition 
vector, or always  assume that SI = 0. 

Based on the same philosophy,  there are other approximate 
systems that appear to be plausible. For  example,  from 
Case 4 in Section I1 we note  that  the MAP estimate  of a corre- 
sponding to maximizing p(a I so; g, sz) uses the values SO to 
form products  of  the  form s(i) s ( j ) .  The use of  (41) to 
estimate SO corresponds to estimating s( i )  * s ( j )  as 

s ( i > ^ s ( j ) = E [ s ( i ) I B i , Y o ; g , s ~ ]  ‘ E [ s ( j ) I a i , Y o ; g , s ~ I  

(42) 
since,  as  is  well known,  the MMSE estimate of  a vector SO is 
given by  the  conditional  expectation. As an alternative, we 
can consider  generating directly the MMSE estimate  of the 
product s( i )  s ( j ) .  In this case, then,  the estimate  of s(i)  . 
s ( j )  is  given by 

~ ( i ) ^ s ( i > = ~ [ s ( i ) . s ( j ) l a i , ~ o ; g , s z ~ .  (43) 
From (40), the  covariance  matrix of so conditioned  on a and 
yo is  given by [&i] -’, where the NX N matrix [&i] is 
given by  (38b)  and (40), and [ P i j ]  represents the inverse 
of  the  matrix [ P i j ] .  Denoting this covariance  matrix as 
[rijl 

E [s( i )  * ~ ( i )  I ai, Y O  ; g, S Z I  = yij + E  [s(O I ai, Y O ;  g, SZI 
‘ E [ s ( j )  lahi, y O ; g ,  SI]. (44) 

Equation  (44) is  simple to evaluate  once [ y i j ]  is computed. 
Even though  the  computation  of [ y i j ]  generally  requires the 
inversion  of an N X N matrix,  a  computationally  simpler 
procedure  can be obtained as N becomes large. In particular, 
as N increases, if we  assume y i j  depends  only on the  time 
difference i - j ,  we can  denote y i j  by y(n)  = y(i - j ) .  It can 
then be shown that I‘(o), the Fourier  transform of y(n),  
is  given by 

(45) 

and Ps(w) is given by (41b).  Compared  with  the first method 
discussed, in which SO is estimated  by  means  of  a Wiener filter, 
it is not known theoretically whether  this  method converges. 
However,  as  will be discussed in the  next  section, convergence 
has been  empirically observed in the  examples  considered. 

IV. PRELIMINARY RESULTS 

A careful study  of  the  two  “s~boptimal’~ linear implemen- 
tations discussed in the previous section requires an evaluation 
of its effect on intelligibility and  quality  when  applied to 
speech  degraded  by  background noise, and  such  a  study is 
currently being carried out. As a very preliminary illustration 
of  the  two  methods,  they were  applied to synthetic  data  and 
real  speech data  with additive background noise. Specifically, 
the  synthetic  data  are  based  on  a  sampling rate of  10 kHz and 
were generated  by  exciting  a tenth-order all-pole filter whose 
coefficients were derived from unvoiced  segment of real 
speech.  The  excitation was chosen in one set of  examples 
to  be  white noise  and in the  other set of examples to be a 
periodic  impulse  train. As  we had discussed previously, the 
results in this paper are derived  assuming a stochastic excita- 
tion.  For  speech  without  background noise, systems derived 
from  this  point  of view perform well  even when  the  excitation 
is a  periodic  impulse  train,  and it is anticipated  that  this will 
also be true  for  the systems discussed in this  paper. The  real 
speech  data used in the example  of this paper are the sentence 
“line up at  the screen door”  spoken  by an adult male speaker. 
The real speech data were  low-pass filtered at 4.8 kHz  and 
sampled at  10 kHz. 

The  synthetic  data are analyzed for the case of zero-mean 
white Gaussian background noise at three  different S/N 
ratios; 20, 10, and 0 dB. The real speech data are analyzed 
for  the same background noise at SIN ratio  of  10  dB.  The 
S/N ratio is defined as 10 log (Zn s 2  @)/En d2 (n)) where, for 
the case of  the  synthetic  data,  the  summation is  over the 
length of the analysis segment for which we  used the  length 
of  25.6 ms (256 data points). For the real speech data,  the 
summation is  over the  entire  length  of  the  sentence.  Three 
systems are consider‘ed. 

System A :  This  system  corresponds to the  assumption  of no 
background  noise  and  maximizes p(a I s(N + p - 1,O); g) with 
the assumption that  no a priori information  for a is available 
and s(- 1, -p)  and s(N + p - 1, N )  are 0. Thus,  it  corresponds 
to  the correlation  method of (19). 

System B: In this  system, the iterative procedure corre- 
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Fig. 1. True  spectrum  with  white noise excitation and  vocal tract 
transfer  function  estimated by System A. 
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Fig. 2. (a) True  spectrum  with  white noise excitation and  vocal tract 
transfer  function  estimated by applying  System A to noisy  synthetic 
data  at S/N of 20 dB. (b) True  spectrum  with  white noise excitation 
and  vocal tract  transfer  function  estimated by applying System B 
to noisy synthetic  data  at S/N of 20 dB. (c) True  spectrum  with 
white  noise  excitation  and vocal tract  transfer  function  estimated  by 
applying  System C to noisy synthetic  data  at S/N of 20 dB. 

sponding to  the use of  the Wiener filter of (41) to estimate 
so and then System A above to estimate a are applied  on 
each  iteration.  The initial estimate a. of  the coefficient 
vector is taken as the result of  applying  System A to noisy 
speech.  In using (41) to estimate so from g was esti- 
mated by an energy  measurement. More specifically, in all 
cases, including the case  when the  excitation is  assumed to  be 
a  periodic train of  impulses,g was obtained  from 

= Y ' ( M ) - N *  C J ~  
N -  1 

n = Q  

where a in  this  equation  corresponds to and IV is tCe 
length  of analysis segment or 256 in the  examples. 

System 2: This  system is identical to System I% except  that 
when s( i>  * s ( j )  is computed on each  iteration  of  System €3, 
rij obtained by (45) is included to satisfy (44). The initial 
estimate  of  the coefficient vector a. and g was obtained in 
the same manner as  in System B. 

Figs. 1-8 show  the results for  each analysis with  the  two 
different  forms of excitations and  three  different S/N ratios. 
Figs. 1-4 correspond to the case when the excitation is white 
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Fig. 3. Same as Fig. 2 with S/N of 10 dB. 
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Fig. 4. Same as Fig. 2 with SIN of 0 dB. 
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Fig. 5. Same as Fig. 1 with periodic impulse train excitation. 

noise  and Figs. 5-8 correspond to  the case when the  excita- Figs. 2-4 correspond to SIN ratios of 20, 10, and 0 dB, 
tion is a  periodic  train  of impulses. In Fig. 1 , the  true spec- respectively. In  each  of the  three figures, (a),  (b), and (c) 
trum corresponding to white noise excitation  and  a  tenth- represent  the  estimated vocal-tract transfer  function  obtained 
order all-pole fit to the spectrum by System A is shown. by applying  System A to noisy  synthetic  data  (with  the 
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Fig. 6. Same as Fig. 2 with periodic impulse train  excitation. 
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Fig. 7. Same as Fig. 3 with periodic impulse train  excitation. 

assumption that s(n) = y(n))  for (a), by  applying  System B to corresponding to the  excitation  of  white noise  was included 
noisy  synthetic  data for (b>, and by applying  System C to to facilitate the comparisons. Figs. 5-8 are  similar to Figs. 
noisy  synthetic  data  for (c). Thc results shown in (b)  and (c) 1-4, but with  a different excitation. Here the  excitation is 
of Figs. 2-4 were  obtained  after  two  and  ten  interactions a  periodic train of  impulses that corresponds to a  fundamental 
respectively. In  each  of the  three figures the  true  spectrum frequency of 150 Hz which is typical for an adult male speaker. 
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Fig. 8.  Same  as  Fig. 4 with  periodic  impulse  train  excitation. 

TIME 

Fig. 9. A spectrogram of an English sentence,  “Line up at  the screen door,”  spoken by an adult male  speaker. 

Again, in (a), (b),  and (c) of Figs. 6-8, the  true spectrum 
corresponding to excitation  of  a  periodic train of  impulses 
is included to facilitate the  comparisons. 

Figs. 9-12 show the results of  the analysis  based on  the real 
speech data at the S/N ratio of 10 dB. In Fig. 9, a  spectrogram 
of  the real speech data with no background noise is shown. 
Figs. 10-12  correspond to synthesized  speech based on  the 
analysis results obtained  by  applying  System  A to noisy 
speech  data  [with  assumption that s(n) = y (n)] for Fig. 10, 
by applying  System B with  two  iterations to noisy  speech 
data  for Fig. 1 1, and by applying  System C with  ten  iterations 
to  noisy  speech  data for Fig. 12. In all the examples  shown 
(Figs. 10-12),  a tenth-order all-pole system was  used with 
the same pitch  information  (voicing/unvoicing,  and  pitch 
period in the case of voicing) obtained  from  the  speech  data 
with no background noise. 

Even though  our discussions in  this section are of  a very 
preliminary  nature, we note  the following  points  based on 
the results of  our application  of  Systems A, B, and C to 
various other  synthetic  and real speech data  in  addition to 
the results illustrated in Figs. 1-12.  First, even though all 
the  theoretical results that lead to System  B  and  System C 
were based on a stochastic excitation,  both systems  appear 
to  be applicable, with similar performances to  the case when 
the  excitation is a  periodic  train  of  impulses.  This is con- 
sistent with previous results (19) in the  clean  speech case, 
where all the theoretical results are obtained based on a 
stochastic excitation, but experience  has  shown that  the 
same results can be  equally well applied to  the case when  the 
excitation is by  a  periodic  train  of  impulses.  Second, in the 
derivation  of  System  B  and  System C ,  we  have  assumed that 
SI is known. When the analysis length N is much greater than 
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TIME 

Fig. 10. A spectrogram of the  synthesized speech by applying System A to noisy speech data  at SIN of PO dB. 

TIME 

Fig. 11. A spectrogram of the synthesized  speech by applying System B to noisy speech  data  at SIN of PO dB. 

I s- 
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Fig. 12. A spectrogram of the synthesized speech by applying System C to noisy speech  data  at SIN of 10 dB. 

p ,  the effect of small error in initial conditions is  negligible. 
In  fact,  the  synthetic  data used in the above  examples were 
generated  with sz = 0 while the use of (41b) in System B and 
System C is  based on  the implicit assumption that SI and 
so are generated  by  the same stationary process. Results 
indicate  that  there is little  difference in the  performance 
when slightly different  assumptions on sz are used if N is 
sufficiently large relative to p .  Third, in applying  System B 
to noisy  synthetic  and real speech data we  have shown  the 
results that were  obtained  after  two iterations. We have 
found  that, in general, the converging solution  after  many 
iterations  generates  the vocal-tract transfer function for 
which the bandwidths of the poles  are  smaller than those 
associated  with real  speech and thus,  in  the  acutal imple- 

mentation, results obtained  after  one or  two  iterations seem 
to be  more desirable. Fourth, in applying  System C to noisy 
synthetic  and real speech data, we  have shown  the results 
that were  obtained  after  ten iterations. Even though  it is 
not theoretically known  whether  or not System C has a 
converging solution, in all our  simulations we  have empirically 
observed that System C converges and the results obtained 
after  ten  iterations are  close to the converging solution. 
Unlike System B, the converging solution of System C gen- 
erates  the vocal-tract transfer function  for  which  the  band- 
widths of poles are comparable to those  of real speech. 

When a sufficiently large amount  of noise is added to syn- 
thetic  or real speech  data  such that  the resulting noisy  data 
have no spectral peaks or spectral peaks that are different 
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from the pole  locations  of  the original data,  the  application 
of  System B or  System C sometimes  generates the vocal- 
tract transfer function  whose  pole  frequencies are different 
from  those  of  the original data.  This  causes  some  unnatural 
shift of  formant  frequencies3  which can be observed to some 
extent in Figs. 11 and 12. Unless wrong  formant  frequencies 
are estimated sufficiently often, which  can  happen at very 
low S/N ratios, we have observed that  the primary  perceptual 
effect is generation  of “musical tone” like sounds in  the 
background  which  causes  some  degradation  of  speech  quality. 
Within the  context  of this paper,  this  problem  may  be par- 
tially solved by  introducing  some a priori information  of  the 
all-pole coefficient vector  from the past analysis frames. 
This  aspect of improving  System B and  System C is currently 
under investigation. 

Even though  our  discussions in this  paper are based on 
white  background noise, all  the theoretical results in this 
paper can  easily be  extended to the background  noise  with 
other known  spectra.  The result of  such  an  extension  in- 
volves simply  substituting pa(o) for u$ in (41a)  and (45) 
where Pd (0) is the  power  spectrum  of the background noise. 

Even though  the performance  of  System B and  System C 
can only  be  properly  evaluated by formal subjective tests, 
our very preliminary  informal listening indicates that the 
two systems are capable of significant noise reduction. A 
more  formal subjective test, which is directed  towards evalu- 
ating the  two systems discussed above in terms  of  their per- 
formance in enhancing  speech intelligibility and  quality  when 
the background noise is of various  different  spectra, is cur- 
rently  underway.  The results of  these  tests will be  reported 
in a later  paper. 

APPENDIX I 
In this  Appendix,  we briefly summarize the  notation  that 

is used in  the paper. 

s (n)  : Speech  waveform. 
d(n): Additive  disturbance or background noise, 

assumed to be  zero-mean  white Gaussian 
noise with variance of 0%. 

Y (n): Noisy speech  waveform, s(n) + d(n). 

SI : 

3The  effect is generally  higher at higher formants.  This is due  to 
the fact that  the effective S/N ratio at higher  formants is, in  general, 
lower since speech (voiced sounds) has less  energy in the higher fre- 
quencies while white  noise,  which is used  as additive  background 
noise  in  this  work,  has  equal energy at all frequencies. 

s ( N -  1) 

s(N - 1 , O )  = I(::] , speech  waveform 
vector. 

Y ( N -  1) 

Y ( N -  2) 
, noisy  speech wave- 

form vector. 

Gain of an all-pole system. 
Zero-mean  white Gaussian  noise with  unity 
variance. 
7 -  

l a ,  1 11 , an all-pole system  parameter vector. 

[a, , a2 , * - , u p ] ,  transpose of a. 
a priori mean  of a. 
a priori covariance  of a. 
Probability  density  function  of A .  
Probability  density  function  of A conditioned 
on B. 
Probability  density  function  of A conditioned 
on B and C where Cis assumed to be  known. 
Joint probability  density  function  of A and 
B where B is assumed to be  known. 
Probability  density  function of A evaluated 
at A =8. p(A)  IA=a is also denoted  by 
p ( 8 )  when  the  meaning is  clear from  the 
context. 
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Quasi-Periodic  Instability in a Lin 
Analysis of Voiced 

Abstract-A significant  semiperiodic  fluctuation  of the vocal tract 
area  functions  derived  by  linear  prediction  of the speech  waveform has 
been  noted  during  apparently  stationary voiced segments of speech. In 
one example  some values of the area  function varied  over a range of 9 : 1 
over  a few pitch periods. The  phenomenon is attributed to “beating” 
of the pitch  period  and  the  time  interval  between successive computa- 
tions which causes variations of the  time  relationship  between  glottal 
pulse  and analysis  window. This is supported  by the  fact  that no 
fluctuations  occur  in  the  area  function derived from  natural or syn- 
thetic speech when  the  computation  interval is equal to  the pitch pe- 
riod. Any slight  difference  between  the  two  leads to significant  pulsa- 
tions, however. A simple theoretical  model is used to show how  the 
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positioning of the analysis  window can  influence  area  function 
estimates. 

The  problem  can  be largely overcome by  using longer  time  windows 
(greater  than 2.5 pitch  periods), or alternatively,  by averaging the area 
functions  over several adjacent intervals. 

I.  INTRODUCTION 
EVERAL attempts have  been  made recently to  use linear 
prediction analysis of speech  for isolated-word [l] , [2] 

and spoken-digit recognition [3], [4]. The  feature chosen for 
the recognition algorithm  in  these  studies was the  set  of linear 
prediction coefficients. It is  well known that an estimate of 
the vocal tract area function can be derived from these co- 
efficients [SI-[7] and  the present paper arose from a study of 
the usefulness of this function  for  both speech and voice 
recognition. Because of  the extensive information available 
from phonetic and articulatory  studies of speech  production, 
it was  believed that  the vocal tract area function (VTAF) 
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