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A hybnd numerical/analytic techmque is presented for computing the field due to a
monochromatic point source in a horizontally stratified medium. It is based on the exact Hankel
transform relatlonshlp between the field in the range domain and the associated depth-dependent
Green’s function in the horizontal wavenumber domain. The method uses a numerical evaluation -
of the Hankel transform. It is shown that a major source of error in such an evaluation arises from

_ undersampling of the Green’s function at points where it becomes infinite. This error is described

in terms of aliasing, analogous to the aliasing that has been well-described for thé discrete Fourier -
transform. It is shown that the error can be substantially reduced by removing the infinities,
calculating the Hankel transform of the remaining portion of the Green’s function numerically,
and adding to it the analytically computed Hankel transform of the infinities. The sum of the
analytic terms and the remaining Hankel transform always exactly equals the true field with no

- errors introduced other than those associated with the numerical evaluation of the Hankel’

transform, and the method is accurate in both‘,the near- and farfield regions. The technique is
developed in detail for the acoustics problem of a monochromatic point source and receiver in an
isovelocity fluid half-space overlying a horizontally stratified fluid medium. It is found that under
circumstances of interest in ocean bottom acoustics, where the Green’s function has only a few

singularities along the real horizontal wavenumber axis,. the technique is efficient and extremely

. accurate.

PACS numbers: 43.30.Bp, 43.30.Dr, 4‘3.20.Bi,> 43.20.Fn

- INTRODUCTION

The calculation of Wavé fields due toa monochromatic

'pomt sourceina horlzontally stratified medium is a problem

of fundamental importance in acoustics, seismics, and elec-

“tromagnetics." It is essential for the prediction of fields

under a variety of circumstances and for the proper interpre-
tation of experimental measurements. It is also useful in the

* study of the inverse problem in which field measurements

are used to infer properties of the medium. Presently, tech-
niques for the generation of synthetic fields fall into three

- broad categories—modal, ray, and numerical. In modal and

ray techniques, numerical methods typically play a secon-.

. daryrolein the sense that they are used to compute contribu-
- tions to the field which are not readily accommodated within
‘the modal or ray analytic framework or to perform portions

* of the calculations which cannot be executed analytically.

Numerical techniques are founded upon direct numerical
evaluation of integrals and are often used in complicated
situations where analytic methods are intractable. Numeri-

. cal methods are sometimes used to check analytic methods, a

procedure which may fail to recognize that sources of nu-

_ merical error can be at least as large and subtle as sources of
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error-arising from analytic approximations. _

This paper presents a hybrid numerical/analytic tech- .
nique for computing the field due to a monochromatic point "
source in a horizontally stratified medium. It is based upon

‘the numerical evaluation of the Hankel transform that re-

lates the depth-dependent Green’s function in the horizontal
wavenumber domain to the field in the range domain. We

. show that a major source of error in such an evaluation arises
from undersamphng at the points where the depth-depen-

dent Green’s function becomes infinite. We describe this er-
ror in terms of aliasing, analogous to the degradation due to .

‘ sampling that has been well described for the Fourier trans-

form. We show that these errors can be substantially re-
duced by removing the 1nﬁmtnes, numerically computing the
Hankel transform of the remaining portion of the Green’s

~ function and adding to it the analytically determined Hankel

transform of the infinities. Such a procedure does not require
the artificial introduction of absorption into the medium in -
order to diffuse the infinities. The numerical contribution is - -
subordinate to the analytically determined terms for large
ranges, minimizing the effects of aliasing. The sum of the
analytic parts and the remaining Hankel transform always
exactly equals the true field and no approximations are made
until the Hankel transform is performed numerically. Un-
like standard modal methods the contribution .associated -
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w1th each ‘mode is ﬁmte, even at zero range (except of
course, at the source point itself) and explicit branch line
integrals do not appear. The téchnique includes the evanes-
cent portion of the Green’s function and accurately gener-
ates the effects due to trapped modes which can dominate
the field for large offsets because of their slow asymptotic

decay. It is thus accurate in both the near- and farfield re- ’

- gions.
The method presented was developed in the context of
the canonical acoustics problem of a monochromatic point

source and receiver in an isovelocity fluid half-space overly- -

ing a horizontally stratified fluid medium, and we will con-
centrate upon this case. It is of great interest in the study of
forward and inverse problems in ocean bottom acoustics and
seismics,”'® and specific examples considered in this paper
are closely tied to parameters encountered in experimental
data.!" For this class of problems, where the Green’s func-
tion has only a few infinities to be removed, the method has
been found to be efficient and extremely accurate. It can also
be.applied to other situations, such as more complicated
cases that include shear wave effects (and the poles that they
introduce). The procedure becomes more lengthy as the
number of infinities increases, however, since their precise
horizontal wavenumbers are required in the calculation.

- A great deal of this work revolves around the Hankel
transform and its numerical implementation.” Presently
there exist a variety of numerical implementations in the
literature”'>>* but no one standard comparable to the fast
Fourier transform as-an implementation of the Fourier

transform. In this paper we will use three different imple- .
mentations. The Fourier—Bessel series® is used for many of -

- the computations because its properties have been well stud-
ied®*?° and because we have been able to. characterize its
aliasing properties. Its principal limitation is that it is quite
slow. We also consider a common asymptotlc algo-
* rithm®"12'3 in order to derive and illustrate an aliasing re-
sult. This asymptotic algorithm casts the Hankel transform

into the form of a Founer transform and consequently is -

useful for translatmg many of the results available for the
Fourier transform into approximate results for the Hankel
transform. It is also often-used in practice.>'3 Finally we use
~ a third algorithm to generate the field for a realistic ocean
bottom examiple with a large source height.?"” This algo-

rithm is extremely fast- which makes it possible to sample the

Green’s function with sufficient density to minimize the ef-

fect of aliasing on the numerically peiformed transform. In -

- addition to its speed this algorithm is appropriate for the
* generation of synthetic data because it uses samples on a
square root grid which, as will be shown, is an excellent grid
for the representation of the Green’s function. -

In this paper we have focused on the time-independent,
harmonic problem rather than the more general time-depen-
dent problem. The general time-dependent problem can be

solved by generating harmonic fields over a band of frequen- -
cies correspondmg to the source spectrum which are then-

~ “combined to generate the time-dependent field. We have
: concentrated on the time-independent problem in order to
focus on the issues associated with this crucial first step.

. Section I'is a background section which includes a brief
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" wavenumber k (z (z) =
* both top and bottom by horizontally stratified medla Under

discussion of the relationship of our method to modal and
ray techniques. Section II concentrates on the numerical
evaluation of the Hankel transform. Aliasing results are de-

-.rived and the resultant serious degradation of synthetic

fields generated by direct numerical methods is demonstrat-
ed. Section III presents a hybrid method for the generation
of synthetic fields that decay as 1/r, where r is the horizontal
range between source and receiver. This method is demon-
strated for a hard bottom and slow and fast isovelocity bot-

tom examples. It is then generalized to the’ generation of
synthetio fields that decay as 1/y/r, which arise when slow _

isovelocity layers are present. Section IV discusses the fast
Hankel transform algorithm and applies it to the generation
of synthetic data for a realistic ocean bottom acoustic sound
speed profile and experimental geometry. The result is com-
pared to that produced by a conventional ray technique.

I. BACKGROUND

- We consider a horizontally stfatiﬁed medium charac-
terized by one-dimensional variations of density and sound
speed in the cylindrical coordinate z. For such a medium, the

_ spat1a1 part of the acoustic pressure variation P, due to a

point source with time dependence e~ is related to the.

- depth-dependent Green’s function G, through the zero-or-

der Hankel transform'>®;
P(r):f G (k,) Jolk, P, dk, W
Ge)=["Prgerrar, @

where 7 is the horizontal range, k, is the horizontal wave-

- number, and J,(+) is the Bessel function of order zero. In the -

case depicted in Fig. 1, of interest in ocean acoustics, both -

- source and receiver are located in a region of thickness 4,

characterized by a constant density, a sound speed ¢(z), and
w/clz). The layer may be bounded at

these clrcumstances, P satisfies®
[ i 3( ‘9) +_‘?2_+k2(z)]P(r 2, 2,)

Lr or\ ar/ 82 _

= —2[6(r)/r]6(z—zo) ' . S @3

‘ while G satlsﬁes . o _
(& + k%) 2)6 2, 20) = — 206~ o @

- along with impedance boundary . condltlons at the top and

the bottom. Although both P and G depend on the source

“and receiver heights above the bottom, zand z,, these heights

will be viewed as parameters in the problem, while 7 and k,
will act as the conjugate transform variables.
The different techniques for computing fieldsin strati- -

 fied media can be divided into the classes of modal methods,

ray methods, and numerical methods. Thesé can be viewed
as arising from different approaches to the evaluation of the
integral in Eq. (1). In this section we present a brief overview -
of these methods. Our presentation is brief because detailed
descriptions of modal, ray, and numencal methods can be.
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found elsewhere. 1-5:2813.7

In order to illustrate the major features of interest we
will discuss two simplifications of the profile shown in Fig. 1.
In the first more general case we will consider the water to be
isovelocity so that the water column with boundaries acts as
a (possibly leaky) waveguide. The method that we will deve-
lop can be used to accommodate this model. Most of our

presentation in this paper, however, will concentrate on a-
simplified version of this model, where the top has been re-
moved. Such a simplified model is often appropriate in deep
ocean acoustics where the return from the surface can be
gated out in time.!

For the more general case for which a surface boundary -
has been specified, G (k,) in Eq. (4) is given by’

G (k,) = (i{exp(i/k§ — k|2 — 2o|) + I explis/k3 — K|z + zo|) + T'pexp(2i[k3 — k2h) .
X [exp(— ifkE — K71z +20]) + Tpexp( — i3 — K71z —z])]})

X{(JEZ —kZ[1 = IyTp exp(2ifk2 —KZh)]}~

where k, is the wavenumber in the layer and I";. and I'y are
the plane-wave reflection coefficients at the top and bottom,
respectively.

In the more restricted case where I'y(k,) = 0, it is com-
. mon to separate out the contribution, G,(k,), of the mmdent
ﬁeld to the Green’s function

‘ G,<k,>=<f/'¢ks TR lexplifRI— KTz z,)), (6

since that term can be integrated analytically, and to consid-

er only that portion of the Green’s function associated W1th -

the reflected return. This is given by

G (k,) = (/K3 — ROk, Jexplifk3 — K2 |z+20). (1]

In modal methods, the path of integration along the real

k, axis is viewed as a portion of a closed contour in the com-

" plex k, plane. The calculation then amounts to determining:
the residues at the poles enclosed by the contour and the
 contributions of branch cuts along the contour.”®* The
method is intimately connected with the analytic properties
of G, specifically its pole and branch point singularities. For
example, the. poles - occur at  the

Branch points occur at the wavenumbers associated with
any isovelocity half-space. In some cases their contribution
can be interpreted physically as lateral waves, which have a
1/r* decay. Since the residue contributions have a closed
form expression, no numerical integration is required. The
“branch line contributions must be evaluated numerically in
general and these calculations can be computationally ex-
pensive and/or corrupted by numerical sources of error.
Fortunately for many applications branch line contributions
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zeros - of

1 — I'.Ty exp(2i\[k3 —%Zh) for the more general case
with a top and 1/, for the restricted case without a top.
These poles correspond physically to the free modes of vibra- °
tion of the system and have a characteristic 1/y/7 falloff,

(5)

¥

can be ignored in the farfield. In the nearfield where branch
line integrals must be included, modal methods also suffer
from the fact that the residue c¢ontribution of each pole has a
logarithmic singularity at the origin. Since outside the plane
of the source (z#2z,) the field is not infinite in general, any
singularity introduced by a residue contribution must be
canceled by a singular value from the numerically performed
branch line integral or from the contribution of other poles.
It is not possible to generate an infinite value as the output of

" a numerical algorithm, and adding and subtracting large -
-contributions is subject to severe numerical errors. Conse-

quently for small ranges the total field calculated may be
serlously degraded even when the contributiofi from the
branch line is included. For large ranges no numerical inte-
gration is required and this problem does not arise. Conse-
quently modal methods are frequently used for farfield cal-'
culations, particularly in waveguides (I'; and I'; both -

nonzero) where the modes quickly dominate the total field. . ..

Modal methods are often not appropriate when the field
must be calculated for small ranges or when one or both of
the reflection coefficients, I'r(k,) and I'(k,) are sufficiently

Horizontally Stratified Top

Source

Sound Speed
*(0,2,}

Profile ¢(z)
Receiver
o(r,z}

////////’/////////

Horizontally “Stratified Bottom

FIG. 1. Horizontally stratified ocean model.

///
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*small that. the continuous. spectrum: (branch line contribu-
tion) dominates the field. Also when the number of propa-
gating modes becomes too large to conveniently determine
their position and residues, then modal methods become
cumbersome and questions arise concerning the number of
modes that must be included for accurate field calcula-
tions.>* When the problem is simply that there are too many
contributing modes but none dominate, then other conven-
tional methods are available.

' In ray methods® the denommator of G (for the case

with the top) is expanded as™

[1—rpr, exp(2z\/7¢2—kzh)] —1
= . [1or el FE=FERI]" 8

This procedure eliminates the poles of interest in the modal
.approach, but results in a series of integrals which may have
. branch points. Each integral is evaluated by deforming the
path of integration in the complex plane to follow lines of
steepest descent, thereby concentrating the contnbutmg
_portions of the integral to short arcs." If approximate results
are satisfactory then the integrand is approximated by a Tay-
lor expansion on these arcs and the resulting expansion is
integrated analytically. If more accuracy is required the inte-
grals must be performed numerically.? The contribution

from each arc can be'interpretéd as a ray, while the branch

line integrals picked up in the | process of contour deforma-
tion again correspond to lateral waves. Each ray represents
- the constructive interference of many modes;?’ both proper
and improper. Because the approximate expressions for the

rays can be computed analytically such an expansion is effi- -

cient when these are sufficient. Ray techniques are often rea-
sonable for those cases where many propagating modes exist
but none dominate, Such is the case when the material pa-

rameters vary slowly compared to a wavelength. When great

accuracy is required and the mtegratlon along the steepest
descent paths are performed numerically, ray techniques
* can become very expensive to evaluate. In the limit of long
numerical integrals they do not offer a substantial advantage
over direct numerical methods and suffer from the loss of the
. form of the Hankel transform. s

" For cases where no modes propagate and the contin- -
" uous spectrum dominates, direct numerical methods are

used to evaluate the Hankel transform along the real axis.
On occasion the integral is evaluated by direct numerical
quadrature.®®*® Frequently it is evaluated approximately by
replacing the Bessel function with its asymptotic form.
This converts the original integral into a related integral that

" can be evaluated efficiently with a fast Fourier transform.

" Typically the evanescent portion of the spectrum is ignored
‘in these methods. At present, direct numerical methods fail
when trapped modes caused by slow speed layers or other
waveguide effects become important even when the evanes-
cent spectrum is included in the integration.’
Modal methods are most suitable when a manageable
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number of trapped modes represent the field and only the
farfield is desired. Ray methods are suitable for cases where
the interference patterns of many modes can be well repre-

" sented by rays and no few modes alone dominate the field.

When the combined effect of evanescent modes is important
(as is the case for small range calculations or propagation
along a low impedance contrast boundary) and there are
some important guided modes (such as may arise from a low
speed layer in the bottom of the ocean or in the atmosphere
for electromagnetic propagation) there is currently no gener-
ally available accurate, efficient means of generating fields.
Our approach stems from a need to generate fields ac-
curately for both near- and farfields where there may exist
some important guided modes. We chose to concentrate on a
direct numerical evaluation of the Hankel transform to ac-
curately include the effects of the continuous spectrum.
Within this context we are therefore interested in the analyt-
ic properties of the Green’s function to the extent that they
may degrade the numerical integration scheme. From this .
point of view, we concentrate on the singularities of G (k)
insofar as they affect the sampling required to adequately

- determine their contribution to the integral. It is not suffi-

cient to simply increase the sampling rate until the result
converges. At best that approach is extremely time consum-
ing; often it is a practical impossibility. Also we avoided the
artificial introduction of absorption into the problem which

‘would have pushed the singularities off the axis of integra-

tion. We felt that in order to adequately solve the aliasing

~problem in this manner it was hecessary to introduce so

much attenuation that the original problem was si gnificantly -
changed, or if the deformation of the contour was compen-
sated for by multiplying the resulting field by a growing ex-
ponential, then any numerical noise, including ahasmg,

. would be enhanced'and in general little would be gained. We

chose, instead, to remove the singularities and to compute
their effect analytically, thereby leavmg a numerical i mtegra- .
tion that was well-behaved.

The singularities removed are due to the i/\[k2 — k2
source term and the poles in the Green’s function on the real

k, axis. Removing the t/,/ kZ — k2 term and calculating its

' contribution generates a term that-decays as 1/r. The poles’
contribute modal-type fields which decay as 1/4/7, but are
" finite even for zero range; unlike conventional modal fields. -

In this decomposition of the field, explicit branch line inte-
grals do not appear. Their. contribution. is distributed
between the numerical and analytic calculations in a manner -
such that both are finite for zero range.

_ - One additional consideration in the numerical evalua-
tion of the Hankel transform is the point at which the inte-
gral is truncated. The Green’s function for the case of inter-

"est in Eq. (7) is effectively truncated when |z + zol >0 for

k,>ko because of the exponential source-receiver term

which becomes exp( — JEZ = k32 |z+ z|) in this region ex-
cept possibly for the contnbutlon of poles where the reflec-

tion coefficient becomes infinite. As long as the integration
window in k, includes at least some of this region of rapid-

. exponential decay and any poles (which occur for k, > ko) are * '

properly aceounted for, the errors.due to 4 finite aperture are -
minimal. The special case |z + z,| = 0is not discussed here
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Il ALIASING AND THE NUMERICAL EVALUATION OF
_ THE HANKEL TRANSFORM

In this section we consider the effect of numencally in-

tegrating the Hankel transform.*®*1>* In particular we con- .

* sider the degradation introduced by replacing the integral
with a sum. We restrict our attention to integration tech-
niques that are exact when the function to be transformed is
bandlimited and the sampling rate is sufficiently high.*>
In this section we derive the error associated with the
numerical evaluation of the Hankel transform through its
- asymptotic form. In Appendix A we derive an analogous
result for the case where the Fourier—Bessel series is used to
- evaluate the Hankel transform. The results are qualitatively
similar and characterize the error associated with bandlimit-
. edintegration of the Hankel transform on an even or approx-
imately even grid. By analogy to the Fourier transform we
will refer to the errors introduced by v101at10n of the bandli-
mited assumption as aliasing.
When the Hankel transform is evaluated approximate-

. ly as a Fourier transform using the asymptotic form for the

Bessel function and a FFT, the resulting aliasing can be de-
termined from well known results for the Fourier transform.
Upon replacement of the Bessel function with its asymptotic
form in the Hankel transform, Eq. (1) becomes

P (r) (\2/ar) J G (k,)cos(k, r—ﬁ/4)\/_ dk,, (9)

or, expanding the cosine term, -
VIR, =£.0 + £, - | (10)

Where Je(r) and £ (r) are the Fourier cosine and sine trans-
forms of \[k, G (k,), respectively,

£ = WA [ (606 R Joos(k, ik,
T | | (11)
£ = (A f [OU R Yot

Note that P, (r)is not even, unhke P (r) This approx1matlon

_can be valid only for > 0.

When these Fourier integrals are evaluated using a dis-

crete Fourier transform w1th a samphng period T, the result
is an aliased s1gna16

OB f%)”’gﬁ("";‘)

oy —Zp(on)
=z ER-) (2
A $0 that ﬁnally 4 v S
’r———P r—— - (13)
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P (r)

from aliasing in the region r> 1/2.

The effect of aliasing on the Hankel transform (when
this approximate method for evaluation is used) is to gener- -
ate 1/y/r times an aliased image of 7P, (7).

To illustrate this kind of aliasing, in Fig. 2 we show the -
effect of aliasing using the asymptotic method to evaluate the
Hankel transform of J,(k,)/k, (Ref 43). For this case the
correct transform is given by

P = HT(J,(k )) [l,

k, 0,

Figure 2(a) shows the magnitude of \/ﬁ (r) where a sampling
period of 7= 2/5 has been assumed. This sampling periodis -
sufficiently short that the rephcatlons of \/—1?’ (r) are well sep-
arated. Figure 2(b) shows the corresponding transform, P (7).

As can be seen the transform is correct in the region 0 <7 < 1.
Figure 2(c) and (d) present the analogous pictures for a sam-

0<k, <1,

1<k,. ‘(14)*

- pling period' of T'=2/3. This is not sufficient to prevent

aliasing in the region 0 < r < 1. Figure 2(c) shows \/_?’(r) for
this case, displaying the kind of" aliasing seen with the Four-.
ier transform. Figure 2(d) shows P (r). The transform suffers

It might be noted that even if P (r) is real, P, (r) and P,, 1]
will not in general be real. Further, the aliasing introduced
by sampling causes the continuation of P, (r) to r ‘< 0 implied
by Eq. (10) to be felt in P, (r} for r> 0.

If the alternate asymptotlc transform for P (r)

f Gk, )cos([k ]r~—)J__ dk,

P‘z’(r) =
(15) o

is used, similar but slightly more complicated_ results are ob-
tained. In Appendix A the aliasing result based upon ap-’
proximation of the Hankel transform by the Fourier-Bessel
series also shows degradation well described in terms of a

1/y/r weighting ofa replicated version of ﬁP (r} similar to

- Eq. (13), although there are sign changes. This result seems .
" todescribe the character of aliasing for numerical evaluation

of the Hankel transform where linear (or approximately lin-

ear) sampling is used together with something equlvalent toa

bandlimited assumption.
The importance of this result for the generation of syn- :
thetic fields can be seen from the two canonical examples

. which follow. In these examples the numerical Hankéel trans- ~

forms are performed using the Fourier—Bessel series because
among the exact Hankel transform algorithms the associat-
ed errors are best understood. Using the Fourier—Bessel se-

. ries ag an approximation to the Hankel transform, the func-

tion, P(r) is given by?*

ot el ) )

0<r<A _ : . (16)

“where A, are the zeros of Jyf+) and /1,; ~nT—7/4 Ais the

“bandwidth” of P (r) in the sense that the Fourier—Bessel se-
ries exactly generates P(r)aslongas P(r)=0 for r >A
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"We consider the numencal evaluatlon of the known in-
tegral®®:

o= (i/Jké =F7)

XexpliyFE K2 |z -+ zo\Volk, 1k, dk,
=explikfPFE T INPFEF R (17)

: This integral corresponds to the reflected field geherated by

a point source in an isovelocity half-space over a hard bot- :

tom. Asymptotically it decaysas 1/7.

Figure 3 shows the magnitude of the result of perform-
ing the transform of Eq. (17) numerically using the Fourier—
Bessel series together with the correct result. For this exam-
ple the 4 in Eq. (16) was chosen to be A = 2000, values of k;,
wereincluded up to k, <2, well above the start of exponential
-decay of the input fanction at k, = 0.8976, and z + z, was
chosen to be z + z, = 2. The output of the Fourier-Bessel
series has been displayed to twice its region of validity to
better illustrate the source of degradation. We seg that the
magnitude of the numerically generated function P (r) oscil-
lates rapidly, in contrast with the true Hankel transform. As
we will now show these oscillations are due to ahasmg in the
numerically computed Hankel transform.

We showed earlier that the eﬁ’ect of samplmg or the
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mately by*

O<r<24,
S| 1 exp[zko\/7+ z+zo) ]
=1z (f [P+ & + 2P 172
_ exp[zkml (24 —1r)°+(z +Zo)2]
\IZA [(ZA—")Z (z+z)2]1/2 )I.

-(18)

When r is much greater than z + z,, P (r) is approximately

"0<r<24,
P ()| = [P/ —
Since we are in the region r <24 this can be rewritten
' O<r<24,

2 l=lAnles — (e T T ]|

(20)

- Weécan write Eq. (20) in terms of the desu'ed transform and a
modulation term as

B = AR (AF — 24 /2T = T)e
4 2i(e™4 /34 — F)sin kyr] |, @y
which upon defining e(r) = &%/ [34 " rleaves

P(#)] = [1/r — elr/\r 1™ + 2i[elr/y7 1sin korl.
' v (22)

When 7 < 2A €{r}) is small, so that the magnitude of P(r)'

appears as roughly the correct transform with a modulation
‘term. :

kel transform is used with a fast Fourier transform to gener-
ated synthetic fields. Since in the absence of trapped modes,
the evanescent portion of the spectrum, k, > ko, is often neg-

ligible, it is reasonable and common to include  just the real -
portion of the spectrum, 0 < k, < k,. When this procedure is .
followed the Green’s function is sampled with the interval -

T =ky/N. The field is then provided by the fast Fourier
transform on the ranges -

r=—=—=np=2 n =0;1,2,..., — . {23)
: o 2

where A, is used here as the wavelengtli_ associated with the

horizontal wavenumber of the layer containing the source
and receiver. On this grid the sin(k,r) term would not appear.

The error would appear as a slowly varying offset in the
magnitude of the pressure field due to the €(r) term. If the.

output sampling rate were near but not exactly an integral

multiple of 277/k, the error term would include a low-fre-

. quency modulation from the sin k. term.

~ Thiskind of slowly varying error introduced by aliasing
on this grid is difficult to distinguish from an accurate trans--

- form. We will show that samples on. this grid can also be
misleading when the Fourier-Bessel series is used to perform

the transform, so that this phenomenon is not confined to the

asymptotic 1mp1ementatlon of the Hankel transform (see

Fig. 23). We suspect that the importance of aliasing in the
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ehl2A—r/ AR (19)

Frequently in practice the asymptotic form of the Han-
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FIG. 4 Magmtude of the Hankel transform of a pole oomputed numencally
(dots) compared with the exact result (solid curve). - :

generatlon of synthetic fields has been obscured by the natu-

ral appearance of the wn/k, grid.
B. Example 2 .
_ In this example we consider evaluatlon of the known
mtegral '
f k’ J(,(k nk, dk, =— T g Mar), Ima>0,

24) .

which decays roughly as 1/y/F when Im e is small. Poles
such as this will appear in the Green’s function when energy
is guided in the radial direction by low speed layers. They
may be present in the propagating portion of the spectrum
when the top is included [I'7(k,)3#0] and/or in the evanes-
cent portion of the spectrum when low speed layers are pres-
ent in the bottom, even for I',(k,) = 0. They also arise when
shear is included. The asymptotic 1/y/r decay of the H {!(ar)
is characteristic of the decay in two dimensions associated
with such guided energy. Since the field decays asymptoti-
cally as 1/4/r, the replicated imagé of /7P (r) does not decay
at all. The replication will produce severe problems no mat-
ter what the sampling rate and the estimate for P () will look
like noise with a 1/4/r envelope. Figure 4 shows the magni- -
tude of the numerical transform of the pole together with the
magnitude of its known transform. As with the last example '

the presumed “bandwidth” chosen was A = 2000, andinput -

values were included up to a value.of 2. The pole was at

~ k, =0.91. The results are as expected.

. A HYBRID NUMERICAL/ANALYTIC METHOD FOR
COMPUTING SYNTHETIC FIELDS '

In the previous section we showed that serious aIiasing
problems can occur when the Hankel transform is used to
numerically. generate fields that decay as slowly as 1/7. In
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this section we develop a. method for computing synthetic
ﬁelds, that significantly reduces aliasing problems by remov-

ingthe i/\/k — k? singularity in the Green’s function. We
then extend this method to remove pole singularities in the
Green’s function associated with fields that decay as 1/y7
due to perfectly trapped modes in the bottom. It is only nec-
essary to remove those singularities that are close enough to
the real k, axis to disrupt the numerical evaluation of the
Hankel transform. Unlike modal methods, the singularities

not dealt with explicitly, have their contribution included in

the numerical integration.

Inorder toimplement the calculatlons, itis necessary to
begin with the reflection coefficient for a plane wave in an
isovelocity half-space incident upon a horizontally stratified
bottom. In Appendix B we describe a technique for comput-
ing the reflection coefficient based on the Thomson—Haskell

- method*>*¢ as it applies to a bottom consisting of a sequence _
of isovelocity, constant density layers, which may include
absorption. The procedure we describe is numerically stable, .

even in the evanescent wave region where the solutions in
each layer are growing and decaying exponentials. This sta-
bility is essential if the poles associated with trapped modes

* areto be properly computed but is often not present in algor-
- ithms intended to compute the reflection coefficient only for.

horizontal wavenumbers less than k,. The discussion that
follows assumes that the reflection coefficient has already

been generated by this or some other technique.
. ) : J

A. Computing fields_wlth no trapped modes

The asymptotics of a Hankel transform are determined
by the singularities in the function to be transformed.*!
When there are no poles in the Green’s function for real &,
(corresponding to no imbedded slow speed layers) then the
i/\[k% — k7 singularity due to the source spectrurn and the

exp(i\/k3 — k2 |z + z,|) migration term must dominate the
asymptotic behavior of the field. The first of these gives rise

. to asymptotic 1/r decay as evidenced by the relation

'iko'r © .
e f (/JKE —F2) Ik, 0k, dk,, r>0.  (25)
¥ 0

The migration term, exp(ix/k2 — k2 |z + 2|), gives rise to
asymptotic 1/7* decay as evidenced by A

(& + zo)exp [iko/7 + Tz + 2 1/17 +(z + 2] o
= f " explifkZ K|z + o)) ok, Pk, dk,.  (26) -

Because the i/y/k 2 — k2 singularity is responsible for
the slow asymptotic 1/r decay, we can reduce the aliasing
problem by following an established tradition in the asymp-
totic evaluation of integrals. We remove the singularity and
determine its contribution analytically. We do so in a man-
ner, however, that insures that the remaining portlon of the
integral hds no singular behavior and can be performed nu-
merically. Denoting P, as the reflected pressure field and I
as the bottom reflection coefficient, we rewrite S

 Pal= [ PRARE R RE KR+ Sl o en

Palrl= f [T (k) — T (ko) J6ARS — R Zexpli K3 K7 2+ 20l) ol
Tk [ 6T =R hexplif B =R 7|z + 20 Sl e, d ey
 If we define | ' | . o
LK) = [I(k,) =T (ko) | (/yFE = KD Jexpliy/k2 —k2|z+zol o (29)

so that L (k) does not have the 1/\/k 2 k 2 smgulanty at k, = k, (Ref. 47) then we can write Eq (28) as

el = f L k) Jolk, i, dk, +r(ko)exp[zkow+(z+zo)21/¢ﬂ+z+zo)2 S

Because L (k,) does not have this singularity along the path
of integration, the output of the numerical transform will
decay at a rate faster than 1/r. The asymptotic 1/7 decay in

the field, P (), is provided by the analytic term which can be -

recognized as the specular reflection when r is very large
(glancing incidence). Because the numerically computed
portion of the field decays faster than 1/7, the nearfield re-

. gion will be less degraded by aliasing than a direct g:omputa-
‘tion of the Py (r). When aliasing does start to be a problem in

the numerical field, the total field will be dominated by the
analytic term, which is decaylng more slowly in 7. These
observations are confirmed in the examples which follow.

Tl;eyllvllustrate the generation of synthetic pressure fields

229 J. _Ac_oust. Soc. Am., Vol..76, No. 1, July 1984

’

through the hybrid algorithm implied by Eq. (30). The inte-
gral is performed using the Fourier-Bessel series to imple-
ment the Hankel transform and the analytic expression is -
due to the smgulanty The Fourier-Bessel series is chosen
despite its slowness, because its properties are well under-
stood. The parameters used in the next three examples are
A = 2000, k, —0 8976, |z+zol =2, and the maximum

k,=2.

1. Hard bottom ,
" Thisis the degenerate example because for I" (k,) con-
stant, the entire transform is performed analytically: The
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f = 220 Hz
|z +25]=2m
k,=.8975979 m~""

Co
Po

1540 m/s
1 g/em?

H.n

/ 7
Ci = 1493.8 m/s
py =15 g/cm?

FIGI. 5. Acoustic parameters for the slow bottom example.

result of the analytic transform was compared to the direct

pumerical transform in Fig. 3.

2. Slow bottom

Figure 5 shows the bottom parameters for this example.
Figure 6 shows the result of the hybrid calculation (solid line)
versus a-direct numerical calculation. The improvement is
. dramatic. Figure 7 compares the hybrid field of Fig. 6, with

its numerically generated component. As can be seen, the
" nearfield is in fact dominated by the numerically generated
*.component. As range increases this numeric terin begins to
suffer from aliasing problems but the analytic term begins to
dominate, mmnmzmg the effect of aliasing on the computed
ﬁeld at large ranges

3. Fast bottom

- Figure 8 shows the parameters of the fast bottom for
. this example. Figure 9 shows the hybrid calculation versus
the direct numerical calculation. Figure 10 presents the hy-
brid field and its numeric component. Thei improvements are
s1m11ar to the fast bottom case. ‘

1072
% -

1073

PRESSURE FIELD MAGNITUDE

104

10-5 ) 1 | 1 - .
o © 1000 . 2000 /3000 4000

RANGE (m)

FIG. 6. Magnitude of field calculated using the hybrid method (sohd curve)’

" compared with a direct numerical calculation (dots) for the slow bottom
example. .o .
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FIG 7. Magnitude of hybrid field (solid curve) and its numerically generat-

.ed component {dots) for the slow bottom example.
A :

Removing the source singularity could also have been

_accomplished by transforming from horizontal wavenum-

ber to angle. However, such a transformation would have -
sacrificed the form of the- Hankel transform. By removing

- the singularity in the manner described, we have preserved -
. the form of the Hankel transform and move smoothly into. '

an asymptotic evaluation of the integral. Since I (ky) = — 1,
this technique actually computes the variation of the field
around the reflected field that would arise from a ‘soft bot-
tom. How quickly the asymptotics dominate is determined
by how quickly the reflected field approaches this limit. In
general the larger z 4z, or the smaller the magnitude of
I'(k,), the longer the numerics will dominate. We will later
discuss the generation of fields for z + z, large. '

B. Computing fields with poles dué toslow speed layers

Figure 11 shows the parameters of a slow speed layer
between two isovelocity half-spaces. Figure 12 shows the
magnitude and phase of the associated reflection coefficient,

‘both for horizontal wavenumbers corrésponding to real an-
.gles of incidence, O<Re(k,)<k,, and horizontal wavenum-

bers corresponding to complex angles of mcldence,

f=220 Hz
|z+2z0]=2m
ko= .8975979 m™!

Co=1540 m/s

Po=109/cm? -

TI77TITTTTTTTT
Ci 21700 m/s

~ p1=2.0g/cm?

FIG. 8. Acoustic parameters for the fast bottom example. .
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FIG. 9. Magnitude of field calculated using the hybrid method (solid curve)

compared w1th a direct numerical calculation (dots) for the fast bottom ex- .
ample.

Re(k,) > k,. We see that the reflection coefficient has an in-
finity in the evanescent wave region beyond k,,. This is due to
asimple pole associated with a perfectly trapped mode excit-
ed in the low speed- layer.*® Since the. mode is excited by
tunneling via the evanescent part of the source spectrum, the

" infinity in the reflection coefficient does not violate conser-
~ vation of energy.*® Since the mode is constrained to propa- -

gatein the slow speed layer, which is acting ds a waveguide, it
decays in two dimensions rather than three and displays an

10° " — L
ot -
1078
R
1073 |

107

107¢ : L i 1 -
0 500 1000 1500 2000 .
RANGE (m) '

FIG. 10. Magmtude of hybrid field (solid curve) and its numerically gener-
ated component (dots) for the fast bottom example
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=220 Hz
|z +zo}=2m
0=.8975979 m™!
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Po=19/cm®

T T I
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C, = 1700 m/s
Pz =2.0g/cm?

FIG. 11. Acoustic parameters for the slow speed layer example.

aSymptotic decay of I/J; characteristic of two-dimensional
fields. _

~ Poles such as this disrupt the asymptotic chiaracter of -
the field derived in the previous section. We would like to

20 T T T
w {a)
o
=] .
= 5} i
5 .
o
<
=
'_
z
[}
O
e 10 r
w
w
o
o
=
(=]
G
ut 5F 1
Y 4
w
x . . )

0 0.5 | 1o 1.5 20
o T ke kok :
Tk, (m-*)
T T T
. (b)
Wi
w
< -
T w2
'_
z
w
o
C-
.
8 o
g .
Z
Q
=
(&)
19}
| -
-2
[i4
- 1 Load 4 L -
"5 0.5 ;1110 1.5 2.0
kzkoky
ke {m™)
FIG. 12 Magmtude (a) and phase (b) of the reflection coeﬁiclent for the slow
. speed layer example. .
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analytically determine their contribution and remove them

as we removed the i/\[k3 — k2 smgularlty To do so it is
necessary to evaluate the integral

1,2+ 26 )

= [ 2 - TR

Xexpliy/k2 — k? |z + zo|) Jolk, )k, dk,. (31)

- Tn Appendix D we show that for Im(e,)>0 (associated
with no return from r = «) I{r, z + zo, a;)is glven by

I(r,z+zya,)
_—1 f - explikp” + §’)
7+
- (117/2/9 )H&‘.’(a,-r)e —Blet =, (32)
where B is defined as

e~ Blz+z— §ld§

p= +Z—K3. | 63)

The second term in Eq. (32) has the form of a conventional
modal field. It has a logarithmic singularity as r approaches
zero. This singularity is canceled by a logarithmic singular-
ity in the first term at 7 = O when z + z,%0. The total func-

“tion I (7, z + z,; @;) is finite everywhere and can be computed

~ accurately for all . As such it is superior to the standard
modal form as a representation for the pole contribution.
For small values -of 7, I(r, z + zy; @;) is computed by ex-
panding the integral in the first term asymptotlcally around
its logarithmic singularity. The asymptotic expansion of the
Hankel function in the second term around its logarithmic
singularity is then used so that the two singularities cancel.
For large ranges the first term rapidly approaches

_—le)'(p[ikm/;2 z +zo)7] _ : (34)
2B8* [r'2+(2+zo)2]”2 T

wh1ch decays as 1/r and is eventually dominated by the N

decay of the Hankel function in the second term. Ininterme-

diate ranges the first term can be eas11y evaluated by numeri-
cal integration.

With I{r,z + 2z, a; ) so deﬁned the reflected pressure
field can be wntten as

P =f°° i (r %
R(r) : b (kg-kf)”z( ( r) Ekz )
Xexplif k3 = k2 |z + 2o]) Jolle 1k, dk,

+ Y al(rz+ 2 a;), ' (35)

where the expression in large parentheses no longer has any
poles near the lme of integration and so can be evaluated as
before.
. Equations (32) and (35) are correct for Im(e,) > 0, and
poles off axis could in principle be removed in this manner as
~ well. However, when Im(a;) > O the poles no longer contri-
bute asymptotically as 1/y/r because the Hankel function
decays exponentially.. Under these conditions the asympto-
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tic form of the Hankel function becomes

H W@,/ =2/ lra,ne' ~ ™
= 2/ (ma,;rle = "o — i, (36)

As Im{a,) becomes large, the exponential decay dominates
the 1/4/r decay even over the finite range that concerns us
and single off-axis poles do not contribute significantly to the
asymptotics of the field. This coupled with the fact that it is
difficult to determine the location of the off-axis poles accur-
ately accounts for the fact that we remove only those poles
near the real axis (close to the path of integration) and leave
the others to the numerical part of the transform.

In order to remove the poles as required in Eq. (35) it is

“necessary to determine with precision the pole locations ¢,

and their scales a;. The pole locations can be found using -
standard complex root finding techniques, though care must
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FIG. 13. Magnitude {a) and phase (b) of the reﬂectlon coefficient after the :
pole has been removed for the slow speed layer example
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Log|T (k)|

ke=

FIG. 14. Perspective plot of the log magmtude of the reflection coefficient
for the slow speed layer example.

be taken to provide the root finding algoﬁthm with values of
the reflection coefficient on the Riemman surface so that it

© appears analytic except at isolated singularities. This means

that the branches chosen for the square roots must be taken
in such a manner that a branch cut is never placed between
pomts used simultaneously in a calculation by the root find-
er. Once the root locations are known, the scale factors can
be found for those singularities far from any others by deter-
mining a least squares fit to :

Lk)=a/tk} —ad), j=12,.,N, (37)

provided that the k, are taken sufficiently close to a; that

I (k,) is well approximated by just one pole in that region.
If many poles are clustered together, they can be deter-

mined simultaneously by solving: :

a; R )
I"(k,j) . 27{'2—-—?, J= 1,2»,..., N,' . ‘ (38) )

~ for Nsufficiently large. If a pole is near a branch cut then the -

poles on the other side of the cut, on the opposite sheet, and
near the cut must also be considered to be near that pole.
Other techniques for finding or improving estimates of the
pole locations include the Rayleigh-Ritz method.?

. Figure 13(a) and (b) shows the magmtude and phase of

~ tion:
r(k',)—-.a/(k;—az). R o (39)
" Im (k)
®
®
s Re(k,)
ke ke Kk

FIG. 15. Schematlc lllustrauon of poles, branch cuts, and mtegratlon path

m the complex &, plane for the slow speed layer example.
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the reflection coefﬁclent of Fig. 12 minus the pole contnbu- '

PRESSURE FIELD MAGNITUDE
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FIG. 16. Magnitude of field calculated using the hybrid method with pole'
removal {solid curve) compared with field calculated without pole removal
{dots) for the slow speed layer example . :

For this example @ = 1.689712 X 10~2 + i5. 027826 104

.and @ = 9.069830X 10! + i2.488749 X 1075, .

Note the difference in scale between Figs. 12(a) and
13(a). The small notch visible at k, =, is probably due toa.
small amount of error in the estimate of a;,. . g

A notable feature of Flg 13(a) is an unmasking of off-
axis poles and zeros, particularly in the region k, <k, <k,
where previously |I"(k,)| = 1. These can be clearly seen in
the perspective plot of the log magnitude of the total reflec-
tion coefficient in the complex plane presented in Fig. 14 for-

10° - T L

073 e, ‘ - . .
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woslk - . T i
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FIG. 17. Magnitude of the analytically generated pole contribution (solid
curve) and the remainder of the field exclusive of the pole contribution (dots)
for the slow speed layer éxample.
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i

‘maximum k, =

the sheet Re(y/k2 — k2)>0 and Re(y/k2 — k2)>0 corre-
sponding to positive real power flow for the incident and
transmitted waves. A discontinuity extends from %, along

the real k, axis to infinity, corresponding to the branch cut

extending from the branch point at k,. Another cut extend-
ing from k, to infinity falls on this same line and is therefore
not apparent. In addition to the pole on the real k, axis, other
off-axis poles corresponding to leaky modes are also appar-

ent in the reflection coefficient. In Fig. 15, we present a more -

conventional plot illustrating schematically the branch cuts

and pole positions along with the choice of integration path '

along which Im(/A3 —k2)>0 and Im(\kZ —k2)>0,
thus guaranteeing convergence of the fields at infinity. '
" Figure 16 presents the hybrid field (solid line) versus the

* field calculated without removing the pole from the reflec-

tion coefficient (but otherwise removing the 1/\k: —k?
singularity as in the previous hybrid examples). The param-
eters used in the Fourier—Bessel series were 4 = 2000 and
= 2. The spread in the directly computed field
due to aliasing is severe as predicted for a function that de-

cays as 1/y/r. The hybrid field does not exactly follow the

“contour of the top of the spread just as the hybrid computa-

tions in the previous examples did not exactly follow those

- contours when the aliasing became severe. Figure 17 pre- -

sents the magnitude for the analytically generated pole con-
tribution (solid line) and the remainder of the field exclusive

" of the pole contribution. The nonpole contribution is most
significant for short ranges, while for this near bottom geom-

etry the pole contribution dominates farther out.

The expression for I {r, z + zy; @;) in Eq. (32) shows that |

the contribution of the pole to the field decreases exponen-
tially with |z + zo|. In this example |z + z,| = 2'm to empha-
size the nearfield behavior associated with the pole. For larg-

er values of |z+2z,| the pole contribution would be -

considerably less. Equation (32) can be used to estimate the
magnitude of the pole contribution if the pole locatlon a; and
[z + z,| are known.

IV. LARGE SOURCE-RECEIVER HEIGHTS'

In the previous section we descrlbéd a hybrid method
for calculating synthetic pressure fields. In the absence of
pol&s, the analytic contribution was given by

: I"(ko)exp[zkm/rz+(z+zo)2]/\/r2+(z+zo) , '(40); :

which dominates the reflected field as 7 approaches infinity.

_ Ingeneral, I'(ko) = — 1. Consequently, the analytic contri- -
bution corresponds to the field that would have been gener-

ated by a perfect (soft) reflector. In the absence of poles, this
is the field that will be seen at very large offsets. The numeri-
cal calculations provide the variation around this asympto-

~+ tic.expression for the field. The method is most useful when

the asymptotics dominate quickly. We have found that for
large z 4 Z,, larger offsets are required to reach the point
where the asymptotics dominate. This is intuitively reasona-
ble since larger offsets are then required to achieve the same
degree of grazing. For such a case, the hybrid procedure

~ described in the last section still improves the accuracy of
field calculatlons but a fast, eﬂic1ent method for calculatmg
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the numerical Hankel transform is also required because the
numerical transform must be accurate to a larger range.
An efficient method for evaluating the Hankel trans-

_form has recently been described in the literature.2” This

procedure calculates the Hankel transform of a function by
first numerically computing its Abel transform. When a
Fourier transform is applied to the result, the Hankel trans-
form of the original function is obtained. The numerical pro-
cedure for performing the Abel transform implements that
transform of a function, G (k,), as a convolutlon of the func-
tlon G (k,) defined as

G k) =G (Ik]) . (41)

The convolution is implemented using an FFT. with care
taken to properly handle a singularity that arises in the inte-
grand that would otherwise lead to aliasing problems. The
Abel transform algorithm (and consequently the Hankel
transform algorithm} works well provided that the input
function, G (k,) is well represented on the grid nT with
n=0,1,2,... . On such a grid, the spacing between samples is
given by (n + )T — JnT ~2~'JT /n where T is the sam-
pling period. Functions with moderate increases in complex-
ity with &, are better represented on such a grid than on an
even grid. The plane-wave reflection coefficient and the -

. Green’s function are examples of such functions. The magni- -

tude and phase plots of the reflection coefficients discussed
in'this paper are typical of these functions. They show that
I'(k,) (and consequently the Green’s function as well) have
increasing rates of change with k,. Consequently, this fast

Hankel transform method works very well for the genera- =
tion of synthetlc fields. '

We now present a realistic example with parameters
that are typical of the deep ocean,!! as shown in Fig. 18.
The sum of the source and receiver heights for this example -

. is large, making it necessary to use the efficient algorithm

just described. We assume a pseudolmear sound speed pro-
ﬁle in a sediment layer of thickness 4 so that

1/c z)—— [l/cl @11 —pBz), z>0,. © - {42) :

, A VELOCITY (m/s) .
1450 1500 1550 © 1600
-20 — :

p=1g/cm?®
a=0dB/m of 220 Hz

p=1.6g/cm?

80 : L S

FIG. 18. Acoustic parameters for the realistic ocean bo'ttom.example.
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FIG. 19 Magmtude (a) and phase (b} of the reflection coefficient for the

realistic bottom example.
- where . o
B=(/rN1=c/c). . (43)

The specific values used are ¢, = 1495 m/s, ¢, = 1483.339

m/s, ¢, = 1513.719m/s, ¢, = 1590 m/s, and # = 50 m. This
profile was approximated by 50 isovelocity layers and the
reflection coefficient computed using the procedure de-
scribed in Appendix B. Figure 19 presents the reflection co-
efficient for this example, while Fig. 20 presents the Green’s
function. In Fig. 21, we show the magnitude of the reflected
pressure field together ‘with the magnitude of the analytic
component of the calculation, for' z,=124.94 m and
z = 1.17 m. For this geometry, the pole contribution is negli-
~ gible and does not need to be removed. The computatlon was
" carried out to a range of 25 736.m in order to minimize the
aliasing effects over the ranges of interest. The numerical
contribution took aboiut 1 min on a VAX-11/780. To
~ achieve a comparable accuracy, about 8 h would have been
“required if the Fourier-Bessel series had been used..
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FIG. 20. Magnitude (a) and phase {b) of the Green’s function for the realistic
bottom example. ) .

Figure 22 shows the total field, obtamed by adding the .
source field e”"”*°/R0 to the computed reflected field, where. -
Ry =Pz = z,)%. Also shown is a synthetic field calcu- -
lated for the same case using a ray method developed by
Bartberger and described in the references of Ref, 11. The
ray method contains a phase correction, but no amplitude

. -correction, in caustic regions. Because this field is generated

by such a completely different method; the close correspon- -
dence between the two fields is a strong indication of the

validity of our procedure. The only appreciable dlscrepancy ;
occurs in a caustic region where, as mentioned, thls ray

method is known to be inaccurate.

Figure 23 shows the magnitude of this ﬁeld generated”
using the Fourier—Bessel series (with 4 = 6000 m and maxi-
mum k, = k), where the Green’s function has been inade-
‘quate, sampled together with the magnitude of the field gen-
erated using the Hankel-Abel program. The output of the
Fourier-Bessel series is shown on the set of samples 7n/k, -
forn =0,1,2,..., N/2, whlch is theset that would have result-
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FIG. 21. Magnitude of reflected pressure field calculated with the hybrid

method (solid curve) and its analytic component (dots) for the realistic bot-
tom example. : ’

ed if an FFT were used to approximately evaluate the Han-
kel transform and values of the Green’s function were used
exactly up to the water wavenumber k,. A comparison of the

- output of the Fourier-Bessel series with the correct field

shows that it is slightly offset, that the farthest null {in range)

is insufficiently deep and the tail has the wrong slope. These

effects are due to aliasing as was discussed in Sec. 1I and
appear as smooth errors because of the sampling grid chosen

for the display. Without an adequaté understanding of the

effects. of aliasing, this curve might have been accepted as a .
correct representation of- the field. It has been included to
underscore the subtle effects possible from aliasing.

V. CONCLUSION

We have presented a hybrid numerical/analytical tech-
nique for computing the field due to a point source in a strati-
- fied medium. This technique is based upon the exact Hankel
transform relationship between the field in the range domain
and the depth-dependent Green’s function in the horizontal
wavenumber domain. The approach was basically numeri-
cal in nature, as the discrete implementation of the Hankel
transform was viewed and treated in a manner analogous to
the discrete implementation of the Fourier transform. With-
in this context, sampling was identified as the major source
of error, and it was shown that severe aliasing errors can
arise in computed fields due to undersampling at infinities of -
the Green’s function. Aliasing results were derived using
both the asymptotic and Fourier—Bessel series Hankel trans- -
form algorithms. It was shown that the aliasing errors could -
be substantially reduced by removing the infinities and com-
puting their contribution to the field analytically. The resul-
tant procedure is one in which, in principle, the sum of the
numerical and analytic parts always equals the true field.
Unlike standard modal methods, the two parts are finite
even at zero range, and explicit branch line integrals do not- -
appear. The technique includes the evanescent portion of the
Green’s function and accurately generates the effects due to
trapped modes. The trapped modes can dominate the field -
for large offsets because of their slow asymptotic decay. The
method is accurate both in the near- and farfields.
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The method was developed in detail for the acoustics

problem of a monochromatic point source and receiver in an
isovelocity fluid half-space overlying a horizontally strati-
fied fluid medium. It was found that under circumstances of
interest in ocean bottom acoustics, where the Green’s func-
tion consists of a finite continuum with a few infinities to be
removed, the technique is effective, efficient, and extremely
accurate. It was demonstrated for a hard bottom and a slow

_ and fast isovelocity bottom examples using the Fourier—Bes-
sel series, A new fast Hankel transform algorithm was used

to generate synthetic data for a realistic ocean bottom acous-
tic sound speed profile and experimental geometry. The re-
sults were shown to be in excellent agreement with those

-from a conventional ray technique in those regions where the

ray techmque is believed to be accurate.
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APPENDIX A: SAMPLING AND ALIASING FOR THE
FOURIER—BESSEL SERIES :

" In this appendix we examine the form: that ahasmg

. takes for the Hankel transform when it is evaluated using the
- Fourier-Bessel series. We derive an expression that relates

the output of the Fourier-Bessel series to the true Hankel

‘transform. Because the Fourier—Bessel series uses samples .

on a set-of points that-is approximately evenly spaced, the
results we derive will be: approxmately correct for any even-
ly spaced sampling scheme.

We begin with the formulation of the Founer—Bessel

- series?+? whmh statess0

P) Jold.$ )6 d§
Jilk,)

0'<r<1 P{r)= J-
n-—l 0

‘whereA,, n = 1 ,2,3,... are the ordered zeros of Jy(+).

If P(r) = O for r> 1 then the integral in the expression

~ above is just the Hankel transform of P{r) evaluated at 4,,,
G, ), so that the Hankel transform P (r) can be expressed
' exactly as a sum; ‘

o & Gl
0<r<l, P(')?—'Znﬁ_‘,l 70 )Jo( nr)
" when P(r) =0 forr> 1. (A2

When P (r)isnot truly bandlimited to_r < land/or the sumis -
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JolAat);:
(Al

not carried out to infinity, Eq. (A2) is only an approximation
to the Hankel transform. We have considered the effect of
carrying the sum only out to a finite value when we consid-
ered the effect of windowing in the body of this paper. Here
we consider only the degradation that eccurs because the
infinite series is used in place of the integral. Finally, we note
that it is because the zeros of Jy(*), 4,, rapidly approach.
nw —} that the samphng above is approx1mately evenly
spaced.

- To determine the effect of approx1matmg the Hankel ~
transform:

Pl = f G (k,) ok, i, d, (A3)
by the Fourler—Bessel series: - ' '

0<r<l, Py= ilﬂ(’t)

we express f’(r) in'terms of the correct transform, P(r")" by
inverting (A3) to write G (k,) in terms of P (r). We substitute
this into Eq. (A4) to yield

O<r<1

GW,) Joldar),  (A4)

o o N
()—gl T )(f P@)Jomn;);dg)founr). (a5)

Intérchanging the order of integration and summation we
have

Pin= f PET.rEEdE, ~  (AS)

where, followmg the notation of Watson®* we deﬁne ',
Jold€ ) Jold r))
T r, = 2 —_ )
N( §)= ,,Z,( J3d,)
The effect of ahasmg is summarized by T (r, £). We

(A7)

~ can obtain an expression for T'_ (r, £ ) by using an asymptotic

result presented by Schlafli® 15,
Tylr, § )

_yf sindylr—£) '_
~ &) (sin(zr/zxr—_f) |

sindy(2—r—¢§) )
sin [7(2 —r —£)/2] ;
’ (A8)
whereA N = (N + J)7r. AsN approaches infinity Ty(r, &) ap-
proaches a weighted sequence of 1mpu1ses We determme

. that sequence here.

To determine the limit of the express1on in Eq. (A8) we
first consider the expressron
sin 4 NX

_ sin{Nmx + ﬂ'x/4) ( Aé)»

‘sin (x/ 2) sin (7x/2)

which equals v
SNTE_ s T 4 SOSNTE gy TE (L)
sin(mx/2) 4  sin(mx/2). " 4

 AsN—> o the first term in (A10) approaches the limit

z(—l)ka(x/z 2k). _ (A'u)‘.

The second term in Eq (A10) approaches 0 (Ref. 54). -
The limit of Eq. (A9) i is therefore given by ‘
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. A ' :
S Awx 3 (- 1)k5(—’f- — 2k ) (Al

N— o sin(mx/2) 4% 2
Using Eq. (A12) the first term in Eq. (A8) can now be seen to
approach the limit '

sin Ay(r —
—_— =2 1ks(r — 4k
W= sin [ - 5)/21 3= tror—g-ae)
The second term in Eq. (A8) can be put in the form of
Eq. (A9) by definingy =2 —r — £,

sindy(2—r—¢§)  sindyy

= =— - - (A14)
sin[m(2 —r—£)/2]  sin (7p/2) v

Combining Eqs. (A13.) and (A14) we have

_ sindy(2—r—£)

im

N—w 8in [17-(2—r—§)/2.] »

=23 (= 1)82— r— £ —4k). (A15)
k

We can determine T, (r .§) by co'mbiningv(A'13) and (A15):
llm TN(r,f)— I/J—)Z(— 1 [8(r— & — 4k)

—S2—r—f—4ak)l. . (Al6)

If our transform is not severely aliased so that P(r) is
negligible for 7> 2 then substituting Eq. (A16) into Eq (A6)
shows that .

O<r<l, .
P(r)~f P(s‘)(l/wl“)[é(r—f) -0 —r—gugd;
(a17)
which equals for_0<r<'1 (Ref. 55): g
P =P — 2 =r/ARP2 -n. (A18)

i T T * f

HANKEL TRANSFORM

o - 10 20 0 30 " a0

" FIG. Al. Magnitude of 4,7 - Hankel tfansfdrm le” kw) generated numeri-

cally using the Fourier-Bessel series.
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. (A13)

FIG. A2. Magnitude of’z\/E Toaelré ).

We observe that the ahasmg result most dlrectly relates

- JrP(r) torP(r).

An example of aliasing is presented in Flg Al wherewe

* see y/r times the Hankel transform of e —ki2 generated with

the Fourier-Bessel series. The bandwidth 4 assumed was 4.
The figure displays the aliasing terms generated by the im-
pulses in Eq. (A16). In the region O0<7r<24 the figure
matches the result indicated in Eq. (A17) very well. In the
region 24 <r <44 the figure does not correspond exactly to

- what would be determined by substitution of Eq. (A16) into -
. Eq. (A6) indicating the limited validity of Schlafli’s result.

-Figure A2 shows a plot of 2rETyr, &)
0 <r <10, 0 <& < 10. This picture supports the accuracy of
Eq. (A16) for T (r, &) for 0<r+ £<24 and suggests that -
Eq. (A16)is at least approximately correct over the range of
and £ shown in the figure. :

APPENDIX B GENERATING THE PLANE-WAVE
REFLECTION COEFFICIENT

In this appendix we develop a nunierical i'mplet,nent"a-_ _

. tion of the propagator matrix method for generating the

plane-wave reflection coefficient that is well behavé_d nu-
merically, even in the evanescent wave region. We begin by .
describing the computation of the plane-wave reflection co-

efficient by means of the Thomson—Haskell method as it ap-

plies toa sequence of isovelocity, constant density layers.*>S
The wavenumber in each layeér may be complex, thereby

accommodating absorption.

A. The method in principle '
1. Overview

To calculate the plane-wave reflection coefficient we
consider the response of a layered bottom to an incident

_pla:ne wave as shown in Fig. B1. Within the nth 1sove1001ty

layer we express the field as the vector

P e
-[U(z)]n"?"‘"’__‘" . e

~-where P, (z) is the pressure in the nth layer and U, (z) is the
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FIG. BI. Isovelocity layered bottom model used in reflection coeﬂictent
calculations.

normal component of the velocity. We have chosen this re-
presentation because P (z) and U (z) are continuous in z, even
across layer interfaces. In the discussion which follows we
will suppress the time and radial dependence of ‘the ﬁeld
because they are the same in all layers.

* Inthe propagator matrix approach, the admittance (m-
© verse impedance) at the bottom layer is the characteristic

admittance at-oblique incidence because of the 1sove10¢1ty ,

half-space termination:

Yy = U(ZN+I)/P(ZN+1) (B2)

This characteristic. admittance at oblique incidence is s avail- _

~ able from the material parameters. In principle it is used to,
determine the reflection coefficient at the top interface in
three steps. First the field at the top interfacé i is related to the
field at the bottom interface by the propagator matrix: .

P g [P(z,v)

vel =% lve,) (B3)

Next the mcxdent and reflected pressure waves at the surfaoe ,

arerelated to the field at the top ] interface and then tothose at
the bottom through

[ooo] =[] e [Z‘;';J "
‘ __[au qn][P(zN)

a1 Ay U(ZN) ’

Fmally, the reﬂectlon coefficient i is calculated in terms of the

(B4)

admittance, Y, N1 using
ol % “‘2 [ JPz B5)
[ ] [aZI 257 YN+1 rsi) (B3)
sothat -
' = P_, azi“‘y}vq-:azz (B6)

Py 011+YN+1012

2 The prapagator matrix

The essential element of this approach is the propagator
~ matrix, @, of Eq (B3). In this sectlon we review 1ts deriva-
tion. - :
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Within any isovelocity layer, the field can be considered
as the superposition of a positive and a negative travelmg
-wave. The pressure field is given by

()__P exkz+P tkz (B7)
The normal component of velocity, U (z), is related to P(2)

_through the telegraph equations.* For the non-normal case

weuse -
Jz ot
which implies that
. : ‘ ik, z lkz .—i z .
Ulz) P %2 p ok (B8)
« : iwp

or defining the admittance ¥ = k,/wp,

Ule)=YP, ™" — yP_e™ ", (BY)
In matrix form Eqs. (B7) and (B9) become
i ik, z — ik, z ‘
.P(z)] _ [ e . e .k, ][P_?_]. (B10)
U(Z) Yokt Y —ikz|| p

If [£%) ] is known at some point in the layer then [‘{}‘fl’, ] can

be computed in principle by inverting Eq. (B10) to find [ ]
P(z)

* in terms of [ ] and then calculating [{}({;’,] from [£- 1

Combining these operations into one step gives
[P(ZZ)] _ [e—ikzz2 e—ikzzz ]
Ul " Lrehn — yemtn

ik, z iz -1 .
e e M P(zl)] :
xt P [ o], (Bl
[Yelkzz, —-.Ye_lkZZI] .U(Zl) ( )
which leads to
P(Zz)]
Ulz)) »
[ cos k,(z, —z)

_ (/¥ )sin k2, - zl)] [P(z,)]
~livsink, @, —z)

- cos k,(z, — z,) U)l
(B12)

The values of k, and Y are functions of the material param-
eters of the layer under consideration: In particular if ¢, is -
the sound speed in layer n, P its density, k, the horizontal -
wavenumber of the incident plane wave (by Snell’s law com-
mon to all layers), and w the temporal frequency of the cw -

source, then k, E-ca/c,,,hkz =.k2 -k 2, and Y=k 2/ ap.

P (Zz)] [ (2, )] :
D,z
. [U(zz) s = 1) Ufz)
when z, and z, are both within layer n.
To calculate the field at the top interface in terms of the

field at the bottom interface, as shown in Fig. B1, we can use -
the previous discussion which was applicable only to a single

(B13)

: layer, to relate the field at z, to the field at Z,_q:
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Plz,_,)] 'P(zn)] _ [P(zn)
[U(zn_l)] = Pulens _z"’[v(zn) =% v
- o ' (B14)

We then iterate the procedure through all the layers to find

P(Zo) . P(zn) ¢[})(zn)

U(zo)]z‘p"pz"‘“”"[v(zn) =?lue)) BV

B. Numerical implementation
1. The modified propagation matrix.

The bulk of computation associated with the propaga-
tor matrix approach is the accumulation of the matrices
DD, - D,. When these are accumulated on the computer,
the actual operation is @,[ @,(- Py)]. It is possible for the
scale of the accumulated product to differ dramatically from
any given @;, particularly in-the evanescent wave region,
where the solutions in each layer are growing and decaying
exponentials. Because of the limited dynamic range in the
computer it is advisable to scale terms to make them compar-
able before accumulation. Fortunately the final calculation
for the reflection coefficient depends only on ratios of ele-
ments in @. For this reason we normalize each of the &, so

that its largest value equals 1. This procedure alone could v

cause another problem stemming from the different scales in
general for P and U, which is due to their different units. To
bring P and U into the same units we do not actually relate:

[P(zn_l) o [P(z )]
Ulz,_,) Ulz,)
but .rather consohdate anits by miﬂtiplying the normal com-
ponent of velocity by the characteristic impedance for

oblique incidence of that layer Therefore we actually calcu-
late

P(‘z(;) '=[ a [ ] Plzy)
_goU(zo) o §1_b1 §1a1 End NaN Uiy
(B17) .

where
;i =“’Pi/kz,i =/Y,
&= VG
a,=cosk,,(z; —z,_,),

b= —isink,,(z; —z,_,).

2. Relation of the modiified, propagat/on matrix to the /nc:/dent :

.and reflected wa ves

We now relate the field variables to the incident plane
wave and the resulting reflected plane wave by slightly modi-
fying Eq. (B10). We assume that the top mterface isatz=10
so that- .
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(B16)

[ PO)]_ [t O][1 1 P+,o]

£,U(0) -ls & [Yo —Y(,HP_,O (B1E)
and :

JPeo] 1t Y, 11 0][ PO)

_P_,J“?[l, —1/Y0Ho YJ[;OU(O)]' (B19)
By defining

F¢“ ¢12 [ ] 20

VRES i P (520}
and using Eq. (B17) we have

-P+,0__1 -1 ][én ¢12[P(ZN) oy

_P,,o]‘?[l Y| P

We now need to use the fact that the pressure and velocity
fields in the last layer are made up of only positive traveling
waves so that [referring to Eq. (B10)] Py, , =P(zy) and
Uyy1 =(1/8y,)Plzy) and we have

[P+-°]=l ¢11+¢21 ¢12+¢2z][ ]P
P_, 204y — 0y b12—9n gN/§N+1 a1
: (B22).
If we now use
§N+1,E Sn/Cnar (B23)
we have the reflection coefficient ' '
= P_, — 11— P f§N+1(¢12 - ¢22)_ (B24)
Pio Sutéy +_§N+41‘(¢12 + ¢22)

Equations (B19) and (B24) show that this approach uses
only the ratios of the impedances in adjacent layers and nev-
er the impedances themselves. These ratios are much better
behaved in general than the individual impedances. For this
reason, because of the use of Pand { Uinstead of Pand-U,and

* because of the scaling of the layer propagation matrices this

implementation of the propagator matrix approach has good
numerical propertles

APPENDIX C: THE VALUE OF THE KERNEL FOR THE

- NUMERICAL PORTION OF THE HYBRID ALGORITHM
- ATTHE WATER WAVENUMBER .

In this appendix we derive the value of L (ko)'discu'ssed
in Sec. III. L (k, ) is defined in that section by Eq. (29) as

L (k) = {(i[ (k) = (ko] k5 — K7}
4 xexpli/k2 —k2|z|),

1

where we use |z| here in place of |z + 2| in the text. We seek

to evaluate the limit

lim ‘L (k,) ) (©

under the condition that the 1mpedance of the bottom,
Z(k,), isfiniteat k, =k, = .

At k, =k, Eq. (C1) takes the indeterminate form 0/0. -
We evaluate the limit in Eq. (C2) by vusmg,L’Hopltal’s rule:
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Jim ([ (k,) — (ko) Jexpliy &3 — RZ |y K7}
. (3, . s
= Jim (-G ~ Lk Jexpi k3 = 1))
'x(az | 'k.g—kf)__l. - (C3)

After separatmg out the terms that approach zeroask, — k,
thls expression becomes .

l1m Lik,)= hm (—z\/k2 %2 Z/k )F(k)
Xexp(t,/kz —k2|z|) o - (C4)

where I(k,) = ar (k, V/ok,.
‘We now express I"(k,) in terms of the characteristic
impedance at oblique incidence of the upper half-space, £,

and the impedance at the interface which we will denote as -
Z,. Both , and Z, are functions of &, in general. In terms of
these I"'(k,) is given by :

— L MNZy +&o). ()

I'k,)=(Z,
Taking derivatives we find
L (k) =2[(Zigo — ZibM(Z, + £oP1- - (ce)

We now use the characteristic 1mpedance of the upper
half-space

So —pow/\/kz Kz, | ()

where p,, is the density of the half-space, w is the temporal
frequéncy, and k, = w/C, where C, is the speed of sound in -
the upper half-space. Substituting Eq. (C7) into Eq. (C6) and
evaluating Z0 we have

Fif)= 2(Z,(pow/\/k3 —k7) — [k, po/(k} —k%)?“]zl) _ 2( Vk5 —k1Z,pow — (K, por/ K] —k%)zl)
T\ ZT 422y poo/\ kG —k7) +ppe’/ kG —k2) ) \Z3(k2 —k2)+2Z; ppor[KD — K2 + p2 0
. ! __ o “ . ()
Substituting (C8) into (C4) we find ) . , -
- —ifk3 —R2 | JRE—kZ poZ; — (k, poo/JKE — k2 -
K, — ko Ky ko, k, ' (k2 k2)+221p0a)(k2 k2)1/2+p(2,co2. SRR
or . . _ . . : .
Lko) = — 2iZ,(ko)/pow 1 - (C10)

prov1ded thatlim, _,, (k3 — k2)Z,(k,) =

Ifthe interface is between two 1soveloc1ty half-spaces, the expression (C 10)for L (k ) can be written dlrectly in terms of the
material parameters. For this case Z,(k,) = p,a)/w/k2 — k2. Z (ko) is finite because k,#k, (if k, = korthere would be no .

v mterface) At the interface between two isovelocity half-spaces, L (k) is therefore given by

Like) = = 2ip\/po[kT — k3. (Cl11)
APPENDIX D: EVALUATION OF THE POLE CONTRIBUTION TO THE FIELD FOR SEC m B

Here we evaluate the pole contnbutlon to Eq. (31): . _

1e5p)= [t s el =7 ) pr . - A 1)

where we use |z| in place of |z + z,|, which was used in the body of this paper We evaluate Eq (Dl) by determmmg a partial

differential equation that it satisfies and solving that equatlon

Taking the second partial derivative of Eq. (Dl) with respect to z'we have

2 tran)=| Z:i T ! A exp( T =77z Jo prip dp + 2812
f ’“pk "p” i2)1,2exp(zdk’—pflzwo(pr)pdp | ‘ ooy
If we use ‘ B . |
8l2lf(z) = 8(af(0) for any fiz), (D3)
then Eq. (D2) becomes .
Ptz p)= LK1 BT = 5% |2]) Il prip dp — 26 J 4 (D4
Strnne)= e 2)1,2 exp(z =5 l2l) I prio dp — 2502 f dorpdp. (DY
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Putting it all together we have

(&~ - (st~ k)10 p fWep(zJ KT 2l) Jo prip dp — 2612) f

o er d. (D3

2= p,? —k?, choosing real pal_'t of B> 0, and using

If we define _ _
f -(k_z—t;)_”—z_ exp(ivVk? — p%|z|) Jof prip dp = explik P + Z2)/P +2° (D6)
o — - .
together with-

f’ T 2 —— Jol prip dp = Ko — sgn[Im(p,)}ip,r} =

where
'x<0,

w={"
- SEIT = 1, z>0,

Eq. (D5) b@ﬁes |

(o) 10z00 =

when Im( p;)>0.

422

The Green’ s function for this differential equation is given by

G(r,z,g)_(..l/zﬁ)e lz—£18,

E}.(.B.(.l_k___.__..._ V;+) -+ iﬂS(Z)Hg,( Pir)’ .

=T HYpr), when Im(p)>0, (D7)

j(D8)

(D9)

Using this for the impulsive response and convolvmg with the contmuous dr1v1ng functlon to obtam the partlcular solution we

obtain -

I(r,z;pQ)_% [

when Im(p;)> 0

(’.2 + 52)1/2

: exp(zk\/;z+§) —Blz—é‘ldg_

e | |
—2—’;;H8?(p,-r)e o, . (o

The general form of thls express1on which is valid for all p, is given by |

. : —1
I(I‘, Z;Pi) = f (rz +§2)1/2

Where Kl ) is the modlﬁed Bessel function of order 0.
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