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Abstract

Multi-class classification can be adversely affected byahsence of sufficient target (in-class)
instances for training. Such cases arise in face recognispeaker verification, and document
classification, among others. Auxiliary data-sets, whiohtain a diverse sampling of non-target
instances, are leveraged in this thesis using subspacerapl giethods to improve classification
where target data is limited.

The auxiliary data is used to define a compact representtitainmaps instances into a vector
space where inner products quantify class similarity. Withis space, an estimate of the subspace
that constitutes within-class variability (e.g. the reting channel in speaker verification or the
illumination conditions in face recognition) can be ob&drusing class-labeled auxiliary data. This
thesis proposes a way to incorporate this estimate into YHd Bamework to perform nuisance
compensation, thus improving classification performaeether contribution is a framework that
combines mapping and compensation into a single linear adsgn, which motivates computa-
tionally inexpensive and accurate comparison functions.

A key aspect of the work takes advantage of efficient pairaiseparisons between the training,
test, and auxiliary instances to characterize their icteéya within the vector space, and exploits it
for improved classification in three ways. The first uses tdwall variability around the train and
test instances to reduce false-alarms. The second asshengstances lie on a low-dimensional
manifold and uses the distances along the manifold. Thd thitracts relational features from a
similarity graph where nodes correspond to the training,dad auxiliary instances.

To quantify the merit of the proposed techniques, resulexpkriments in speaker verification
are presented where only a single target recording is pedvid train the classifier. Experiments are
performed on standard NIST corpora and methods are companegl standard evaluation metrics:
detection error trade-off curves, minimum decision comtsl equal error rates.
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Chapter 1

Introduction

This thesis explores the problem of training one-versusaalti-class classifiers when limited target
instances are available. We propose graph and subspacedsdtiat leverage auxiliary data (class-
labeled non-target or unlabeled instances) to mitigatativerse effects of limited target instances

for training.

The aim of one-versus-all classification is to separatent&s of one class from those of all
others. While instances may belong to any of a multitude a$s#s, only a select subset is of
interest. We refer to these select classes as targets, arddb, train a one-versus-all classifier to
separate instances into target or non-target. An impoassect of training accurate classifiers is the
availability of a large number of instances from the target aon-target classes, as demonstrated
by the example shown in Figure 1-1. The figure shows threesifilas trained to preform one-
versus-all classification. The classifiers, representethéysolid and dashed lines, are trained to
distinguish between the s and —s, target and non-target instances respectivelygin Once the
classifiers are trained, slope and intersect of the linesetren instance that lies above the lines is
classified as a target and below as a non-target. Theseatebisuindaries vary according to how
many instances are available for training: The “1 train”idien boundary assumes only the circled
target instance is available along with all the non-targ&strain” extends the training data by
including the squared target instances, and “All train"sugkethe target instances. It is worth noting
that though “1 train” separates the circled target from the-targets, it fails to properly classify 7
of the + instances, while “3 train” erroneously classifies-3nstances. Thus, the accuracy of the
classifier is adversely affected by the limited availapibf target instances for training. This is of

concern since the collection of sufficient target trainiagpadfor accurate classification is sometimes
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prohibitively costly or simply not possible. In such cases$arge volume of auxiliary data, which

can be exploited to mitigate the effects of this deficiencgy e available or cheap to collect.

O 1 target training
[ ] 3targets training

1 train

Figure 1-1: Effect of limited target data.

The problem of limited target data arises in several tagkduding face recognition, audio
mining, author recognition of documents and speaker vatifin. In face recognition, the instances
are face images. Several target instances may be providediltba classifier, but these do not
span the full set of lighting conditions, backgrounds angtwee angles needed to fully specify the
variability of the target. Auxiliary data, such as persabdled face images under different capture
conditions as well as a large collection of unlabeled instanmay be used as additional training
instances for the classifier.

In speaker verification, instances are recordings of spaadhargets are particular speakers of
interest. Only a small number of target speaker recordingg Ine available, as in the core tasks in
the NIST speaker verification evaluations [1], which previzhly one target recording to train the
classifier. In this case, a large amount of auxiliary inst@nsome labeled, are available for use in
training. These are chosen to contain a diverse set of spgeakd recording conditions and provide
information about how recordings differ across speakersyell as the variability within the same

speaker’s recordings.
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In these scenarios, auxiliary data can be used for betteelngdand representation of the
target, as an impostor set in discriminant classifiers, &rability compensation and for inducing

graph-relational features:

e At the modeling level, the limited target data does not alfomtraining a rich representative
model of the target. However, auxiliary data may be useddio & generalized model with a
large number of parameters that captures the aggregateitwebbthe different classes. The
parameters of the generalized model can then be fit to thiableatarget data to provide a

target model [2].

e The parameters of the generalized model can also be fit teidugil instances, and the space

of adapted parameters used as a vector space in which teeepthe instances [3].

o If the auxiliary data is known to not contain any target ddtan it can be used as an impostor
data-set to define the decision boundary in a discriminatassifier, such as a support vector

machine [3, 4, 5].

e Class-labeled instances can be used to estimate subspacesgture the within and between
class variability. Once estimated they can be used to ingoneedeling, or incorporated into
the classifier [6, 7, 8].

e Assuming a comparison module that measures similarity dtviwo instances is provided,
one can perform thousands of comparisons between the tardetuxiliary instances to form
a similarity matrix. The matrix can then be summarized inlati@enal graph where nodes
represent instances and edges exist between two simitanges, where similarity is defined
by the summarization method. The relational graph has beed for manifold discovery
and embedding [9], and in semi-supervised algorithms téoébgvailable unlabeled data for

training [10].

e Once a classifier has been trained, it can be scored agaiesbhispostor instances and the

mean and standard deviation of these scores can be usebtateathe classifier [11, 12, 13].

This thesis focuses particularly on machine learning tegles that leverage auxiliary data

to improve classication when limited labeled target datavigilable. The next section gives an
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overview of the thesis without considering specific appiass. The rest of the thesis, however, fo-
cuses on the speaker verification problem and discusses/al@ies the proposed methods within
that framework.

Chapter 2 will describe the speaker verification probleresent an overview of the literature,
and present the thesis contributions. Chapters 3-9 wil gmesent a contribution in detail. Ap-
pendix A briefly describes support vector machines, Ganssiature models and relevant adapta-

tion techniques.

1.1 Thesis Overview

ﬂ)mparison

Space

Compensatio\

l- J d. °
A.o.o. ﬂ:. o »
Inner Product , @
Decision Functions 1 -
¥
A 81
\ ®e &2
Y g
84
8s
86
False Alarm
Reduction Manifold Graph-Rel
Distance @ Features@

Figure 1-2: High-level overview of the thesis

Figure 1-2 presents a high-level overview of the differeatysvthis thesis leverages auxiliary
data. First, we use the auxiliary data to define a vector sphege vectors represent instances, as
well as the corresponding metric used to compare them, agnsimothe top left corner (A) of the
figure. The auxiliary data is then used identify nuisancespabes in the inner-product space, and
we propose a technique to compensate for the nuisance (R), We propose a linear framework
that combines comparison and compensation (C), which atesvan efficient and accurate way

to compare instances (D). Efficient comparisons can thersbd to map target, test and auxiliary

20



instances into a single vector space (E). We use this jogresentation of the instances to explore
the local region around the train and test instances foefalarm reduction (F). The representation
can also be used to perform graph-embedding of the instdeshich we use in two ways: as

a proxy to a manifold on which the data lies (H), and to extgretph-relational features which

are useful for classication (I). The remainder of this cbaptill describe each part of the thesis in
greater detail and will refer to the different parts of Figgdr2 by their corresponding letters so the
reader does not lose sight of the high-level picture. A metaited discussion of the contributions

will be presented in Chapter 2.

1.1.1 GMM-MLLR Inner-Product Space (A)

Comparing and classifying instances is made more difficpitdrtain variations such as duration

and content for speaker verification, image size and raealuh face recognition, and document

length in author identification. It is therefore useful tasfimap instances into an inner-product
space that offers invariance to these differences. Thidbeadone by modeling aggregate behavior
of features extracted from the instances, and having theespamodel parameters be the vector
space to which they are mapped. In speaker verification,xamele, the choice of features could

be local-frequency based [14, 15], while in document cfesdion they could constitute word and

N-gram counts [16, 17].

A rich probabilistic model with a large number of parametstgh as a Gaussian mixture model
(GMM) (Appendix A.2) with hundreds of mixture components,nieeded to properly model the
class variability. However, the number of features exeddtom each instance may, in general,
not be enough to fully fit such a large number of parametershdRdhan train the full model,
parameters of a universal model that captures the mukis@ggregate feature distribution can be
adapted to fit an instance’s features. With a probabilista@leh representing each instance, two
instances can be compared by comparing their respectivelmarthis has been done, for example,
using the Kullback-Leibler (KL) divergence [3].

In Chapter 3, we propose using a GMM with hundreds of mixtamponents for the universal
background model. Maximum likelihood linear regressiorL[IR) adaptation is used to adapt the
means of the Gaussians, via an affine transformation shamedagthe mixture components, to fit
the features of each instance. Starting with the KL divetgelbetween the adapted models, we
apply approximations and algebraic manipulations to éeimew distance metric which defines an

inner product space whose dimensions are the parametérs bfitLR affine transform.
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1.1.2 Variability-Compensated Support Vector Machines (B

In classification there are two types of variability: theviee¢n-class (good) and the within-class
(bad). The good, or signal, captures the between-clasatiars and enables classification, while
the bad, or nuisance, encompasses all other variabilitycthrefuses the classifier. Assuming that
the instances have been mapped into points in an inner-girgsgdace, auxiliary data can be used to
estimate subspaces of interest, for example the one th&tinsithe nuisance variability. To utilize
these estimates, Chapter 4 proposes variability-compshsaipport vector machines (VCSVM),
which incorporate the subspaces of interest into the SVMhédation, thus combining training the

decision function and the variability compensation inte @ptimization.

1.1.3 Inner Product Decision Functions (C,D)

In this thesis, we propose a particular inner-product spacka specific manner in which to com-
pensate that space (Chapters 3 & 4). There are, however lioig comparison and compensation
techniques in the literature [6, 7, 8, 3]. An unrealized effe to compare these to one another
and to understand how the interaction between the choigmefiproduct space and compensation
affects classification performance. We therefore propnsghapter 5 the inner product decision
function (IPDF) framework that combines the two and encasapa the majority of the techniques
in the literature. This unified framework allows for direcintrasting between these compensated
inner-product spaces, leading to a better understandinghaf crucial components are needed to
represent instances well. We then use this understandipgofmse a new efficient metric and

compensation that match the existing in accuracy with redwomputational cost.

1.1.4 Leveraging Auxiliary Data with Fast Comparison Functons (E-I)

The efficient compensated inner product resultant frommizH framework can be used as a class-
similarity score between two instances of interest. Theieficy further enables us to also compute
a similarity matrix whose entries are pairwise comparidmetsveen the two instances of interest and
auxiliary instances. This matrix captures the interactietween instances and contains information
that may be leveraged to obtain a more accurate class-gitsnggore. In this section, we present
the different ways we use this interaction to improve classion.

In Chapter 6, we propose algorithms that use the interacifotine pair of instances under

consideration with those most similar to them in the ausiliset to reduce false alarms.
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In Chapter 7, we explore how the similarity matrix can be swamped, by keeping only the
entries corresponding to strongest similarity, and tramséd into a relational graph. Each instance
is represented by a node in the graph and nodes are conngcteldjds if they are deemed similar
enough. These relational graphs are then used to explorthertibe data lies on a low-dimensional
manifold in the space, and distances along the manifold detvinstances are then used for clas-
sification. The relational graph can also be used for vigatbn and exploring large data-sets, as
shown in Chapter 9.

In Chapter 8, we suggest that the graph interaction betwesepdir of interest and the auxiliary
data can be used for classification. We do this by extractiog the graph several relational fea-
tures, including the graph distance used in Chapter 7 arad tmighborhood ones similar to those
used to identify false-alarms in Chapter 6. We then use thegwh-relational features in a classifier

trained to determine whether or not a pair of instances lgslém the same class.
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Chapter 2

Speaker Verification

The goal of text-independent speaker verification is tosifiasvhether a given recording was spo-
ken by the target speaker, regardless of the spoken words.isTtypically approached as a one-
versus-all classification problem where a binary classidittained to distinguish recordings of the
target speaker from those of all others. This chapter bdginwesenting how speaker verification
algorithms are evaluated, followed by a brief overview @f televant literature and finally the thesis

contributions to the field.

2.1 Algorithm Evaluation

Speaker verification is an active field with a well establisbemmunity and standardized evaluation
opportunities provided by the NIST speaker recognitioduations [1]. This section describes the

NIST evaluation scope, data-sets and metrics.

2.1.1 The NIST Speaker Recognition Evaluation

The National Institute of Standards and Technology NISTuatas the state of the art of speaker
verification, typically every other year, in the Speaker &gttion Evaluation (SRE) [1]. The most
recent three evaluations occurred 2006 [18], 2008 [19], and 2010 [20] with each containing
multiple tasks to evaluate system performance and robssttee variability such as: the length
of the recordings, number of target recordings, languag&espand channel. Each task contains
thousands of trials and each is considered independentiyeobthers. A trial consists of target
recordings to train the classifier and one recording to fBste or target trials are ones where the

test recording corresponds to the target speaker, the mamgaare false or non-target trials. The
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goal of speaker verification systems is, therefore, to lebeh trial correctly and they are evaluated
based on the number of misses and false-alarms. A miss is thhaerassifier erroneously labels a
true trial as false, and a false alarm is when it labels a faigkas true.

This thesis focuses on the core task which consists of maldeamale trials containing a sin-
gle training and single test recording, arounchinutes long, of telephony (cellular and land-line)
speech. Th&006 and2008 evaluations contain recordings in multiple languages diosvdor a
language mismatch between the training and testing reggsdif a trial, while the2010 contains
only English speech.

Each of the thesis contributions is evaluated using a sulgbe evaluations, which we will

specify before presenting each set of experimental results

2.1.2 Algorithm Evaluation Metrics

A standard evaluation tool in the speaker verificationditere is the detection error trade-off (DET)
curve. The curve fully characterizes the trade-off betwibenprobability of false-alarm and prob-
ability of miss of the system as the decision threshold isedarFigure 2-1 shows an example of a
DET plot which overlays the performance of three systemste®y A clearly outperforms systems
B and C since the DET curve for A lies below the others overtii@perating range. The curves of
B and C, however, intersect, meaning that the better chdisgsbem depends on the cost trade-off
between false alarms and misses, with system B being pedfdrfalse-alarms were more costly.
While the DET curve provides a broad overview of system parémce, systems can also be
evaluated at particular points on the DET curve. The twodhatypically reported in the literature,
are the equal error (EER) and minimum detection cost fundtioinDCF) points: the EER point
is the location on the DET curve where the probability of mssequal to the probability of false
alarm, and the minDCF point is the location where the deiaatost function (DCF) is minimized.
The DCF is a function of the classification threshold and $akéo consideration the prior on the

target speaker recordings as well as the cost of a false aladna miss:

DCF(thld) = CJ\/[issPJ\/[iss|Ta7"getPTa7"get + CFalseAlarmPFalseAlarm|NonTm"get(1 - PT(l?"get)'(z-l)

The choice of the costs)ysiss and Crajse Alarm, @nd target prior,Prq,qe¢, as set by the NIST

evaluations are presented in Table 2.1 :
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Figure 2-1. Example DET plot comparing three systems.

Table 2.1: Decision Cost Function Parameters

NIST SRE Year| Cost of Miss| Cost of False-Alarm Probability of Target
2006 10 1 0.01
2008 10 1 0.01
2010 1 1 0.001

2.2 Literature Overview

This section presents some of the more recent and populakepeerification techniques as well
as those that are relevant to the thesis. The goal is to mdkiel reader with a broad overview of

how the speaker verification problem is typically approagland to set the stage for presenting the

thesis contributions.

2.2.1 Features

As in any classification problem, the first step is to extremtfeach recordin® features{r;, rs,...,rn },
that capture individual speaker identity thus enablinggfecation. Short-time frequency based

features, such as PLP [14] and mel-cepstral coefficient fd&fures, have proven to contain this
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information. The most widely used in the recent literataegd those used in this thesis are the
mel-cepstral features. These are extracted by sliding &, dypically 25ms, window across the
speech recording, computing mel-cepstral coefficienteémh window and complementing these
with deltas and double deltas [21] extracted from conseeutiindows. Typically RASTA [22],
feature warping [23] and/or mean-variance normalizatienagoplied to the features to help reduce

channel effects. Figure 2-2 shows a block diagram of theifeagxtraction process.

Each chapter of this thesis uses a slight variation on thestirfes, and we will present the

specific configuration before providing any experimentauts.
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{ '*1 ) r*z ; r*3 ; , r*N—l’ r*N}

Figure 2-2: Sketch of the feature extraction
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2.2.2 MAP Adapted GMM UBM

For each target speaker, a generative moggl(r), can be trained to model the features ex-
tracted from the target training recordings. A universalkggound model (UBM)gy s (r), can
also be trained to model the features extracted from anianxiset of recordings representing
the general population of speakers, thus resulting in akspeadependent model. Given features
{157, r35T . 5%, } extracted from the test recordilRyr s, the binary classification becomes
a log-likelihood-ratio test that classifies the recordisgarget if the log-likelihood of the target is

larger than the log-likelihood of the UBM given the test neting:
logp({r{ ", ..., r{ 35 I TGT) — logp({r{*", ..., {75 JJUBM) > 7, (2.2)

wherelogp({r{*7, ..., r15%, }[.) is the log-likelihood of the model given the test featured aris
a threshold set based on the operating point of the DET curve.
In [2] the generative models used were Gaussian mixture m¢@&1Ms) (Appendix A.2) with

diagonal covariances and = 2048 mixture components:

guBMm(r ZAUBMZ ;Y BM,i, DUBM,i)- (2.3)

Maximum likelihood (ML) estimation of the model parametevas used to train the UBM, via
expectation maximization (EM), to fit the auxiliary data. eTtarget model is trained by adapting,
via maximum a posteriori (MAP) adaptation (Appendix A.8) means of the UBM to fit the target

data.

2.2.3 MAP Gaussian Supervector (GSV) Kernel

The binary classification aspect of speaker verification enake problem especially suited for
support vector machines (SVMs), refer to Appendix A.1. Thellenge, however, is in defining a
vector space and devising a kernel (Appendix A.1) to compateveen two recordings, possibly
of different lengths. The Gaussian supervector (GSV) keinttoduced in [24], is one particular
choice that has been widely used in the literature and ish@seomparing GMMs that model each
of the recordings:

As in the previous section, the kernel begins with a diagopaariance GMM for the speaker-

independent UBM (2.3). The means of the UBM are MAP adapteghtth recording. Thus for
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recordingsR,, & Rg, this results in new GMMs that represent them:

M M
ga(r) = Z AuBaN (rsme g, X)) & ga(r) = Z/\UBM,iN(I'Q mg;, SuBm,). (2.4)
i—1 i—1

Since only the means differ between the two models it is restse to expect that the means would

contain the information needed for classification. Thus@dgthoice for a vector space in which to

represent recordings is that of the stacked means. FigBrektches this process.

CIEWMM UBM

Jusm (@) = Z Aupm,iN(T; mypm i, Zupm,i
=1

Recording 8 Recording o
i Feature MAP Mean |, Feature <,;¢Hl‘ltL;i..__,
) Extraction Adaptation | Extraction -
gp(0) = * 1 9a(1) =

M M
N
Z AupmiN(r;mg g, Zypy,) Z AusmiN(r;me;, Zypy )
i=1 - i=1
DR

mﬂyl ~ \} \_mall
meg> mey s
mﬂ’g ‘ "\l ,l \ ma’?’
mepgy o > | Mg 4

-~

\-

[ ) = UBM Mixture Components

Different movements of means gives clues to speaker identity

Figure 2-3: Representing recordings by MAP adapted GMMs.

To formalize this choice of vector space and to define a métriger product) on it, one can

begin by considering that each recording is representetshynin probability model. Thus, com-

paring recordings can be done by comparing their correspgndodels. A good measure of the

difference between two probability distributions is the Hikergence:

D(gallgs) = /Rn 9a(r) log<

ga (1)
95(r)

(2.5)

)

The KL divergence measures how much two probability desssitiiffer, unfortunately it does not

directly induce an inner product that satisfies the Mercedimns [25] required for it to be used

as an SVM kernel.
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Instead of using the KL divergence directly, the log-sunguredity can be used to approximate
it by its upper bound [24],

M
1 _
D(gallgs) < 5 > AuBai(ma; —mg ) S5, (Mo — mg). (2.6)

i=1

Note that this approximation is removing any inter-mixtdependency, i.e. it's a weighted (by the
mixture weights) sum of distances betweenitfiégGaussian component i, N(r;me i, XuBnmi),
and its corresponding Gaussianginy N (r; mg ;, Xpar,i). The distance in (2.6) induces an inner
product, which results in the Gaussian supervector (GSkfjdtdetween two recordings [24]:

M

Ksv(Ra,Rg) = ) Aupmiml ;3% mg; (2.7)
i=1

Defining GMM supervectors to be vectors formed by stackimgntieans of the GMM,

_ - - _ - -
m, — a2 and mg = Hp,2 , (2.8)
| Ma,M | | MpM |
allows us to write the GSV kernel in terms of the supervectors
Ksy(Ra,Rg)= mlAppymg, (2.9)
| )\UBM712(_]131\/[71 0 0 ]
Aypu= ’ )\UBM’QEI}}BM’Q 0 .(2.10)
I 0 0 o AuBMMEy s |

whereAy i = diag(\u Mg pas 1 - \UBMM S50 ) 1S @ diagonal matrix, since each of
the covariance matric€Sy g)y,; are diagonal. Normalizing the supervectors by the squareafo

Ay resultsin:
1/2 1/2 ~ T ~
Ksv(Ra, Rg) = mLA[2 A2 mg = il1ig, (2.11)
wherem represent the normalized supervectors. The space spagribe bupervectors and the
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normalized supervectors will be referred to as the GSV spackethe normalized GSV space re-
spectively.

SVM training then finds the hyperplane that maximally setegréhe normalized supervectors
mrqr, representing the target recording®r¢r,1, ..., Rrarr} from the normalized supervectors
myrp,; representing the impostor on¢R;irp 1, ..., Rravrp s} in the normalized GSV space. A
test recordingRr g7 is then classified according to which side of the hyperplasendérmalized

supervectomrgr falls. The training and testing process is illustrated igure 2-4.
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Figure 2-4. Sketch of Using SVMs to Perform Speaker Veriftcat

2.2.4 Nuisance Compensation

The previous section mapped recordings into the GSV spatgariormed speaker verification
there. Itis, however, important to note that the GSV spagtucas most of the variability present

in the recording, not just the speaker information. Thisitiattal nuisance variability, in the form
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of channel, session and language differences leads to pesmifecation. Thus, there is a need to
perform nuisance compensation, and here we present twaohtst popular approaches in the

literature.

Nuisance Attribute Projection (NAP)

Nuisance attribute projection (NAP) [6] assumes there iglatively small subspace of the SVM
space that contains the nuisance variability, and profaetsupervectors into the complement of
that subspace. Ldt be the matrix whose orthonormal columns form the basis oftisance

subspace anth be a recording’s supervector in the SVM space, then NAP iBeapps follows:
mpysp = (I-UU)m. (2.12)

The directions of the nuisance subspace are chosen to beiticgal components of the within-
speaker covariance matrix [6]. An estimate of the covagaran be computed from speaker-labeled
supervectors of an auxiliary set containing multiple relanys per speaker. The within-speaker
variability serves as a proxy for the nuisance, since if #&Space contains only speaker variation
all recordings of a given speaker should map to the same. plinis, projecting out these principal

directions leads to a reduction in within-speaker and oqunsetly nuisance variability.

Within Class Covariance Normalization (WCCN)

Like NAP, the basis of within class covariance normalizai{{fd/CCN) is the estimate of the within-

speaker covariance matri¥y, the inverse of which is used to weight the kernel inner peb{irj:
Kween(Ra,Rg) = mg W™ 'my, (2.13)

wherem,, andmg are mappings of the recordindg®, andRs into the SVM space. Sinc® is
estimated from the auxiliary set, it may not be of full rank.dvercome thisW = ((1—6)I+60W),
where0 < 6 < 1is atunable parameter, is used in practice. Another issthetig method is that it

requires inverting a matrix that is the size of the SVM sp#ues, it wont work well in large spaces.
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2.2.5 Joint Factor Analysis (JFA)

Rather than model the recording first and then perform noesaompensation, joint factor analy-
sis [26] incorporates the expected variability into the elod) step. Specifically, it assumes that the
deviation of the mean supervectar of a particular recording from the UBM meam s, CON-
tains a component that lies in a low-dimensional speakesmad&V, another in a low-dimensional

channel subspadg and a residual not lying in either:

m =mypy + Vy + Ux + Dz, (2.14)

wherey andx are the speaker and channel factors respectif2lis a diagonal matrix, aniDz
represents the residual. The speaké) and channel ) subspaces, ani) are jointly trained

using a speaker-labeled auxiliary set.

When training a target model, the parametgrs, andz are jointly estimated to best fit the
features of the target recording. To obtain the clean targmdel, that captures only the speaker
information present in the recording, one discards theneddd channel contribution, resulting in

the target-speaker mean supervedtor

m =mygy + Vy + Dz. (2.15)

Speaker Factors

Since the low-dimensional speaker space essentially iosnti@e speaker information, it was sug-
gested in [27] that two recordings be compared in that spEleis. led to the speaker factor kernel,
which is an inner product between the speaker factors, diadao have unitl,-norm:

Given two recording®R,, andRg and their mean supervectors

m, = mypy + Vy. + Ux, + Dz, & mg :mUBM+VYB+UXB+DZB> (216)

the resultant speaker factor kernel is

T
Ksr(Ra, Rg) = Ya¥p (2.17)

VYLYar/Y5Ys
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2.2.6 Total Variability (TV)

Similar to the JFA system, the total variability (TV) syst§8] considers the variability in a record-
ing R,, to be restricted to a low-dimensional subspace. Howevtrerdhan proposing a speaker
and channel subspace, the TV system proposes a single salitjga captures all the variability,

called the TV space. The recording’s mean supervatigrcan then be represented as
m, = mypy + Tta, (2.18)

wheremy s, is the UBM mean supervectdt; is the matrix defining the TV subspace, andis
the corresponding factor of the recordiRy,.
In the TV space, linear scoring can be performed betweerathettand test recordings to eval-
uate whether both were spoken by the target:
The scoring functios(Rr¢r, Rrsr) is computed as a weighted inner-product where the weight-

ing effectively performs channel compensation

tr o AW ATt g
\/tTGTAW lATtTGT\/tTSTAW IATtTST

s(Rrar, Rrst) =

A corresponds to a linear discriminant analysis (LDA) [29]jpction matrix, trained to project into
a space that captures inter-speaker variability whiledimgi within-speaker variability, an@ is
the within-speaker covariance matrix computed in the LDAcgp BothA and W are estimated

using a speaker-labeled auxiliary set of recordings.

2.2.7 Symmetric Score Normalization (SNorm)

It is common for speaker verification systems to be followgdalscore normalization technique.
The goal being to reduce within trial variability to obtamproved performance, better calibration,
and more reliable threshold setting. There are severaé swammalizing techniques: TNorm [12],

ZNorm [13], ATNorm [30], SNorm [11]. Here we present symnescore normalization (SNorm)

as an example.

For every score(R,,, R3) between two recordings, the corresponding SNorm sg@e,, Rs)

R.,Rj3) — s(Ry,Rg) —
§(Ra,Ry) = s 8) ~ #a S 5) s (2.19)

Oa lofé;

35



whereu,, ando,, are the mean and standard deviation of the scorBs,afcored against an impostor

list, similarly for R, pg andog.

2.3 Thesis Contributions

We now present the thesis contributions to the field of speakdfication. The letters (A-I) repre-

sent the different parts of the high-level overview showFigure 1-2.

2.3.1 GMM-MLLR Kernel (A)

In [5] & [4], alternatives to the MAP GSV kernel are proposed $VM speaker verification. The
former uses maximum likelihood linear regression (MLLR pttapt the means of the GMM emis-
sion probabilities of HMMSs representing phonetic level @stec models of a speaker-independent
large vocabulary continuous-speech recognizer (LVCSRY], the latter uses constrained MLLR
(CMMLR) to adapt the means and covariances of a GMM UBM. BottL® and CMLLR, con-
strain the adaptation to affine transformations of the usalemodel's parameters, the transforma-
tions being typically shared across all or subsets of the GNfMhe LVCSR. The kernels proposed
by these systems are inner products between vector forrhe afffine transformations’ parameters,
which is a reasonable choice since these parameters cdpéurequired discriminating informa-
tion. Though reasonable, no theoretical motivation is joled, thus leading both kernels to rely on
ad-hoc normalization of the transform vectors in the kexni@] uses rank while [4] uses min-max

normalization.

In Chapter 3, we follow a similar approach to that in sectio®.2 to derive a theoretically
motivated kernel between two GMMs adapted from a UBM usingMLmean adaption. As with
the other MLLR kernels the resultant is based on an innetkpbbetween the affine transform
vectors. Our approach, however, provides a specific way tmalze the vectors that is based on
the covariance and mixture weight parameters of the UBM. @epare our motivated weighting
against ad-hoc ones and show a clear advantage. Even thoaghesis derived the MLLR kernel
using a GMM UBM, it can be directly extended to the case wheedtBM is a speaker independent
LVCSR.
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2.3.2 Variability-Compensated Support Vector Machines (\CSVM) (B)

Even though NAP and WCCN, Section 2.2.4, are both based oa setiiate of the nuisance space
computed using auxiliary data, they present two differgmiraaches to nuisance compensation for
SVM classification. NAP was developed under the assumptiah the nuisance subspace is a
relatively small one and can be discarded. WCCN on the otdued kdoes not make that assumption

and instead re-weights the full SVM space based on the mesastimate.

Since the end goal of nuisance compensation is improved Skbsification, we chose, in
Chapter 4, to combine the compensation and classificatiorailsingle training algorithm. We do
this by incorporating the nuisance estimate into the SVMnagation. This approach leads to a
framework that includes NAP and WCCN as specific instanceallevs for tuning to achieve better

compensation. Our method also extends WCCN to work in laigerkional spaces efficiently.

2.3.3 Inner Product Decision Functions (IPDF) (C,D)

The MAP GSV, Section 2.2.3, kernel is one of several speak@iparison techniques that results in
an inner product between mean supervectors; other exammplade the Fisher kernel [31], GLDS
kernel [32], and a linearized version of the JFA scoring [38he speaker verification literature
also contains several nuisance compensation technigaesetult in a linear transformation of the
mean supervectors, e.g. NAP results in an orthogonal giojeand JFA could be reformulated
as an obligue projection. This diversity in linear compams and compensations is due to the
different approaches to the problem. Even though the sesLigorithms can all be formulated as a
combination of linear comparison and compensation, they significantly in terms of verification

performance and implementation cost.

To better understand the discrepancy in performance batsystems, we propose in Chapter 5,
a framework that encompasses all these linear comparisbic@npensation techniques. Placing
the competing algorithms in this framework allowed us to pame them side by side and under-
stand which of their sub-components were crucial for goahker verification performance. The
framework was also useful beyond just comparing the exjstiystems, as it motivated new com-
parison and compensation combinations that match stateeddirt performance at a significantly

reduced implementation cost.
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2.3.4 Relational Algorithms and Features (E-I)

The availability of low-cost comparison functions, suchtlas TV system [28] or those motivated
by the IPDF framework, allows one to leverage auxiliary esgts in speaker verification by sup-
plementing the comparison score between the trial recgsdivith their similarity score with the

auxiliary recordings. In this thesis we propose severalstaydo this:

Local Neighborhood Methods for Reduced False Alarms (F)

The first set of techniques were motivated by the update tdétection cost function (DCF) in the
NIST SRE 2010 [20], as is seen in Table 2.1. These changeg ico$ts move the minDCF point
into the low false-alarm region of the DET curve, for whichditional comparison functions and
score normalization techniques are not optimized.

In Chapter 6, we propose methods that specifically tackléothidalse-alarm region by examin-
ing the interaction of the trial recordings with their imnieté neighbors, auxiliary recordings that
are most similar to those of the trial. This local interastie then used to identify suspect false-
alarm trials, which tend to be trials whose pair of recordingatch auxiliary recordings better than
they match one another. Once identified, a penalty functaseth on the degree of neighborhood
similarity is used to penalize the trial by reducing its nas¢core. The resultant proposed methods
take on the form of adaptive score normalization. Our expenits show that the success of these
algorithms hinges on having a good match between the tedéteg which contains the trial record-
ings, and the auxiliary data, with significant improvementtie low false-alarm region when they

are well matched.

Graph Embedding to Identify and Leverage Structure (G,H)

The relational interaction between the trial and auxilieegordings can be extended beyond the
local neighborhood to uncover global structure such asfwoldsi This can be done by embedding
the trial and background recordings as nodes in a graph agesdabtween the nodes capture local
similarity. Though the graph relies on local similaritycaptures global structure in the data and
can be used as a proxy to the manifold on which the speechdiagsrlie. The shortest path along
the graph edges between two nodes is, therefore, an apgtemto the shortest path along the
manifold between the corresponding recordings.

In Chapter 7, we show how graph embedding of speech recardiaig be done, and use it to
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form relational graphs of the test and auxiliary data. Watlrge the resultant graphs to empirically
show that there indeed does exist an underlying low-dinogiasimanifold that captures the vari-
ability in the data. We also propose using the shortest piatarece along the graph between two
nodes to perform speaker verification. We argue that thigigggs a more accurate representation
of the true similarity between recordings than the scoreigeal by the direct comparison function
used to build the graph. We then present experimental sethdt show the efficacy of this graph

distance for speaker verification.

Graph-Relational Features for Speaker Verification (1)

The relational graph captures more than just the local iédion, which we used for false-alarm
reduction, and the shortest path distance, which we usedsasilarity score. In Chapter 8, we
attempt to extract features that capture additional matiinformation and use it for speaker ver-
ification. These graph-relational features are motivatethb link-prediction problem, which pre-
dicts whether a link should exist between two nodes in a glegsged on their interaction with the
remaining graph nodes. We then use these features in dieatsidiscriminate between true and
false trials. Our experimental results show that the rateti graphs capture information relevant to
speaker verification, as evidenced by significantly impdoverification with the graph-relational

features.

Graph Embedding for Visualization (G)

Another use of graph embedding is for visualization of latigéa-sets. The visualization can be
used, for example: to explore the data-sets and uncovertste, to provide an intuitive sense of
system performance, to better understand errors in theraysind to identify errors in provided
labels. In Chapter 9, we present two case-studies as exautiae highlight the utility of these

visualizations for data exploration.
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Chapter 3

GMM-MLLR Kernel

Many classification techniques, specifically the ones dised in this thesis, require that instances,
whether they be images, documents, or recordings, be messas vectors in an inner-product
space. The goal of the vector space is to provide invariandehee inner product to provide a metric
that contains inter-class similarity. In speaker verifmat the invariance needed is to the duration
of the recordings, the underlying words spoken, and slowalying linear time invariant channels.
Once an inner-product metric is defined on the space it canlibaused as a kernel between the
vector representations (alternatively called featureaggns) of the instances for support vector
machine (SVM) classification (Appendix A.1).

Using SVMs with vector representations of instances haggordo be a popular and powerful
tool in text-independent speaker verification [24, 5, 4,3, A common method is to derive the
vector space and kernel from adapting a universal backgromadel (UBM) to a recording-specific

model that captures the speaker variability in the recgrdiExamples of this in the literature are:

e The system described in Section 2.2.3 uses maximum a-pos{®tAP) adaptation to adapt
the means of a GMM UBM. Motivated by the KL divergence betwéga probability dis-
tribution functions, the resultant feature expansion &s@aussian mean supervector (GSV),
which consists of the stacked adapted means, and the keraabéighted inner product be-
tween the supervectors. Since only the means of the modetsadlapted, it is reasonable to
expect the feature expansion to be the mean GSV. Howevet,isvhat obvious, yet crucial
for good performance, is the choice of weighting in the inpxduct. Thus, an advantage to
following the KL divergence approach, is that it motivateshaice of weighting, based on

the UBM covariances and mixture weights, which performd.wel
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e [4] adapts both the means and covariances of a GMM UBM to angeeording using con-
strained maximum likelihood linear regression (CMLLR),ielhadapts the parameters via
an affine transformation shared amongst the means and aogas of multiple mixture com-
ponents. In this case, since the covariances were alsoeallapte choice of the feature
expansion is a vector consisting of stacking the adapteshpeters, means and covariances.
Alternatively, one could argue that the transformationtgegs all the deviation of the record-
ing from the UBM. The argument, thus, suggests another ehoicthe feature expansion,
such as the one used in [4], which consists of stacking thenpaters of the affine transfor-
mation. This motivation does not, however, suggest a wayelgl the transform vectors in

the kernel inner product, and [4] resorts to min-max norpadilon of the vectors.

¢ In [5], maximum-likelihood linear regression (MLLR) adaptia a shared affine transforma-
tion, the means of the GMMs of a speaker independent largebubary speech recognition
(LVCSR) system to a given recording. Similar to the previewample, one could use either
the MLLR-transform vectors as an expansion, or the mean Gi$wWever, since the UBM
is a LVCSR, the number of Gaussian mixture components argfisintly greater than in
a GMM UBM. This makes the mean GSV a computationally expenshoice for a feature
expansion. The high computational cost and the argumenth@dLLR transforms capture
the variability are likely what led to using the transfornctas in [5]. As in the CMLLR
case, the absence of a motivated weighting leads to usilkgn@amalized transform vectors

in the kernel inner product.

In this thesis we choose to use MLLR adaptation of the mears@MM UBM to avoid the
overhead of the LVCSR system, and in hopes that the consttaiature of the MLLR transform
may help mitigate channel effects. Another goal of this wagko derive a well motivated kernel in
the MLLR-transform space that proposes a weighting of thiaéddnner product that outperforms
ad-hoc techniques, such as min-max and rank normalizabimte that, although we restrict our-
selves to GMM adaptation, our kernel derivation and theltastuweighting transfers to the case
where the UBMis a LVCSR, as in [5].

This chapter will begin with a brief overview of MLLR adagta, followed by the two expan-
sions we will be considering: mean GSV and MLLR-transforrotee We then present two kernels
in the MLLR-transform vector space which are motivated g Kb divergence. Implementation

details for the MLLR transformation are then presentedofedd by a discussion on how this work
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extends to LVCSR UBMs. Finally, we present experimentallteghat compare our KL divergence

kernels to ad-hoc ones.

3.1 Maximum Likelihood Linear Regression

Maximum likelihood linear regression (MLLR) adaptatiorapts the means of the mixture compo-
nents of a GMM by applying an affine transformation. The saffieestransform may be shared by

all the mixture components:
m; = Amypgy,; +b Vi, (3.1)

wheremg g)r,; are the means of the unadapted GMM, angare the adapted means.
Alternatively, the mixture components may be grouped itdgses and a different affine trans-

form shared by all the mixture components in each of the etass

m; = AlmUBJ\/[,i + by Vm,; € Clasq, (32)

m; = A2mUBM,i + by Vm,; € Class. (33)

In both the single and multi-class cases the transformsasen to maximize the likelihood that the
recording was generated by the adapted model [34]. The MUg&ighm computes the transforms
A andb, not the transformed meann; and subsequently additional computation is needed to
obtain the transformed means.

Multi-class MLLR adaptation allows for more freedom in atiag the GMM, since all the
means are not constrained to move the same way. The choiagnofohgroup mixture compo-
nents into the different classes and the number of classemigrivial. One can group the mixture
components via a data-driven approach that combines wgetixture components that are close
in acoustic space. Alternatively, as in this work, the ginggan be done based on broad phonetic
classes. We explore the two and four-class cases: the &gs-clase groups sonorants into one
class and obstruents into the other, the four-class cageefutivides the sonorants into vowels and
sonorant consonants and the obstruents into fricativestapd. The two and four-class break-up is
presented in Figure 3-1. As the number of classes incretigeamount of adaptation data assigned
to each class decreases. This leads to instances wheréstheteenough adaptation data to obtain

a good transform for a given class. A common method to hamdlget instances is to “back-off”
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Figure 3-1: Class-division tree structure.

from the class-specific transform and use a more generalooimartsform the means of that class.
For example, if there is not enough data to obtain a transfornthe vowels we back-off and use
the transform for the sonorants to adapt the vowels. Moraildain how the mixture components

were chosen and the back-off technique used will follow intfea 3.4.

3.2 MLLR Feature Expansions

The feature expansion is the representation of a recordiaghigh-dimensional vector space. We
will focus on the case of two-class MLLR adaptation and wikkgent two expansions which are
byproducts of this adaptation. The expansions for the ¢laba four-class MLLR adaptation are a
simple extension of the following.

The UBM is anM mixture diagonal covariance GMM(r). It is formed by a weighted sum of
two M /2 mixture GMMs: the first\/ /2 mixture components are assigned to the sonorants and the
rest to the obstruents. The process of assigning compoaedtthe choice of the weightingand

Do) are discussed in more detail in Section 3.4.

M/2 M
g(r) = ps > ANN(rmupms,Zi) +pe Y AN musg, i), (3.4)
i=1 i=M/2+1

whereN (r; my g, X;) is a Gaussian with mean; zys,; and covarianc&;. Adapting the means
of the UBM via two-class MLLR to a given recordirl8,, produces transformation matrices and
offset vectorsA¢ andbg for the sonorants and , andb,, for the obstruents. These can be used to
adapt the means of the UBM assigned to the sonorants andiebistirespectively.

The first expansion is the Gaussian mean superventorhich is constructed by stacking the
means of the adapted model. The second is the MLLR-transfeator which consists of stacking
the transposed rows of the transform matkix separated by the corresponding entries of the vector

b, followed by the transposed rows Af, separated by the corresponding entriebgf The process
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is shown in Figure 3-2.
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Figure 3-2: Two choices of feature expansions for the tvesslkcase.

3.3 Choice of Metrics

A major component of an SVM is the kernel which defines a m#tat induces a distance between
two different points in the feature expansion space. In auntext, this translates to defining a
distance between two recordings. In this section we wiltulis the different kernels we have
explored. Our focus will be on the Gaussian supervectordtesimce it is well-motivated and

performs well.

3.3.1 Gaussian Supervector (GSV) Kernel

Suppose we have two recordind, andR 3. We adapt the means of the GMM UBdMr) to obtain
two new GMMsg, (r) andgs(r) respectively that represent the recordings. This resnltagan

supervectorsm, andmg. A natural distance between the two recordings is the KLrdmece
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between the two adapted GMMs,

Dlaallas) = [ aole)tog (223 ) ar 35

Unfortunately, the KL divergence does not satisfy the Meamndition, so using it in an SVM is

difficult.

Instead of using the KL divergence directly, we consider ppraximation [35] which upper

bounds it,
M

Z )\i(ma,i - mg,i)Zi_l(ma,i - mm). (36)
=1

d(m,, mg) =

N |

The distance in (3.6) has a corresponding kernel functidi [3
M _1 t _1
KSV(RCV?Rﬁ) = Z <\//\722; 2ma,i> <\//\7222 2mﬁ,i> )

i=1

which can be rewritten in terms of the mean supervectors:
Ksy(Ra, Rg) = mL‘Amyg. (3.7)

The GSV kernel in (3.7) results in a diagonal weighting betw¢he mean supervectors. When

global MLLR adaptation is used, we will call the resultinghel the GMLLRSV kernel.

3.3.2 GMLLRSV Kernel in MLLR Transform Space

MLLR adaptation transforms the means of all the mixturesheflBM GMM by the same affine
transformation in equation (3.1). This constraint allovsstal derive a kernel in MLLR-transform
vector space that is equivalent to the Gaussian supeniaatoel. We begin by replacing the adapted

means in equation (3.7) with the affine transform of the UBNMamse

(S

M T,
Ksv(Ra,Rp) = Y (AZ— (Amypn,; + b)> (Af (Cmypa; + d)> ; (3.8)
i=1
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whereM is the number of mixtures of the UBNn 5, is the mean vector of th&" mixture of

the UBM, andA; = )\,-2;1 which is diagonal. Expanding equation (3.8) yields

1

1 T 1
Ksy(Ra,Rp) = Zgl <Af AmUBM,i> <AmeUBM,i>
v 1 T 1
+ Zi:l <Az'2 AmUBM,Z) <Az'2 d>
v 1 \7T 1
+ Zi:l <Az'2 b) <Az'2 CmUBM’Z)
M 1\ i
- >im1 <A§ b> (A; d> : (3.9)

We will focus on the first term in equation (3.9). Note thdtAt) is the trace of the matrid, ey
is a vector that has a value bfas itsk*" entry ando for every other entryA;;, is thek!” diagonal
element of the diagonal matri&;, n is the number of rows i\, and thaty, is the transpose of the
k'™ row of the matrixA..
M

1 T 1 1 1
Z (Af AmUBM,i> (Af CmUBM,z’) = S tr <Af AmUBM,imgBM,iCTAi2>
=1

- St (AiAmy g gy, CT)

= Yt ((ZZ:1 Aikekef)AmUBMngBM,iCT>
= Sho it (ekefA(AzkmUBM,imgBM,i)CT)
= > gl (efA(Zf\il AikmUBM,imgBJ\/[,i)CTek>
= Shorat (i, Awmypami gy )k

= Z angck. (310)
k=1

In a similar fashion we can rewrite the remaining terms inatigm (3.9) as follows:

M 1 T 1 n
> (A; AmUBM,i> (A; d> = dpajhy, (3.11)
=1 k=1

M 1 T 1 n

> (Afb) (AmeUBMO = bhicy, (3.12)
i=1 k=1

M

1 T 1 n
Z <A3b> (A; d> = Zbkdkdk, (3.13)
k=1

1=1
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wherehy, = S"M A omy pas, by, is thek! element of the vectdb, anddy, = - Ay, There-

fore the Gaussian supervector kernel can be rewritten as

st(Ra, Rﬁ) = ZZ:l a{chk + 22:1 dkazhk + 22:1 bkhzck + Zzzl brdrO

= TgQTg, (3.14)

wherer is the MLLR-transform vector defined in Section 3.1.
The matrix@Q must be positive-definite because equation (3.14) comphtesame quantity
as (3.7).Q is a block diagonal matrix consisting efblocks Q. of size (n + 1)x(n + 1). Equa-

tion (3.15) shows the structure of the blodRg,

H, hg
Qi = . (3.15)
YA
It is important to note that sinc€ depends only on the UBM means, covariances and mixture
weights it can be computed offline. The block-diagonal reti also allows us to easily compute
its square root. This in turn allows us to apply the model cactipn technique in [35].

An advantage of equation (3.14) over (3.7) is that the nunabenultiplies it requires only
depends on the size of the GMM feature vect8&sif our case) and not on the number of mixtures
in the GMM. Another advantage is that it does not requiresimmming the means which saves
computation and removes the need for storing the adaptedanddese two advantages and the
block diagonal structure @@ result in an overall reduction of the number of multipliesnfrO(n
(M+M?)) in equation (3.7) t@((n+1)3) in (3.14), where: is the size of the GMM feature vectors
and M is the number of mixtures in the GMM. This equates to an ordenagnitude reduction in
the number of multiplies for our case. Note that this reaurctn number of multiplies and storage

requirements will have a significantly greater impact ibtkérnel is applied to an LVCSR system.

3.3.3 MC_MLLRSYV kernel

In this section we present the MELLRSV kernel which extends the MLLRSV formulation to
the case where multi-class MLLR is used. Siaken equation (3.7) is a diagonal matrix andis

the stacked means of the different classes, then the ntasis-extension to the GSV kernel is:
Ksv(Ra,Rg) = psKsv,s(Ra, Rg) + poKsv.0(Ra, Rg), (3.16)
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whereK sy s(Rq, Rg) andKsy,0(Rq, Rg) are the class-dependent GSV kernels for the sonorants

and obstruents respectively.

Similar to the global case, we can implement the multi-clsiéd RSV in MLLR-transform
space: we begin by replacing the adapted means in equatii®) (8ith the affine transforms of the
UBM means.Ag, A,, bg, b are the transforms fdR,, andCg, C,, dg, do are the transforms for
Rg.

M/2

T 1
Ksy(Ra,Rg) =ps Z (Ai (Asmypar,; + bs)> (Af (Csmypum,i + ds)>
i1

N

M

T 1
+Po Z (A,- (Aomypn,i + bo)> <Af (Comypn,i + do)> ;
=M /241

N

wheremy gy ; is the mean vector of thé" mixture component of the UBM, the diagonal matrix
A=\

After similar manipulation as was done for the global MLLRseawe obtain:

n n n n
Ksvs(Ra, Rg) = bardsrdsi + Y ahHerCor + _ dskalhgr + Y berhljcan
k=1 k=1 k=1 k=1

T Qures (3.17)

whereM is the number of rows if\ g, ag;, andcg, are the transpose of thé” rows of A; andCg
respectivelyps;. anddy, are thek!™ elements obg andds respectivelyA;;, is thek*" diagonal el-
ement of the diagonal matrid;, Hg;, = Zf\i/lz Ay pr Mgy Dk = vai/f Ajemy g,
Ogr = vai/f Ak, Tsa andTgg are the sonorant parts of the MLLR-transform vectors of doerd-
ings, andQs is a block diagonal matrix consisting afblocks Qg of size(n + 1)x(n + 1). Equa-

tion (3.18) shows the structure of the blocks:

H. h
Qu=| = ). (3.18)
hl,  d

Note that the summations Hgy, hg, anddg;, are fromi = 1 to M/2, only over the mixture
components pertaining to the sonorant class. With this mdrthe form of the obstruent part of the

kernel is

Ksv,0(Ra, Rp) = T30 QoTop; (3.19)
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where the summations Hoy, hor andd, are fromi = M /2 + 1 to M, only over the mixture
components pertaining to the obstruent class.
From equations (3.17) and (3.19) we note that the GSV kemelbe written as a weighted

inner product between the MLLR-transform vectors.

PsQs 0 T
Ksv(Ra,Ry) = |71, 1] ¥

s« o«

0 P0Qo Top

=71Q7;s (3.20)

It is important to note that, similar to the global MLLR cas@ce theQ matrix depends only

on the UBM means, covariances and mixture weights it can bguated offline.

3.3.4 Alternative Kernels in MLLR Transform Space

We also explore four alternative kernels in MLLR-transfovecttor space. The first replaces the
matrix Q by its diagonal approximation, which we refer to as the diagervector (OMLLRSV)
kernel. The second is the zero-one (Z-O) kernel which sotsttie means and divides by the stan-
dard deviations along each of the feature dimensions of theRAtransform vectors (determined
from a held-out dataset). The third is the Frobenius (FRGBH&l which does not apply any scale
or shift to the MLLR-transform vectors;({tAb]” [Cd]). The last is the rank-normalized [5] (R-N)

kernel which rank normalizes the MLLR-transform vectors.

3.4 MC_MLLRSV Implementation

There are a number of issues that have to be addressed widindthe multi-class MLLR/GMM
system. The first, is how to divide the mixture componenthiefGMM into multiple classes. For
the two-class case, we chose to perform the divide alongdbpbanetic classes: sonorants and
obstruents. However, since our UBM is not an LVCSR systemra/liteis clear which mixture
components belong to which phoneme and thus to which of ocoirctasses, we have to explicitly
assign them: we assign the fifgt/2 mixture components to the sonorants class and the remaining
M /2 to the obstruents class. We also perform open-loop phorestagnition on all the data used

to train the UBM, the background, and the speaker recogn#istem and to test the system; this
allows us to assign which part of the data will be used to treéh each class. We also tried unequal

splitting of the GMM mixture components amongst the classewever, this reduced performance.
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Second, we use EM to train two class-dependent2 mixture GMMs each using the corre-
sponding class-specific UBM training data. Themixture GMM UBM is then created by com-
bining the two)/ /2 mixture GMMs and scaling their weights so that the weightthefUBM add
up to1. The scalingps andp,, is done according to the class priors, calculated as theeptge

of frames assigned to each of the two classes in the backgtoaining data.

Third, the MLLR-transformation matrix and offset vector feach of the two classes are com-
puted by separately adapting, via MLLR, the class-depen@®fiVis using only the frames of the
adaptation recording corresponding to each class. If thaxeu of frames of the recording assigned
to a class is below a set number (empirically we chi¥y we back-off and use the full/ mixture
GMM and all the frames of the recording to obtain the MLLRasBormation matrix and vector.
This transform computed by backing-off is then used to adaptthe 1/ /2 means of theriginal
class-dependent GMM. Similarly, in the four-class cashefiumber of frames allocated to one of
the four classes is belo@h0 then for that class one would back-off one level, e.g. frorv&is to
Sonorants; if after backing-off one level the number of adled frames is less th&00 then one

would back-off one more level.

3.5 MC_MLLRSV Kernel for LVCSR systems

The LVCSR/SVM system presented in [5] uses MLLR adaptatidth & speaker independent
LVCSR system and a kernel consisting of an inner product éetwank-normalized transform-
vectors. In the next section we show the advantage of the GShekover other kernels that are
inner products between normalized MLLR-transform vectiorsluding the one used in [5], for the
case where the UBM is a GMM. Unfortunately, the GSV kernepiplied in its original form (3.16),
can be computationally prohibitive since the number of iplidts increases a9 (M?) whereM is
the number of Gaussian mixture components in the systencjvidiypically more than a hundred
thousand for an LVCSR system. However, since MLLR adaptasdeing used to adapt the means,
one can follow the steps taken in Section 3.3.3 to derive dasimay to compute the GSV kernel in

terms of an inner product between the MLLR-transform vexsignificantly reducing computation.
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3.6 Experiments

We performed experiments on the 2006 NIST speaker recogni8RE) corpus. We focused on
the single-side 1 conversation train, single-side 1 caatan test, and the multi-language handheld
telephone task (the core test condition) [18]. This setsplted in3, 612 true trials andl7, 836 false

trials.

For feature extraction, a 19-dimensional MFCC vector imtbérom pre-emphasized speech
every 10 ms using a 20 ms Hamming window. Delta-cepstralffictezits are computed over&2
frame span and appended to the cepstra producing a 38-dimahfeature vector. An energy-
based speech detector is applied to discard vectors frorefmsgy frames. To mitigate channel

effects, RASTA and mean and variance normalization ardexbpb the features.

The GMM UBM consists of 512 mixture components. The GMM UBMsweined using EM
from the following corpora: Switchboard 2 phase 1, Switdmdo2 phase 4 (cellular), and OGI
national cellular. For the two-class case, two class-§peti/2 = 256 mixture GMM UBMs
were trained using EM on the corresponding class-depenmetd of the data. These GMMs were
combined with weightes = .71 andp, = .29 to form aM = 512 mixture GMM UBM. For the
four-class case, four class-specifit/4 = 128 mixture GMM UBMs were trained and combined
to form a512 mixture GMM with weights: .46 for vowels, .25 for sonorantnsonants, .15 for

fricatives, and .14 for stops.

We produced the feature expansion on a per conversatioardiag) basis using multi-class
MLLR adaptation. The adaptation was done per class-speggid/. We used the HTK toolbox
version3.3 [36] to perform one iteration of MLLR to obtain the transfation. The various kernels
were implemented using SVMTorch as an SVM trainer [37]. AKgaound for SVM training
consists of SVM features labeled ad extracted from recordings from example impostors [35].
An SVM background was obtained by extracting SVM featuremfi174 conversations in a multi-
language subset of the LDC Fisher corpus. In our experintéetsize of the SVM features are
38 x 512 4 1 for the mean supervector features &&k 39 + 1 for the MLLR-transform vector
features; note that we stack an element of vdla the end of each feature vector to incorporate

the biast into the SVM features.

For enroliment of target speakers, we produ¢e8VM feature vector per conversation side.
We then trained an SVM model using the target SVM feature &vdVM background. This

resulted in selecting support vectors from the target sgreakd background SVM feature vectors
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and assigning the associated weights.

3.7 Results and Discussion

We will present our results in two parts: the first will higitit the difference between different ker-
nels in MLLR-transform space when global MLLR adaptatiomsed, and the second will present

the results for the MLLRSV kernel for the global and mulias$ cases.

3.7.1 MLLR Transform Space Kernels Comparison

We compared the BALLRSV kernel, the DMLLRSV kernel, the Z-O kernel, the FROB kernel,
the R-N kernel, and a MAP Gaussian supervector kernel (MARSMnN [35] where the UBM is

adapted via MAP adaptation instead of MLLR. Equal errorsdEER) and NIST minimum deci-
sion cost function (DCF) for the various kernels are shownrahle 3.1 and Figure 3-3.

The results show that of the examined kernels, thMIG. RSV kernel yields the best perfor-
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Figure 3-3: DET plot of the MLLR kernels and the baseline.

mance, followed by the DMLLRSV kernel. We believe the superiority of @ILLRSV is due to its
derivation from an approximation of the KL divergence assdatice between two GMMs. When
examining the results for the diagonally-weighted kerielglLLR-transform vector space we note

that DDMLLRSV kernel (the diagonal approximation to theNHLLRSV kernel) produced the best
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Table 3.1: EER and min DCF scores of the MLLR kernels and tiselivee.

| Kernel | EER | DCF |
Z-0 14.95%| .064
R-N 13.19%| .051
FROB 12.38%| .05

D_MLLRSV | 11.43% | .047
G_MLLRSV | 9.46% | .039
MAPSV 7.24% | .031

results while the Z-O kernel produced the worst. To attenmplt @nderstand why the Z-O kernel
performed poorly, we compared its scaling matrix to that dfIDLRSV. The comparison showed
that the Z-O kernel tended to emphasize dimensions thatweighted down by DMLLRSV and

vice versa.

3.7.2 Global vs Multi-Class MLLRSV

We compared the BILLRSV kernel system, the two and four-class MILLRSV kernel systems
(2C_MLLRSV and 4CMLLRSV), and a state of the art MAPSV. Equal error rates (E&R) NIST

minimum decision cost functions (DCF) for the various késrage shown in Table 3.2.

Table 3.2: EER and min DCF scores.
| Kernel | EER | min DCF ||

G_MLLRSV 9.46% .039
2C_.MLLRSV || 7.81% .035
4C_MLLRSV || 8.19% .037
MAPSV 7.24% .031

Examining the results we note the following: two-class eysyields al5% improvement over
the global system, however, there was no further improverfoehe four-class system. This lack
of improvement for the four-class is most likely due to thestable transcripts provided by the
open-loop phonetic recognizer, which becomes less rel@abthe number of classes increases. Itis
important to note that the gain in performance obtained lm/d¢lass MLLR does require additional
computation due to the phonetic recognition.

The performance of the 2BILLR system approaches but does not surpass that of the MAPSV
system, as seen in Figure 3-4. However, it remains to be shether 2CMLLR may outperform
MAPSYV in scenarios with high channel variability or with ster training recordings. Under such

conditions the constrained nature of 20_.LR may cause it to outperform MAPSV.
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Figure 3-4: DET plot of the global MLLRSYV, two-class MLLRS&hd MAPSV kernels.

3.8 Discussion

In this chapter we examined a vector space representattbocaresponding metric that are derived
from adapting a GMM universal background model via maximikalihood linear regression adap-
tation. Support vector machines whose kernels are basdueatetived metrics performed well in
speaker verification tasks with the results clearly hiditligg the importance of choosing properly
motivated kernels. Experiments on the NIST SRBEG corpus showed the superiority of our pro-
posed GMLLRSYV kernel over ad-hoc kernels in the MLLR-transform espaWe also showed that
using the two-class MLLRSV kernel we approach state of th@enformance. The main contri-
bution of this work is the formulation of the MLLR supervect@rnel in MLLR-transform vector
space. The advantage of this formulation is that its stoeagkcomputation requirements do not
increase with the number of mixtures. This advantage allivesuse of the MLLRSV kernel in
systems such as [5], where using the original GSV kerneldkipitive due to the large size of the
mean supervectors. Possible avenues for future work angsealata-driven class selection rather
than phonetic ones used here, to apply the KL-motivated MidaRsform kernel to a system with

a LVCSR UBM, and to use lattice-based MLLR [38] which is maobust to transcription errors.
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Chapter 4

Variability-Compensated Support

Vector Machines

In a classification task there are two types of variabilitgraas class (good) which reflects the
anticipated diversity needed for proper classificatiom, &ithin class (bad) which introduces unde-
sirable information that confuses the classifier. A goodsifeer should, therefore, exploit the good
and mitigate the bad. This chapter proposes a method talgralass-labeled auxiliary data to do

this when instances are represented in an inner-produceé spa

In Section 2.2.3 and in the previous chapter we presentesfalevays to map recordings into
an inner-product space that contained the inter-speakebidy needed for speaker verification.
However, this space also contains within-speaker (nuejarcg. channel and language, variability
which is undesirable. Techniques for handling nuisanag) as nuisance attribute projection (NAP)
and within class covariance normalization (WCCN), SecBdh4, are already used in SVM speaker
verification. More recently, joint factor analysis (JFAgdHon 2.2.5, used a Bayesian framework

to incorporate nuisance and inter-speaker variability the verification task.

In this chapter, we introduce variability-compensated SYPRCSVM) which is a method to
handle both the good and bad variability by incorporatirenttdirectly into the SVM optimization.
We will begin by motivating and describing our approach inugsance compensation framework.
Modifications to the algorithm are then presented that allowhandling inter-speaker variabil-
ity. We then discuss a probabilistic interpretation of thgnathm and finally present experimental

results that demonstrate the algorithm'’s efficacy.
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4.1 Importance of Handling Nuisance Variability

Evidence of the importance of handling variability can berfd in the discrepancy in verification
performance between one, three and eight conversatioireant tasks for the same SVM system.
Specifically, for the MAP Gaussian supervector SVM systeettiSn 2.2.3, performance improves
from 5.0% EER for one conversation enrollment 2% and2.6% for three and eight, on trials
of the NIST SRE-Eval 06. One explanation for this is that wialy one target conversation is
available to enroll a speaker, then the orientation of tipauisging hyperplane is set by the impostor
recordings. As more target enroliment recordings are geavihe orientation of the separating hy-

perplane can change drastically, as sketched in Figurelfd additional information that the extra

O 1c target W
[ ] 3ctargets

Figure 4-1: Different separating hyperplanes obtaineti wjt3, and 8 conversation enrollment.

enrollment recordings provide is intra- (or within-) speakariability, due to channel, language,

and other nuisance variables.

If an estimate of the principal components of intra-speakeiability for a given speaker were
available then one could prevent the SVM from using thatadmlity when choosing a separating
hyperplane. However, it is not possible, in general, towsti intra-speaker variability for the target
speakers. One could instead employ a speaker-labeledaayskt of recordings to obtain a global
estimate of the within-speaker variability. An exampleagithm that uses this global estimate
is NAP, Section 2.2.4, which estimates a small subspaceenther nuisance lives and removes

it completely from the SVM features, i.e., it does not allomyanformation from the nuisance
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subspace to affect the SVM decision. Figure 4-2 sketchesfthet of NAP on the orientation of

the separating hyperplane.

Capturing Intra—speaker  Principle direction_ of_ _ Standard SVM
variability Intra—speaker variability seperating hyperplane

L ~ SVM seperating hyperple
- - - with intra—speaker
- - variability compensation

Figure 4-2: Effect of removing the nuisance direction frdra VM optimization.

4.2 Handling Nuisance Variability

In this thesis we propose VCSVM to handle nuisance varigbivhich allows for varying the de-
gree to which the nuisance subspace is avoided by the otssifher than completely removing it:
Assume that the nuisance subspace is spanned by alSairtfionormal vectorgu;, us, ..., uy},
e.g., topU eigenvectors of the within-class covariance matrix, aridUebe the matrix whose
columns are those eigenvectors. Let the vector normal tedparating hyperplane ke. Ideally, if
the nuisance was restricted to the subsgdaten one would require the orthogonal projection of
w in the nuisance subspace to be zero, MHUTwH; = 0. This requirement can be introduced
directly into the primal formulation of the SVM optimizatio
k
min J(w,¢) = [lwl|? /2 +¢|[UUTw|[; 2+ C Y & (4.1)

i=1
subject tol;(wim; +b) >1—¢ & >0, i=0,....k

where¢ > 0, k is the total number of training examplasy,; denotes the recording specific SVM
features (supervectors) anddenotes the corresponding labels. Note that the only difiez be-

tween (4.1) and the standard SVM formulation is the additibthe ¢ | [ UU” w| \; term, wheret is

59



a tunable (on some held out set) parameter that regulatesrtbent of bias desired. {f = oo then
this formulation becomes similar to NAP compensation, drgd<+ 0 then we obtain the standard

SVM formulation. Figure 4-3 sketches the separating hylpemobtained for different values &f

. We can rewrite the additional term in (4.1) as follows:

Capturing intra—speaker Principle direction of

. K iabil Standard SVM
variability intra—speaker variability

seperating hyperplane

¥ &0

" Tt 0<E <o

§=0
~  SVM seperating hyperplane
- - - - with intra—speaker
variability compensation

Figure 4-3: Sketch of the separating hyperplane for diffevalues oft.

|[UUTw|[; = (UUTw)T(UUTw) (4.2)
= w/uuTuulw
= wlUUTw, (4.3)

where the final equality follows from the eigenvectors bertiponormal U7 U = I). SinceUU”
is a positive semi-definite matrix, we can follow the recipegented in [39] to re-interpret this

reformulation as a standard SVM with the bias absorbed imokernel. As done in [39], we

rewrite J(w, €) in (4.1) as:

k
J(w.e) = wI+UUNw/2+4C) 6, (4.4)
=1

and sincg(I + ¢UUT) is a positive definite symmetric matrix, then
k
Jw,e) = w!BI'Bw/2+C Z €, (4.5)
i=1
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whereB can be chosen to be real and symmetric and is invertible. Agghaf variablesy = Bw

andm = B~"m allows us to rewrite the optimization in (4.1) as

minimize J(w,e) = |[w|2/2+CF &

subjectto I;(Wim; +b) >1—¢ & ¢ >0, i=0,...,k
which is then the standard SVM formulation with the follogikernel:
K(m;,m;) =m!/B B 'm; = m! (I+¢UUT)'m;. (4.6)

Examining the kernel presented in (4.6), we realize thattUU”) can have large dimension. This
is of concern, since the kernel requires its inverse. Taiaient this, we use the matrix inversion

lemma [40] andU”U = I to obtain:

I+euuh)—t = 1- Jeua+euTu)~ty/eu”

= I-¢U[1+o1u”
3

- 1- > _yu”. 4.7
14+¢ (4.7)
The kernel can therefore be rewritten as:
K(m;,m;) =m! (I - S UU )m;. (4.8)
) J 1 1 _’_g J

We notice in (4.8) that whefi= 0 we recover the standard linear kernel, and more importavitsn
& = oo we recover exactly the kernel suggested in [6] for perfogritAP channel compensation.
An advantage of this formulation over NAP is that it does nakma hard decision to completely

remove dimensions from the SVM features but instead ledasiecision to the SVM optimization.

It is of practical importance to note that (4.8) can be wnittss a combination of two kernel

matrices, and defining; = U”'m; to be the channel factors:

§
K(m;,m;) = miij_l——l—ﬁmZTUUij

§ .1

miij — 1—+£Xi X;. (4.9)

This allows for a less costly implementation, because tlek®rnel matrices need not be recom-
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puted for each value &f and relatively little computation is required to obtain #erond kernel,

since thex;’s are typically low dimensional.

4.2.1 Should All Nuisance be Treated Equally?

As the choice of nuisance subspace gets larger one may fiadribie appropriate to handle di-
rections within that subspace unequally, for example wehimigant to avoid using larger nuisance
directions in discrimination more than we would smaller@an®ne approach to do this is to refor-

mulate (4.9) to obtain the following kernel:

K(m;,m;) = miij — xZTij, (4.10)

whereW is a diagonal matrix with$%-, 152, .., 159%_] on the diagonal.

This resultant kernel can be obtained by repladifigvith U = UD'/4 in (4.1), whereD is a
positive diagonal matrix whose diagonal elements[dreds, ..., dy]. Note, UU”w is no longer

an orthogonal projection.

Using U instead ofU and following the steps outlined in the previous section asidg the

matrix inversion lemma we obtain the following kernel:

K(m;,m;) = m!(I+¢UDY20T) Im;
= m] (I+¢UDUY) 'm; (4.11)
= m] (I-¢UMD +cUTU)U )m;
= m/m; —m; UMD + U Tm;

= miij — mZTUWUij

— T T .
= m; m; —x; Wx;

One possible choice, and the one used in our experiments,sstD = A, the diagonal matrix

whose elements are the eigenvalugss) corresponding to the columns Bf. For that particular

choice, the resultant weighting matW in (4.12) is diagonal with the elemerjts3i—, $5335-, ..., 1534

on the diagonal.
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4.2.2 Motivating and Extending WCCN

In the previous section we allowed for non-equal weightifithe nuisance subspace, and choosing
D = A provides us with another way to motivate within class casme normalization (WCCN) [7].
To do that we begin with equation (4.11) and consider the whsze the whole SVM space is con-

sidered to contain nuisance information (TAU7 is full rank).

K(m;,m;) = m;fF(I—I—ﬁUAUT)_lmj

= m] (I+¢%) 'my, (4.12)

whereY. = UAU is the eigenvalue decomposition of the within-speaker Gamae matrix>.

We now examine WCCN, which proposes using the inverse ofrtra-speaker covariance

matrix ¥ = UAU7 to weight the kernel inner product:
K(m;,m;) = m! Y 'm; = m! (UAUT)"'m,;. (4.13)

However, in practice: is ill-conditioned due to noisy estimates and directionyafy small nui-
sance variability, therefore smoothing is applied to theaispeaker covariance matrix to make

inversion possible, and the WCCN suggested kernel becomes:

K(m;,m;) =m/ ((1-0)I+0UAUT)'m; 0<6<1. (4.14)

Comparing (4.14) with (4.12) we see that they are similar. shisuld, however, mention that
whenUAUT spans the full SVM space thge(in our implementation) ané (in the WCCN imple-
mentation) no longer set the amount of bias desired, ingteadensure that the kernel does not

over-amplify directions with small amounts of nuisanceiaaitity.

A concern when applying WCCN is that it requires taking theeise of a matrix the size of
the SVM space. However, considering WCCN in this framewarét axamining equation (4.12),
we realize that by focusing on the directions of greateshisdity we can bypass performing the
inverse of the within-class covariance matrix. Insteagkaiive methods for obtaining the largest

eigenvalues and eigenvectors of symmetric matrices casdmk[41].
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4.3 Using Inter-speaker Variability

Joint factor analysis [42] has been successful in the speakiication task. Joint factor analysis
estimates a “speaker” subspace, that captures good Vayiaid is spanned by the columns of
V, and a “channel” subspace, that captures the nuisance apdnged by the columns &f. A
recordingm,; is represented as a linear combination of a contributiomftioe speakerVy;, one
from the channelUx;, and a residual; wherg; are the speaker factors amg are the channel
factors. Recently, promising results have been obtainagsing just the speaker factors as features
in a SVM speaker verification system. Based on this, we p@pdgCSVM formulation similar to
the one presented in the previous section to bias the SVMrtlsvaostly using the data present in

the inter-speaker variability space.

Assume that the inter-speaker subspace is spanned by a Betrtfionormal vectors (eigen-
voices){vy, va,..., vy}, and letV be the matrix whose columns are these eigenvectors. Let the
vector normal to the separating hyperplanesbddeally if V' captured all inter-speaker variability,
then we would wantv to live in theV subspace and therefore be orthogonal to its complement, i.e
|- VV)w| |§ = 0. Similar to the previous section this requirement can b@éhtced directly

into the primal formulation of the SVM optimization:

k
. 2
min J(w,e) = [[wlf3 /2 +~[|@=VV)w||;/2+C) e
=1
subject tol;(w m; +b) >1—¢ & >0, i=0,....k

wherey > 0 is a tunable (on some held out set) parameter that enforeemitbunt of bias desired.
If v = oo then this formulation becomes similar to just using the kpe#actors, and ify = 0
then we obtain the standard SVM formulation. Note that,esihe VV7 is a projection into the
complement ofV then we can replace it by V”, whereV is a matrix whose columns are the
orthonormal eigenvectors that span the complement. Wighstibstitution we obtain a formulation
that is almost equivalent to that in (4.1), hence followihg tecipe in the previous section we see
again can push the bias into the kernel of a standard SVM flation. The kernel in this case is

’)/ [
K(m;,m;) = m¥(I - mVVT)mj. (4.15)

64



By substituting backv = I — V'V we can rewrite (4.15) as:

K(m;,m;) = m? (I - %(I ~vVT))m;. (4.16)

Note that we do not have to explicitly compute the orthondrpaaisV, which can be rather large.

When~ = oo the kernel becomes an inner product between the speakersggt= V' 'm,:
K(m;,mj) = m;FVVij = y;-ryj. (4.17)

This kernel suggests that when one chooses to perform fidasisin using only the inter-speaker

subspace the resultant kernel is just an inner product leeitye speaker factors.

4.4 Probabilistic Interpretation

In [39], the author makes a connection between the suggkstad! and the probabilistic interpre-
tation of SVMs proposed in [43]. The SVM problem can be thdugftas one of maximization of
the likelihood ofw given the training data{(n;, /;} pairs) by writing it as

k
max [(wl{m;,l;}) = —w'w/2—C Y h(li(w"'m; +1b)), (4.18)
=1

whereh() is the hinge loss. In this formulation, the SVM can be thou§lhwjust computing the
MAP estimate ofw given the training data, where tiwe’ w term is essentially a GaussiaN0, I),
prior and the second term is the log-likelihood of the tnagndata giverw. This Gaussian prior on
w in the standard SVM does not bias the orientationwdh any direction since the components of
w in the prior are independent. In VCSVM, when we introducelifses to handle the variability
this only affects the first term in (4.18) and therefore clesridpe prior orw in the MAP estimation

interpretation (we will focus on nuisance variability):
k
max [(wl{m;,l;}) = —w'(I+&UUT)w/2-C> h(li(w'm;+0b). (4.19)
=1

The prior on the MAP estimate o is still a GaussianV (0, (I + £UUT)~!) but with its principal
components orthogonal to the nuisance subspace and tl@earilong the principle components

set by¢. Hence, the prior is biasing to be orthogonal to the nuisance subspace.
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4.5 Experimental Results

We have chosen to demonstrate VCSVM in two scenarios, thadies an alternative to NAP to
handle nuisance in the GSV system presented in [24], ancktiond to handle nuisance in a system
presented in [27] where SVM speaker verification is perfamsing low-dimensional speaker
factors. The goal of this section is not to compare the perémice of these two systems, but rather
to show that VCSVM is applicable to both. Results on handlintgr-speaker variability and all

variability will be deferred to future work.

3.6
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3.4 --*VCSVM EQUAL CORANK 100
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Figure 4-4: Results on English trials of the NIST SRE-Evakt06e task with speaker factor SVM
system: EER vg for equal and non-equal weighting of nuisance subspaceyamals subspace
sizes.

We begin with the speaker verification system proposed il {@7ich represents each recording
using a vector o800 speaker factors from the joint factor analysis system i [BBe speaker factor
vectors, of lengtt300, are normalized to have unibinorm and used as features in a SVM speaker
verification system. Figure 4-4 shows how the equal errer (BER) changes as a function&bn
our development set, the English trials of the NIST SRE-B@atore task, for nuisance subspaces,
spanned by the eigenvectors of the within-class covariavatex, of dimension (corankj0 and100
dimensional nuisance subspaces when equal and non-eqiggiting of the nuisance dimensions
are used. The figure shows that non-equal weighting of treanae directions yields more favorable
results than equal weighting. It also shows that VCSVM afldar nuisance compensation in such
a small space, while NAP performs poorly since it completagnoves the estimated nuisance
dimensions which are a large percentage of the total diroeakly. Based on the development
results we choosé = 3 and a corank of 50 for the VCSVM system and present resultdl tneds
of the Eval 08 core task in Figure 2-1 (a).

Next, we present the performance of VCSVM using a GSV systa With 512 mixture
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Figure 4-5: Results on all trials of the NIST SRE-Eval 06 daisk with GSV system: EER \&for
equal and non-equal weighting of nuisance subspace, amisaubspace sizes.

GMMs and 38 dimensional, 19 cepstral and deltas, RASTA cosgted feature vectors. Figures
4-6 &4-7 present results on the development set, all trittkeNIST SRE-Eval 06 core condition.
They show how the EER changes as a functiof, ebrank, and whether equal or non-equal weight-
ing was used. Again this shows that non-equal weighting efrthisance directions is preferable
over equal weighting. It also shows that non-equally wadhtCSVM is fairly stable with regards
to varying¢ and the corank, which is not the case with NAP. Based on thegelapbment results
we compare, in Figure 2-1 (b), no nuisance compensatioretbdbt-performing NAP system, with
a corank of 64, and the best VCSVM system, with= 22 and corank of 256. We see that even
in a large dimensional space such as this, it is preferabt@ta@ompletely remove the nuisance

subspace.
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Figure 4-6: DET plot of the speaker factor SVM system on &ldgrof the NIST SRE 08 core task.
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Figure 4-7: DET plot of the GSV system on all trials of the NISRE 08 core task.
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4.6 Discussion

This chapter presents variability-compensated SVM (VC3V&imethod for handling both good
and bad variability directly in the SVM optimization. This@accomplished by introducing into the
minimization a regularized penalty, which biases the di@sgo avoid nuisance directions and use
directions of inter-speaker variability.

With regard to nuisance compensation our method enconmgpasse extends both NAP and
WCCN. An advantage of our proposed method over NAP, is tlirtés not make a hard decision on
removing nuisance directions, rather it decides accorttiqgerformance on a held out set. Also, it
allows for unequal weighting of the estimated nuisancectimas, e.g., according to their associated
eigenvalues which leads to improved performance over NAdPeased robustness with regards to
the size of the estimated nuisance subspace, and successaihce compensation in small SVM
spaces. This work also provides another motivation for WGBN extends it to better handle large
vector spaces.

In this work, we have focused on nuisance compensation septehe framework and highlight
its merits, however, we have not fully explored how to besbmorate speaker variability into
the framework and handle both nuisance and speaker visiabihultaneously. These questions

provide directions for future work.

69



70



Chapter 5

Speaker Comparison with Inner

Product Decision Functions

In Section 2.2.3, we presented the GSV kernel for SVM speadefication, a popular method in
the literature, which consists of an inner product betweeamsupervectors of adapted GMMs.
The GSV is one way to compare speech recordings with kermetifins, however, this has been
a common theme in the speaker verification SVM literatureltieg in several other kernels [35,
31, 32]. The space defined by the kernel is then compensatdunioate nuisances using methods

such as NAP and WCCN, Section 2.2.4.

A recent trend in the literature has been to move towards & fiv@ar geometric view for non-
SVM systems. Joint factor analysis (JFA), Section 2.2.6susBayesian approach to compensate
GMMs representing recordings using linear subspaces., Atsmparison of recordings via inner
products between the compensated GMM parameters, obtamdlA, is presented in [44]. These

approaches have introduced many new ideas and performmsgkiaker comparison tasks.

An unrealized effort is to bridge the gap between SVMs andesofrthe new proposed GMM
methods. One difficulty is that most SVM kernel functionspeaker comparison satisfy the Mercer
condition. This restricts the scope of investigation ofgodial comparison strategies for two speaker
recordings. Therefore, in this chapter, we introduce tikea iof inner product discriminant functions

(IPDFs).

IPDFs are based upon the same basic operations as SVM kangtbhs with some relaxation
in structure. First, we map input recordings to vectors adidimension. Second, veempensate

the input feature vectors. Typically, this compensatidesathe form of a linear transform. Third,

71



we comparetwo compensated vectors with an inner product. The regutimmparison function is
then used in an application specific way.

The focus of our initial investigations of the IPDF struetare the following. First, we show
that many of the common techniques such as factor analyssamce projection, and various types
of scoring can be placed in the framework. Second, we sysigatia describe the various inner
product and compensation techniques used in the litetaflinird, we propose new inner prod-
ucts and compensation. Finally, we explore the space oflfgessombinations of techniques and
demonstrate several novel methods that are computatjoeffiitient and produce excellent error
rates.

The outline of the chapter is as follows. In Section 5.1, wecdbe the general setup for
speaker comparison using GMMs. In Section 5.2, we introdbedPDF framework. Section 5.3
explores inner products for the IPDF framework. Sectionlécks at methods for compensating
for variability. In Section 5.5, we perform experiments & tNIST 2006 speaker recognition

evaluation and explore different combinations of IPDF canigons and compensations.

5.1 Speaker Comparison

A standard distribution used for text-independent speaargnition is the Gaussian mixture model [2],

M

g(r) =Y AN (rjm;, %), (5.1)
i=1
Feature vectors are typically cepstral coefficients wigoamted smoothed first- and second-order
derivatives.

We map a sequence of feature vectarg, ;= {r{,...,ry_}, from a recordingR,, to a
GMM by adapting a GMM universal background model (UBM). Hoe purpose of this chapter, we
will assume only the mixture weightg,, and meansin;, in (5.1) are adapted. Adaptation of the
means is performed with standard relevance MAP, refer tcefAgix A.3. We estimate the mixture
weights using the standard ML estimate. The adaptatiodyietw parameters which we stack into

a parameter vectos,,, where

aq = [AT mng (5.2)

=[Aer o Ay mT, - mTN]T. (5.3)



In speaker comparison, the problem is to compare two seqaesfcdfeature vectors, e.g:)
andyffﬁ . To compare these two sequences, we adapt a GMM UBM to praadwcsets of parameter
vectors,a, andag, as in (5.2). The goal of our speaker comparison process@arba recast as a
function that compares the two parameter vectefR,,, R3) = C(aq,as), and produces a value
that reflects the similarity of the speakers. Initial worktlis area was performed using kernels
from support vector machines [32, 45, 35], but we expand ¢bpesto other types of discriminant

functions.

5.2 Inner Product Discriminant Functions

The basic framework we propose for speaker comparison itumgcis composed of two parts—
compensation and comparison. For compensation, the perameetors generated by adaptation
in (5.2) can be transformed to remove nuisances or projexiemla speaker subspace. The second
part of our framework is comparison. For the comparison oapeter vectors, we will consider
natural distances that result in inner products betweesnpeter vectors.

We propose the following inner product discriminant fuont{IPDF) framework for exploring
speaker comparison,

C(aq,ap) = (Laaa)" DA 5(Lgag) (5.4)

whereL,, Lg are linear transforms and potentially dependent\grand/orAz. The matrixD is
positive definite, usually diagonal, and possibly depenhdan\, and/orAg. Note, we also consider
simple combinations of IPDFs to be in our framework—e.gsifpely-weighted sums of IPDFs.
Several questions from this framework are: 1) what innedpecb gives the best speaker com-
parison performance, 2) what compensation strategy woekg 18) what tradeoffs can be made
between accuracy and computational cost, and 4) how do tmpemsation and the inner prod-
uct interact. We explore theoretical and experimental ansuo these questions in the following

sections.

5.3 Inner Products for IPDFs

In general, an inner product of the parameters should bellwasa distance arising from a statistical
comparison. We derive three straightforward methods is ¢kiction. We also relate some other
methods, without being exhaustive, that fall in this frarognthat have been described in detail in

the literature.
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5.3.1 Approximate KL Comparison (Ckt,)

A straightforward strategy for comparing the GMM paramatectors is to use an approximate
form of the KL divergence applied to the induced GMM modelisTstrategy was used in [35]
successfully with an approximation based on the log-sumuakty; i.e., for the GMMsg,, andgg,
with parametera,, andag,

M

D(gallgs) <D AaiD N (5 my i, 50) [N (5my5,55)) (5.5)
=1
Here,D(-||-) is the KL divergence, antl; is from the UBM.
By symmetrizing (5.5) and substituting in the KL divergermtween two Gaussian distribu-
tions, we obtain a distancé,, which upper bounds the symmetric KL divergence,
M
ds(an,ag) = Ds(AalAg) + Z(omx,i +0.504)(my; —my ) 'S Hm, ; —my;). (5.6)
=1
We focus on the second term in (5.6) for this chapter, but twdg the first term could also be
converted to a comparison function on the mixture weightngpolarization on the second term,

we obtain the inner product

M
CkL(aa,83) = Y _(0.50, + 0.5),,)m] 57 'my ;. (5.7)

i=1

Note that (5.7) can also be expressed more compactly as
Cxr(aa,a5) = m2 ((0.5X, +0.5X3) @ I,,) 2" 'my (5.8)

whereX is the block matrix with thé; on the diagonaln is the feature vector dimension, agd
is the Kronecker product [46]. Note that the non-symmeuiorf of the KL distance in (5.5) would
result in the average mixture weights in (5.8) being repldog A.,. Also, note that shifting the
means by the UBM will not affect the distance in (5.6), so we pgplace means in (5.8) by the

UBM centered means.

5.3.2 GLDS kernel Caips)

An alternate inner product approach is to use generalinpeddidiscriminants and the corresponding

kernel [32]. The overall structure of this GLDS kernel is aléows:
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A per feature vector expansion function is defined as

b(r) = [br) - bulr)] (5.9)

The mapping between an input sequenge,y; is then defined as

N,
(0% 1 =
rfon, = b = > b(ry). (5.10)

@ i=1

The corresponding kernel between two sequences is then

Kaios(rf_,.T{_y,) = b4T 'by (5.11)
where
1z
r=—>Y bRZDbRET, 5.12
N 2 PRODRY) (5.12)

andr'f_ N 1S @ large set of feature vectors which is representativeeotpeaker population, i.e. an

aggregate of features from a large number of recordings.

In the context of a GMM UBM, we can define an expansion as falow

T

T
b(r:) = |p(1|r;)(ri — mypwm1) p(N|r;)(r; — mypm,n)T (5.13)

wherep(j|r;) is the posterior probability of mixture componengivenr;, andmg gy, ; is from a
UBM. Using (5.13) in (5.10), we see that

b, = ()\a X [n)(ma — mUBM) and bﬁ = ()\5 ® In)(mg — mUBM) (514)
wheremy g, is the stacked means of the UBM. Thus, the GLDS kernel inrestymt is
CGLDs(aa,ag) = (ma — mUBM)T(Aa ® In)r_l(Aﬁ (024 In)(mg — mUBM). (515)

Note thatl" in (5.12) is almost the UBM covariance matrix, but is not gutie same because of a
squaring of then(j|R?) in the diagonal. As is commonly assumed, we will consideragainal

approximation of’, see [32].
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5.3.3 Gaussian-Distributed Vectors

A common assumption in the factor analysis literature [8)& the parameter vectat, asz varies
has a Gaussian distribution. If we assume a single covarimmthe entire space, then the resulting

likelihood ratio test between two Gaussian distributiogsuits in a linear discriminant [47].

More formally, suppose that we have a distribution of theduess of R, with meanm, and
we are trying to distinguish from a distribution with the UB&eanmg; 5., then the discriminant
function is [47],

h(r) = (mo —mypy) T (r — mypwm) + ca (5.16)

wherec,, is a constant that depends on,, andY is the covariance in the parameter vector space.
We will assume that the comparison function can be normdl{eey., by Z-norm [2]), so that,
can be dropped. We now apply the discriminant function taf@romean vectonng, and obtain

the following comparison function

Ca(ag, ag) = (m, —mypy) T (mg — mypu). (5.17)

5.3.4 Other Methods

Several other methods are possible for comparing the paeawertors that arise either from ad-hoc

methods or from work in the literature. We describe a few e&thin this section.
Geometric Mean Comparison Canm): A simple symmetric function that is similar to the

KL (5.8) and GLDS (5.15) comparison functions is arrived atréplacing the arithmetic mean in

Ck1 by a geometric mean. The resulting kernel is

CGM(aa, aﬁ) = (ma — mUBM)T()\i/Q X In)Z_l(A;/Q & In)(mﬁ — mUBM) (518)
whereX: is the block diagonal UBM covariances.
Fisher Kernel (C'r): The Fisher kernel specialized to the UBM case has sevarakff81]. The
main variations are the choice of covariance in the innedgecband the choice of normalization
of the gradient term. We took the best performing configarator this chapter—we normalize the

gradient by the number of frames which results in a mixturightescaling of the gradient. We also
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use a diagonal data-trained covariance term. The resultingparison function is
_ T _
C’F(aa, aﬁ) = [(}\a ® In)E l(ma — mUBM)] ot [(}\5 ® In)E l(mg — mUBM)] (5.19)

where® is a diagonal matrix acting as a variance normalizer.

Linearized Q-function (Cg): Another form of inner product may be derived from the lin€ar
scoring shown in [44]. In this case, the scoring is givelrasct — my gy )T S~ H(F — Nmypay)
whereN andF are the zeroth and first order sufficient statistics of a ®sbnding,m; g, is the
UBM meansmrcr is the mean of the target model, ands the block diagonal UBM covariances.
A close approximation of this function can be made by usingnallrelevance factor in MAP

adaptation of the means to obtain the following comparismetion
C’Q(aa, aﬁ) = (ma — mUB]\/[)TE_l(AB &® In)(mﬁ — mUB]\/[). (520)

Note that if we symmetriz€y, this gives us’ky,; this analysis ignores for a moment that in [44],
compensation is also asymmetric.
KL Kernel ( Kkr,): By assuming the mixture weights are constant and equakt®/BM mix-

ture in the comparison functiofiky, (5.7), we obtain the KL kernel,
KKL(aa, ag) = (ma — mUBM)T ()\ ® [n) Z_l(mﬁ — mUBM) (521)

where A are the UBM mixture weights. This kernel has been used eixgypsn SVM speaker
recognition [35].

An analysis of the different inner products in the precediegtions shows that many of the
methods presented in the literature have a similar form,abatinterestingly derived with quite
disparate techniques. Our goal in the experimental seitmunderstand how these comparison

function perform and how they interact with compensation.

5.4 Compensation in IPDFs

Our next task is to explore compensation methods for IPDFar f@cus will be on subspace-
based methods. With these methods, the fundamental assanpthat either speakers and/or
nuisances are confined to a small subspace in the parameter space. The problem is to use this

knowledge to produce a higher signal (speaker) to noisesgnai) representation of the speaker.
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Standard notation is to ugéto represent the nuisance subspace and to Viaepresent the speaker
subspace. Our goal in this section is to recast many of thbadstin the literature in a standard
framework with oblique and orthogonal projections.

To make a cohesive presentation, we introduce some natMierdefine an orthogonal projec-

tion with respect to a metrid?; p, whereD andU are full rank matrices as
Pyp =UUTD*U)~'UT D? (5.22)

whereDU is alinearly independent set, and the metrigis-y||p = || Dz — Dyl|2. The process of
projection, e.gy = Py, pb, is equivalent to solving the least-squares problém, argmin,, ||[Uz —
b||p and lettingy = Uz. For convenience, we also define the projection onto theogathal
complement ol/, U+, asQu.p = Py. p=1— Pyp. Note that we can regularize the projection
Py p by adding a diagonal term to the inverse in (5.22); the regubperation remains linear but
is no longer a projection.

We also define the oblique projection oritowith null spacel/ + (U 4+ V)* and metric in-
duced byD. Let QR be the (skinny) QR decomposition of the matﬁxv] in the D norm (i.e.,
QTD?Q = I), andQy be the columns corresponding ¥0in the matrixQ. Then, the oblique

(non-orthogonal) projection ontd is
Ovu,p = V(QyD*V)~'QiD?, (5.23)

The use of projections in our development will add geomeitniderstanding to the process of com-

pensation.

5.4.1 Nuisance Attribute Projection (NAP)

A framework for eliminating nuisances in the parameter ettased on projection was shown
in [35]. The basic idea is to assume that nuisances are cdntima small subspace and can be
removed via an orthogonal projectiom, — Quypm,. One justification for using subspaces
comes from the perspective that channel classification egrelformed with inner products along
one-dimensional subspaces. Therefore, the projectionwesnchannel specific directions from the
parameter space.

The NAP projection uses the metric induced by a kernel in amMS%br the GMM context, the

standard kernel used is the approximate KL comparison [83}) We note that sinc® is known
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a priori to speaker comparison, we can orthonormalize the maitixand apply the projection as

a matrix multiply. The resulting projection hds = <A1/2 ® In) »-1/2,

5.4.2 Factor Analysis and Joint Factor Analysis

The joint factor analysis (JFA) model assumes that the magangeter vector can be expressed as
Mg gess = M+ Ux + Vy (5.24)

wherems . is the speaker and session-dependent mean parameter, teetod V' are matrices
with small rank, andn is typically the UBM. Note that for this section, we will udeet standard
variables for factor analysis, andy, even though they conflict with our earlier development. The
goal of joint factor analysis is to find solutions to the ldteariablesx andy given training data.

In (5.24), the matriXU represents a nuisance subspace,lamdpresents a speaker subspace. Exist-
ing work on this approach for speaker recognition uses bakimum likelihood (ML) estimates
and MAP estimates ok andy [48, 8]. In the latter case, a Gaussian prior with zero meah an
diagonal covariance fat andy is assumed. For our work, we focus on the ML estimates [4&] of
andy in (5.24), since we did not observe substantially diffejgmtformance from MAP estimates
in our experiments.

Another form of modeling that we will consider is factor aygas (FA). In this case, the term
Vy is replaced by a constant vector representing the true sp@atidel, m;; the goal is then to
estimatex. Typically, as a simplificationm; is assumed to be zero when calculating sufficient
statistics for estimation af [49].

The solution to both JFA and FA can be unified. For the JFA groblif we stack the matrices
[UV], then the problem reverts to the FA problem. Therefore, wit&lly study the FA problem.
Note that we also restrict our work to only one EM iteratioritod estimation of the factors, since
this strategy works well in practice.

The standard ML solution to FA [48] for one EM iteration canvindgtten as:
[UTS ' (N® L)U]x=U"S™ [F - (N® I,)m] (5.25)

whereF is the vector of first order sufficient statistics, dNds the diagonal matrix of zeroth order
statistics (expected counts). The sufficient statistiesodtained from the UBM applied to an input

set of feature vectors. We first 1&f = Ef\i 1 IV; and multiply both sides of (5.25) bly/N;. Now
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we use relevance MAP with a small relevance factor BrahdIN to obtainmy; i.e., bothm, — m

andF — (N ® I,,)m will be nearly zero in the entries corresponding to small We obtain
[UTS A @ L) U] x =UTS (A, ® I,,) [mg — m] (5.26)

where; is the speaker dependent mixture weights. We note that)(ar2éhe normal equations
for the least-squares problesa = argmin, |[Ux — (ms; —m)| p whereD is given below in (5.28).
This solution is not unexpected since ML estimates commimay to least-squares problems with
GMM distributed data [50].

Once the solution to (5.26) is obtained, the resulfifg is subtracted from an estimate of the
speaker meann; to obtain the compensated mean. If we assumedthds obtained by a relevance
map adaptation from the statistifsandIN with a small relevance factor, then the FA process is
well approximated by

mg — QU7DII1S (527)

where

D= (/\;/2 ® In) $-1/2, (5.28)

JFA becomes an extension of the FA process we have demeilstr@ne first projects onto
the stacked/V space. Then another projection is performed to eliminadelthcomponent of

variability. This can be expressed as a single oblique ptioje; i.e., the JFA process is

m; — Ov,u,1Pyv) pms = Ov,y,pms. (5.29)

5.4.3 Comments and Analysis

Several comments should be made on compensation schem#wandse in speaker comparison.
First, although NAP and ML FA (5.27) were derived in subgtlyt different ways, they are essen-
tially the same operation, an orthogonal projection. Thenrddference is in the choice of metrics
under which they were originally proposed. For NAP, the metepends on the UBM only, and for
FA itis recording and UBM dependent.

A second observation is that the JFA oblique projection dénhtwas substantially different prop-

erties than a standard orthogonal projection. When JFA ésl irs speaker recognition [8, 44],
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typically JFA is performed in training, but the test recoiglis compensated only with FA. In our

notation, applying JFA with linear scoring [44] gives

Cq(Ovu,prerm7GT; QU,Dr3rMTST) (5.30)

wheremrgr andmypgr are the mean parameter vectors estimated from the targeestnecord-
ings of a trial, respectively; als@rqr = (A%F/éT@In)Z‘l/z andDygr = (A%/SQT®I”)Z‘1/2. Our
goal in the experiments section is to disentangle and utadetsome of the properties of scoring
methods such as (5.30). What is significant in this processmatched train/test compensation,
data-dependent metrics, or asymmetric scoring?

A final note is that training the subspaces for the variougeptmnsoptimallyis not a process
that is completely understood. One difficulty is that the ninetised for the inner product may
not correspond to the metric for compensation. As a baselimeused the same subspace for
all comparison functions. The subspace was obtained witMarstyle procedure for training

subspaces similar to [50] but specialized to the factorysigproblem as in [8].

5.5 Speaker Comparison Experiments

Experiments were performed on the NIST 2006 speaker retiogrvaluation (SRE) data set. En-
rollment/verification methodology and the evaluationenid, equal error rate (EER) and minDCF,
were based on the NIST SRE evaluation plan [51]. The mainsfofwur efforts was the one con-
versation enroll, one conversation verification task fégghone recorded speech. T-Norm models
and Z-Norm [12] speech recordings were drawn from the NIS0428RE corpus. Results were
obtained for both the English only task (Eng) and for alll&rigAll) which includes speakers that
enroll/verify in different languages.

Feature extraction was performed using HTK [52] withMFCC coefficients, deltas, and ac-
celeration coefficients for a total 60 features. A GMM UBM with 512 mixture components was
trained using data from NIST SRE 2004 and from Switchboampara. The dimension of the
nuisance subspack, was fixed atl00; the dimension of the speaker spake,was fixed aB00.

Results are in Table 5.1. In the table, we use the followirtgtian,

Dupy = (N2 @ 1,) 572, Drar = (Afdr @ 1) 572, Dror = (Afsr @ I,) 572
(5.31)

81



Table 5.1: A comparison of baseline systems and differeDElnplementations

Comparison Enroll Verify EER minDCF EER minDCF

Function Comp. Comp. All (%) | All (x100) | Eng %) | Eng (x100)
Baseline SVM QU.Dyswm QU.Dusm 3.82 1.82 2.62 1.17
Baseline JFAC, Ov.u,Drer Qu,Drsr 3.07 1.57 2.11 1.23
Ckr Ov.Uu,Drer QU.Drsr 3.21 1.70 2.32 1.32
Ckr Ov.u.Dror Ov.U.Drsr 8.73 5.06 8.06 4.45
Ckr Qu.Dror QU.Drsr 2.93 1.55 1.89 0.93
Ckr QU,Duswm Qu,Dypum 3.03 1.55 1.92 0.95
Ckr I—Ovv.prer | I —Ouv,Drse 7.10 3.60 6.49 3.13
CGM QU,DTGT QU,DTST 2.90 1.59 1.73 0.98
Caom QU.Duswm QU,Dusm 3.01 1.66 1.89 1.05
Com QU.Dusum I 3.95 1.93 2.76 1.26
Kkr, QU,Dysm QU,Dusm 4,95 2.46 3.73 1.75
Kkr, Qu.Drer Qu,Drsr 5.52 2.85 4.43 2.15
CaLps Qu.p, Qu,p, 3.60 1.93 2.27 1.23
Cq Qu.De Qu,Dg 5.07 2.52 3.89 1.87
Cr Qu.pp Qu.py 3.56 1.89 2.22 1.12

where are the UBM mixture weights\ror are the mixture weights estimated from the enroll-
ment recording, and g are the mixture weights estimated from the verification réicg. We
also use the notatioP;,, Dg, and Dy to denote the parameters of the metric for the GLDS, Gaus-
sian, and Fisher comparison functions from Sections 553323, and 5.3.4, respectively.

An analysis of the results in Table 5.1 shows several treRdst, the performance of the best
IPDF configurations is as good or better than the state of th8\AVi and JFA implementations.
Second, the compensation method that dominates good pexfice is an orthogonal complement
of the nuisance subspac@;; p. Combining a nuisance projection with an oblique projecii®
fine, but using only oblique projections onto V gives highoemates. A third observation is that
comparison functions whose metrics incorporaig;r and Argr perform significantly better than
ones with fixedA from the UBM. In terms of best performanc€y, Cg, and Cgys perform
similarly. For example, th@5% confidence interval fo2.90% EER is[2.6, 3.3]%.

We also observe that a nuisance projection with fiXagsy: gives similar performance to a
projection involving a “variable” metricD;. This property is fortuitous since a fixed projection
can be precomputed and stored and involves significantlycesticomputation. Table 5.2 shows a
comparison of error rates and compute times normalized gsaline system. For the table, we
used precomputed data as much as possible to minimize ceripgs. We see that with an order
of magnitude reduction in computation and a significanthger implementation, we can achieve

the same error rate.
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Table 5.2: Summary of some IPDF performances and computttiee normalized to a baseline
system. Compute time includes compensation and inner praahly.

Comparison|  Enroll Verify EER minDCF | Compute
Function Comp. Comp. | Eng %) | Eng (x100) time
Cq Ovu.prer | Qu.nrsr 211 1.23 1.00
Com Qu.prer | QU.Drsr 1.73 0.98 0.17
Com Qu.pven | QU,Duswm 1.89 1.05 0.08
Com QU.Dusu I 2.76 1.26 0.04

5.6 Discussion

This chapter proposed the inner-product decision fundiBBF) framework for speaker compari-
son and compensation and showed that several recent syistéimesspeaker verification literature
can be placed in this framework. We then used the framewocknapare the different systems to
one another to identify the key components required to aehy@od performance. The results of
this analysis showed that it is important to include mixtargights in the inner product, and that
the more computational costly obligue compensations araewessary for good performance. We
then proposed a comparison function that combined thesghissand had substantially reduced

computation cost without sacrificing accuracy.
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Chapter 6

Toward Reduced False Alarms Using

Cohorts

In identification and verification tasks it is usually theed#sat the target prior is significantly lower
than the non-target, thus when a system is deployed it isceagh¢hat the majority of test instances
are non-targets which leads to a large number of false alarhmsNIST Speaker Recognition Eval-
uation (SRE) [1] takes this into consideration by settirgyihrameters of the detection cost function
(DCF) to penalize false alarms more severely than misseshésn in Table 2.1, the 2010 NIST
SRE increased the cost of false alarms (FAs) by adjustindE parameters: a typical system
yields approximately.01% false alarms at the minimum DCF operating point. At that apeg
point the detection threshold falls in the tail of the norgéd score distribution which is not a re-
gion that typical speaker verification and normalizatiagoathms optimize for. Typical algorithms
focus on ensuring a large degree of separation betweer tardeon-target score distributions and
typical score normalization schemes attempt to reducesddistribution variability over different

target models and test recordings.

This work examines the low false-alarm region and propokgsithms that attempt to tackle it
directly. The approaches leverage a large auxiliary setlafagled impostor (non-target) recordings
to identify suspect false-alarm trials whose match scoretican be penalized. Thus, the enabling
factor in these algorithms is low-cost comparison funaijasuch as the TV system (Section 2.2.6)
and theCg s IPDF with orthogonal compensation (Section 5.3.4). Thei$oaf this work will be
on the one-conversation train one-conversation test scesiad the development set is an extended

trial set drawn from the 2008 NIST SRE [19] English telephalaya. Final performance will be
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measured on the extended conditioof the 2010 [20] NIST SRE which consists of normal vocal
effort English telephony speech.

To motivate the approaches presented in this chapter, viehstaat an example scenario in Fig-
ure 6-1. The figure shows recordings in the speaker sinyilagace, where the distance between
two points represents the speaker similarity between twordings as computed by the compar-
ison function. The target and test recordings of two trial& 2 are shown along with impostor
recordings. The distance between target and test is equoiviad both trials, and thus both would,
conventionally, be considered equally likely to be trual; where the target and test contain the
same speaker. However, examining these trials within tidegb of the impostor recordings, one
could argue that triak is less likely to be a true trial: the target recordin@iis closer to impostors
than it is to the test recording, while the target and tesindings inl are closest to each other. This
intuition leads to the algorithms presented in this chafitat identify and penalize suspect trials
such ag. Itis also apparent, from this sketch, that for these to vibey require a dense sampling

of impostor recordings, which is why fast comparison fumasi are key enablers.

Speaker Similarity Space

A [T
x % « " \ O Tr!al 1: target recordlngi
. m Trial 1: test recording
X y X x X x | © Trial 2: target recording;
X X O X 1 @ Trial 2: test recording !
X x X @ + x Impostor recordings
X X <
X
a > y
X [} X
X X %
X X X X
X >
X x X

Figure 6-1: Motivating Example

The chapter begins by briefly introducing the baseline systeed in this work and highlighting
the difficulty encountered by these systems in the low-FAoregThe proposed methods to tackle
this difficulty are then presented and evaluated on an egtéahglish telephony development set

from the 2008 NIST SRE with promising outcomes. The methaoesteen applied to the telephony
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condition of the 2010 NIST SRE with less favorable resultsistinexpected discrepancy between
the 2008 and 2010 evaluations is explored and the likelyore@dentified and fixed resulting in

improved performance on the 2010 SRE.

6.1 Baseline System and The Problem

6.1.1 Baseline: TV and SNorm

The baseline system used in this work is the total varigh(litv) system, as in Section 2.2.6. The
particular configuration is presented in [53] and operatesapstral features, extracted using a 25
ms Hamming window. 19 Mel frequency cepstral coefficientgetber with log energy are calcu-
lated every 10 ms. Delta and double delta coefficients wene ¢halculated using a 5 frame window
to produce 60-dimensional feature vectors. This 60-dinoaiasfeature vector was subjected to fea-
ture warping using a 3 s sliding window. The UBMs used are gedépendent Gaussian mixture
models containing 2048 Gaussians. The UBM and the LDA ptioje@re trained on data from the
Switchboard Il, Switchboard cellular, and telephone rdicms from the 2004/05/06 NIST SRE.
The TV subspace is trained on these corpora as well as therHsiglish corpus. The WCCN
matrix is computed using only the telephone recordings fileen2004/05/06 NIST SRE data sets.
Itis common for speaker verification systems to be followed bcore normalization technique,
the goal of which is to reduce within trial variability leadj to improved performance, better cali-
bration, and more reliable threshold setting. In this wonksetric score normalization (SNorm),
Section 2.2.7, is used as the baseline with gender depemdeastor lists consisting df14 female

and406 male English telephone recordings drawn from the 2005/06TN8RE data-sets.

6.1.2 The Problem

The 2010 NIST SRE set a very low prior 6f001 on target trials in the detection cost function
(DCF) which results in false alarms costing significantlyrenthan misses. The minimum DCF
threshold, therefore, falls in the tail of the non-targeédltscores as can be seen in Figure 6-2. For
the TV baseline with and without SNorm the figure shows theimim DCF threshold and the
overlap of the histograms of the target and non-targetddates of the development set used. The
low overlap between target and non-target trials in botkspod the reduced variance of the scores

for the SNormed system highlight the efficacy of the TV systenspeaker verification and SNorm
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Figure 6-2: The Problem

for score normalization. However, TV and SNorm, thoughaife, do not specifically tackle the

tails of the score distributions in the overlap region, viahige will attempt to do in this work.
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6.2 Proposed Systems

We tackle the problem by trying to identify the high scorimgnrtarget trials, i.e. the trials in the
tail. This is done by leveraging a wealth of data availablarasnpostor set, a set of recordings that
do not share common speakers with the development or testrekbasking the question: “are the
two recordings in the trial more similar to one another omrordings in the impostor set?” Gender
dependent impostor sets are used consisting28t female and5932 male telephony recordings
from the 2004/05/06 NIST SREs excluding those used to parfeNorm. All match scores, be-
tween the trial recordings or a trial recording and an immostcording, are computed using the
symmetric equation (2.19).

In the proposed methods, one is not constrained to usingcaispystem to score trials. How-
ever, inner product scoring based systems, such as TV [2B]raner product decision functions
(Chapter 5), are especially well suited because they altowast and efficient comparison of a
large number of recordings, as is needed when scoring gattetording against the thousands of

impostor recordings.

6.2.1 False-Alarm Detectors
Nearest Neighbor AND/OR (NN-AND/NN-OR)

We begin with two strategies to detect whether a trial islfilenon-target trial, i.e. one that would
contribute to false alarms. The first proposed strategie@@N-OR, flags a trial as a non-target
if either of the trial recordings, target or test, are closer, as atdit by a higher match score, to
recordings in the impostor set than to the other trial reiogrdThe second, called NN-AND, flags
a trial as non-target ibothtrial recordings are closer to recordings in the imposttr se

We evaluate the two strategies on the development datarsetimining the percentage of target
and non-target trials that get detected and labeled asargatttrials, a perfect detector being one
that would have detected and flaggei% of the non-target an@% of the target trials. Table 6.1
shows that while the majority of the non-target trials weegedted correctly, a significant number
of target trials were falsely detected.

Table 6.1: Percent of trials flagged on the development set

Strategy || % target flagged % non-target flagged

NN-OR 18.7 99.87
NN-AND 25.2 99.96
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This observation suggests a strategy that, rather thamigakihard decision to label all record-
ings flagged by these detectors as non-targets, penaliaes thals by subtracting an offset from
the trial score. Figure 6-3 shows the minDCF and EER valugh@development set as a function
of the offset, and shows that both strategies perform bitéer the baseline SNorm system and that

NN-AND with an offset of2 yields the best performance.

Nearest Neighbor Difference (NN-DIFF)

In both NN-AND and NN-OR each trial is either flagged as a remgét or not flagged. We now
propose to instead assign a confidence sea®rcr, Rrsr), whereRpgr is the enrollment

recording an®R g7 is the test recording, to each trial based on how suspectayis

1 .
cp(Rrar, Rrsr) = §{S(RTGT,RTST)—S(RTGT,NNl(RTGT))}

1 R
+ §{S(RTGT,RTST)—S(RTST,NN1(RTST))}- (6.1)

wheres(.,.) is the SNormed TV match score, atdV; (utt) is the recording in the impostor set
that is nearest, has highest match scoreftocp will therefore take on a large negative value when
we are highly confident that a trial is a non-target, and aelgngsitive value when we are highly
confident it is a target trial. The confidence score is therdusith the baseline SNorm score to

obtain the final trial score

sp(Rrar, Rrst) = (1 — f)5(Rrar, Rrsr) — f * cp(Rrar, Rrst), (6.2)

where f € [0,1]. Figure 6-3 shows the minDCF and EER values on the developeetras a
function of the fusion parameter, with= 0 being the baseline SNorm system afe- 1 using the
confidence score as the trial score. The parameter sweepssadhat a good choice ¢fis in the

range of.3 to .6. Also, setting the trial score to be the confidence scorefi=e 1, performs well at

the minDCF point yet poorly at the EER.

6.2.2 K Nearest Neighbor Difference (KNN-DIFF) and Adaptive Symmetric Nor-

malization (ASNorm)

The first set of proposed methods share a common shortcothigygheavily rely on a single nearest

neighbor from the impostor set. We therefore extend the NNF)dea in an attempt to reduce this
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Figure 6-3: Offset penalty sweep for NN-AND, NN-OR, and NNFB

reliance by averaging the scores of the #§pNNs rather than just the first, and call it KNN-DIFF.

The confidence score is now

2
+3{8(Rrar, Rrsr) — w(3(Rrsr, NNk (Rrst)))}, (6.3)

wherep(.) is the mean andV Nk (.) is the set of the K NNs. A% gets large we can further divide
out the standard deviation in the confidence score resuitiag adaptive symmetric normalization

(ASNorm), similar to TopNorm [54] and ATNorm [30]:

. ® Rrsr) — $(Rrar, Rrsr) — w(8(Rrer, NN (Rrar)))
ASN\VTGT, VTST o($(Rrar, NNk (Rrar)))

$(Rrar, Rrsr) — (8(Rrst, NN (Rrsr)))

o(§(Rrst, NNk (Rrsr))) ’

(6.4)

+

whereo (.) is the standard deviation. Figure 6-4 shows how increagiraffects each of the strate-
gies. Notice that a lower number of cohotf§,= 50, is needed in KNN-DIFF, whilg{ = 1500 is
best for ASN.

We now choose the best performing confidence scekgs x—s0 andcasn, k=1500 and fuse
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Figure 6-4: Offset penalty sweep for K-NN-DIFF and ASN

them with the baseline SNorm scores,

skp(Rrar,Rrst) = (1 = f)3(Rrer, Rrst) — fexp,k=s0(Rrar, RrsT)

sasn(Rrar, Rrst) = (1 — f)$(Rrar, Rrsr) — feasn,k=1500(Rrar, Rrst),

and show the sweep of the fusion paramgtar Figure 6-5. The fusion shows that to optimize for
minDCF f should be set t6, meaning that the confidence scoggp or c 45 should be used rather
than fusing with SNorm. However, the fusion does benefit EgdRically in the KNN-DIFF case,

wheref = .7 seems to be a reasonable trade-off between DCF and EER.

-4 K-NN-DIFF K=50 / ASN K=1500 fusion

x 10
w 5 T T T T
O O ASNorm

®© o

Q4 © o * K-NN-DIFF
£ ® 'y
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f

Figure 6-5: Fusion of KNN-DIFF and ASNorm with SNorm
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6.2.3 Analysis

We first examine Table 6.2 and Figure 6-6 (A) and notice thahdhe simplest of the proposed

strategies, that rely only on the first NN and make hard deassto flag a trial as non-target, can

yield overall improvement over SNorm and specifically 3% relative improvement at minDCF.

Using the confidence score in NN-DIFF as the trial score, Weweaggressively targets the low-

FA region of the DET curve at the expense of the rest. Fusiagtimfidence score with SNorm

provides a less aggressive system that improves in therefjinterest while performing reasonably

elsewhere.
A) NN-AND / NN-OR / NN-DIFF vs BASELINE B) K-NN-DIFF / ASNorm vs BASELINE
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Figure 6-6: DET plots of the different systems on the develept set.

Table 6.2: Percent of trials flagged on the development set

Strategy DCF*1le4 | EER %)
Baseline: TV no SNorm 5.32 1.73
Baseline: TV with SNorm 4.47 1.32
NN-OR offset=1.5 4.09 1.32
NN-AND offset =2 3.87 1.32
NN-DIFF 3.93 4.82
NN-DIFF fused f=.5 3.86 1.52
KNN-DIFF K=50 3.33 2.07
KNN-DIFF K=50 fused f=.7 3.58 1.32
ASNorm K=1500 3.35 1.30
ASNorm K=1500 fused f=.7 3.46 1.24

The results of KNN-DIFF and ASNorm shown in Table 6.2 and Fegi+6 (B) show that utiliz-
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ing more than one NN in the confidence score further improeggpnance at minDCF, yielding
a25% relative improvement over SNorm. However, the two methafferdyreatly in performance
over the rest of the DET curve: KNN-DIFF only shows improvernia the low-FA region while
ASNorm improves overall. Fusing the confidence score wigh3Morm trial score trades off per-

formance at the low-FA range for overall performance.

6.3 NIST SRE 2010 results

We now present in the first columns of Table 6.4 and Figurelée#¢sults of the proposed methods

on condition 5 of the 2010 NIST SRE versus the baselines. dpparent from the DET plot that

A) NN AND / NN OR / NN DIFF vs BASELINE B) K- NN DlFF/ASNorm 'S BASELINE
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Figure 6-7: DET plots of the different systems on 2010 NISTESR

the improvement in performance observed on the developdaatset is not seen on the test set,
specifically at the minDCF operating point.

In an attempt to resolve this discrepancy we examine theeptge of trials being flagged
as non-targets in the simple NN-AND and NN-OR algorithmgvahin the first two columns of
Table 6.3. Comparing these percentages to those in Tabli¢ i6.Apparent that the test data-set
is interacting with the impostor set in a different mannerthhe development set: specifically a
significantly smaller percentage of trials are being flaggedon-targets. This could be for one of
two reasons: either the within set variability is lower foetest set than the development set, or the

impostor set is better matched to the development data.
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Table 6.3: Percent of trials flagged on the test set

Strategy | % target| % non-tar| % target | % non-tar
flagged | flagged || flagged+08| flagged+08

NN-OR 5.7 99.32 8.38 99.71

NN-AND 10.7 99.76 16 99.92

As changing the within-set variability would require chamgthe system we are using to drive
the experiments, we therefore attempt to better match thestor set to the test set by including the
2008 NIST SRE English telephony recordings in the impostor ske [ast two columns of Table 6.3
show that there is about a two-fold increase in the numbeagf#d recordings, indicating that the
2008 data is better matched to 12610 data. The last two columns of Table 6.4 and Figure 6-8

show that augmenting the impostor set to better match thelé¢s does improve performance over

the original impostor set.
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Figure 6-8: DET plots of the different systems with the augted impostor set on 2010 NIST SRE.

To provide a fair comparison between our proposed systeihsh@nSNorm baseline we aug-
ment the SNorm set with a uniformly selected subset of regsdfrom the2008 data-set. The
comparison with the baseline is presented in Table 6.4 andt&6-8 and, even though the improve-
ment is not as dramatic as was seen on the development daagha consistent improvement in
performance over the DET range between the minDCF point lsmEER point. Specifically, a
5 — 10% and8 — 10% relative improvement at the minDCF and EER points respelgtifor the
KNN-DIFF and ASNorm systems. However, even though the perdmce did improve it still falls
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short of expectation. This may be because the percentaggefldg the last two columns of Ta-
ble 6.3 are still lower than those in Table 6.1 indicatingkally persistent mismatch not addressed

by augmenting the impostor set.

Table 6.4: minDCF and EER breakdown on test set
Strategy DCF | EER || DCFe4 | EER (%)

*1ed | (%) || with08 | with 08
Baseline: TV no SNorm 462 | 2.82 4.62 2.82
Baseline: TV with SNorm 421 | 2.32 4.13 2.29

NN-OR offset=1.5 421|230 4.21 2.32
NN-AND offset =2 4.23 | 2.32 4.28 2.32
NN-DIFF 4.07| 230 | 4.11 2.32
NN-DIFF fused f=.5 4.07 | 2.22 4.05 2.16
KNN-DIFF K=50 4.00 | 2.11 3.70 2.06
KNN-DIFF K=50 fused f=.7| 4.01 | 2.13| 3.80 2.09
ASNorm K=1500 433 | 2.09| 4.02 2.08

ASNorm K=1500 fused f=.7 4.17 | 2.11 | 3.92 2.11

6.4 Discussion

The goal of this work was to attempt to directly tackle the lyggroposed DCF with systems that
leverage a large impostor set. Our results on the developseéwere very promising with even the
simplest algorithms outperforming the baseline. Howeperformance on the test set was on-par
with the baseline. Upon exploring this discrepancy, it Ibeeapparent that an impostor set that is
well matched to the data of interest is crucial to the progadgorithms. Augmenting the impostor
to better satisfy this criterion led to better performanéwever, performance still fell short of
what was observed on the development set, most likely duettaddressing all of the mismatches.
An avenue of future work is to explore techniques to idemifywell matched impostor sets. It
would also be of interest to further examine this apparestmaich between th2)10 NIST SRE

data-set and the NIST SRE data from previous years.
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Chapter 7

Graph Embedding: Manifolds and

Geodesics

The KL divergence approximations used in the derivationthefMAP and MLLR GSV kernels,
Sections 2.2.3 & 3.3.2, hold locally, as is the case for liizeal scoring of the JFA [33]. Though
these approximations hold locally, they are applied glgbalhich raises the question of whether
there is a more suitable global distance. This questionttadecent work on total variability [53],
which suggests that the majority of the variability betweeoordings lies in significantly lower
dimensional space, compel us to explore whether the vatyaimstead, lies on a low-dimensional
non-linear manifold. There are several techniques in thedliure to explore manifold structure and
embed data onto manifolds, such as ISOMAP [55] and locatlgai embedding [56], as well as
techniques that incorporate the manifold structure ingcclassifier, such as manifold regularization
of SVMs [10]. In this chapter we focus on manifold discovendeembedding and do so using

ISOMAP.

The extension from linear subspaces to non-linear mamifalkcbugh compelling, is not trivial,
because unlike linear subspaces, manifolds cannot, inrglelee parametrized by a set of basis
vectors and do not have corresponding simple projectionab@es. Even though a global represen-
tation of the manifold may not be available, the distancagltbe manifold (geodesic distance) [55]
between two points lying on it, can be approximated with grgpodesics. The graph-geodesic dis-
tance between two points, is the length of the shortest gathexting them along a graph embed-
ding of the data. For the graph embedding to capture the lgbbhecture, and the graph geodesics

to properly approximate the true geodesic, a large auyitiata-set is needed to densely sample all
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the variability in the data. Given graph-geodesic distan¢@OMAP [55] can be used to explore
the existence and dimension of a manifold and embed data in it
The goal of this chapter is to explore the use of graph gecslesid manifolds in the context

of speaker comparison. We will begin by describing the latigeensional inner-product space we
have chosen to base our exploration on. We then discuss eingethta on graphs and computing
graph geodesics. Next, we briefly outline ISOMAP and apptp ithe model-parameter space to
explore the existence and size of the underlying manifole. thién present results on data-mining
experiments, which show that the use of graph-geodesiardies can greatly improve classification.

Finally, we propose a method to use graph geodesics in anagi@al scenario along with results.

7.1 Inner-product Space for Speaker Comparison

Graph embedding, which we will discuss in Section 7.2, negucomputing the euclidean distance
between each point in a large auxiliary data-set and allrsttfeor speaker comparison, this trans-
lates to computing the speaker-similarity, or match sdogéyeen all the recordings in the data-set,
thus making it more crucial to have a fast comparison functio this chapter, we chose to use the
Canr IPDF, Section 5.3.4, with factor analysis (FA) orthogonainpensation, Section 5.4.2. This

can be written, since the comparison function is an innedyct) as:
s(Ra, Rg) = ulug, (7.1)

whereu,, & u, are the compensated supervectors represeRing R, in the speaker comparison
space. The supervectors are further magnitude normaiizedu/ ||u[3, as this was empirically

shown to improve the result of the geodesic approximatiesillting in the following comparison:
5(Ra,Rp) = 0, 0. (7.2)
The associated euclidean distance in this space is therefor

deuc(Ra, Rg) = \/2 — 21_131_15. (73)

For the experiments in this work, the frame level featuresetion was performed using HTK [57]

with 20 MFCC coefficients, deltas, and acceleration coefficientsaftotal of 60 features, with
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speech activity detection and feature warping [23] appli€tde UBM consists of &12 mixture
GMM and MAP adaptation of the means was performed with a asle® factor ofl0—>, while
the mixture weights of the UBM were replaced by their maxirdikalihood (ML) estimates. The
FA compensation was trained using speakers from the NIS# S®RE corpora [58]. The resulting

euclidean space has dimensiin 720.

7.2 Graph Embedding of Speech Recordings

Graph embedding of a data-set can help explore, visualideiaoover structure in the data, as we
show in Chapter 9. It is also the first step to computing apprate geodesic distances between
two recordings.

Nodes in the graph represent recordings while weighted aduacted edges represent speaker-
similarity between a pair of recordings. To assess thisonati similarity, we first compute a large
speaker-similarity matrix capturing the similarity beewmeeach recording in the data and all others;
thes, j'" entry of the matrix is the euclidean distance, using eqnaffo3), between th&” & ;"
recordings. An edge between two nodes exists if their cpomding recordings are deemed “similar
enough”, and in this chapter, this is decided using one ofwags: the first, connects two points
if they lie within some “epsilon” euclidean distance of easther, and the second, connects two
vertices if one is among th& -nearest neighbors (NN) of the other in the euclidean spate
weights of the edges are the euclidean distances betweemaberdings. We will refer to graphs
built based on the epsilon distancecagraphs, and those based d1iV asN N-graphs.

When performing the graph embedding, a summarized versitmecsimilarity matrix is first
computed, either based on epsilon distances or on K-naa&gibors, with the only valid entries
being those corresponding to the existing edges. Notelibatummarized matrix and the resultant
graph are two ways to represent the same information. Figtkesketches out the embedding
process for four recordinglR 4, Rz, R, Rp}.

To compare the two edge selection techniques and decidhwsimore suitable for speaker
comparison, we compare the resultant node-degree (nurhbdges a node possesses) distribution
of the graphs to the “correct” distribution. The correctegdistribution, is that of a graph in which
all recordings of the same speaker are connected with ortbexrand there are no edges between
recordings of different speakers. Figure 7-2 shows histogrof the degree distributions of sample

NN ande-graphs as well as the correct graph on the NIST SRE Eval-Gagd, which contains
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Figure 7-1. Sketch of graph embedding.

212 speakers and a total 5213 recordings. We see that the degree distribution d7€é-graph with
K = 16 has the same range and a similar trend as that of the coreguth.gi hee-graph, however,
is significantly different regardless of the choice of epsilthis is because the variance within the
speaker recordings is not consistent across speakersgtire §hows two choices ef Based on

these observations, we choose to D&¥ -graphs in the rest of this chapter.
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Figure 7-2: Histogram of degree distribution.
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7.3 Geodesics

If we assume that the recordings lie on a low-dimensionalifolgnn the speaker-similarity space,
then the euclidean distance between two recordings thddaepart may not a be a faithful repre-
sentation of the speaker similarity. A better choice mayheegeodesic distance, which is the length
of the shortest path connecting them along the manifoldydet the two recordings. Figure 7-3
sketches the difference between the two distances for gatchmiith an intrinsic dimension of two

in a three-dimensional euclidean space.

Manifold Geodesic Distanc

Euclidian Distance

\

Figure 7-3: Geodesic and euclidean distances between A and B

Though they differ over large distances, the euclidean aodigsic distances are approximately
equivalent for arbitrarily short distances. This equinake can be used to approximate the geodesic
distance [55] as follows:

We first assume that enough recordings are available sutththadensely sample the manifold in
the euclidean space, and embed these recordings\aN ar e-graph, as described in the previous
section. The graph only connects nodes that are similarfahd gpace is densely sampled, we can
assume the weight of the edge between two recordings istdulaiepresentation of how similar
they are. Thus, the geodesic distance between two recerdamgbe approximated using the graph
geodesic, which is computed by summing the weights of thegddpng the shortest path in the
graph connecting their corresponding nodes. Figure 74#ls&s this approximation for a manifold
with an intrinsic dimension of two in a three-dimensionatlaean space.

We will refer to the graph embedding of the recordings usedetosely sample the manifold

as the NN-background, and finding the graph-geodesic disthetween any two points in the
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Figure 7-4. Approximate geodesic distance between A and B.

NN-background involves just finding the shortest path althregygraph. However, to compute the
graph-geodesic distance between two recordings not pénedfiN-background, they must first be
“connected” to the graph. This is done by adding the recgsias vertices in the graph, calculating
the euclidean distance from them to the rest of the vertmed modifying the edge connections to
obtain the NN-graph one would have gotten had the two reagsdbeen part of the NN-background.
Once they are “connected” the graph-geodesic distancais #we length of the shortest path along
the graph connecting the nodes. To compute the shortestyeatise a Matlab implementation [55]

of the Dijkstra algorithm [59].

In this chapter we will examine the use of geodesic distaicéwree speaker comparison sce-

narios:

e A data-mining scenario where the NN-background includesthe recordings of interest for

comparison.

e A data-mining scenario where the NN-background includesrdtordings of interest for
comparison as well as additional recordings whose purpdseattempt to more densely sam-
ple the manifold, the hope being that this would yield a m@®usate approximate geodesic

distance between the recordings of interest.

e An evaluation scenario where the NN-background does naidecany of the recordings we

wish to compare and includes only recordings that attemgétsely sample the manifold.
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7.4 |ISOMAP

ISOMAP [55] is a technique that is used to explore the extstesmd dimension of the manifold,
as well as embed points into it [55]. The embedding uses thehggeodesic distances, to map the
data from the original high dimensional euclidean spaagaribwer dimensional space in which the
euclidean distance is equivalent to the geodesic in thénatigpace. We will refer to the euclidean
distance in the embedded space as the ISOMAP distance. divhatisional scaling (MDS), a
technique used for dimensionality reduction and data lizatson [60], is used to perform the
embedding. The optimal size of the lower-dimensional coatg space is, in general, not known
a-priori and can be estimated by examining the decay of thidual variance, the variance in the
data unaccounted for by the embedding. In this chapter wathgesoftware package [61] to apply
ISOMAP.

Itis important to note that ISOMAP requires access to altduz, one wishes to embed, a-priori
to estimate the manifold and embed the points in it. Thisirequent prohibits ISOMAP from being
used in an evaluation scenario where one does not have dodésstesting recordings to train the

classifier.

7.4.1 ISOMAP Applied to Speech Recordings

The speaker-similarity euclidean space which we have chtiseepresent speech recordings de-
scribed in Section 7.1 has a dimensior806720, however, previous work [53] had shown that good
speaker separation can be done in a significantly smalleesgadimensionalityl00. This smaller
space is essentially the subspace of largest variabilityhenoriginal space. In this section, we
attempt to uncover whether the data lies near a non-lineaifodé and if so what its dimension is:
We apply ISOMAP withK = 6, the parameter used to build tAéN-graph, to threeV . N-

backgrounds:

e 5213 recordings of the NIST SRE Eval-04 data-set, which congaih speakers from both

genders.

e 5742 recordings, of both genders, from thheand 3 conversation enroll andl conversation

test tasks of the NIST SRE Eval-06.

e 23000 recordings, of both genders, sub-selected from the NIST &RE6/08 evaluations as

well as the Fisher corpora.
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Figure 7-5 examines the decay of the residual error as thedaig dimension is increased. Note
that most of the variability in the Eval-04 data-set can bgtwaed by a0 dimensional manifold,

and similarly for the Eval-06 data-set. However, when the-bidkground includes speech from
multiple sources the intrinsic dimension is closeit ® with an overall higher residual error, which

seems to indicate a lack of consistency in the manifold adiwes data-sets.
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= NN-background=Eval-(04/06/08) & Fisher
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Figure 7-5: Decay of residual error with increasing embegdiimension.

To further highlight the existence of an underlying mardfof speaker variability, Figure 7-6
shows the two-dimensional embedding, with Eval-04 as thelddbkground, ob recordings from
10 male andl0 female speakers randomly selected from2h2speakers from the Eval-04 data-set.
Each set of similarly colored “0”s represents recordingsifia male speaker, and the set of similarly
colored “x"s represents recordings from a female speakés.interesting to note that both speaker

and gender separation can be observed in this two-dimexisgonbedding.
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Figure 7-6:5 recordings each frora0 speakers embedded on the estimated two-dimensional mani-
fold. “o” for males, and “x” for females.
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7.5 Graph Geodesics for Speaker Recognition

In this section we examine the possibility of using appreadeageodesics and manifold distances

to perform speaker verification. We do this by comparingdtalassifiers:

CE Labels two recordings as belonging to the same speakerdiuti@ean distance between them

in the original speaker-similarity space is below a thrédho

C¢ Labels two recordings as belonging to the same speaker girttph-geodesic distance between

them is below a threshold.

C1 Labels two recordings as belonging to the same speaker ISOMAP distance is below a

threshold.

ForCs andCp, we use & = 6 NN-graph and will explicitly state what NN-background wasd

in each of the results presented below. Efrthe dimensionality of the manifold is fixed &.

7.5.1 Data-Mining Task

The previous section showed that indeed speech recordgedr a low-dimensional manifold in
the model parameter space. One would therefore expectghmat graph-geodesic distances rather
than euclidean distances will yield more accurate speakaparisons. We explore this expectation
using data-mining experiments, where it is assumed thanadlll and test data is available, though
unlabeled, to the classifier.

Figure 7-7 shows a detection error trade-off (DET) plot tt@hpares the three classifiers on
the NIST SRE Eval-04 data-set, where pair-wise comparibetween all the recordings were per-
formed. ForCs and Cy, the NN-background consisted of the Eval-04 data-setf.itddbte the
large improvement in classification when the manifold ietaknto account, either by using graph
geodesics() or the ISOMAP distance({;). It is also important to note that tH® dimensional
embedding performed by the ISOMAP algorithm does not cotajfleharacterize the manifold,
thus resulting in the performance ©f being poorer than that @f;.

Figure 7-8 shows the DET plot of the classifier performancalfidrials of the NIST SRE Eval-
06 1 conversation train 1 conversation tdsf) task [18]. TwoCs andC; classifiers were trained,
the first used only théc data as the NN-background, while the second also includedritoliment
recordings from the NIST SRE Eval-06 3 conversation traiorversation test3¢) task. Similarly

to the results on Eval-04 thé; andC| classifiers outperformi'y, with C; performing better than
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Figure 7-7: DET plot of classifiers using euclidean, geadasd ISOMAP distances for the NIST
SRE Eval-04 data-set.

the corresponding’;. The DET-plot also shows the performance of’'a classifier whose NN-
background contains a total 88000 recordings from NIST SRE Eval-(04/06/08) and the Fisher
database. One would expect extending the NN-backgrourmhidetyne Eval-06 ¢ and3c will yield
improvement across the whole DET curve as the additionalwlgitresult in denser sampling of the
manifold yielding more accurate geodesic distances. Heweag seen in the figure, performance is
improved in the low false-alarm regime and worsened at theplmbability-of-miss regime. This
lack of overall improvement may be due to a miss-match in tigetying manifold on which the

Eval-06 and the Fisher data lie.
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Figure 7-8: DET plot of classifiers using euclidean, geadasid ISOMAP distances on All trials
of the Eval-061c task.
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7.5.2 NIST SRE Task

The data-mining results showed that, if the evaluation tasa@ailable a-priori, the graph-geodesic
distances can greatly improve classification results, hatthe choice of the NN-background in
computing the graph geodesics is important since it esggntiefines the manifold. In an evalua-
tion scenario, such as the NIST SRE, the classifier does wet dagriori access to the evaluation
data and thus the NN-background cannot include the data arhle classifier will be evaluated,
as was done in the data-mining experiments. This restnietiso prohibits us from using ISOMAP
to perform the embedding, since it requires the train ariddes: to be part of the NN-background.
Therefore, in this section we focus on comparing graph geosléo the euclidean distance on all
trials of the Eval-06 1c task:

For C¢, the NN-background used was the Fisher data-set and theanwhbearest neighborg)
used to create the NN-graph was varied fr@ro 25. Figure 7-9 shows the effect of varying

on the detection cost function point (DCF) and the equalreai® (EER) point, with the minimum
DCF occurring at’ = 3 and min EER occurring ak = 23. In Figure 7-10, we show the DET
plot for the Cq classifiers forK = 3 & 23 as well as the’r baseline. These, figures show that
the performance of the geodesic distance classifier is baséite choice of and only yields an
improvement over the baseline in certain regimes of the DIBT {he discrepancy between these
results and the significant improvements seen in the datérgniexperiments is perhaps due to a

miss-match in the underlying manifolds of the Fisher dathtae Eval-06 data.
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Figure 7-9: DCF and EER vs K d@f; on All trials of the Eval-06l ¢ task.
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Figure 7-10: DET plot folCs with K = 3 and K = 6 as well al'g.
7.6 Discussion

Using the ISOMAP algorithm, we have empirically shown thnere exists an underlying manifold
on which speech-recordings live in the speaker-similasjitpce. We used NN-graph embedding
as a proxy for the manifold, which allowed for computing drapeodesic distances. Using the
graph-geodesic distance and the ISOMAP distance in thefoldr@mbedding greatly improves
classification, over the euclidean baseline, in data-rgiexperiments. Results on NIST-SRE Eval-
06 core task show that this improvement is only observedrmesegimes of the DET plot at the cost
of degradation in others. Future work could examine thisrd{gancy in performance improvement
between the data-mining experiments and the NIST SRE erpats, with the ultimate goal being

a competitive classifier that fully exploits the structuféhe manifold.
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Chapter 8

Graph Embedding: Graph-Relational

Features

In this thesis we've already explored two ways to leverageparisons between the trial recordings
and a large auxiliary set to improve speaker comparison: Hapter 6, we used a large set of
impostor recordings to reduce false-alarms, by perfornaidgptive score normalization based on
the immediate neighborhood around the trial recording€Hapter 7, we used the scores between
the trial and background recordings to embed the trial tdiogs as nodes in a graph and used the
graph-geodesic distance between them as a speaker-mateh &t this chapter, we combine the
local neighborhood around the trial recordings with thedgssic distance between them and other

relational features to perform speaker comparison.

Motivated by the link prediction problem [62], this work eeds the trial recordings along
with the background set in a graph and, in addition to usimgdihortest path as a match score,
extracts several other features that capture the inteextiom between the trial recordings and the
background. We will refer to these as graph-relationaluiesst and use them to represent each trial.
These features are used in a classifier, e.g. linear SVM parate between true trials, where the

trial recordings correspond to the same speaker, and fa&ss o

We will begin with a description of the total variability ggsn which we will use both as a base-
line and for graph construction. We then discuss the grapktoaction and embedding, followed
by the relational features we’ll extract from the graph. t\exe present the classifier used along
with the train and test setup. We conclude with results thatvsthe efficacy of these features and

suggestions for future work.

109



8.1 Total Variability (TV) and Graph Embedding

The baseline system used in this work, and the one used t thalgraph, is the total variability
(TV) system, as in Section 2.2.6, followed by SNorm scoramadization, Section 2.2.7. The par-
ticular configuration is presented in [53] and operates @stral features, extracted using a 25 ms
Hamming window. 19 Mel frequency cepstral coefficients tbgewith log energy are calculated
every 10 ms. Delta and double delta coefficients were thesuledéd using a 5 frame window to
produce 60-dimensional feature vectors. This 60-dimeaditeature vector was subjected to fea-
ture warping using a 3 s sliding window. The UBMs used are gedépendent Gaussian mixture
models containing 2048 Gaussians. The UBM and the LDA ptioje@re trained on data from the
Switchboard Il, Switchboard cellular, and telephone rdicms from the 2004/05/06 NIST SRE.
The TV subspace is trained on these corpora as well as therHisiglish corpus. The WCCN
matrix is computed using only the telephone recordings ftioen2004/05/06 NIST SRE data sets.
The gender dependent impostor lists used for SNorm codsi$t 4 female andl06 male English
telephone recordings drawn from the 2005/06 NIST SRE dets-3/NVe will uses(R,, Rg) and
s(Rq,Rp) to refer to the TV and TV combined with SNorm symmetric scgrianctions between

two recordingsR,, andRg.

s(Rq, Rp) is used to compute a pair-wise match score between eachf padoodings in the set
consisting of the background and trial recordings, resglin a square and symmetric match-score
matrix. The score matrix encodes not only the direct corsparbetween the trial recordings, but
also how they interact with the background set. This infdromecan be leveraged to improve on the
direct match score. Motivated by the link prediction problfs2], we generate a relational graph
that summarizes the score matrix and extract graph-raktifeatures. These features combined
with the direct match score are combined to train a clasdtfigr discriminates between true and

false trials.

Section 7.2 of the previous chapter describes how theeakdtgraph can be constructed. How-
ever, unlike the previous chapter, we do not restrict oueseto justV N-graphs, and allow for
e-graphs as well. The choice of graph construction method,tlh@ parameter& ande, will re-
sult in very different graphs. These differences allow usxamine the match-score matrix from
different perspectives which we speculate would yield ssha complementary graph-relational
features. We therefore include both construction methodkssgveral parameter choices in the

feature extraction process.
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Another choice in graph construction is whether the edgeb®figraph are weighted or not.
Weighted graphs, like those of used in the previous chapser.the pair-wise score between two
recordings for the weight of the edge connecting them. Biggaphs on the other hand have all
their edge weights set to unity, therefore all the inforortis encoded in whether an edge exists
between two nodes or not. In the next section, we proposeaeaym@ph-relational features, some

applicable to both binary and weighted graphs, others tp omé.

8.2 Graph-Relational Features

Once the trial and background recordings are embedded iapdngve can extract several features
that capture the interaction between the trial recordingshe graph. These features are split into
two main classes: those that examine only the immediaténberpood of the trial recordings and

those that extend beyond that. To simplify the presentatfotine features we first present some

notation:

e The nodes in the graph, representing trial and backgrouwwtdangs, are indexed frorhto

T, whereT is the total number of nodes in the graph.

Each trial consists of a target and test recordiitgl” andT ST respectively.

NN, is the set of neighbors of nodg i.e. the nodes connected:tdyy an edge. For example

N Npar is the set of neighbors afGT'.

| X | is the cardinality of the seX .

||z|| is the 2-norm of the vector .

The vectorsy,, are typically sparse vector, of siZé&1, that capture the interaction sfwith

the remaining graph nodes:

- Zero valued entries in the vectors indicate the lack of agedzbtween the recordingand

the nodes corresponding to the zero locations.

- For weighted graphs, the value of the non-zero vector esiridicates the weight of the

edge between and the corresponding graph nodes.

- For binary graphs, all non-zero entries have a value of owkiradicate edges betwean

and the corresponding graph nodes.
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8.2.1 Neighborhood Features

The premise of these neighborhood features is thAGI" andT'ST are recordings of the same
speaker then their match scores with the background remsdihould be similar indicating they

lie within the same neighborhood of the graph.

Binary graph
We adopt the following features, which were proposed in [62]ink prediction:

e Common neighborg®V Ny N N Npgr| counts the number of common neighbors between

TGT andT ST.

, i itV Nrer NN NrgT| i i -
e Jaccard’s coefﬁuentHWVTGTUNNTST| normalizes the common neighbor score by the to
tal number of nodes connected to bdfle-7" andT'ST. An example scenario where the
normalization would be useful, is where a particular targebrdingT’GT shares the same
number of common neighbors with two separate test recosditijl; andT'ST», however

|NNrsr,| > |NNrgr, | and thus the Jaccard coefficient would penali&!.

o Adamic=2.c N NyornNNpgr m a measure that combines the size of the intersection set
with how highly connected the nodes in the intersection arkis could be thought of as

another form of normalized common neighbors.

Weighted graph

The features in this section are inspired by those of therpigiaph.

Inner product=t...vrsr is based on the common neighbors measure.

T T
Normalized inner products=—£cz-TST ‘rep tTST

SToraalTorsr] and Toree orse which are inspired by Jac-

card’s coefficient.

Adamic Weighted=,c NNy NN Npgr m, based on the binary Adamic feature.

Landmark Euclidean distancémrcr — vrsr||, @ measure that considers the recordings in
the graph as landmarks and that the vecteysr andvrgr represent the coordinates’B6& 7

andT ST in the space defined by the landmarks.
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8.2.2 Paths Features

In the previous sections our discussion has focused on greqistructed based on match scores.
One can also create graphs based on the Euclidean distameechehe TV representation of the
recordings. In the K-NN version of the distance based graph&IN are selected to be the closest
ones to a recording in the Euclidean space. And in the eps#osion of the graphs, edges exist
between nodes that are less thampart from one another. Given the normalization of the match

score presented in Section 2.2.6 the euclidean distaneebetiwo recordings is just

e(Ro,Ry) = /2- 23Ry, Ry). (8.1)

These distance graphs allow for extracting paths basedrésathat go beyond the immediate neigh-

borhoods of the trial recordings:

Shortest path

e Shortest path2—$P(TCT.TST) \whereS P(TGT, TST) is the value of the shortest path from
nodeT' GT to T'ST, which we compute using a Matlab implementation of the Difksilgo-
rithm [9].

o Number of hops2- NH(TGTTST) \whereN H(T'GT, TST) is the number of edges traversed

along the shortest path frofiGT to T'ST.

N-Step Markov (NSM):

NSM is a feature used to quantify the relative importanc&'6fl’ to T'ST [63] by computing the
probability that a random walk started’8GT will visit T'ST after N steps are taken. This can be

computed as the value at the index of €T vector:
NSM(TGT, ) = Aipgr + AZiTGT + AS’iTGT + ...+ ANiTGT, (82)

whereirqar is a vector of sizé'x1 of all zeros except fot at the index of th&d’GT’, and A is an
TXT matrix representing transition probabilities from one @dd another. We obtaiA from the
distance graph by dividing each outward edge from a node é@wtim of all outward edges from
that node. In this work we choose to 9ét= 15 since beyond that the contribution AV i to

the NSM score is minimal.
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Table 8.1: The graph-relational features used in clastifita

Kused in K-NN | € used in Epsilon Grapl
BGN 5, 10, 20, 50, 100, .35, .4, .45
250, 500, 750, 1000
WGN || 5, 10, 20, 50, 100, -4,-3,-.2,-.1,
250, 500, 750, 1000 0,.1,.2, .3 .4
Paths 11,12,1.3
8.3 Classifier

Section 8.1 presented two graph embedding techniques, kKaiNepsilon graphs, each with a
parameter that can be varied to obtain different resultaaplgs. These graphs are then used in
Section 8.2 to extract three categories of features: bigaaph neighborhood (BGN), weighted
graph neighborhood (WGN) and paths features. Combininglifferent graph construction with
the different feature extraction techniques results inrgelaet of features to represent each trial.
We narrow the set down tt35 features according to the efficacy of each individual featur the
development set. Table 8.1 lists the resulting set.

These relational features combined with the baseline mstole result in d36-dimensional
feature vector that represents each trial of interest. €atufes are individually normalized to have
zero mean and unit variance across the training set. A liS&& classifier is then trained, per
gender, on the development set to separate between truealaedtrials. This is done using the
LibSVM toolbox [64] with five fold cross-validation to setdtregularization parameter Once
trained, the SVM is used to classify test trials as true aefallhe next section presents the results

of our approach on speaker recognition and speaker-miasigt

8.4 Results

We evaluate the proposed algorithms on the one-convenstion one-conversation test scenario,
where each trial contains one target recording and oneAéshe experiments use the 2008 NIST
SRE English telephony data as a training/development sad. filhal performance is measured on

condition5 of the 2010 NIST SRE which consists of normal vocal effort Esfgtelephony speech.

8.4.1 Speaker Recognition Task

The speaker recognition task follows the standard NIST $RErequiring that each trial be consid-

ered independently of all other trials in the evaluationerBfiore, the auxiliary set used to build the
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graph and extract graph-relational features for a giveh tonsisted of only impostor recordings.
The background sets used are of 9882 for males and)281 for females and consist of record-
ings from the 2004/05/06 NIST SREs.The regularization patarc was set via cross-validation
to 5 for males andl5 for females. Figure 8-1 shows the detection error trad€RET) curves of

the baseline, in blue, and our proposed algorithm, in redherNIST SRE 08 data, which was
also used to train the SVM classifier. When examining thi¢ ples important to keep in mind

that we are testing on the SVM training data, however the qgidats highlight the potential of the

graph-relational features.
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Figure 8-1: Speaker recognition DET plots of the baselirg @moposed system on the training set
(NIST SRE 08).

Figure 8-2 shows the DET curves of the baseline, in blue, amgwposed algorithm, in red,
on the held out test set, NIST SRE 10. Note that our algoritieldy moderate improvement over

the baseline.

8.4.2 Speaker-Mining Task

In the speaker-mining task, we relax the constraint reggigach trial to be considered indepen-
dently and include all the trials of the particular evalaatin the graph background set along with
recordings from the 2004/05/06 NIST SREs. This yielded gemknd sets of siz8475 for males

and 12099 for females on the development set &i8$8 and 13209 for males and females on the

held out test set. We note that in this task the backgrounds seit only comprised of impostor
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Figure 8-2: Speaker recognition DET plots of the baseliree@nposed system on the held out test
set (NIST SRE 10).

recordings and may have speaker overlap with the trial ef@st. During SVM training the reg-
ularization parameter was set via cross-validation tfor males and for females. Figure 8-3
shows the DET curves of the baseline, in blue, and our prabakgrithm, in red, on the NIST
SRE 08 data used to train the SVM classifier. Keeping in miadl We are testing on the training
data, it is still worthwhile to note the potential of the ghagelational features for speaker mining.

Figure 8-4 shows the DET curves of the baseline, in blue, amgposed algorithm, in red,

on the held out test set, and clearly shows the improvememiiradllgorithm over the baseline.
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Figure 8-3: Speaker mining DET plots of the baseline and gged system on the training set

(NIST SRE 08).

Miss probability (in %)

60

401

201

10F

0.5}
0.2}

Male

Baseline

Graph Relational Features

.01 .05 02051 2 5 10 20 40

False Alarm probability (in %)

60

60

40¢| -

Miss probability (in %)

0.5}
0.21:

Female

Baseline
Graph Relational Features

20F

10}

.01 .05 0.2051 2
False Alarm probability (in %)

5 10 20 40 60

Figure 8-4: Speaker mining DET plots of the baseline andgseg system on the held out test set

(NIST SRE 10).

8.5 Discussion

In this chapter, we presented a framework to use grapheae#dtfeatures extracted from speaker

similarity graphs for improved speaker comparison. We iadpthis framework to two speaker

comparison tasks, speaker recognition and mining. In laatkst our proposed system outperformed

117



the baseline, with significant improvement observed in fieaker-mining task. We also present
results from test-on-train scenarios to highlight the pt& of the features. There was a noticeable
discrepancy between the test-on-train results and testirige held-out set which is a concern that
should be addressed in future work.

The goal of this chapter was to highlight the benefit of usirapb-relational features in speaker
verification. It, however, does not fully explore this topied leaves many issues to be addressed in

future work, some examples are:

e It is expected that there is significant correlation in thifedeént graph-relational features,
specifically between those of the same class (neighborhopdtb) and those extracted from
the same type of graptik{ — N N or ¢). It would be of interest to understand this correlation

and compensate for it in the classifier.

o In this work we chose to use a linear SVM for the classifier, &y other classifiers should

be considered.

e The set of graph-relational features used in this work isamoéxhaustive one and there may

be other better or complementary ones we have not considered

e We consideredy — N N ande graph construction techniques, yet there are other chthegs

may be useful.

e When constructing the graphs we used unlabeled auxiliazgrdings, it may however be
beneficial to use speaker labeled recordings along withhgcapstruction techniques that

exploit the labels.
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Chapter 9

Graph Embedding: Data Visualization

The NN-graph of speech recordings, Section 7.2, can serwgasd method to visualize the effects
of the algorithms on the data-sets. In the NN-graph the locaif the vertices is not important, only
the existence and weights of the edges between them. Thi gaap therefore, be “laid out” (the
process of choosing vertex locations) in a manner that wiaddlt in good visualization. We use
the GUESS [65] software package to perform both the visatidim and the layout using the GEM
algorithm [66]. An example of such a layout is presented iguFé 9-1 which shows the layout
of the K = 6 NN-graph of the Eval-04 telephony data, where the systerd uses the one in
Section 7.1. Male and female recordings are representeddogtird green nodes respectively, and
the visualization clearly shows the gender separations d&ia visualization technique can be used
as both an exploratory and a visual analysis tool. In thiptdrawe present a brief case study

showing how this could be done.

In [67] a channel-blind system was proposed that could bd aseoss the different tasks in
the NIST 2010 Evaluation [20]. These include recordingsetdghony speech as well as various
microphone recordings collected from interviews condaiégtetwo separate rooms. This system is
based on the TV system, Section 2.2.6 with WCCN and LDA suggigsperforming the crucial
role of removing channel variability. We use the data vieadion technique to examine both
the efficacy of the channel compensation in the system asaselb explore the full NIST 2010
evaluation recordings. We present only male recordingsessimilar results are observed with
female recordings. The graphs show all male recordingseoddine conditions of the 2010 extended

NIST SRE, and the number of NNs is sethb= 3.

We begin by showing the efficacy of the channel-blind systgmiding the system in building
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Figure 9-1: Eval-04 NN-grapk’ = 6 male (red) and female (green) recordings.

the NN-graph. Figure 9-2 shows the resultant visualizatiith speaker meta-data overlaid such
that recordings of the same speaker are colored alike. Ttstecs of similar color, representing
clusters of recordings of the same speaker, show that ttiensyis indeed assigning lower cosine

distance scores to pairs of recordings of the same speaker.

Next, we examine the importance of the channel compensatoformed by the combina-
tion of WCCN/LDA. To do this, we build a NN-graph using the anel-blind system without the
WCCN/LDA step, the corresponding visualization is in Fig@r3. We notice that the speaker clus-
tering observed with the full channel-blind system is nalenvisible, however, there does seem to

be some structure to the graph.

Further exploration, by overlaying channel meta-dataywshbat the structure can be attributed
to channel variability. Figure 9-4 shows the layout of the-iyfdph using the channel-blind system
without WCCN/LDA with: colors representing different tplgone and microphone channels, the

node shape representing the two different rooms the im@rdata was collected in. Upon careful
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Figure 9-2: Graph visualization of all NIST SRE 2010 Maleatings using the full channel-blind
system with speaker meta data overlaid.

inspection of the graph, one notices that the room accoustethore variability than the inter-
view microphones, specifically for the far-talking micrapies: MIC CH 05/07/08/12/13. Another
worthwhile observation, is that the two phone numbers (ZBg8n and 215573now) which are
land-line phones located in each of the rooms, cluster meginterview data of the corresponding
room, and more specifically near the close-talking and daskophones: MIC CH 02/04.

This ability to visualize and explore the dominant varidpiWithin a data-set may prove to be
a useful tool when dealing with newly collected data-setsthis particular case study, the greater
effect of the room variability over that of the microphonssems to suggest that future NIST SREs
should include tasks that test for robustness over vangogrding rooms.

Another useful aspect of visualization, which we will onlention here, is to help identify key
errors in a data-set. For example, a speaker or gender kaywesuld show up as a node or group

of nodes not clustering with their same speaker/gendetddlmmunterparts.
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Figure 9-3: Graph visualization of all NIST SRE 2010 Maleastings using the channel-blind
system without WCCN/LDA channel compensation with speaketa data overlaid.
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Figure 9-4: Graph visualization of all NIST SRE 2010 Maleamtings using the channel-blind
system without WCCN/LDA channel compensation with chammeta data overlaid.
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Appendix A

Useful Machine Learning Concepts

A.1 Support Vector Machines (SVMs)

An SVM [25] is a two-class classifier constructed from suma &érnel functioni'(-, -),
L
f(X) = Z’VsysK(Xa Xs) + b, (A1)
s=1

where they, are the ideal outputisL:l vsys = 0, and~s > 0. The vectorsk, are support vectors
(a subset of the training data) and obtained from the trgisit by an optimization process [37].
The ideal outputs are eithémor —1, depending upon whether the corresponding support vetor i
class0 or classl, respectively. For classification, a class decision is thag®n whether the value,

f(x), is above or below a threshold (usually

The kernelK (-, -) is constrained to have certain properties (the Mercer ¢iomdj so that/ (-, -)

can be expressed as

K(x,2) = ¢(x)" ¢(2), (A.2)

where¢(x) is a mapping from the input space (whetdives) to a possibly infinite-dimensional

SVM feature space. We will refer to thgx) as the SVM features.

The focus of the SVM training process is to model the bounietyeen classes: the boundary

is a hyperplane in the SVM feature space defined by the vectoormal to it:

L
W= Yysh(x) +b (A.3)
s=1
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The training process identifies the subset of the trainirig déich are the support vectaxs (data
that if removed from training set would lead to a differerasdifier) and associated weights
Figure A-1 shows the in-class-§ and out-of-class-{) training points in SVM feature space, the
support vectors (circled points), the linear decision lfzuy, and the normal) to it. We will
refer to the support vectors, their associated weights,dsatiminating direction ) as the “bi-

products” of the SVM training process.

seperating
hyperplane

Figure A-1: Example of separating hyperplane

A.2 Gaussian Mixture Models (GMMs)

A Gaussian mixture model (GMM) is a probability density ftion comprised of a mixture of

Gaussian density functions [68]. It models the probabdignsity of a vector of size D as:

M

g(r) = > wiN(rym;, %), (A.4)

i=1
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wherew; is the mixing weight of theé® mixture, m; is the mean vector of thé mixture, ¥; is the
covariance matrix of thé” mixture, and

N(I’; m;, Zz) = — mi)TEi_l(I‘ — ml)} (AS)

B B

(2m) D2z, |172 P 5(r
Maximum likelihood (ML) training is typically used to fit themodel parameters of the GMM, and
is done using expectation maximization (EM) [68]. In thiegls we only consider GMMs with

diagonal covariance matrices.

A.3 Maximum A Posteriori (MAP) Adaptation of GMMs

Gaussian mixture models (GMMs) are used throughout thsghe model features extracted from
a recording. This is typically done by adapting the parameté a universal background model

(UBM), a GMM trained to model features extracted from a laagd diverse set of recordings:

M
guBm(r) = Z wysmN (s myBa, YuBM,i)- (A.6)
=1

In this section we present maximum a posteriori (MAP) adapiaof the means of the UBM to
arecordingR, = {r,1,ra2,....ra N, } [2]. MAP adaptation uses the UBM meansf ;) as
a prior and moves the means in the direction of¢dhdL estimate of the meansi,, ;), which maxi-
mizes the likelihood of, being generated by the GMHj, (r) = Zf‘il wypm,iN (r; Mg i, XuBn)-
The amount of movement towards the ML means is based on thardmbadaptation data: the
more data available the more the adapted meang () move away from the UBM means and

closer to the ML means. Specifically the adapted means are:

N, . T .
my; = ﬁma,i + WmUBM,i Vi (A7)
N,
= ; ‘my, X 1
Ni — ]\202-/\/'(1'77/7 mza Z) & rha,i — FNZ'I'T“ (A8)
o1 i1 WiN (rn;my, ;) a

wherer is a relevance factor that is empirically chosen.

Note that, if a single Gaussian were used instead of GMMsyi:8/(r) = N (r;my gy, Yusm),
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thenm,, would just be the sample meangf:

. 1
m, — N_a ngl Tan- (Ag)

Another important observation is thatB& increases (i.e. as more adaptation data is available) the
adapted mean approaches the ML mean, with = m, when an infinite amount of adaptation
data is available.

In a similar manner the covariance matrices of the GMM cao bésadapted by MAP adaptation,

the details of which can be found in [2].
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