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Abstract

Multi-class classification can be adversely affected by theabsence of sufficient target (in-class)
instances for training. Such cases arise in face recognition, speaker verification, and document
classification, among others. Auxiliary data-sets, which contain a diverse sampling of non-target
instances, are leveraged in this thesis using subspace and graph methods to improve classification
where target data is limited.

The auxiliary data is used to define a compact representationthat maps instances into a vector
space where inner products quantify class similarity. Within this space, an estimate of the subspace
that constitutes within-class variability (e.g. the recording channel in speaker verification or the
illumination conditions in face recognition) can be obtained using class-labeled auxiliary data. This
thesis proposes a way to incorporate this estimate into the SVM framework to perform nuisance
compensation, thus improving classification performance.Another contribution is a framework that
combines mapping and compensation into a single linear comparison, which motivates computa-
tionally inexpensive and accurate comparison functions.

A key aspect of the work takes advantage of efficient pairwisecomparisons between the training,
test, and auxiliary instances to characterize their interaction within the vector space, and exploits it
for improved classification in three ways. The first uses the local variability around the train and
test instances to reduce false-alarms. The second assumes the instances lie on a low-dimensional
manifold and uses the distances along the manifold. The third extracts relational features from a
similarity graph where nodes correspond to the training, test and auxiliary instances.

To quantify the merit of the proposed techniques, results ofexperiments in speaker verification
are presented where only a single target recording is provided to train the classifier. Experiments are
performed on standard NIST corpora and methods are comparedusing standard evaluation metrics:
detection error trade-off curves, minimum decision costs,and equal error rates.

Thesis Supervisor: William M. Campbell
Title: Member of Technical Staff at MIT Lincoln Laboratory

Thesis Supervisor: Alan V. Oppenheim
Title: Ford Professor of Engineering
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Chapter 1

Introduction

This thesis explores the problem of training one-versus-all multi-class classifiers when limited target

instances are available. We propose graph and subspace methods that leverage auxiliary data (class-

labeled non-target or unlabeled instances) to mitigate theadverse effects of limited target instances

for training.

The aim of one-versus-all classification is to separate instances of one class from those of all

others. While instances may belong to any of a multitude of classes, only a select subset is of

interest. We refer to these select classes as targets, and for each, train a one-versus-all classifier to

separate instances into target or non-target. An importantaspect of training accurate classifiers is the

availability of a large number of instances from the target and non-target classes, as demonstrated

by the example shown in Figure 1-1. The figure shows three classifiers trained to preform one-

versus-all classification. The classifiers, represented bythe solid and dashed lines, are trained to

distinguish between the+s and−s, target and non-target instances respectively, inR2. Once the

classifiers are trained, slope and intersect of the lines areset, an instance that lies above the lines is

classified as a target and below as a non-target. These decision boundaries vary according to how

many instances are available for training: The “1 train” decision boundary assumes only the circled

target instance is available along with all the non-targets, “3 train” extends the training data by

including the squared target instances, and “All train” uses all the target instances. It is worth noting

that though “1 train” separates the circled target from the non-targets, it fails to properly classify 7

of the+ instances, while “3 train” erroneously classifies 3+ instances. Thus, the accuracy of the

classifier is adversely affected by the limited availability of target instances for training. This is of

concern since the collection of sufficient target training data for accurate classification is sometimes
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prohibitively costly or simply not possible. In such cases,a large volume of auxiliary data, which

can be exploited to mitigate the effects of this deficiency, may be available or cheap to collect.
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Figure 1-1: Effect of limited target data.

The problem of limited target data arises in several tasks, including face recognition, audio

mining, author recognition of documents and speaker verification. In face recognition, the instances

are face images. Several target instances may be provided tobuild a classifier, but these do not

span the full set of lighting conditions, backgrounds and capture angles needed to fully specify the

variability of the target. Auxiliary data, such as person-labeled face images under different capture

conditions as well as a large collection of unlabeled instances, may be used as additional training

instances for the classifier.

In speaker verification, instances are recordings of speechand targets are particular speakers of

interest. Only a small number of target speaker recordings may be available, as in the core tasks in

the NIST speaker verification evaluations [1], which provide only one target recording to train the

classifier. In this case, a large amount of auxiliary instances, some labeled, are available for use in

training. These are chosen to contain a diverse set of speakers and recording conditions and provide

information about how recordings differ across speakers, as well as the variability within the same

speaker’s recordings.
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In these scenarios, auxiliary data can be used for better modeling and representation of the

target, as an impostor set in discriminant classifiers, for variability compensation and for inducing

graph-relational features:

• At the modeling level, the limited target data does not allowfor training a rich representative

model of the target. However, auxiliary data may be used to train a generalized model with a

large number of parameters that captures the aggregate behavior of the different classes. The

parameters of the generalized model can then be fit to the available target data to provide a

target model [2].

• The parameters of the generalized model can also be fit to individual instances, and the space

of adapted parameters used as a vector space in which to represent the instances [3].

• If the auxiliary data is known to not contain any target data,then it can be used as an impostor

data-set to define the decision boundary in a discriminativeclassifier, such as a support vector

machine [3, 4, 5].

• Class-labeled instances can be used to estimate subspaces that capture the within and between

class variability. Once estimated they can be used to improve modeling, or incorporated into

the classifier [6, 7, 8].

• Assuming a comparison module that measures similarity between two instances is provided,

one can perform thousands of comparisons between the targetand auxiliary instances to form

a similarity matrix. The matrix can then be summarized in a relational graph where nodes

represent instances and edges exist between two similar instances, where similarity is defined

by the summarization method. The relational graph has been used for manifold discovery

and embedding [9], and in semi-supervised algorithms to exploit available unlabeled data for

training [10].

• Once a classifier has been trained, it can be scored against a set of impostor instances and the

mean and standard deviation of these scores can be used to calibrate the classifier [11, 12, 13].

This thesis focuses particularly on machine learning techniques that leverage auxiliary data

to improve classication when limited labeled target data isavailable. The next section gives an
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overview of the thesis without considering specific applications. The rest of the thesis, however, fo-

cuses on the speaker verification problem and discusses and evaluates the proposed methods within

that framework.

Chapter 2 will describe the speaker verification problem, present an overview of the literature,

and present the thesis contributions. Chapters 3-9 will each present a contribution in detail. Ap-

pendix A briefly describes support vector machines, Gaussian mixture models and relevant adapta-

tion techniques.

1.1 Thesis Overview
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Figure 1-2: High-level overview of the thesis

Figure 1-2 presents a high-level overview of the different ways this thesis leverages auxiliary

data. First, we use the auxiliary data to define a vector spacewhere vectors represent instances, as

well as the corresponding metric used to compare them, as shown in the top left corner (A) of the

figure. The auxiliary data is then used identify nuisance subspaces in the inner-product space, and

we propose a technique to compensate for the nuisance (B). Next, we propose a linear framework

that combines comparison and compensation (C), which motivates an efficient and accurate way

to compare instances (D). Efficient comparisons can then be used to map target, test and auxiliary

20



instances into a single vector space (E). We use this joint representation of the instances to explore

the local region around the train and test instances for false-alarm reduction (F). The representation

can also be used to perform graph-embedding of the instances(G) which we use in two ways: as

a proxy to a manifold on which the data lies (H), and to extractgraph-relational features which

are useful for classication (I). The remainder of this chapter will describe each part of the thesis in

greater detail and will refer to the different parts of Figure 1-2 by their corresponding letters so the

reader does not lose sight of the high-level picture. A more detailed discussion of the contributions

will be presented in Chapter 2.

1.1.1 GMM-MLLR Inner-Product Space (A)

Comparing and classifying instances is made more difficult by certain variations such as duration

and content for speaker verification, image size and resolution in face recognition, and document

length in author identification. It is therefore useful to first map instances into an inner-product

space that offers invariance to these differences. This canbe done by modeling aggregate behavior

of features extracted from the instances, and having the space of model parameters be the vector

space to which they are mapped. In speaker verification, for example, the choice of features could

be local-frequency based [14, 15], while in document classification they could constitute word and

N-gram counts [16, 17].

A rich probabilistic model with a large number of parameters, such as a Gaussian mixture model

(GMM) (Appendix A.2) with hundreds of mixture components, is needed to properly model the

class variability. However, the number of features extracted from each instance may, in general,

not be enough to fully fit such a large number of parameters. Rather than train the full model,

parameters of a universal model that captures the multi-class aggregate feature distribution can be

adapted to fit an instance’s features. With a probabilistic model representing each instance, two

instances can be compared by comparing their respective models. This has been done, for example,

using the Kullback-Leibler (KL) divergence [3].

In Chapter 3, we propose using a GMM with hundreds of mixture components for the universal

background model. Maximum likelihood linear regression (MLLR) adaptation is used to adapt the

means of the Gaussians, via an affine transformation shared among the mixture components, to fit

the features of each instance. Starting with the KL divergence between the adapted models, we

apply approximations and algebraic manipulations to derive a new distance metric which defines an

inner product space whose dimensions are the parameters of the MLLR affine transform.

21



1.1.2 Variability-Compensated Support Vector Machines (B)

In classification there are two types of variability: the between-class (good) and the within-class

(bad). The good, or signal, captures the between-class variations and enables classification, while

the bad, or nuisance, encompasses all other variability that confuses the classifier. Assuming that

the instances have been mapped into points in an inner-product space, auxiliary data can be used to

estimate subspaces of interest, for example the one that contains the nuisance variability. To utilize

these estimates, Chapter 4 proposes variability-compensated support vector machines (VCSVM),

which incorporate the subspaces of interest into the SVM formulation, thus combining training the

decision function and the variability compensation into one optimization.

1.1.3 Inner Product Decision Functions (C,D)

In this thesis, we propose a particular inner-product spaceand a specific manner in which to com-

pensate that space (Chapters 3 & 4). There are, however, other linear comparison and compensation

techniques in the literature [6, 7, 8, 3]. An unrealized effort is to compare these to one another

and to understand how the interaction between the choice of inner-product space and compensation

affects classification performance. We therefore propose in Chapter 5 the inner product decision

function (IPDF) framework that combines the two and encompasses the majority of the techniques

in the literature. This unified framework allows for direct contrasting between these compensated

inner-product spaces, leading to a better understanding ofwhat crucial components are needed to

represent instances well. We then use this understanding topropose a new efficient metric and

compensation that match the existing in accuracy with reduced computational cost.

1.1.4 Leveraging Auxiliary Data with Fast Comparison Functions (E-I)

The efficient compensated inner product resultant from the IPDF framework can be used as a class-

similarity score between two instances of interest. The efficiency further enables us to also compute

a similarity matrix whose entries are pairwise comparisonsbetween the two instances of interest and

auxiliary instances. This matrix captures the interactionbetween instances and contains information

that may be leveraged to obtain a more accurate class-similarity score. In this section, we present

the different ways we use this interaction to improve classification.

In Chapter 6, we propose algorithms that use the interactionof the pair of instances under

consideration with those most similar to them in the auxiliary set to reduce false alarms.
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In Chapter 7, we explore how the similarity matrix can be summarized, by keeping only the

entries corresponding to strongest similarity, and transformed into a relational graph. Each instance

is represented by a node in the graph and nodes are connected by edges if they are deemed similar

enough. These relational graphs are then used to explore whether the data lies on a low-dimensional

manifold in the space, and distances along the manifold between instances are then used for clas-

sification. The relational graph can also be used for visualization and exploring large data-sets, as

shown in Chapter 9.

In Chapter 8, we suggest that the graph interaction between the pair of interest and the auxiliary

data can be used for classification. We do this by extracting from the graph several relational fea-

tures, including the graph distance used in Chapter 7 and local neighborhood ones similar to those

used to identify false-alarms in Chapter 6. We then use thesegraph-relational features in a classifier

trained to determine whether or not a pair of instances belongs to the same class.
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Chapter 2

Speaker Verification

The goal of text-independent speaker verification is to classify whether a given recording was spo-

ken by the target speaker, regardless of the spoken words. This is typically approached as a one-

versus-all classification problem where a binary classifieris trained to distinguish recordings of the

target speaker from those of all others. This chapter beginsby presenting how speaker verification

algorithms are evaluated, followed by a brief overview of the relevant literature and finally the thesis

contributions to the field.

2.1 Algorithm Evaluation

Speaker verification is an active field with a well established community and standardized evaluation

opportunities provided by the NIST speaker recognition evaluations [1]. This section describes the

NIST evaluation scope, data-sets and metrics.

2.1.1 The NIST Speaker Recognition Evaluation

The National Institute of Standards and Technology NIST evaluates the state of the art of speaker

verification, typically every other year, in the Speaker Recognition Evaluation (SRE) [1]. The most

recent three evaluations occurred in2006 [18], 2008 [19], and2010 [20] with each containing

multiple tasks to evaluate system performance and robustness to variability such as: the length

of the recordings, number of target recordings, language spoken and channel. Each task contains

thousands of trials and each is considered independently ofthe others. A trial consists of target

recordings to train the classifier and one recording to test.True or target trials are ones where the

test recording corresponds to the target speaker, the remaining are false or non-target trials. The
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goal of speaker verification systems is, therefore, to labeleach trial correctly and they are evaluated

based on the number of misses and false-alarms. A miss is whenthe classifier erroneously labels a

true trial as false, and a false alarm is when it labels a falsetrial as true.

This thesis focuses on the core task which consists of male and female trials containing a sin-

gle training and single test recording, around5 minutes long, of telephony (cellular and land-line)

speech. The2006 and2008 evaluations contain recordings in multiple languages and allow for a

language mismatch between the training and testing recordings of a trial, while the2010 contains

only English speech.

Each of the thesis contributions is evaluated using a subsetof the evaluations, which we will

specify before presenting each set of experimental results.

2.1.2 Algorithm Evaluation Metrics

A standard evaluation tool in the speaker verification literature is the detection error trade-off (DET)

curve. The curve fully characterizes the trade-off betweenthe probability of false-alarm and prob-

ability of miss of the system as the decision threshold is varied. Figure 2-1 shows an example of a

DET plot which overlays the performance of three systems. System A clearly outperforms systems

B and C since the DET curve for A lies below the others over the full operating range. The curves of

B and C, however, intersect, meaning that the better choice of system depends on the cost trade-off

between false alarms and misses, with system B being preferred if false-alarms were more costly.

While the DET curve provides a broad overview of system performance, systems can also be

evaluated at particular points on the DET curve. The two thatare typically reported in the literature,

are the equal error (EER) and minimum detection cost function (minDCF) points: the EER point

is the location on the DET curve where the probability of missis equal to the probability of false

alarm, and the minDCF point is the location where the detection cost function (DCF) is minimized.

The DCF is a function of the classification threshold and takes into consideration the prior on the

target speaker recordings as well as the cost of a false alarmand a miss:

DCF (thld) = CMissPMiss|TargetPTarget + CFalseAlarmPFalseAlarm|NonTarget(1− PTarget).(2.1)

The choice of the costs,CMiss andCFalseAlarm, and target prior,PTarget, as set by the NIST

evaluations are presented in Table 2.1 :
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Figure 2-1: Example DET plot comparing three systems.

Table 2.1: Decision Cost Function Parameters
NIST SRE Year Cost of Miss Cost of False-Alarm Probability of Target

2006 10 1 0.01
2008 10 1 0.01
2010 1 1 0.001

2.2 Literature Overview

This section presents some of the more recent and popular speaker verification techniques as well

as those that are relevant to the thesis. The goal is to provide the reader with a broad overview of

how the speaker verification problem is typically approached, and to set the stage for presenting the

thesis contributions.

2.2.1 Features

As in any classification problem, the first step is to extract from each recordingR features,{r1, r2, ..., rN},

that capture individual speaker identity thus enabling classification. Short-time frequency based

features, such as PLP [14] and mel-cepstral coefficient [15]features, have proven to contain this
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information. The most widely used in the recent literature,and those used in this thesis are the

mel-cepstral features. These are extracted by sliding a short, typically 25ms, window across the

speech recording, computing mel-cepstral coefficients foreach window and complementing these

with deltas and double deltas [21] extracted from consecutive windows. Typically RASTA [22],

feature warping [23] and/or mean-variance normalization are applied to the features to help reduce

channel effects. Figure 2-2 shows a block diagram of the feature extraction process.

Each chapter of this thesis uses a slight variation on these features, and we will present the

specific configuration before providing any experimental results.
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Figure 2-2: Sketch of the feature extraction
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2.2.2 MAP Adapted GMM UBM

For each target speaker, a generative model,gTGT (r), can be trained to model the features ex-

tracted from the target training recordings. A universal background model (UBM),gUBM (r), can

also be trained to model the features extracted from an auxiliary set of recordings representing

the general population of speakers, thus resulting in a speaker-independent model. Given features

{rTST
1 , rTST

2 , ..., rTST
NTST } extracted from the test recordingRTST , the binary classification becomes

a log-likelihood-ratio test that classifies the recording as target if the log-likelihood of the target is

larger than the log-likelihood of the UBM given the test recording:

logp({rTST
1 , ..., rTST

NTST }|TGT ) − logp({rTST
1 , ..., rTST

NTST }|UBM) > τ, (2.2)

wherelogp({rTST
1 , ..., rTST

NTST }|.) is the log-likelihood of the model given the test features and τ is

a threshold set based on the operating point of the DET curve.

In [2] the generative models used were Gaussian mixture models (GMMs) (Appendix A.2) with

diagonal covariances andM = 2048 mixture components:

gUBM (r) =

M
∑

i=1

λUBM,iN (r;mUBM,i,ΣUBM,i). (2.3)

Maximum likelihood (ML) estimation of the model parameterswas used to train the UBM, via

expectation maximization (EM), to fit the auxiliary data. The target model is trained by adapting,

via maximum a posteriori (MAP) adaptation (Appendix A.3), the means of the UBM to fit the target

data.

2.2.3 MAP Gaussian Supervector (GSV) Kernel

The binary classification aspect of speaker verification makes the problem especially suited for

support vector machines (SVMs), refer to Appendix A.1. The challenge, however, is in defining a

vector space and devising a kernel (Appendix A.1) to comparebetween two recordings, possibly

of different lengths. The Gaussian supervector (GSV) kernel, introduced in [24], is one particular

choice that has been widely used in the literature and is based on comparing GMMs that model each

of the recordings:

As in the previous section, the kernel begins with a diagonal-covariance GMM for the speaker-

independent UBM (2.3). The means of the UBM are MAP adapted toeach recording. Thus for
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recordingsRα & Rβ, this results in new GMMs that represent them:

gα(r) =
M
∑

i=1

λUBM,iN (r;mα,i,ΣUBM,i) & gβ(r) =
M
∑

i=1

λUBM,iN (r;mβ,i,ΣUBM,i). (2.4)

Since only the means differ between the two models it is reasonable to expect that the means would

contain the information needed for classification. Thus a good choice for a vector space in which to

represent recordings is that of the stacked means. Figure 2-3 sketches this process.
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Figure 2-3: Representing recordings by MAP adapted GMMs.

To formalize this choice of vector space and to define a metric(inner product) on it, one can

begin by considering that each recording is represented by its own probability model. Thus, com-

paring recordings can be done by comparing their corresponding models. A good measure of the

difference between two probability distributions is the KLdivergence:

D(gα‖gβ) =

∫

Rn

gα(r) log

(

gα(r)

gβ(r)

)

dr. (2.5)

The KL divergence measures how much two probability densities differ, unfortunately it does not

directly induce an inner product that satisfies the Mercer conditions [25] required for it to be used

as an SVM kernel.
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Instead of using the KL divergence directly, the log-sum inequality can be used to approximate

it by its upper bound [24],

D(gα‖gβ) ≤
1

2

M
∑

i=1

λUBM,i(mα,i −mβ,i)
TΣ−1

UBM,i(mα,i −mβ,i). (2.6)

Note that this approximation is removing any inter-mixturedependency, i.e. it’s a weighted (by the

mixture weights) sum of distances between theith Gaussian component ingα,N (r;mα,i,ΣUBM,i),

and its corresponding Gaussian ingβ , N (r;mβ,i,ΣUBM,i). The distance in (2.6) induces an inner

product, which results in the Gaussian supervector (GSV) kernel between two recordings [24]:

KSV (Rα,Rβ) =
M
∑

i=1

λUBM,im
T
α,iΣ

−1
UBM,imβ,i (2.7)

Defining GMM supervectors to be vectors formed by stacking the means of the GMM,

mα =
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...

mα,M

















and mβ =
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, (2.8)

allows us to write the GSV kernel in terms of the supervectors:

KSV (Rα,Rβ)= mT
α∆UBMmβ, (2.9)

∆UBM=

















λUBM,1Σ
−1
UBM,1 0 ... 0

0 λUBM,2Σ
−1
UBM,2 ... 0

... ... ... ...

0 0 ... λUBM,MΣ−1
UBM,M

















. (2.10)

where∆UBM = diag(λUBM,1Σ
−1
UBM,1, ..., λUBM,MΣ−1

UBM,M) is a diagonal matrix, since each of

the covariance matricesΣUBM,i are diagonal. Normalizing the supervectors by the square root of

∆UBM results in:

KSV (Rα,Rβ) = mT
α∆

1/2
UBM∆

1/2
UBMmβ = m̃T

αm̃β, (2.11)

wherem̃ represent the normalized supervectors. The space spanned by the supervectors and the
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normalized supervectors will be referred to as the GSV spaceand the normalized GSV space re-

spectively.

SVM training then finds the hyperplane that maximally separates the normalized supervectors

m̃TGT,t representing the target recordings{RTGT,1, ...,RTGT,T } from the normalized supervectors

m̃IMP,i representing the impostor ones{RIMP,1, ...,RIMP,I} in the normalized GSV space. A

test recordingRTST is then classified according to which side of the hyperplane its normalized

supervectorm̃TST falls. The training and testing process is illustrated in Figure 2-4.
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Figure 2-4: Sketch of Using SVMs to Perform Speaker Verification

2.2.4 Nuisance Compensation

The previous section mapped recordings into the GSV space and performed speaker verification

there. It is, however, important to note that the GSV space captures most of the variability present

in the recording, not just the speaker information. This additional nuisance variability, in the form
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of channel, session and language differences leads to poor classification. Thus, there is a need to

perform nuisance compensation, and here we present two of the most popular approaches in the

literature.

Nuisance Attribute Projection (NAP)

Nuisance attribute projection (NAP) [6] assumes there is a relatively small subspace of the SVM

space that contains the nuisance variability, and projectsthe supervectors into the complement of

that subspace. LetU be the matrix whose orthonormal columns form the basis of thenuisance

subspace andm be a recording’s supervector in the SVM space, then NAP is applied as follows:

mNAP = (I−UUT )m. (2.12)

The directions of the nuisance subspace are chosen to be the principal components of the within-

speaker covariance matrix [6]. An estimate of the covariance can be computed from speaker-labeled

supervectors of an auxiliary set containing multiple recordings per speaker. The within-speaker

variability serves as a proxy for the nuisance, since if the SVM space contains only speaker variation

all recordings of a given speaker should map to the same point. Thus, projecting out these principal

directions leads to a reduction in within-speaker and consequently nuisance variability.

Within Class Covariance Normalization (WCCN)

Like NAP, the basis of within class covariance normalization (WCCN) is the estimate of the within-

speaker covariance matrix,W, the inverse of which is used to weight the kernel inner product [7]:

KWCCN(Rα,Rβ) = mαW
−1mβ, (2.13)

wheremα andmβ are mappings of the recordingsRα andRβ into the SVM space. SinceW is

estimated from the auxiliary set, it may not be of full rank. To overcome this,̂W = ((1−θ)I+θW),

where0 ≤ θ < 1 is a tunable parameter, is used in practice. Another issue with this method is that it

requires inverting a matrix that is the size of the SVM space,thus, it wont work well in large spaces.
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2.2.5 Joint Factor Analysis (JFA)

Rather than model the recording first and then perform nuisance compensation, joint factor analy-

sis [26] incorporates the expected variability into the modeling step. Specifically, it assumes that the

deviation of the mean supervectorm of a particular recording from the UBM mean,mUBM , con-

tains a component that lies in a low-dimensional speaker subspaceV, another in a low-dimensional

channel subspaceU and a residual not lying in either:

m = mUBM +Vy +Ux+Dz, (2.14)

wherey andx are the speaker and channel factors respectively,D is a diagonal matrix, andDz

represents the residual. The speaker (V) and channel (U) subspaces, andD are jointly trained

using a speaker-labeled auxiliary set.

When training a target model, the parametersy, x, andz are jointly estimated to best fit the

features of the target recording. To obtain the clean targetmodel, that captures only the speaker

information present in the recording, one discards the estimated channel contribution, resulting in

the target-speaker mean supervectorm̂:

m̂ = mUBM +Vy +Dz. (2.15)

Speaker Factors

Since the low-dimensional speaker space essentially contains the speaker information, it was sug-

gested in [27] that two recordings be compared in that space.This led to the speaker factor kernel,

which is an inner product between the speaker factors, normalized to have unitL2-norm:

Given two recordingsRα andRβ and their mean supervectors

mα = mUBM +Vyα +Uxα +Dzα & mβ = mUBM +Vyβ +Uxβ +Dzβ , (2.16)

the resultant speaker factor kernel is

KSF (Rα,Rβ) =
yT
αyβ

√

yT
αyα

√

yT
βyβ

. (2.17)
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2.2.6 Total Variability (TV)

Similar to the JFA system, the total variability (TV) system[28] considers the variability in a record-

ing Rα to be restricted to a low-dimensional subspace. However, rather than proposing a speaker

and channel subspace, the TV system proposes a single subspace that captures all the variability,

called the TV space. The recording’s mean supervectormα can then be represented as

mα = mUBM +Ttα, (2.18)

wheremUBM is the UBM mean supervector,T is the matrix defining the TV subspace, andtα is

the corresponding factor of the recordingRα.

In the TV space, linear scoring can be performed between the target and test recordings to eval-

uate whether both were spoken by the target:

The scoring functions(RTGT ,RTST ) is computed as a weighted inner-product where the weight-

ing effectively performs channel compensation

s(RTGT ,RTST ) =
tTTGTAW

−1AT tTST
√

tTTGTAW
−1AT tTGT

√

tTTSTAW
−1AT tTST

.

A corresponds to a linear discriminant analysis (LDA) [29] projection matrix, trained to project into

a space that captures inter-speaker variability while avoiding within-speaker variability, andW is

the within-speaker covariance matrix computed in the LDA space. BothA andW are estimated

using a speaker-labeled auxiliary set of recordings.

2.2.7 Symmetric Score Normalization (SNorm)

It is common for speaker verification systems to be followed by a score normalization technique.

The goal being to reduce within trial variability to obtain improved performance, better calibration,

and more reliable threshold setting. There are several score normalizing techniques: TNorm [12],

ZNorm [13], ATNorm [30], SNorm [11]. Here we present symmetric score normalization (SNorm)

as an example.

For every scores(Rα,Rβ) between two recordings, the corresponding SNorm scoreŝ(Rα,Rβ)

is

ŝ(Rα,Rβ) =
s(Rα,Rβ)− µα

σα
+

s(Rα,Rβ)− µβ

σβ
, (2.19)
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whereµα andσα are the mean and standard deviation of the scores ofRα scored against an impostor

list, similarly forRβ , µβ andσβ.

2.3 Thesis Contributions

We now present the thesis contributions to the field of speaker verification. The letters (A-I) repre-

sent the different parts of the high-level overview shown inFigure 1-2.

2.3.1 GMM-MLLR Kernel (A)

In [5] & [4], alternatives to the MAP GSV kernel are proposed for SVM speaker verification. The

former uses maximum likelihood linear regression (MLLR) toadapt the means of the GMM emis-

sion probabilities of HMMs representing phonetic level acoustic models of a speaker-independent

large vocabulary continuous-speech recognizer (LVCSR), and the latter uses constrained MLLR

(CMMLR) to adapt the means and covariances of a GMM UBM. Both MLLR and CMLLR, con-

strain the adaptation to affine transformations of the universal model’s parameters, the transforma-

tions being typically shared across all or subsets of the GMMs in the LVCSR. The kernels proposed

by these systems are inner products between vector forms of the affine transformations’ parameters,

which is a reasonable choice since these parameters capturethe required discriminating informa-

tion. Though reasonable, no theoretical motivation is provided, thus leading both kernels to rely on

ad-hoc normalization of the transform vectors in the kernels: [5] uses rank while [4] uses min-max

normalization.

In Chapter 3, we follow a similar approach to that in section 2.2.3 to derive a theoretically

motivated kernel between two GMMs adapted from a UBM using MLLR mean adaption. As with

the other MLLR kernels the resultant is based on an inner-product between the affine transform

vectors. Our approach, however, provides a specific way to normalize the vectors that is based on

the covariance and mixture weight parameters of the UBM. We compare our motivated weighting

against ad-hoc ones and show a clear advantage. Even though this thesis derived the MLLR kernel

using a GMM UBM, it can be directly extended to the case where the UBM is a speaker independent

LVCSR.
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2.3.2 Variability-Compensated Support Vector Machines (VCSVM) (B)

Even though NAP and WCCN, Section 2.2.4, are both based on some estimate of the nuisance space

computed using auxiliary data, they present two different approaches to nuisance compensation for

SVM classification. NAP was developed under the assumption that the nuisance subspace is a

relatively small one and can be discarded. WCCN on the other hand does not make that assumption

and instead re-weights the full SVM space based on the nuisance estimate.

Since the end goal of nuisance compensation is improved SVM classification, we chose, in

Chapter 4, to combine the compensation and classification into a single training algorithm. We do

this by incorporating the nuisance estimate into the SVM optimization. This approach leads to a

framework that includes NAP and WCCN as specific instances yet allows for tuning to achieve better

compensation. Our method also extends WCCN to work in large dimensional spaces efficiently.

2.3.3 Inner Product Decision Functions (IPDF) (C,D)

The MAP GSV, Section 2.2.3, kernel is one of several speaker comparison techniques that results in

an inner product between mean supervectors; other examplesinclude the Fisher kernel [31], GLDS

kernel [32], and a linearized version of the JFA scoring [33]. The speaker verification literature

also contains several nuisance compensation techniques that result in a linear transformation of the

mean supervectors, e.g. NAP results in an orthogonal projection and JFA could be reformulated

as an oblique projection. This diversity in linear comparisons and compensations is due to the

different approaches to the problem. Even though the resultant algorithms can all be formulated as a

combination of linear comparison and compensation, they vary significantly in terms of verification

performance and implementation cost.

To better understand the discrepancy in performance between systems, we propose in Chapter 5,

a framework that encompasses all these linear comparison and compensation techniques. Placing

the competing algorithms in this framework allowed us to compare them side by side and under-

stand which of their sub-components were crucial for good speaker verification performance. The

framework was also useful beyond just comparing the existing systems, as it motivated new com-

parison and compensation combinations that match state of the art performance at a significantly

reduced implementation cost.
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2.3.4 Relational Algorithms and Features (E-I)

The availability of low-cost comparison functions, such asthe TV system [28] or those motivated

by the IPDF framework, allows one to leverage auxiliary data-sets in speaker verification by sup-

plementing the comparison score between the trial recordings with their similarity score with the

auxiliary recordings. In this thesis we propose several ways to do this:

Local Neighborhood Methods for Reduced False Alarms (F)

The first set of techniques were motivated by the update to thedetection cost function (DCF) in the

NIST SRE 2010 [20], as is seen in Table 2.1. These changes in the costs move the minDCF point

into the low false-alarm region of the DET curve, for which traditional comparison functions and

score normalization techniques are not optimized.

In Chapter 6, we propose methods that specifically tackle thelow false-alarm region by examin-

ing the interaction of the trial recordings with their immediate neighbors, auxiliary recordings that

are most similar to those of the trial. This local interaction is then used to identify suspect false-

alarm trials, which tend to be trials whose pair of recordings match auxiliary recordings better than

they match one another. Once identified, a penalty function based on the degree of neighborhood

similarity is used to penalize the trial by reducing its match score. The resultant proposed methods

take on the form of adaptive score normalization. Our experiments show that the success of these

algorithms hinges on having a good match between the testingdata, which contains the trial record-

ings, and the auxiliary data, with significant improvement in the low false-alarm region when they

are well matched.

Graph Embedding to Identify and Leverage Structure (G,H)

The relational interaction between the trial and auxiliaryrecordings can be extended beyond the

local neighborhood to uncover global structure such as manifolds. This can be done by embedding

the trial and background recordings as nodes in a graph and edges between the nodes capture local

similarity. Though the graph relies on local similarity, itcaptures global structure in the data and

can be used as a proxy to the manifold on which the speech recordings lie. The shortest path along

the graph edges between two nodes is, therefore, an approximation to the shortest path along the

manifold between the corresponding recordings.

In Chapter 7, we show how graph embedding of speech recordings can be done, and use it to
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form relational graphs of the test and auxiliary data. We then use the resultant graphs to empirically

show that there indeed does exist an underlying low-dimensional manifold that captures the vari-

ability in the data. We also propose using the shortest path distance along the graph between two

nodes to perform speaker verification. We argue that this provides a more accurate representation

of the true similarity between recordings than the score provided by the direct comparison function

used to build the graph. We then present experimental results that show the efficacy of this graph

distance for speaker verification.

Graph-Relational Features for Speaker Verification (I)

The relational graph captures more than just the local information, which we used for false-alarm

reduction, and the shortest path distance, which we used as asimilarity score. In Chapter 8, we

attempt to extract features that capture additional relational information and use it for speaker ver-

ification. These graph-relational features are motivated by the link-prediction problem, which pre-

dicts whether a link should exist between two nodes in a graphbased on their interaction with the

remaining graph nodes. We then use these features in a classifier to discriminate between true and

false trials. Our experimental results show that the relational graphs capture information relevant to

speaker verification, as evidenced by significantly improved verification with the graph-relational

features.

Graph Embedding for Visualization (G)

Another use of graph embedding is for visualization of largedata-sets. The visualization can be

used, for example: to explore the data-sets and uncover structure, to provide an intuitive sense of

system performance, to better understand errors in the system, and to identify errors in provided

labels. In Chapter 9, we present two case-studies as examples that highlight the utility of these

visualizations for data exploration.
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Chapter 3

GMM-MLLR Kernel

Many classification techniques, specifically the ones discussed in this thesis, require that instances,

whether they be images, documents, or recordings, be represented as vectors in an inner-product

space. The goal of the vector space is to provide invariance and the inner product to provide a metric

that contains inter-class similarity. In speaker verification, the invariance needed is to the duration

of the recordings, the underlying words spoken, and slowly varying linear time invariant channels.

Once an inner-product metric is defined on the space it can then be used as a kernel between the

vector representations (alternatively called feature expansions) of the instances for support vector

machine (SVM) classification (Appendix A.1).

Using SVMs with vector representations of instances has proven to be a popular and powerful

tool in text-independent speaker verification [24, 5, 4, 31,32]. A common method is to derive the

vector space and kernel from adapting a universal background model (UBM) to a recording-specific

model that captures the speaker variability in the recording. Examples of this in the literature are:

• The system described in Section 2.2.3 uses maximum a-posteriori (MAP) adaptation to adapt

the means of a GMM UBM. Motivated by the KL divergence betweentwo probability dis-

tribution functions, the resultant feature expansion is the Gaussian mean supervector (GSV),

which consists of the stacked adapted means, and the kernel is a weighted inner product be-

tween the supervectors. Since only the means of the models were adapted, it is reasonable to

expect the feature expansion to be the mean GSV. However, what is not obvious, yet crucial

for good performance, is the choice of weighting in the innerproduct. Thus, an advantage to

following the KL divergence approach, is that it motivates achoice of weighting, based on

the UBM covariances and mixture weights, which performs well.
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• [4] adapts both the means and covariances of a GMM UBM to a given recording using con-

strained maximum likelihood linear regression (CMLLR), which adapts the parameters via

an affine transformation shared amongst the means and covariances of multiple mixture com-

ponents. In this case, since the covariances were also adapted, one choice of the feature

expansion is a vector consisting of stacking the adapted parameters, means and covariances.

Alternatively, one could argue that the transformation captures all the deviation of the record-

ing from the UBM. The argument, thus, suggests another choice for the feature expansion,

such as the one used in [4], which consists of stacking the parameters of the affine transfor-

mation. This motivation does not, however, suggest a way to weight the transform vectors in

the kernel inner product, and [4] resorts to min-max normalization of the vectors.

• In [5], maximum-likelihood linear regression (MLLR) adapts, via a shared affine transforma-

tion, the means of the GMMs of a speaker independent large vocabulary speech recognition

(LVCSR) system to a given recording. Similar to the previousexample, one could use either

the MLLR-transform vectors as an expansion, or the mean GSV.However, since the UBM

is a LVCSR, the number of Gaussian mixture components are significantly greater than in

a GMM UBM. This makes the mean GSV a computationally expensive choice for a feature

expansion. The high computational cost and the argument that the MLLR transforms capture

the variability are likely what led to using the transform vectors in [5]. As in the CMLLR

case, the absence of a motivated weighting leads to using rank-normalized transform vectors

in the kernel inner product.

In this thesis we choose to use MLLR adaptation of the means ofa GMM UBM to avoid the

overhead of the LVCSR system, and in hopes that the constrained nature of the MLLR transform

may help mitigate channel effects. Another goal of this work, is to derive a well motivated kernel in

the MLLR-transform space that proposes a weighting of the kernel inner product that outperforms

ad-hoc techniques, such as min-max and rank normalization.Note that, although we restrict our-

selves to GMM adaptation, our kernel derivation and the resultant weighting transfers to the case

where the UBM is a LVCSR, as in [5].

This chapter will begin with a brief overview of MLLR adaptation, followed by the two expan-

sions we will be considering: mean GSV and MLLR-transform vector. We then present two kernels

in the MLLR-transform vector space which are motivated by the KL divergence. Implementation

details for the MLLR transformation are then presented, followed by a discussion on how this work

42



extends to LVCSR UBMs. Finally, we present experimental results that compare our KL divergence

kernels to ad-hoc ones.

3.1 Maximum Likelihood Linear Regression

Maximum likelihood linear regression (MLLR) adaptation adapts the means of the mixture compo-

nents of a GMM by applying an affine transformation. The same affine transform may be shared by

all the mixture components:

mi = AmUBM,i + b ∀i, (3.1)

wheremUBM,i are the means of the unadapted GMM, andmi are the adapted means.

Alternatively, the mixture components may be grouped into classes and a different affine trans-

form shared by all the mixture components in each of the classes:

mi = A1mUBM,i + b1 ∀mi ∈ Class1, (3.2)

mi = A2mUBM,i + b2 ∀mi ∈ Class2. (3.3)

In both the single and multi-class cases the transforms are chosen to maximize the likelihood that the

recording was generated by the adapted model [34]. The MLLR algorithm computes the transforms

A andb, not the transformed meansmi and subsequently additional computation is needed to

obtain the transformed means.

Multi-class MLLR adaptation allows for more freedom in adapting the GMM, since all the

means are not constrained to move the same way. The choice of how to group mixture compo-

nents into the different classes and the number of classes isnon-trivial. One can group the mixture

components via a data-driven approach that combines together mixture components that are close

in acoustic space. Alternatively, as in this work, the grouping can be done based on broad phonetic

classes. We explore the two and four-class cases: the two-class case groups sonorants into one

class and obstruents into the other, the four-class case further divides the sonorants into vowels and

sonorant consonants and the obstruents into fricatives andstops. The two and four-class break-up is

presented in Figure 3-1. As the number of classes increases,the amount of adaptation data assigned

to each class decreases. This leads to instances where thereis not enough adaptation data to obtain

a good transform for a given class. A common method to handle these instances is to “back-off”
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4 Class

Global 1 Class

Sonorants Obstruents 2 Class

Vowels Sonorant Consonants Fricatives Stops

Figure 3-1: Class-division tree structure.

from the class-specific transform and use a more general one to transform the means of that class.

For example, if there is not enough data to obtain a transformfor the vowels we back-off and use

the transform for the sonorants to adapt the vowels. More details on how the mixture components

were chosen and the back-off technique used will follow in Section 3.4.

3.2 MLLR Feature Expansions

The feature expansion is the representation of a recording in a high-dimensional vector space. We

will focus on the case of two-class MLLR adaptation and will present two expansions which are

byproducts of this adaptation. The expansions for the global and four-class MLLR adaptation are a

simple extension of the following.

The UBM is anM mixture diagonal covariance GMM,g(r). It is formed by a weighted sum of

two M/2 mixture GMMs: the firstM/2 mixture components are assigned to the sonorants and the

rest to the obstruents. The process of assigning componentsand the choice of the weighting (ps and

po) are discussed in more detail in Section 3.4.

g(r) = ps

M/2
∑

i=1

λiN (r;mUBM,i,Σi) + po

M
∑

i=M/2+1

λiN (r;mUBM,i,Σi), (3.4)

whereN (r;mUBM,i,Σi) is a Gaussian with meanmUBM,i and covarianceΣi. Adapting the means

of the UBM via two-class MLLR to a given recordingRα produces transformation matrices and

offset vectorsAs andbs for the sonorants andAo andbo for the obstruents. These can be used to

adapt the means of the UBM assigned to the sonorants and obstruents respectively.

The first expansion is the Gaussian mean supervectorm, which is constructed by stacking the

means of the adapted model. The second is the MLLR-transformvectorτ which consists of stacking

the transposed rows of the transform matrixAs separated by the corresponding entries of the vector

bs followed by the transposed rows ofAo separated by the corresponding entries ofbo. The process

44



is shown in Figure 3-2.
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3.3 Choice of Metrics

A major component of an SVM is the kernel which defines a metricthat induces a distance between

two different points in the feature expansion space. In our context, this translates to defining a

distance between two recordings. In this section we will discuss the different kernels we have

explored. Our focus will be on the Gaussian supervector kernel since it is well-motivated and

performs well.

3.3.1 Gaussian Supervector (GSV) Kernel

Suppose we have two recordings,Rα andRβ. We adapt the means of the GMM UBMg(r) to obtain

two new GMMsgα(r) andgβ(r) respectively that represent the recordings. This results in mean

supervectors,mα andmβ. A natural distance between the two recordings is the KL divergence
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between the two adapted GMMs,

D(gα‖gβ) =

∫

Rn

gα(r) log

(

gα(r)

gβ(r)

)

dr (3.5)

Unfortunately, the KL divergence does not satisfy the Mercer condition, so using it in an SVM is

difficult.

Instead of using the KL divergence directly, we consider an approximation [35] which upper

bounds it,

d(mα,mβ) =
1

2

M
∑

i=1

λi(mα,i −mβ,i)Σ
−1
i (mα,i −mβ,i). (3.6)

The distance in (3.6) has a corresponding kernel function [35]:

KSV (Rα,Rβ) =

M
∑

i=1

(

√

λiΣ
− 1

2

i mα,i

)t(
√

λiΣ
− 1

2

i mβ,i

)

,

which can be rewritten in terms of the mean supervectors:

KSV (Rα,Rβ) = mT
α ‘∆mβ. (3.7)

The GSV kernel in (3.7) results in a diagonal weighting between the mean supervectors. When

global MLLR adaptation is used, we will call the resulting kernel the GMLLRSV kernel.

3.3.2 GMLLRSV Kernel in MLLR Transform Space

MLLR adaptation transforms the means of all the mixtures of the UBM GMM by the same affine

transformation in equation (3.1). This constraint allows us to derive a kernel in MLLR-transform

vector space that is equivalent to the Gaussian supervectorkernel. We begin by replacing the adapted

means in equation (3.7) with the affine transform of the UBM means.

KSV (Rα,Rβ) =

M
∑

i=1

(

∆
1

2

i (AmUBM,i + b)

)T (

∆
1

2

i (CmUBM,i + d)

)

, (3.8)
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whereM is the number of mixtures of the UBM,mUBM,i is the mean vector of theith mixture of

the UBM, and∆i = λiΣ
−1
i which is diagonal. Expanding equation (3.8) yields

KSV (Rα,Rβ) =
∑M

i=1

(

∆
1

2

i AmUBM,i

)T (

∆
1

2

i CmUBM,i

)

+
∑M

i=1

(

∆
1

2

i AmUBM,i

)T (

∆
1

2

i d

)

+
∑M

i=1

(

∆
1

2

i b

)T (

∆
1

2

i CmUBM,i

)

+
∑M

i=1

(

∆
1

2

i b

)T (

∆
1

2

i d

)

. (3.9)

We will focus on the first term in equation (3.9). Note that tr(A) is the trace of the matrixA, ek

is a vector that has a value of1 as itskth entry and0 for every other entry,∆ik is thekth diagonal

element of the diagonal matrix∆i, n is the number of rows inA, and thatak is the transpose of the

kth row of the matrixA.

M
∑

i=1

(

∆
1

2

i AmUBM,i

)T (

∆
1

2

i CmUBM,i

)

=
∑M

i=1 tr

(

∆
1

2

i AmUBM,im
T
UBM,iC

T∆
1

2

i

)

=
∑M

i=1 tr
(

∆iAmUBM,im
T
UBM,iC

T
)

=
∑M

i=1 tr
(

(
∑n

k=1∆ikeke
T
k )AmUBM,im

T
UBM,iC

T
)

=
∑n

k=1

∑M
i=1 tr

(

eke
T
kA(∆ikmUBM,im

T
UBM,i)C

T
)

=
∑n

k=1 tr
(

eTkA(
∑M

i=1∆ikmUBM,im
T
UBM,i)C

Tek

)

=
∑n

k=1 a
T
k (
∑M

i=1∆ikmUBM,im
T
UBM,i)ck

=

n
∑

k=1

aTkHkck. (3.10)

In a similar fashion we can rewrite the remaining terms in equation (3.9) as follows:

M
∑

i=1

(

∆
1

2

i AmUBM,i

)T (

∆
1

2

i d

)

=

n
∑

k=1

dka
T
k hk, (3.11)

M
∑

i=1

(

∆
1

2

i b

)T (

∆
1

2

i CmUBM,i

)

=
n
∑

k=1

bkh
T
k ck, (3.12)

M
∑

i=1

(

∆
1

2

i b

)T (

∆
1

2

i d

)

=

n
∑

k=1

bkdkδk, (3.13)
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wherehk =
∑M

i=1∆ikmUBM,i, bk is thekth element of the vectorb, andδk =
∑M

i=1 ∆ik. There-

fore the Gaussian supervector kernel can be rewritten as

KSV (Rα,Rβ) =
∑n

k=1 a
T
kHkck +

∑n
k=1 dka

T
k hk +

∑n
k=1 bkh

T
k ck +

∑n
k=1 bkdkδk

= τ T
αQτβ, (3.14)

whereτ is the MLLR-transform vector defined in Section 3.1.

The matrixQ must be positive-definite because equation (3.14) computesthe same quantity

as (3.7).Q is a block diagonal matrix consisting ofn blocksQk of size(n + 1)x(n + 1). Equa-

tion (3.15) shows the structure of the blocksQk,

Qk =





Hk hk

hT
k δk



 . (3.15)

It is important to note that sinceQ depends only on the UBM means, covariances and mixture

weights it can be computed offline. The block-diagonal nature ofQ also allows us to easily compute

its square root. This in turn allows us to apply the model compaction technique in [35].

An advantage of equation (3.14) over (3.7) is that the numberof multiplies it requires only

depends on the size of the GMM feature vectors (38 in our case) and not on the number of mixtures

in the GMM. Another advantage is that it does not require transforming the means which saves

computation and removes the need for storing the adapted means. These two advantages and the

block diagonal structure ofQ result in an overall reduction of the number of multiplies fromO(n ∗

(M+M2)) in equation (3.7) toO((n+1)3) in (3.14), wheren is the size of the GMM feature vectors

andM is the number of mixtures in the GMM. This equates to an order of magnitude reduction in

the number of multiplies for our case. Note that this reduction in number of multiplies and storage

requirements will have a significantly greater impact if this kernel is applied to an LVCSR system.

3.3.3 MC MLLRSV kernel

In this section we present the MCMLLRSV kernel which extends the GMLLRSV formulation to

the case where multi-class MLLR is used. Since∆ in equation (3.7) is a diagonal matrix andm is

the stacked means of the different classes, then the multi-class extension to the GSV kernel is:

KSV (Rα,Rβ) = psKSV,S(Rα,Rβ) + poKSV,O(Rα,Rβ), (3.16)
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whereKSV,S(Rα,Rβ) andKSV,O(Rα,Rβ) are the class-dependent GSV kernels for the sonorants

and obstruents respectively.

Similar to the global case, we can implement the multi-classMLLRSV in MLLR-transform

space: we begin by replacing the adapted means in equation (3.16) with the affine transforms of the

UBM means.As, Ao, bs, bo are the transforms forRα andCs, Co, ds, do are the transforms for

Rβ .

KSV (Rα,Rβ) =ps

M/2
∑

i=1

(

∆
1

2

i (AsmUBM,i + bs)

)T (

∆
1

2

i (CsmUBM,i + ds)

)

+po

M
∑

i=M/2+1

(

∆
1

2

i (AomUBM,i + bo)

)T (

∆
1

2

i (ComUBM,i + do)

)

,

wheremUBM,i is the mean vector of theith mixture component of the UBM, the diagonal matrix

∆i = λiΣ
−1
i .

After similar manipulation as was done for the global MLLR case, we obtain:

KSV,S(Rα,Rβ) =

n
∑

k=1

bskdskδsk +

n
∑

k=1

aT
skHskcsk +

n
∑

k=1

dska
T
skhsk +

n
∑

k=1

bskh
T
skcsk

=τ T
sαQsτ sβ (3.17)

whereM is the number of rows inAs, ask andcsk are the transpose of thekth rows ofAs andCs

respectively,bsk anddsk are thekth elements ofbs andds respectively,∆ik is thekth diagonal el-

ement of the diagonal matrix∆i, Hsk =
∑M/2

i=1 ∆ikmUBM,im
T
UBM,i, hsk =

∑M/2
i=1 ∆ikmUBM,i,

δsk =
∑M/2

i=1 ∆ik, τ sα andτ sβ are the sonorant parts of the MLLR-transform vectors of the record-

ings, andQs is a block diagonal matrix consisting ofn blocksQsk of size(n + 1)x(n+ 1). Equa-

tion (3.18) shows the structure of the blocks:

Qsk =





Hsk hsk

hT
sk δsk



 . (3.18)

Note that the summations inHsk, hsk andδsk are fromi = 1 to M/2, only over the mixture

components pertaining to the sonorant class. With this in mind the form of the obstruent part of the

kernel is

KSV,O(Rα,Rβ) = τ T
oαQoτ oβ, (3.19)
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where the summations inHok, hok andδok are fromi = M/2 + 1 to M , only over the mixture

components pertaining to the obstruent class.

From equations (3.17) and (3.19) we note that the GSV kernel can be written as a weighted

inner product between the MLLR-transform vectors.

KSV (Rα,Rβ) =
[

τ T
sα τT

oα

]





psQs 0

0 poQo









τ sβ

τ oβ





= τ T
αQτβ (3.20)

It is important to note that, similar to the global MLLR case,since theQ matrix depends only

on the UBM means, covariances and mixture weights it can be computed offline.

3.3.4 Alternative Kernels in MLLR Transform Space

We also explore four alternative kernels in MLLR-transformvector space. The first replaces the

matrixQ by its diagonal approximation, which we refer to as the diag-supervector (DMLLRSV)

kernel. The second is the zero-one (Z-O) kernel which subtracts the means and divides by the stan-

dard deviations along each of the feature dimensions of the MLLR-transform vectors (determined

from a held-out dataset). The third is the Frobenius (FROB) kernel which does not apply any scale

or shift to the MLLR-transform vectors; tr([Ab]T [Cd]). The last is the rank-normalized [5] (R-N)

kernel which rank normalizes the MLLR-transform vectors.

3.4 MC MLLRSV Implementation

There are a number of issues that have to be addressed when building the multi-class MLLR/GMM

system. The first, is how to divide the mixture components of the GMM into multiple classes. For

the two-class case, we chose to perform the divide along broad phonetic classes: sonorants and

obstruents. However, since our UBM is not an LVCSR system where it is clear which mixture

components belong to which phoneme and thus to which of our two classes, we have to explicitly

assign them: we assign the firstM/2 mixture components to the sonorants class and the remaining

M/2 to the obstruents class. We also perform open-loop phoneticrecognition on all the data used

to train the UBM, the background, and the speaker recognition system and to test the system; this

allows us to assign which part of the data will be used to train/test each class. We also tried unequal

splitting of the GMM mixture components amongst the classes, however, this reduced performance.
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Second, we use EM to train two class-dependentM/2 mixture GMMs each using the corre-

sponding class-specific UBM training data. TheM mixture GMM UBM is then created by com-

bining the twoM/2 mixture GMMs and scaling their weights so that the weights ofthe UBM add

up to1. The scaling,ps andpo, is done according to the class priors, calculated as the percentage

of frames assigned to each of the two classes in the background training data.

Third, the MLLR-transformation matrix and offset vector for each of the two classes are com-

puted by separately adapting, via MLLR, the class-dependent GMMs using only the frames of the

adaptation recording corresponding to each class. If the number of frames of the recording assigned

to a class is below a set number (empirically we chose500) we back-off and use the fullM mixture

GMM and all the frames of the recording to obtain the MLLR-transformation matrix and vector.

This transform computed by backing-off is then used to adaptonly theM/2 means of theoriginal

class-dependent GMM. Similarly, in the four-class case if the number of frames allocated to one of

the four classes is below250 then for that class one would back-off one level, e.g. from Vowels to

Sonorants; if after backing-off one level the number of allocated frames is less than500 then one

would back-off one more level.

3.5 MC MLLRSV Kernel for LVCSR systems

The LVCSR/SVM system presented in [5] uses MLLR adaptation with a speaker independent

LVCSR system and a kernel consisting of an inner product between rank-normalized transform-

vectors. In the next section we show the advantage of the GSV kernel over other kernels that are

inner products between normalized MLLR-transform vectors, including the one used in [5], for the

case where the UBM is a GMM. Unfortunately, the GSV kernel, ifapplied in its original form (3.16),

can be computationally prohibitive since the number of multiplies increases asO(M2) whereM is

the number of Gaussian mixture components in the system, which is typically more than a hundred

thousand for an LVCSR system. However, since MLLR adaptation is being used to adapt the means,

one can follow the steps taken in Section 3.3.3 to derive a similar way to compute the GSV kernel in

terms of an inner product between the MLLR-transform vectors significantly reducing computation.
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3.6 Experiments

We performed experiments on the 2006 NIST speaker recognition (SRE) corpus. We focused on

the single-side 1 conversation train, single-side 1 conversation test, and the multi-language handheld

telephone task (the core test condition) [18]. This setup resulted in3, 612 true trials and47, 836 false

trials.

For feature extraction, a 19-dimensional MFCC vector is found from pre-emphasized speech

every 10 ms using a 20 ms Hamming window. Delta-cepstral coefficients are computed over a±2

frame span and appended to the cepstra producing a 38-dimensional feature vector. An energy-

based speech detector is applied to discard vectors from low-energy frames. To mitigate channel

effects, RASTA and mean and variance normalization are applied to the features.

The GMM UBM consists of 512 mixture components. The GMM UBM was trained using EM

from the following corpora: Switchboard 2 phase 1, Switchboard 2 phase 4 (cellular), and OGI

national cellular. For the two-class case, two class-specific M/2 = 256 mixture GMM UBMs

were trained using EM on the corresponding class-dependentparts of the data. These GMMs were

combined with weightsps = .71 andpo = .29 to form aM = 512 mixture GMM UBM. For the

four-class case, four class-specificM/4 = 128 mixture GMM UBMs were trained and combined

to form a512 mixture GMM with weights: .46 for vowels, .25 for sonorant consonants, .15 for

fricatives, and .14 for stops.

We produced the feature expansion on a per conversation (recording) basis using multi-class

MLLR adaptation. The adaptation was done per class-specificGMM. We used the HTK toolbox

version3.3 [36] to perform one iteration of MLLR to obtain the transformation. The various kernels

were implemented using SVMTorch as an SVM trainer [37]. A background for SVM training

consists of SVM features labeled as−1 extracted from recordings from example impostors [35].

An SVM background was obtained by extracting SVM features from4174 conversations in a multi-

language subset of the LDC Fisher corpus. In our experimentsthe size of the SVM features are

38 ∗ 512 + 1 for the mean supervector features and38 ∗ 39 + 1 for the MLLR-transform vector

features; note that we stack an element of value1 at the end of each feature vector to incorporate

the biasξ into the SVM features.

For enrollment of target speakers, we produced1 SVM feature vector per conversation side.

We then trained an SVM model using the target SVM feature and the SVM background. This

resulted in selecting support vectors from the target speaker and background SVM feature vectors
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and assigning the associated weights.

3.7 Results and Discussion

We will present our results in two parts: the first will highlight the difference between different ker-

nels in MLLR-transform space when global MLLR adaptation isused, and the second will present

the results for the MLLRSV kernel for the global and multi-class cases.

3.7.1 MLLR Transform Space Kernels Comparison

We compared the GMLLRSV kernel, the DMLLRSV kernel, the Z-O kernel, the FROB kernel,

the R-N kernel, and a MAP Gaussian supervector kernel (MAPSV) as in [35] where the UBM is

adapted via MAP adaptation instead of MLLR. Equal error rates (EER) and NIST minimum deci-

sion cost function (DCF) for the various kernels are shown inTable 3.1 and Figure 3-3.

The results show that of the examined kernels, the GMLLRSV kernel yields the best perfor-
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Figure 3-3: DET plot of the MLLR kernels and the baseline.

mance, followed by the DMLLRSV kernel. We believe the superiority of GMLLRSV is due to its

derivation from an approximation of the KL divergence as a distance between two GMMs. When

examining the results for the diagonally-weighted kernelsin MLLR-transform vector space we note

that D MLLRSV kernel (the diagonal approximation to the GMLLRSV kernel) produced the best
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Table 3.1: EER and min DCF scores of the MLLR kernels and the baseline.
Kernel EER DCF

Z-O 14.95% .064
R-N 13.19% .051
FROB 12.38% .05
D MLLRSV 11.43% .047
G MLLRSV 9.46% .039
MAPSV 7.24% .031

results while the Z-O kernel produced the worst. To attempt and understand why the Z-O kernel

performed poorly, we compared its scaling matrix to that of DMLLRSV. The comparison showed

that the Z-O kernel tended to emphasize dimensions that wereweighted down by DMLLRSV and

vice versa.

3.7.2 Global vs Multi-Class MLLRSV

We compared the GMLLRSV kernel system, the two and four-class MCMLLRSV kernel systems

(2C MLLRSV and 4CMLLRSV), and a state of the art MAPSV. Equal error rates (EER)and NIST

minimum decision cost functions (DCF) for the various kernels are shown in Table 3.2.

Table 3.2: EER and min DCF scores.
Kernel EER min DCF

G MLLRSV 9.46% .039
2C MLLRSV 7.81% .035
4C MLLRSV 8.19% .037
MAPSV 7.24% .031

Examining the results we note the following: two-class system yields a15% improvement over

the global system, however, there was no further improvement for the four-class system. This lack

of improvement for the four-class is most likely due to the unstable transcripts provided by the

open-loop phonetic recognizer, which becomes less reliable as the number of classes increases. It is

important to note that the gain in performance obtained by two-class MLLR does require additional

computation due to the phonetic recognition.

The performance of the 2CMLLR system approaches but does not surpass that of the MAPSV

system, as seen in Figure 3-4. However, it remains to be seen whether 2CMLLR may outperform

MAPSV in scenarios with high channel variability or with shorter training recordings. Under such

conditions the constrained nature of 2CMLLR may cause it to outperform MAPSV.
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Figure 3-4: DET plot of the global MLLRSV, two-class MLLRSV,and MAPSV kernels.

3.8 Discussion

In this chapter we examined a vector space representation and corresponding metric that are derived

from adapting a GMM universal background model via maximum likelihood linear regression adap-

tation. Support vector machines whose kernels are based on the derived metrics performed well in

speaker verification tasks with the results clearly highlighting the importance of choosing properly

motivated kernels. Experiments on the NIST SRE2006 corpus showed the superiority of our pro-

posed GMLLRSV kernel over ad-hoc kernels in the MLLR-transform space. We also showed that

using the two-class MLLRSV kernel we approach state of the art performance. The main contri-

bution of this work is the formulation of the MLLR supervector kernel in MLLR-transform vector

space. The advantage of this formulation is that its storageand computation requirements do not

increase with the number of mixtures. This advantage allowsthe use of the MLLRSV kernel in

systems such as [5], where using the original GSV kernel is prohibitive due to the large size of the

mean supervectors. Possible avenues for future work are: touse data-driven class selection rather

than phonetic ones used here, to apply the KL-motivated MLLR-transform kernel to a system with

a LVCSR UBM, and to use lattice-based MLLR [38] which is more robust to transcription errors.
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Chapter 4

Variability-Compensated Support

Vector Machines

In a classification task there are two types of variability: across class (good) which reflects the

anticipated diversity needed for proper classification, and within class (bad) which introduces unde-

sirable information that confuses the classifier. A good classifier should, therefore, exploit the good

and mitigate the bad. This chapter proposes a method to leverage class-labeled auxiliary data to do

this when instances are represented in an inner-product space.

In Section 2.2.3 and in the previous chapter we presented several ways to map recordings into

an inner-product space that contained the inter-speaker variability needed for speaker verification.

However, this space also contains within-speaker (nuisance), e.g. channel and language, variability

which is undesirable. Techniques for handling nuisance, such as nuisance attribute projection (NAP)

and within class covariance normalization (WCCN), Section2.2.4, are already used in SVM speaker

verification. More recently, joint factor analysis (JFA), Section 2.2.5, used a Bayesian framework

to incorporate nuisance and inter-speaker variability into the verification task.

In this chapter, we introduce variability-compensated SVM(VCSVM) which is a method to

handle both the good and bad variability by incorporating them directly into the SVM optimization.

We will begin by motivating and describing our approach in a nuisance compensation framework.

Modifications to the algorithm are then presented that allowfor handling inter-speaker variabil-

ity. We then discuss a probabilistic interpretation of the algorithm and finally present experimental

results that demonstrate the algorithm’s efficacy.
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4.1 Importance of Handling Nuisance Variability

Evidence of the importance of handling variability can be found in the discrepancy in verification

performance between one, three and eight conversation enrollment tasks for the same SVM system.

Specifically, for the MAP Gaussian supervector SVM system, Section 2.2.3, performance improves

from 5.0% EER for one conversation enrollment to2.9% and2.6% for three and eight, on trials

of the NIST SRE-Eval 06. One explanation for this is that whenonly one target conversation is

available to enroll a speaker, then the orientation of the separating hyperplane is set by the impostor

recordings. As more target enrollment recordings are provided the orientation of the separating hy-

perplane can change drastically, as sketched in Figure 4-1.The additional information that the extra
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Figure 4-1: Different separating hyperplanes obtained with 1, 3, and 8 conversation enrollment.

enrollment recordings provide is intra- (or within-) speaker variability, due to channel, language,

and other nuisance variables.

If an estimate of the principal components of intra-speakervariability for a given speaker were

available then one could prevent the SVM from using that variability when choosing a separating

hyperplane. However, it is not possible, in general, to estimate intra-speaker variability for the target

speakers. One could instead employ a speaker-labeled auxiliary set of recordings to obtain a global

estimate of the within-speaker variability. An example algorithm that uses this global estimate

is NAP, Section 2.2.4, which estimates a small subspace where the nuisance lives and removes

it completely from the SVM features, i.e., it does not allow any information from the nuisance

58



subspace to affect the SVM decision. Figure 4-2 sketches theeffect of NAP on the orientation of

the separating hyperplane.

w
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Figure 4-2: Effect of removing the nuisance direction from the SVM optimization.

4.2 Handling Nuisance Variability

In this thesis we propose VCSVM to handle nuisance variability, which allows for varying the de-

gree to which the nuisance subspace is avoided by the classifier rather than completely removing it:

Assume that the nuisance subspace is spanned by a set ofU orthonormal vectors{u1,u2, . . . ,uU},

e.g., topU eigenvectors of the within-class covariance matrix, and let U be the matrix whose

columns are those eigenvectors. Let the vector normal to theseparating hyperplane bew. Ideally, if

the nuisance was restricted to the subspaceU then one would require the orthogonal projection of

w in the nuisance subspace to be zero, i.e.
∣

∣

∣

∣UUTw
∣

∣

∣

∣

2

2
= 0. This requirement can be introduced

directly into the primal formulation of the SVM optimization:

min J(w, ǫ) = ||w||22 /2 + ξ
∣

∣

∣

∣UUTw
∣

∣

∣

∣

2

2
/2 + C

k
∑

i=1

ǫi (4.1)

subject toli(w
Tmi + b) ≥ 1− ǫi & ǫi ≥ 0, i = 0, . . . , k

whereξ ≥ 0, k is the total number of training examples,mi denotes the recording specific SVM

features (supervectors) andli denotes the corresponding labels. Note that the only difference be-

tween (4.1) and the standard SVM formulation is the additionof theξ
∣

∣

∣

∣UUTw
∣

∣

∣

∣

2

2
term, whereξ is
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a tunable (on some held out set) parameter that regulates theamount of bias desired. Ifξ = ∞ then

this formulation becomes similar to NAP compensation, and if ξ = 0 then we obtain the standard

SVM formulation. Figure 4-3 sketches the separating hyperplane obtained for different values ofξ

. We can rewrite the additional term in (4.1) as follows:
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Figure 4-3: Sketch of the separating hyperplane for different values ofξ.

∣

∣

∣

∣UUTw
∣

∣

∣

∣

2

2
= (UUTw)T (UUTw) (4.2)

= wTUUTUUTw

= wTUUTw, (4.3)

where the final equality follows from the eigenvectors beingorthonormal (UTU = I). SinceUUT

is a positive semi-definite matrix, we can follow the recipe presented in [39] to re-interpret this

reformulation as a standard SVM with the bias absorbed into the kernel. As done in [39], we

rewriteJ(w, ǫ) in (4.1) as:

J(w, ǫ) = wT (I+ ξUUT )w/2 + C

k
∑

i=1

ǫi, (4.4)

and since(I+ ξUUT ) is a positive definite symmetric matrix, then

J(w, ǫ) = wTBTBw/2 + C

k
∑

i=1

ǫi, (4.5)
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whereB can be chosen to be real and symmetric and is invertible. A change of variables̃w = Bw

andm̃ = B−Tm allows us to rewrite the optimization in (4.1) as

minimize J(w, ǫ) = ||w̃||22 /2 + C
∑k

i=1 ǫi

subject to li(w̃
T m̃i + b) ≥ 1− ǫi & ǫi ≥ 0, i = 0, . . . , k

which is then the standard SVM formulation with the following kernel:

K(mi,mj) = mT
i B

−1B−Tmj = mT
i (I+ ξUUT )−1mj . (4.6)

Examining the kernel presented in (4.6), we realize that(I+ξUUT ) can have large dimension. This

is of concern, since the kernel requires its inverse. To circumvent this, we use the matrix inversion

lemma [40] andUTU = I to obtain:

(I+ ξUUT )−1 = I−
√

ξU(I+ ξUTU)−1
√

ξUT

= I− ξU[(1 + ξ)I]−1UT

= I−
ξ

1 + ξ
UUT . (4.7)

The kernel can therefore be rewritten as:

K(mi,mj) = mT
i (I−

ξ

1 + ξ
UUT )mj . (4.8)

We notice in (4.8) that whenξ = 0we recover the standard linear kernel, and more importantlywhen

ξ = ∞ we recover exactly the kernel suggested in [6] for performing NAP channel compensation.

An advantage of this formulation over NAP is that it does not make a hard decision to completely

remove dimensions from the SVM features but instead leaves that decision to the SVM optimization.

It is of practical importance to note that (4.8) can be written as a combination of two kernel

matrices, and definingxi = UTmi to be the channel factors:

K(mi,mj) = mT
i mj −

ξ

1 + ξ
mT

i UUTmj

= mT
i mj −

ξ

1 + ξ
xT
i xj . (4.9)

This allows for a less costly implementation, because the two kernel matrices need not be recom-
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puted for each value ofξ and relatively little computation is required to obtain thesecond kernel,

since thexi’s are typically low dimensional.

4.2.1 Should All Nuisance be Treated Equally?

As the choice of nuisance subspace gets larger one may find it is more appropriate to handle di-

rections within that subspace unequally, for example we might want to avoid using larger nuisance

directions in discrimination more than we would smaller ones. One approach to do this is to refor-

mulate (4.9) to obtain the following kernel:

K(mi,mj) = mT
i mj − xT

i Wxj, (4.10)

whereW is a diagonal matrix with[ ξd1
1+ξd1

, ξd2
1+ξd2

, ..., ξdN
1+ξdN

] on the diagonal.

This resultant kernel can be obtained by replacingU with Ũ = UD1/4 in (4.1), whereD is a

positive diagonal matrix whose diagonal elements are[d1, d2, ..., dN ]. Note,ŨŨTw is no longer

an orthogonal projection.

Using Ũ instead ofU and following the steps outlined in the previous section andusing the

matrix inversion lemma we obtain the following kernel:

K(mi,mj) = mT
i (I+ ξŨD1/2ŨT )−1mj

= mT
i (I+ ξUDUT )−1mj (4.11)

= mT
i (I− ξU(D−1 + ξUTU)UT )mj

= mT
i mj −mT

i ξU(D−1 + ξI)UTmj

= mT
i mj −mT

i UWUTmj

= mT
i mj − xT

i Wxj

One possible choice, and the one used in our experiments, is to setD = Λ, the diagonal matrix

whose elements are the eigenvalues (λis) corresponding to the columns ofU. For that particular

choice, the resultant weighting matrixW in (4.12) is diagonal with the elements[ ξλ1

1+ξλ1
, ξλ2

1+ξλ2
, ..., ξλN

1+ξλN
]

on the diagonal.
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4.2.2 Motivating and Extending WCCN

In the previous section we allowed for non-equal weighting of the nuisance subspace, and choosing

D = Λ provides us with another way to motivate within class covariance normalization (WCCN) [7].

To do that we begin with equation (4.11) and consider the casewhere the whole SVM space is con-

sidered to contain nuisance information (i.e.UΛUT is full rank).

K(mi,mj) = mT
i (I+ ξUΛUT )−1mj

= mT
i (I+ ξΣ)−1mj, (4.12)

whereΣ = UΛUT is the eigenvalue decomposition of the within-speaker covariance matrixΣ.

We now examine WCCN, which proposes using the inverse of the intra-speaker covariance

matrixΣ = UΛUT to weight the kernel inner product:

K(mi,mj) = mT
i Σ

−1mj = mT
i (UΛUT )−1mj. (4.13)

However, in practiceΣ is ill-conditioned due to noisy estimates and directions ofvery small nui-

sance variability, therefore smoothing is applied to the intra-speaker covariance matrix to make

inversion possible, and the WCCN suggested kernel becomes:

K(mi,mj) = mT
i ((1− θ)I+ θUΛUT )−1mj 0 ≤ θ < 1. (4.14)

Comparing (4.14) with (4.12) we see that they are similar. Weshould, however, mention that

whenUΛUT spans the full SVM space theξ (in our implementation) andθ (in the WCCN imple-

mentation) no longer set the amount of bias desired, insteadthey ensure that the kernel does not

over-amplify directions with small amounts of nuisance variability.

A concern when applying WCCN is that it requires taking the inverse of a matrix the size of

the SVM space. However, considering WCCN in this framework and examining equation (4.12),

we realize that by focusing on the directions of greatest variability we can bypass performing the

inverse of the within-class covariance matrix. Instead, iterative methods for obtaining the largest

eigenvalues and eigenvectors of symmetric matrices can be used [41].
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4.3 Using Inter-speaker Variability

Joint factor analysis [42] has been successful in the speaker verification task. Joint factor analysis

estimates a “speaker” subspace, that captures good variability and is spanned by the columns of

V, and a “channel” subspace, that captures the nuisance and isspanned by the columns ofU. A

recordingmi is represented as a linear combination of a contribution from the speaker,Vyi, one

from the channel,Uxi, and a residual; whereyi are the speaker factors andxi are the channel

factors. Recently, promising results have been obtained byusing just the speaker factors as features

in a SVM speaker verification system. Based on this, we propose a VCSVM formulation similar to

the one presented in the previous section to bias the SVM towards mostly using the data present in

the inter-speaker variability space.

Assume that the inter-speaker subspace is spanned by a set ofV orthonormal vectors (eigen-

voices){v1,v2, . . . ,vV }, and letV be the matrix whose columns are these eigenvectors. Let the

vector normal to the separating hyperplane bew. Ideally if V captured all inter-speaker variability,

then we would wantw to live in theV subspace and therefore be orthogonal to its complement, i.e.
∣

∣

∣

∣(I−VVT )w
∣

∣

∣

∣

2

2
= 0. Similar to the previous section this requirement can be introduced directly

into the primal formulation of the SVM optimization:

min J(w, ǫ) = ||w||22 /2 + γ
∣

∣

∣

∣(I−VVT )w
∣

∣

∣

∣

2

2
/2 + C

k
∑

i=1

ǫi

subject toli(w
Tmi + b) ≥ 1− ǫi & ǫi ≥ 0, i = 0, . . . , k

whereγ ≥ 0 is a tunable (on some held out set) parameter that enforces the amount of bias desired.

If γ = ∞ then this formulation becomes similar to just using the speaker factors, and ifγ = 0

then we obtain the standard SVM formulation. Note that, since I − VVT is a projection into the

complement ofV then we can replace it bȳVV̄T , whereV̄ is a matrix whose columns are the

orthonormal eigenvectors that span the complement. With this substitution we obtain a formulation

that is almost equivalent to that in (4.1), hence following the recipe in the previous section we see

again can push the bias into the kernel of a standard SVM formulation. The kernel in this case is

K(mi,mj) = mT
i (I−

γ

1 + γ
V̄V̄T )mj . (4.15)
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By substituting back̄V = I−VVT we can rewrite (4.15) as:

K(mi,mj) = mT
i (I−

γ

1 + γ
(I−VVT ))mj . (4.16)

Note that we do not have to explicitly compute the orthonormal basisV̄, which can be rather large.

Whenγ = ∞ the kernel becomes an inner product between the speaker factorsyi = VTmi:

K(mi,mj) = mT
i VVTmj = yT

i yj . (4.17)

This kernel suggests that when one chooses to perform classification using only the inter-speaker

subspace the resultant kernel is just an inner product between the speaker factors.

4.4 Probabilistic Interpretation

In [39], the author makes a connection between the suggestedkernel and the probabilistic interpre-

tation of SVMs proposed in [43]. The SVM problem can be thought of as one of maximization of

the likelihood ofw given the training data ({mi, li} pairs) by writing it as

max l(w|{mi, li}) = −wTw/2− C

k
∑

i=1

h(li(w
Tmi + b)), (4.18)

whereh() is the hinge loss. In this formulation, the SVM can be though of as just computing the

MAP estimate ofw given the training data, where thewTw term is essentially a Gaussian,N(0, I),

prior and the second term is the log-likelihood of the training data givenw. This Gaussian prior on

w in the standard SVM does not bias the orientation ofw in any direction since the components of

w in the prior are independent. In VCSVM, when we introduce thebias to handle the variability

this only affects the first term in (4.18) and therefore changes the prior onw in the MAP estimation

interpretation (we will focus on nuisance variability):

max l(w|{mi, li}) = −wT (I+ ξUUT )w/2 −C
k

∑

i=1

h(li(w
Tmi + b)). (4.19)

The prior on the MAP estimate ofw is still a GaussianN(0, (I + ξUUT )−1) but with its principal

components orthogonal to the nuisance subspace and the variance along the principle components

set byξ. Hence, the prior is biasingw to be orthogonal to the nuisance subspace.
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4.5 Experimental Results

We have chosen to demonstrate VCSVM in two scenarios, the first is as an alternative to NAP to

handle nuisance in the GSV system presented in [24], and the second to handle nuisance in a system

presented in [27] where SVM speaker verification is performed using low-dimensional speaker

factors. The goal of this section is not to compare the performance of these two systems, but rather

to show that VCSVM is applicable to both. Results on handlinginter-speaker variability and all

variability will be deferred to future work.
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Figure 4-4: Results on English trials of the NIST SRE-Eval 06core task with speaker factor SVM
system: EER vsξ for equal and non-equal weighting of nuisance subspace, andvarious subspace
sizes.

We begin with the speaker verification system proposed in [27], which represents each recording

using a vector of300 speaker factors from the joint factor analysis system in [33]. The speaker factor

vectors, of length300, are normalized to have unit L2-norm and used as features in a SVM speaker

verification system. Figure 4-4 shows how the equal error rate (EER) changes as a function ofξ on

our development set, the English trials of the NIST SRE-Eval06 core task, for nuisance subspaces,

spanned by the eigenvectors of the within-class covariancematrix, of dimension (corank)50 and100

dimensional nuisance subspaces when equal and non-equal weighting of the nuisance dimensions

are used. The figure shows that non-equal weighting of the nuisance directions yields more favorable

results than equal weighting. It also shows that VCSVM allows for nuisance compensation in such

a small space, while NAP performs poorly since it completelyremoves the estimated nuisance

dimensions which are a large percentage of the total dimensionality. Based on the development

results we chooseξ = 3 and a corank of 50 for the VCSVM system and present results on all trials

of the Eval 08 core task in Figure 2-1 (a).

Next, we present the performance of VCSVM using a GSV system [24] with 512 mixture
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Figure 4-5: Results on all trials of the NIST SRE-Eval 06 coretask with GSV system: EER vsξ for
equal and non-equal weighting of nuisance subspace, and various subspace sizes.

GMMs and 38 dimensional, 19 cepstral and deltas, RASTA compensated feature vectors. Figures

4-6 &4-7 present results on the development set, all trials of the NIST SRE-Eval 06 core condition.

They show how the EER changes as a function ofξ, corank, and whether equal or non-equal weight-

ing was used. Again this shows that non-equal weighting of the nuisance directions is preferable

over equal weighting. It also shows that non-equally weighted VCSVM is fairly stable with regards

to varyingξ and the corank, which is not the case with NAP. Based on these development results

we compare, in Figure 2-1 (b), no nuisance compensation to the best-performing NAP system, with

a corank of 64, and the best VCSVM system, withξ = 22 and corank of 256. We see that even

in a large dimensional space such as this, it is preferable tonot completely remove the nuisance

subspace.
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Figure 4-6: DET plot of the speaker factor SVM system on all trials of the NIST SRE 08 core task.
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Figure 4-7: DET plot of the GSV system on all trials of the NISTSRE 08 core task.
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4.6 Discussion

This chapter presents variability-compensated SVM (VCSVM), a method for handling both good

and bad variability directly in the SVM optimization. This is accomplished by introducing into the

minimization a regularized penalty, which biases the classifier to avoid nuisance directions and use

directions of inter-speaker variability.

With regard to nuisance compensation our method encompasses and extends both NAP and

WCCN. An advantage of our proposed method over NAP, is that itdoes not make a hard decision on

removing nuisance directions, rather it decides accordingto performance on a held out set. Also, it

allows for unequal weighting of the estimated nuisance directions, e.g., according to their associated

eigenvalues which leads to improved performance over NAP, increased robustness with regards to

the size of the estimated nuisance subspace, and successfulnuisance compensation in small SVM

spaces. This work also provides another motivation for WCCNand extends it to better handle large

vector spaces.

In this work, we have focused on nuisance compensation to present the framework and highlight

its merits, however, we have not fully explored how to best incorporate speaker variability into

the framework and handle both nuisance and speaker variability simultaneously. These questions

provide directions for future work.
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Chapter 5

Speaker Comparison with Inner

Product Decision Functions

In Section 2.2.3, we presented the GSV kernel for SVM speakerverification, a popular method in

the literature, which consists of an inner product between mean supervectors of adapted GMMs.

The GSV is one way to compare speech recordings with kernel functions, however, this has been

a common theme in the speaker verification SVM literature resulting in several other kernels [35,

31, 32]. The space defined by the kernel is then compensated toeliminate nuisances using methods

such as NAP and WCCN, Section 2.2.4.

A recent trend in the literature has been to move towards a more linear geometric view for non-

SVM systems. Joint factor analysis (JFA), Section 2.2.5, uses a Bayesian approach to compensate

GMMs representing recordings using linear subspaces. Also, comparison of recordings via inner

products between the compensated GMM parameters, obtainedvia JFA, is presented in [44]. These

approaches have introduced many new ideas and perform well in speaker comparison tasks.

An unrealized effort is to bridge the gap between SVMs and some of the new proposed GMM

methods. One difficulty is that most SVM kernel functions in speaker comparison satisfy the Mercer

condition. This restricts the scope of investigation of potential comparison strategies for two speaker

recordings. Therefore, in this chapter, we introduce the idea of inner product discriminant functions

(IPDFs).

IPDFs are based upon the same basic operations as SVM kernel functions with some relaxation

in structure. First, we map input recordings to vectors of fixed dimension. Second, wecompensate

the input feature vectors. Typically, this compensation takes the form of a linear transform. Third,
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we comparetwo compensated vectors with an inner product. The resulting comparison function is

then used in an application specific way.

The focus of our initial investigations of the IPDF structure are the following. First, we show

that many of the common techniques such as factor analysis, nuisance projection, and various types

of scoring can be placed in the framework. Second, we systematically describe the various inner

product and compensation techniques used in the literature. Third, we propose new inner prod-

ucts and compensation. Finally, we explore the space of possible combinations of techniques and

demonstrate several novel methods that are computationally efficient and produce excellent error

rates.

The outline of the chapter is as follows. In Section 5.1, we describe the general setup for

speaker comparison using GMMs. In Section 5.2, we introducethe IPDF framework. Section 5.3

explores inner products for the IPDF framework. Section 5.4looks at methods for compensating

for variability. In Section 5.5, we perform experiments on the NIST 2006 speaker recognition

evaluation and explore different combinations of IPDF comparisons and compensations.

5.1 Speaker Comparison

A standard distribution used for text-independent speakerrecognition is the Gaussian mixture model [2],

g(r) =

M
∑

i=1

λiN (r|mi,Σi). (5.1)

Feature vectors are typically cepstral coefficients with associated smoothed first- and second-order

derivatives.

We map a sequence of feature vectors,rα1−Nα
= {rα1 , ..., r

α
Nα

}, from a recordingRα to a

GMM by adapting a GMM universal background model (UBM). For the purpose of this chapter, we

will assume only the mixture weights,λi, and means,mi, in (5.1) are adapted. Adaptation of the

means is performed with standard relevance MAP, refer to Appendix A.3. We estimate the mixture

weights using the standard ML estimate. The adaptation yields new parameters which we stack into

a parameter vector,aα, where

aα =
[

λT
α mT

α

]T
(5.2)

=
[

λx,1 · · · λx,N mT
x,1 · · · mT

x,N

]T
. (5.3)
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In speaker comparison, the problem is to compare two sequences of feature vectors, e.g.,rNα

1

andy
Nβ

1 . To compare these two sequences, we adapt a GMM UBM to producetwo sets of parameter

vectors,aα andaβ, as in (5.2). The goal of our speaker comparison process can now be recast as a

function that compares the two parameter vectors,s(Rα,Rβ) = C(aα,aβ), and produces a value

that reflects the similarity of the speakers. Initial work inthis area was performed using kernels

from support vector machines [32, 45, 35], but we expand the scope to other types of discriminant

functions.

5.2 Inner Product Discriminant Functions

The basic framework we propose for speaker comparison functions is composed of two parts—

compensation and comparison. For compensation, the parameter vectors generated by adaptation

in (5.2) can be transformed to remove nuisances or projectedonto a speaker subspace. The second

part of our framework is comparison. For the comparison of parameter vectors, we will consider

natural distances that result in inner products between parameter vectors.

We propose the following inner product discriminant function (IPDF) framework for exploring

speaker comparison,

C(aα,aβ) = (Lαaα)
TD2

α,β(Lβaβ) (5.4)

whereLα, Lβ are linear transforms and potentially dependent onλα and/orλβ. The matrixD is

positive definite, usually diagonal, and possibly dependent onλα and/orλβ. Note, we also consider

simple combinations of IPDFs to be in our framework—e.g., positively-weighted sums of IPDFs.

Several questions from this framework are: 1) what inner product gives the best speaker com-

parison performance, 2) what compensation strategy works best, 3) what tradeoffs can be made

between accuracy and computational cost, and 4) how do the compensation and the inner prod-

uct interact. We explore theoretical and experimental answers to these questions in the following

sections.

5.3 Inner Products for IPDFs

In general, an inner product of the parameters should be based on a distance arising from a statistical

comparison. We derive three straightforward methods in this section. We also relate some other

methods, without being exhaustive, that fall in this framework that have been described in detail in

the literature.
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5.3.1 Approximate KL Comparison (CKL)

A straightforward strategy for comparing the GMM parametervectors is to use an approximate

form of the KL divergence applied to the induced GMM models. This strategy was used in [35]

successfully with an approximation based on the log-sum inequality; i.e., for the GMMs,gα andgβ,

with parametersaα andaβ,

D(gα‖gβ) ≤
M
∑

i=1

λx,iD (N (·;mx,i,Σi)‖N (·;my,i,Σi)) . (5.5)

Here,D(·‖·) is the KL divergence, andΣi is from the UBM.

By symmetrizing (5.5) and substituting in the KL divergencebetween two Gaussian distribu-

tions, we obtain a distance,ds, which upper bounds the symmetric KL divergence,

ds(aα,aβ) = Ds(λα‖λβ) +

M
∑

i=1

(0.5λx,i + 0.5λy,i)(mx,i −my,i)
TΣ−1

i (mx,i −my,i). (5.6)

We focus on the second term in (5.6) for this chapter, but notethat the first term could also be

converted to a comparison function on the mixture weights. Using polarization on the second term,

we obtain the inner product

CKL(aα,aβ) =

M
∑

i=1

(0.5λx,i + 0.5λy,i)m
T
x,iΣ

−1
i my,i. (5.7)

Note that (5.7) can also be expressed more compactly as

CKL(aα,aβ) = mT
α ((0.5λα + 0.5λβ)⊗ In)Σ

−1mβ (5.8)

whereΣ is the block matrix with theΣi on the diagonal,n is the feature vector dimension, and⊗

is the Kronecker product [46]. Note that the non-symmetric form of the KL distance in (5.5) would

result in the average mixture weights in (5.8) being replaced by λα. Also, note that shifting the

means by the UBM will not affect the distance in (5.6), so we can replace means in (5.8) by the

UBM centered means.

5.3.2 GLDS kernel (CGLDS)

An alternate inner product approach is to use generalized linear discriminants and the corresponding

kernel [32]. The overall structure of this GLDS kernel is as follows:
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A per feature vector expansion function is defined as

b(ri) =
[

b1(ri) · · · bm(ri)
]T

. (5.9)

The mapping between an input sequence,rα1−Nα
is then defined as

rα1−Nα
7→ bα =

1

Nα

Nα
∑

i=1

b(ri). (5.10)

The corresponding kernel between two sequences is then

KGLDS(r
α
1−Nα

, rβ1−Nβ
) = bT

αΓ
−1bβ (5.11)

where

Γ =
1

NB

NB
∑

i=1

b(RB
i )b(R

B
i )

T , (5.12)

andrB1−NB
is a large set of feature vectors which is representative of the speaker population, i.e. an

aggregate of features from a large number of recordings.

In the context of a GMM UBM, we can define an expansion as follows

b(ri) =
[

p(1|ri)(ri −mUBM,1)
T · · · p(N |ri)(ri −mUBM,N )T

]T
(5.13)

wherep(j|ri) is the posterior probability of mixture componentj givenri, andmUBM,j is from a

UBM. Using (5.13) in (5.10), we see that

bα = (λα ⊗ In)(mα −mUBM ) and bβ = (λβ ⊗ In)(mβ −mUBM ) (5.14)

wheremUBM is the stacked means of the UBM. Thus, the GLDS kernel inner product is

CGLDS(aα,aβ) = (mα −mUBM )T (λα ⊗ In)Γ
−1(λβ ⊗ In)(mβ −mUBM ). (5.15)

Note thatΓ in (5.12) is almost the UBM covariance matrix, but is not quite the same because of a

squaring of thep(j|RB
i ) in the diagonal. As is commonly assumed, we will consider a diagonal

approximation ofΓ, see [32].
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5.3.3 Gaussian-Distributed Vectors

A common assumption in the factor analysis literature [8] isthat the parameter vectormx asx varies

has a Gaussian distribution. If we assume a single covariance for the entire space, then the resulting

likelihood ratio test between two Gaussian distributions results in a linear discriminant [47].

More formally, suppose that we have a distribution of the features ofRα with meanmα and

we are trying to distinguish from a distribution with the UBMmeanmUBM , then the discriminant

function is [47],

h(r) = (mα −mUBM )TΥ−1(r−mUBM ) + cα (5.16)

wherecα is a constant that depends onmα, andΥ is the covariance in the parameter vector space.

We will assume that the comparison function can be normalized (e.g., by Z-norm [2]), so thatcα

can be dropped. We now apply the discriminant function to another mean vector,mβ, and obtain

the following comparison function

CG(aα,aβ) = (mα −mUBM )TΥ−1(mβ −mUBM ). (5.17)

5.3.4 Other Methods

Several other methods are possible for comparing the parameter vectors that arise either from ad-hoc

methods or from work in the literature. We describe a few of these in this section.

Geometric Mean Comparison (CGM): A simple symmetric function that is similar to the

KL (5.8) and GLDS (5.15) comparison functions is arrived at by replacing the arithmetic mean in

CKL by a geometric mean. The resulting kernel is

CGM (aα,aβ) = (mα −mUBM )T (λ1/2
α ⊗ In)Σ

−1(λ
1/2
β ⊗ In)(mβ −mUBM ) (5.18)

whereΣ is the block diagonal UBM covariances.

Fisher Kernel (CF ): The Fisher kernel specialized to the UBM case has several forms [31]. The

main variations are the choice of covariance in the inner product and the choice of normalization

of the gradient term. We took the best performing configuration for this chapter—we normalize the

gradient by the number of frames which results in a mixture weight scaling of the gradient. We also

76



use a diagonal data-trained covariance term. The resultingcomparison function is

CF (aα,aβ) =
[

(λα ⊗ In)Σ
−1(mα −mUBM )

]T
Φ−1

[

(λβ ⊗ In)Σ
−1(mβ −mUBM )

]

(5.19)

whereΦ is a diagonal matrix acting as a variance normalizer.

Linearized Q-function (CQ): Another form of inner product may be derived from the linearQ-

scoring shown in [44]. In this case, the scoring is given as(mTGT−mUBM )TΣ−1(F−NmUBM )

whereN andF are the zeroth and first order sufficient statistics of a test recording,mUBM is the

UBM means,mTGT is the mean of the target model, andΣ is the block diagonal UBM covariances.

A close approximation of this function can be made by using a small relevance factor in MAP

adaptation of the means to obtain the following comparison function

CQ(aα,aβ) = (mα −mUBM )TΣ−1(λβ ⊗ In)(mβ −mUBM ). (5.20)

Note that if we symmetrizeCQ, this gives usCKL; this analysis ignores for a moment that in [44],

compensation is also asymmetric.

KL Kernel ( KKL): By assuming the mixture weights are constant and equal to the UBM mix-

ture in the comparison functionCKL (5.7), we obtain the KL kernel,

KKL(aα,aβ) = (mα −mUBM )T (λ⊗ In) Σ
−1(mβ −mUBM ) (5.21)

whereλ are the UBM mixture weights. This kernel has been used extensively in SVM speaker

recognition [35].

An analysis of the different inner products in the precedingsections shows that many of the

methods presented in the literature have a similar form, butare interestingly derived with quite

disparate techniques. Our goal in the experimental sectionis to understand how these comparison

function perform and how they interact with compensation.

5.4 Compensation in IPDFs

Our next task is to explore compensation methods for IPDFs. Our focus will be on subspace-

based methods. With these methods, the fundamental assumption is that either speakers and/or

nuisances are confined to a small subspace in the parameter vector space. The problem is to use this

knowledge to produce a higher signal (speaker) to noise (nuisance) representation of the speaker.
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Standard notation is to useU to represent the nuisance subspace and to haveV represent the speaker

subspace. Our goal in this section is to recast many of the methods in the literature in a standard

framework with oblique and orthogonal projections.

To make a cohesive presentation, we introduce some notation. We define an orthogonal projec-

tion with respect to a metric,PU,D, whereD andU are full rank matrices as

PU,D = U(UTD2U)−1UTD2 (5.22)

whereDU is a linearly independent set, and the metric is‖x−y‖D = ‖Dx−Dy‖2. The process of

projection, e.g.y = PU,Db, is equivalent to solving the least-squares problem,x̂ = argminx ‖Ux−

b‖D and lettingy = Ux̂. For convenience, we also define the projection onto the orthogonal

complement ofU , U⊥, asQU,D = PU⊥,D = I − PU,D. Note that we can regularize the projection

PU,D by adding a diagonal term to the inverse in (5.22); the resulting operation remains linear but

is no longer a projection.

We also define the oblique projection ontoV with null spaceU + (U + V )⊥ and metric in-

duced byD. Let QR be the (skinny) QR decomposition of the matrix
[

UV
]

in theD norm (i.e.,

QTD2Q = I), andQV be the columns corresponding toV in the matrixQ. Then, the oblique

(non-orthogonal) projection ontoV is

OV,U,D = V (QT
V D

2V )−1QT
V D

2. (5.23)

The use of projections in our development will add geometricunderstanding to the process of com-

pensation.

5.4.1 Nuisance Attribute Projection (NAP)

A framework for eliminating nuisances in the parameter vector based on projection was shown

in [35]. The basic idea is to assume that nuisances are confined to a small subspace and can be

removed via an orthogonal projection,mx 7→ QU,Dmx. One justification for using subspaces

comes from the perspective that channel classification can be performed with inner products along

one-dimensional subspaces. Therefore, the projection removes channel specific directions from the

parameter space.

The NAP projection uses the metric induced by a kernel in an SVM. For the GMM context, the

standard kernel used is the approximate KL comparison (5.8)[35]. We note that sinceD is known
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a priori to speaker comparison, we can orthonormalize the matrixDU and apply the projection as

a matrix multiply. The resulting projection hasD =
(

λ1/2 ⊗ In

)

Σ−1/2.

5.4.2 Factor Analysis and Joint Factor Analysis

The joint factor analysis (JFA) model assumes that the mean parameter vector can be expressed as

ms,sess = m+ Ux+ V y (5.24)

wherems,sess is the speaker and session-dependent mean parameter vector, U andV are matrices

with small rank, andm is typically the UBM. Note that for this section, we will use the standard

variables for factor analysis,x andy, even though they conflict with our earlier development. The

goal of joint factor analysis is to find solutions to the latent variablesx andy given training data.

In (5.24), the matrixU represents a nuisance subspace, andV represents a speaker subspace. Exist-

ing work on this approach for speaker recognition uses both maximum likelihood (ML) estimates

and MAP estimates ofx andy [48, 8]. In the latter case, a Gaussian prior with zero mean and

diagonal covariance forx andy is assumed. For our work, we focus on the ML estimates [48] ofx

andy in (5.24), since we did not observe substantially differentperformance from MAP estimates

in our experiments.

Another form of modeling that we will consider is factor analysis (FA). In this case, the term

V y is replaced by a constant vector representing the true speaker model,ms; the goal is then to

estimatex. Typically, as a simplification,ms is assumed to be zero when calculating sufficient

statistics for estimation ofx [49].

The solution to both JFA and FA can be unified. For the JFA problem, if we stack the matrices

[UV ], then the problem reverts to the FA problem. Therefore, we initially study the FA problem.

Note that we also restrict our work to only one EM iteration ofthe estimation of the factors, since

this strategy works well in practice.

The standard ML solution to FA [48] for one EM iteration can bewritten as:

[

UTΣ−1(N⊗ In)U
]

x = UTΣ−1 [F− (N⊗ In)m] (5.25)

whereF is the vector of first order sufficient statistics, andN is the diagonal matrix of zeroth order

statistics (expected counts). The sufficient statistics are obtained from the UBM applied to an input

set of feature vectors. We first letNt =
∑N

i=1 Ni and multiply both sides of (5.25) by1/Nt. Now
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we use relevance MAP with a small relevance factor andF andN to obtainms; i.e., bothms −m

andF− (N⊗ In)m will be nearly zero in the entries corresponding to smallNi. We obtain

[

UTΣ−1(λs ⊗ In)U
]

x = UTΣ−1 (λs ⊗ In) [ms −m] (5.26)

whereλs is the speaker dependent mixture weights. We note that (5.26) are the normal equations

for the least-squares problem,x̂ = argmin
x
‖Ux− (ms−m)‖D whereD is given below in (5.28).

This solution is not unexpected since ML estimates commonlylead to least-squares problems with

GMM distributed data [50].

Once the solution to (5.26) is obtained, the resultingUx is subtracted from an estimate of the

speaker mean,ms to obtain the compensated mean. If we assume thatms is obtained by a relevance

map adaptation from the statisticsF andN with a small relevance factor, then the FA process is

well approximated by

ms 7→ QU,Dms (5.27)

where

D =
(

λ1/2
s ⊗ In

)

Σ−1/2. (5.28)

JFA becomes an extension of the FA process we have demonstrated. One first projects onto

the stackedUV space. Then another projection is performed to eliminate the U component of

variability. This can be expressed as a single oblique projection; i.e., the JFA process is

ms 7→ OV,U,IP[UV ],Dms = OV,U,Dms. (5.29)

5.4.3 Comments and Analysis

Several comments should be made on compensation schemes andtheir use in speaker comparison.

First, although NAP and ML FA (5.27) were derived in substantially different ways, they are essen-

tially the same operation, an orthogonal projection. The main difference is in the choice of metrics

under which they were originally proposed. For NAP, the metric depends on the UBM only, and for

FA it is recording and UBM dependent.

A second observation is that the JFA oblique projection ontoV has substantially different prop-

erties than a standard orthogonal projection. When JFA is used in speaker recognition [8, 44],
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typically JFA is performed in training, but the test recording is compensated only with FA. In our

notation, applying JFA with linear scoring [44] gives

CQ(OV,U,DTGT
mTGT , QU,DTST

mTST ) (5.30)

wheremTGT andmTST are the mean parameter vectors estimated from the target andtest record-

ings of a trial, respectively; also,DTGT = (λ
1/2
TGT⊗In)Σ

−1/2 andDTST = (λ
1/2
TST⊗In)Σ

−1/2. Our

goal in the experiments section is to disentangle and understand some of the properties of scoring

methods such as (5.30). What is significant in this process—mismatched train/test compensation,

data-dependent metrics, or asymmetric scoring?

A final note is that training the subspaces for the various projectionsoptimally is not a process

that is completely understood. One difficulty is that the metric used for the inner product may

not correspond to the metric for compensation. As a baseline, we used the same subspace for

all comparison functions. The subspace was obtained with anML style procedure for training

subspaces similar to [50] but specialized to the factor analysis problem as in [8].

5.5 Speaker Comparison Experiments

Experiments were performed on the NIST 2006 speaker recognition evaluation (SRE) data set. En-

rollment/verification methodology and the evaluation criteria, equal error rate (EER) and minDCF,

were based on the NIST SRE evaluation plan [51]. The main focus of our efforts was the one con-

versation enroll, one conversation verification task for telephone recorded speech. T-Norm models

and Z-Norm [12] speech recordings were drawn from the NIST 2004 SRE corpus. Results were

obtained for both the English only task (Eng) and for all trials (All) which includes speakers that

enroll/verify in different languages.

Feature extraction was performed using HTK [52] with20 MFCC coefficients, deltas, and ac-

celeration coefficients for a total of60 features. A GMM UBM with 512 mixture components was

trained using data from NIST SRE 2004 and from Switchboard corpora. The dimension of the

nuisance subspace,U , was fixed at100; the dimension of the speaker space,V , was fixed at300.

Results are in Table 5.1. In the table, we use the following notation,

DUBM =
(

λ1/2 ⊗ In

)

Σ−1/2, DTGT =
(

λ
1/2
TGT ⊗ In

)

Σ−1/2, DTST =
(

λ
1/2
TST ⊗ In

)

Σ−1/2

(5.31)
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Table 5.1: A comparison of baseline systems and different IPDF implementations

Comparison Enroll Verify EER minDCF EER minDCF
Function Comp. Comp. All (%) All (×100) Eng (%) Eng (×100)

Baseline SVM QU,DUBM
QU,DUBM

3.82 1.82 2.62 1.17
Baseline JFA,CQ OV,U,DTGT

QU,DTST
3.07 1.57 2.11 1.23

CKL OV,U,DTGT
QU,DTST

3.21 1.70 2.32 1.32
CKL OV,U,DTGT

OV,U,DTST
8.73 5.06 8.06 4.45

CKL QU,DTGT
QU,DTST

2.93 1.55 1.89 0.93
CKL QU,DUBM

QU,DUBM
3.03 1.55 1.92 0.95

CKL I −OU,V,DTGT
I −OU,V,DTST

7.10 3.60 6.49 3.13
CGM QU,DTGT

QU,DTST
2.90 1.59 1.73 0.98

CGM QU,DUBM
QU,DUBM

3.01 1.66 1.89 1.05
CGM QU,DUBM

I 3.95 1.93 2.76 1.26
KKL QU,DUBM

QU,DUBM
4.95 2.46 3.73 1.75

KKL QU,DTGT
QU,DTST

5.52 2.85 4.43 2.15
CGLDS QU,DL

QU,DL
3.60 1.93 2.27 1.23

CG QU,DG
QU,DG

5.07 2.52 3.89 1.87
CF QU,DF

QU,DF
3.56 1.89 2.22 1.12

whereλ are the UBM mixture weights,λTGT are the mixture weights estimated from the enroll-

ment recording, andλTST are the mixture weights estimated from the verification recording. We

also use the notationDL, DG, andDF to denote the parameters of the metric for the GLDS, Gaus-

sian, and Fisher comparison functions from Sections 5.3.2,5.3.3, and 5.3.4, respectively.

An analysis of the results in Table 5.1 shows several trends.First, the performance of the best

IPDF configurations is as good or better than the state of the art SVM and JFA implementations.

Second, the compensation method that dominates good performance is an orthogonal complement

of the nuisance subspace,QU,D. Combining a nuisance projection with an oblique projection is

fine, but using only oblique projections onto V gives high error rates. A third observation is that

comparison functions whose metrics incorporateλTGT andλTST perform significantly better than

ones with fixedλ from the UBM. In terms of best performance,CKL, CQ, andCGM perform

similarly. For example, the95% confidence interval for2.90% EER is[2.6, 3.3]%.

We also observe that a nuisance projection with fixedDUBM gives similar performance to a

projection involving a “variable” metric,Di. This property is fortuitous since a fixed projection

can be precomputed and stored and involves significantly reduced computation. Table 5.2 shows a

comparison of error rates and compute times normalized by a baseline system. For the table, we

used precomputed data as much as possible to minimize compute times. We see that with an order

of magnitude reduction in computation and a significantly simpler implementation, we can achieve

the same error rate.

82



Table 5.2: Summary of some IPDF performances and computation time normalized to a baseline
system. Compute time includes compensation and inner product only.

Comparison Enroll Verify EER minDCF Compute
Function Comp. Comp. Eng (%) Eng (×100) time

CQ OV,U,DTGT
QU,DTST

2.11 1.23 1.00
CGM QU,DTGT

QU,DTST
1.73 0.98 0.17

CGM QU,DUBM
QU,DUBM

1.89 1.05 0.08
CGM QU,DUBM

I 2.76 1.26 0.04

5.6 Discussion

This chapter proposed the inner-product decision function(IPDF) framework for speaker compari-

son and compensation and showed that several recent systemsin the speaker verification literature

can be placed in this framework. We then used the framework tocompare the different systems to

one another to identify the key components required to achieve good performance. The results of

this analysis showed that it is important to include mixtureweights in the inner product, and that

the more computational costly oblique compensations are not necessary for good performance. We

then proposed a comparison function that combined these insights and had substantially reduced

computation cost without sacrificing accuracy.
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Chapter 6

Toward Reduced False Alarms Using

Cohorts

In identification and verification tasks it is usually the case that the target prior is significantly lower

than the non-target, thus when a system is deployed it is expected that the majority of test instances

are non-targets which leads to a large number of false alarms. The NIST Speaker Recognition Eval-

uation (SRE) [1] takes this into consideration by setting the parameters of the detection cost function

(DCF) to penalize false alarms more severely than misses. Asshown in Table 2.1, the 2010 NIST

SRE increased the cost of false alarms (FAs) by adjusting theDCF parameters: a typical system

yields approximately0.01% false alarms at the minimum DCF operating point. At that operating

point the detection threshold falls in the tail of the non-target score distribution which is not a re-

gion that typical speaker verification and normalization algorithms optimize for. Typical algorithms

focus on ensuring a large degree of separation between target and non-target score distributions and

typical score normalization schemes attempt to reduce score distribution variability over different

target models and test recordings.

This work examines the low false-alarm region and proposes algorithms that attempt to tackle it

directly. The approaches leverage a large auxiliary set of unlabeled impostor (non-target) recordings

to identify suspect false-alarm trials whose match score can then be penalized. Thus, the enabling

factor in these algorithms is low-cost comparison functions, such as the TV system (Section 2.2.6)

and theCGM IPDF with orthogonal compensation (Section 5.3.4). The focus of this work will be

on the one-conversation train one-conversation test scenario and the development set is an extended

trial set drawn from the 2008 NIST SRE [19] English telephonydata. Final performance will be
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measured on the extended condition5 of the 2010 [20] NIST SRE which consists of normal vocal

effort English telephony speech.

To motivate the approaches presented in this chapter, we sketch out an example scenario in Fig-

ure 6-1. The figure shows recordings in the speaker similarity space, where the distance between

two points represents the speaker similarity between two recordings as computed by the compar-

ison function. The target and test recordings of two trials1 & 2 are shown along with impostor

recordings. The distance between target and test is equivalent in both trials, and thus both would,

conventionally, be considered equally likely to be true trials, where the target and test contain the

same speaker. However, examining these trials within the context of the impostor recordings, one

could argue that trial2 is less likely to be a true trial: the target recording in2 is closer to impostors

than it is to the test recording, while the target and test recordings in1 are closest to each other. This

intuition leads to the algorithms presented in this chapterthat identify and penalize suspect trials

such as2. It is also apparent, from this sketch, that for these to workthey require a dense sampling

of impostor recordings, which is why fast comparison functions are key enablers.

Speaker Similarity Space

Trial 1: target recording
Trial 1: test recording
Trial 2: target recording
Trial 2: test recording
Impostor recordings

Figure 6-1: Motivating Example

The chapter begins by briefly introducing the baseline system used in this work and highlighting

the difficulty encountered by these systems in the low-FA region. The proposed methods to tackle

this difficulty are then presented and evaluated on an extended English telephony development set

from the 2008 NIST SRE with promising outcomes. The methods are then applied to the telephony
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condition of the 2010 NIST SRE with less favorable results. This unexpected discrepancy between

the 2008 and 2010 evaluations is explored and the likely reason identified and fixed resulting in

improved performance on the 2010 SRE.

6.1 Baseline System and The Problem

6.1.1 Baseline: TV and SNorm

The baseline system used in this work is the total variability (TV) system, as in Section 2.2.6. The

particular configuration is presented in [53] and operates on cepstral features, extracted using a 25

ms Hamming window. 19 Mel frequency cepstral coefficients together with log energy are calcu-

lated every 10 ms. Delta and double delta coefficients were then calculated using a 5 frame window

to produce 60-dimensional feature vectors. This 60-dimensional feature vector was subjected to fea-

ture warping using a 3 s sliding window. The UBMs used are gender dependent Gaussian mixture

models containing 2048 Gaussians. The UBM and the LDA projection are trained on data from the

Switchboard II, Switchboard cellular, and telephone recordings from the 2004/05/06 NIST SRE.

The TV subspace is trained on these corpora as well as the Fisher English corpus. The WCCN

matrix is computed using only the telephone recordings fromthe 2004/05/06 NIST SRE data sets.

It is common for speaker verification systems to be followed by a score normalization technique,

the goal of which is to reduce within trial variability leading to improved performance, better cali-

bration, and more reliable threshold setting. In this work symmetric score normalization (SNorm),

Section 2.2.7, is used as the baseline with gender dependentimpostor lists consisting of614 female

and406 male English telephone recordings drawn from the 2005/06 NIST SRE data-sets.

6.1.2 The Problem

The 2010 NIST SRE set a very low prior of0.001 on target trials in the detection cost function

(DCF) which results in false alarms costing significantly more than misses. The minimum DCF

threshold, therefore, falls in the tail of the non-target trial scores as can be seen in Figure 6-2. For

the TV baseline with and without SNorm the figure shows the minimum DCF threshold and the

overlap of the histograms of the target and non-target trialscores of the development set used. The

low overlap between target and non-target trials in both plots and the reduced variance of the scores

for the SNormed system highlight the efficacy of the TV systemfor speaker verification and SNorm
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Figure 6-2: The Problem

for score normalization. However, TV and SNorm, though effective, do not specifically tackle the

tails of the score distributions in the overlap region, which we will attempt to do in this work.
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6.2 Proposed Systems

We tackle the problem by trying to identify the high scoring non-target trials, i.e. the trials in the

tail. This is done by leveraging a wealth of data available asan impostor set, a set of recordings that

do not share common speakers with the development or test set, and asking the question: “are the

two recordings in the trial more similar to one another or to recordings in the impostor set?” Gender

dependent impostor sets are used consisting of9281 female and6932 male telephony recordings

from the 2004/05/06 NIST SREs excluding those used to perform SNorm. All match scores, be-

tween the trial recordings or a trial recording and an impostor recording, are computed using the

symmetric equation (2.19).

In the proposed methods, one is not constrained to using a specific system to score trials. How-

ever, inner product scoring based systems, such as TV [28] and inner product decision functions

(Chapter 5), are especially well suited because they allow for fast and efficient comparison of a

large number of recordings, as is needed when scoring each trial recording against the thousands of

impostor recordings.

6.2.1 False-Alarm Detectors

Nearest Neighbor AND/OR (NN-AND/NN-OR)

We begin with two strategies to detect whether a trial is likely a non-target trial, i.e. one that would

contribute to false alarms. The first proposed strategy, called NN-OR, flags a trial as a non-target

if either of the trial recordings, target or test, are closer, as indicated by a higher match score, to

recordings in the impostor set than to the other trial recording. The second, called NN-AND, flags

a trial as non-target ifboth trial recordings are closer to recordings in the impostor set.

We evaluate the two strategies on the development data-set by examining the percentage of target

and non-target trials that get detected and labeled as non-target trials, a perfect detector being one

that would have detected and flagged100% of the non-target and0% of the target trials. Table 6.1

shows that while the majority of the non-target trials were detected correctly, a significant number

of target trials were falsely detected.

Table 6.1: Percent of trials flagged on the development set
Strategy % target flagged % non-target flagged
NN-OR 18.7 99.87

NN-AND 25.2 99.96
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This observation suggests a strategy that, rather than making a hard decision to label all record-

ings flagged by these detectors as non-targets, penalizes those trials by subtracting an offset from

the trial score. Figure 6-3 shows the minDCF and EER values onthe development set as a function

of the offset, and shows that both strategies perform betterthan the baseline SNorm system and that

NN-AND with an offset of2 yields the best performance.

Nearest Neighbor Difference (NN-DIFF)

In both NN-AND and NN-OR each trial is either flagged as a non-target or not flagged. We now

propose to instead assign a confidence scorecD(RTGT ,RTST ), whereRTGT is the enrollment

recording andRTST is the test recording, to each trial based on how suspect it is, by:

cD(RTGT ,RTST ) =
1

2
{ŝ(RTGT ,RTST )− ŝ(RTGT , NN1(RTGT ))}

+
1

2
{ŝ(RTGT ,RTST )− ŝ(RTST , NN1(RTST ))}. (6.1)

whereŝ(., .) is the SNormed TV match score, andNN1(utt) is the recording in the impostor set

that is nearest, has highest match score, toutt. cD will therefore take on a large negative value when

we are highly confident that a trial is a non-target, and a large positive value when we are highly

confident it is a target trial. The confidence score is then fused with the baseline SNorm score to

obtain the final trial score

sD(RTGT ,RTST ) = (1− f)ŝ(RTGT ,RTST )− f ∗ cD(RTGT ,RTST ), (6.2)

wheref ∈ [0, 1]. Figure 6-3 shows the minDCF and EER values on the development set as a

function of the fusion parameter, withf = 0 being the baseline SNorm system andf = 1 using the

confidence score as the trial score. The parameter sweep suggests that a good choice off is in the

range of.3 to .6. Also, setting the trial score to be the confidence score, i.e. f = 1, performs well at

the minDCF point yet poorly at the EER.

6.2.2 K Nearest Neighbor Difference (KNN-DIFF) and Adaptive Symmetric Nor-

malization (ASNorm)

The first set of proposed methods share a common shortcoming:they heavily rely on a single nearest

neighbor from the impostor set. We therefore extend the NN-DIFF idea in an attempt to reduce this
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Figure 6-3: Offset penalty sweep for NN-AND, NN-OR, and NN-DIFF

reliance by averaging the scores of the topK NNs rather than just the first, and call it KNN-DIFF.

The confidence score is now

cKD(RTGT ,RTST ) = 1
2{ŝ(RTGT ,RTST )− µ(ŝ(RTGT , NNK(RTGT )))}

+1
2{ŝ(RTGT ,RTST )− µ(ŝ(RTST , NNK(RTST )))}, (6.3)

whereµ(.) is the mean andNNK(.) is the set of the K NNs. AsK gets large we can further divide

out the standard deviation in the confidence score resultingin an adaptive symmetric normalization

(ASNorm), similar to TopNorm [54] and ATNorm [30]:

cASN (RTGT ,RTST ) =
ŝ(RTGT ,RTST )− µ(ŝ(RTGT , NNK(RTGT )))

σ(ŝ(RTGT , NNK(RTGT )))

+
ŝ(RTGT ,RTST )− µ(ŝ(RTST , NNK(RTST )))

σ(ŝ(RTST , NNK(RTST )))
, (6.4)

whereσ(.) is the standard deviation. Figure 6-4 shows how increasingK affects each of the strate-

gies. Notice that a lower number of cohorts,K = 50, is needed in KNN-DIFF, whileK = 1500 is

best for ASN.

We now choose the best performing confidence scorescKD,K=50 andcASN,K=1500 and fuse
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Figure 6-4: Offset penalty sweep for K-NN-DIFF and ASN

them with the baseline SNorm scores,

sKD(RTGT ,RTST ) = (1− f)ŝ(RTGT ,RTST )− fcKD,K=50(RTGT ,RTST )

sASN(RTGT ,RTST ) = (1− f)ŝ(RTGT ,RTST )− fcASN,K=1500(RTGT ,RTST ),

and show the sweep of the fusion parameterf in Figure 6-5. The fusion shows that to optimize for

minDCFf should be set to0, meaning that the confidence scorecKD or cASN should be used rather

than fusing with SNorm. However, the fusion does benefit EER specifically in the KNN-DIFF case,

wheref = .7 seems to be a reasonable trade-off between DCF and EER.
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Figure 6-5: Fusion of KNN-DIFF and ASNorm with SNorm

92



6.2.3 Analysis

We first examine Table 6.2 and Figure 6-6 (A) and notice that even the simplest of the proposed

strategies, that rely only on the first NN and make hard decisions to flag a trial as non-target, can

yield overall improvement over SNorm and specifically a13% relative improvement at minDCF.

Using the confidence score in NN-DIFF as the trial score, however, aggressively targets the low-

FA region of the DET curve at the expense of the rest. Fusing the confidence score with SNorm

provides a less aggressive system that improves in the region of interest while performing reasonably

elsewhere.
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Figure 6-6: DET plots of the different systems on the development set.

Table 6.2: Percent of trials flagged on the development set
Strategy DCF*1e4 EER (%)
Baseline: TV no SNorm 5.32 1.73
Baseline: TV with SNorm 4.47 1.32
NN-OR offset=1.5 4.09 1.32
NN-AND offset =2 3.87 1.32
NN-DIFF 3.93 4.82
NN-DIFF fused f=.5 3.86 1.52
KNN-DIFF K=50 3.33 2.07
KNN-DIFF K=50 fused f=.7 3.58 1.32
ASNorm K=1500 3.35 1.30
ASNorm K=1500 fused f=.7 3.46 1.24

The results of KNN-DIFF and ASNorm shown in Table 6.2 and Figure 6-6 (B) show that utiliz-
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ing more than one NN in the confidence score further improves performance at minDCF, yielding

a25% relative improvement over SNorm. However, the two methods differ greatly in performance

over the rest of the DET curve: KNN-DIFF only shows improvement in the low-FA region while

ASNorm improves overall. Fusing the confidence score with the SNorm trial score trades off per-

formance at the low-FA range for overall performance.

6.3 NIST SRE 2010 results

We now present in the first columns of Table 6.4 and Figure 6-7 the results of the proposed methods

on condition 5 of the 2010 NIST SRE versus the baselines. It isapparent from the DET plot that
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Figure 6-7: DET plots of the different systems on 2010 NIST SRE.

the improvement in performance observed on the developmentdata-set is not seen on the test set,

specifically at the minDCF operating point.

In an attempt to resolve this discrepancy we examine the percentage of trials being flagged

as non-targets in the simple NN-AND and NN-OR algorithms, shown in the first two columns of

Table 6.3. Comparing these percentages to those in Table 6.1it is apparent that the test data-set

is interacting with the impostor set in a different manner than the development set: specifically a

significantly smaller percentage of trials are being flaggedas non-targets. This could be for one of

two reasons: either the within set variability is lower for the test set than the development set, or the

impostor set is better matched to the development data.
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Table 6.3: Percent of trials flagged on the test set
Strategy % target % non-tar % target % non-tar

flagged flagged flagged+08 flagged+08
NN-OR 5.7 99.32 8.38 99.71
NN-AND 10.7 99.76 16 99.92

As changing the within-set variability would require changing the system we are using to drive

the experiments, we therefore attempt to better match the impostor set to the test set by including the

2008 NIST SRE English telephony recordings in the impostor set. The last two columns of Table 6.3

show that there is about a two-fold increase in the number of flagged recordings, indicating that the

2008 data is better matched to the2010 data. The last two columns of Table 6.4 and Figure 6-8

show that augmenting the impostor set to better match the test data does improve performance over

the original impostor set.

      .01 .02 .05 0.1 0.2 0.5  1  2 
 1 

 2 

 5 

 10

 20

 40

A) NN−AND / NN−OR / NN−DIFF vs BASELINE

False Alarm probability (in %)

M
is

s 
pr

ob
ab

ili
ty

 (
in

 %
)

 

 

NN−AND offset=2
NN−OR offset=1.5
NN−DIFF
NN−DIFF fused f=0.5
Baseline: TV with SNorm
Baseline: TV no SNorm
Baseline: TV with SNorm + 08

      .01 .02 .05 0.1 0.2 0.5  1  2 
 1 

 2 

 5 

 10

 20

 40

False Alarm probability (in %)

M
is

s 
pr

ob
ab

ili
ty

 (
in

 %
)

B) K−NN−DIFF / ASNorm vs BASELINE

 

 

K−NN−DIFF K=50
K−NN−DIFF K=50 fused f=0.7
ASNorm K=1500
ASNorm K=1500 fused f=0.7
Baseline: TV with SNorm
Baseline: TV no SNorm
Baseline: TV with SNorm + 08

Figure 6-8: DET plots of the different systems with the augmented impostor set on 2010 NIST SRE.

To provide a fair comparison between our proposed systems and the SNorm baseline we aug-

ment the SNorm set with a uniformly selected subset of recordings from the2008 data-set. The

comparison with the baseline is presented in Table 6.4 and Figure 6-8 and, even though the improve-

ment is not as dramatic as was seen on the development data, there is a consistent improvement in

performance over the DET range between the minDCF point and the EER point. Specifically, a

5 − 10% and8 − 10% relative improvement at the minDCF and EER points respectively for the

KNN-DIFF and ASNorm systems. However, even though the performance did improve it still falls
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short of expectation. This may be because the percentage flagged in the last two columns of Ta-

ble 6.3 are still lower than those in Table 6.1 indicating a likely persistent mismatch not addressed

by augmenting the impostor set.

Table 6.4: minDCF and EER breakdown on test set
Strategy DCF EER DCFe4 EER (%)

*1e4 (%) with 08 with 08
Baseline: TV no SNorm 4.62 2.82 4.62 2.82
Baseline: TV with SNorm 4.21 2.32 4.13 2.29
NN-OR offset=1.5 4.21 2.30 4.21 2.32
NN-AND offset =2 4.23 2.32 4.28 2.32
NN-DIFF 4.07 2.30 4.11 2.32
NN-DIFF fused f=.5 4.07 2.22 4.05 2.16
KNN-DIFF K=50 4.00 2.11 3.70 2.06
KNN-DIFF K=50 fused f=.7 4.01 2.13 3.80 2.09
ASNorm K=1500 4.33 2.09 4.02 2.08
ASNorm K=1500 fused f=.7 4.17 2.11 3.92 2.11

6.4 Discussion

The goal of this work was to attempt to directly tackle the newly proposed DCF with systems that

leverage a large impostor set. Our results on the development set were very promising with even the

simplest algorithms outperforming the baseline. However,performance on the test set was on-par

with the baseline. Upon exploring this discrepancy, it became apparent that an impostor set that is

well matched to the data of interest is crucial to the proposed algorithms. Augmenting the impostor

to better satisfy this criterion led to better performance.However, performance still fell short of

what was observed on the development set, most likely due to not addressing all of the mismatches.

An avenue of future work is to explore techniques to identifying well matched impostor sets. It

would also be of interest to further examine this apparent mismatch between the2010 NIST SRE

data-set and the NIST SRE data from previous years.
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Chapter 7

Graph Embedding: Manifolds and

Geodesics

The KL divergence approximations used in the derivations ofthe MAP and MLLR GSV kernels,

Sections 2.2.3 & 3.3.2, hold locally, as is the case for linearized scoring of the JFA [33]. Though

these approximations hold locally, they are applied globally, which raises the question of whether

there is a more suitable global distance. This question, andthe recent work on total variability [53],

which suggests that the majority of the variability betweenrecordings lies in significantly lower

dimensional space, compel us to explore whether the variability, instead, lies on a low-dimensional

non-linear manifold. There are several techniques in the literature to explore manifold structure and

embed data onto manifolds, such as ISOMAP [55] and locally linear embedding [56], as well as

techniques that incorporate the manifold structure into the classifier, such as manifold regularization

of SVMs [10]. In this chapter we focus on manifold discovery and embedding and do so using

ISOMAP.

The extension from linear subspaces to non-linear manifolds, though compelling, is not trivial,

because unlike linear subspaces, manifolds cannot, in general, be parametrized by a set of basis

vectors and do not have corresponding simple projection operators. Even though a global represen-

tation of the manifold may not be available, the distance along the manifold (geodesic distance) [55]

between two points lying on it, can be approximated with graph geodesics. The graph-geodesic dis-

tance between two points, is the length of the shortest path connecting them along a graph embed-

ding of the data. For the graph embedding to capture the global structure, and the graph geodesics

to properly approximate the true geodesic, a large auxiliary data-set is needed to densely sample all
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the variability in the data. Given graph-geodesic distances, ISOMAP [55] can be used to explore

the existence and dimension of a manifold and embed data in it.

The goal of this chapter is to explore the use of graph geodesics and manifolds in the context

of speaker comparison. We will begin by describing the large-dimensional inner-product space we

have chosen to base our exploration on. We then discuss embedding data on graphs and computing

graph geodesics. Next, we briefly outline ISOMAP and apply itto the model-parameter space to

explore the existence and size of the underlying manifold. We then present results on data-mining

experiments, which show that the use of graph-geodesic distances can greatly improve classification.

Finally, we propose a method to use graph geodesics in an evaluation scenario along with results.

7.1 Inner-product Space for Speaker Comparison

Graph embedding, which we will discuss in Section 7.2, requires computing the euclidean distance

between each point in a large auxiliary data-set and all others. For speaker comparison, this trans-

lates to computing the speaker-similarity, or match score,between all the recordings in the data-set,

thus making it more crucial to have a fast comparison function. In this chapter, we chose to use the

CGM IPDF, Section 5.3.4, with factor analysis (FA) orthogonal compensation, Section 5.4.2. This

can be written, since the comparison function is an inner product, as:

s(Rα,Rβ) = uT
αuβ , (7.1)

whereuα & uα are the compensated supervectors representingRα & Rα in the speaker comparison

space. The supervectors are further magnitude normalizedū = u/ ||u||22, as this was empirically

shown to improve the result of the geodesic approximation, resulting in the following comparison:

s̄(Rα,Rβ) = ūt
αūβ. (7.2)

The associated euclidean distance in this space is therefore,

deuc(Rα,Rβ) =
√

2− 2ūt
αūβ. (7.3)

For the experiments in this work, the frame level feature extraction was performed using HTK [57]

with 20 MFCC coefficients, deltas, and acceleration coefficients for a total of 60 features, with
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speech activity detection and feature warping [23] applied. The UBM consists of a512 mixture

GMM and MAP adaptation of the means was performed with a relevance factor of10−5, while

the mixture weights of the UBM were replaced by their maximum-likelihood (ML) estimates. The

FA compensation was trained using speakers from the NIST 2004 SRE corpora [58]. The resulting

euclidean space has dimension30, 720.

7.2 Graph Embedding of Speech Recordings

Graph embedding of a data-set can help explore, visualize and uncover structure in the data, as we

show in Chapter 9. It is also the first step to computing approximate geodesic distances between

two recordings.

Nodes in the graph represent recordings while weighted and undirected edges represent speaker-

similarity between a pair of recordings. To assess this notion of similarity, we first compute a large

speaker-similarity matrix capturing the similarity between each recording in the data and all others;

the i, jth entry of the matrix is the euclidean distance, using equation (7.3), between theith &jth

recordings. An edge between two nodes exists if their corresponding recordings are deemed “similar

enough”, and in this chapter, this is decided using one of twoways: the first, connects two points

if they lie within some “epsilon” euclidean distance of eachother, and the second, connects two

vertices if one is among theK-nearest neighbors (NN) of the other in the euclidean space.The

weights of the edges are the euclidean distances between their recordings. We will refer to graphs

built based on the epsilon distance asǫ-graphs, and those based onNN asNN -graphs.

When performing the graph embedding, a summarized version of the similarity matrix is first

computed, either based on epsilon distances or on K-nearestneighbors, with the only valid entries

being those corresponding to the existing edges. Note that the summarized matrix and the resultant

graph are two ways to represent the same information. Figure7-1 sketches out the embedding

process for four recordings{RA,RB ,RC ,RD}.

To compare the two edge selection techniques and decide which is more suitable for speaker

comparison, we compare the resultant node-degree (number of edges a node possesses) distribution

of the graphs to the “correct” distribution. The correct degree distribution, is that of a graph in which

all recordings of the same speaker are connected with one another and there are no edges between

recordings of different speakers. Figure 7-2 shows histograms of the degree distributions of sample

NN andǫ-graphs as well as the correct graph on the NIST SRE Eval-04 data-set, which contains
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Figure 7-1: Sketch of graph embedding.

212 speakers and a total of5213 recordings. We see that the degree distribution of aNN -graph with

K = 16 has the same range and a similar trend as that of the correct graph. Theǫ-graph, however,

is significantly different regardless of the choice of epsilon, this is because the variance within the

speaker recordings is not consistent across speakers, the figure shows two choices ofǫ. Based on

these observations, we choose to useNN -graphs in the rest of this chapter.
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Figure 7-2: Histogram of degree distribution.
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7.3 Geodesics

If we assume that the recordings lie on a low-dimensional manifold in the speaker-similarity space,

then the euclidean distance between two recordings that arefar apart may not a be a faithful repre-

sentation of the speaker similarity. A better choice may be the geodesic distance, which is the length

of the shortest path connecting them along the manifold, between the two recordings. Figure 7-3

sketches the difference between the two distances for a manifold with an intrinsic dimension of two

in a three-dimensional euclidean space.

Euclidian Distance

x

Manifold

A

Geodesic Distance

x
B

Figure 7-3: Geodesic and euclidean distances between A and B.

Though they differ over large distances, the euclidean and geodesic distances are approximately

equivalent for arbitrarily short distances. This equivalence can be used to approximate the geodesic

distance [55] as follows:

We first assume that enough recordings are available such that they densely sample the manifold in

the euclidean space, and embed these recordings on aNN or ǫ-graph, as described in the previous

section. The graph only connects nodes that are similar and if the space is densely sampled, we can

assume the weight of the edge between two recordings is a faithful representation of how similar

they are. Thus, the geodesic distance between two recordings can be approximated using the graph

geodesic, which is computed by summing the weights of the edges along the shortest path in the

graph connecting their corresponding nodes. Figure 7-4 sketches this approximation for a manifold

with an intrinsic dimension of two in a three-dimensional euclidean space.

We will refer to the graph embedding of the recordings used todensely sample the manifold

as the NN-background, and finding the graph-geodesic distance between any two points in the
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Figure 7-4: Approximate geodesic distance between A and B.

NN-background involves just finding the shortest path alongthe graph. However, to compute the

graph-geodesic distance between two recordings not part ofthe NN-background, they must first be

“connected” to the graph. This is done by adding the recordings as vertices in the graph, calculating

the euclidean distance from them to the rest of the vertices,and modifying the edge connections to

obtain the NN-graph one would have gotten had the two recordings been part of the NN-background.

Once they are “connected” the graph-geodesic distance is again the length of the shortest path along

the graph connecting the nodes. To compute the shortest pathwe use a Matlab implementation [55]

of the Dijkstra algorithm [59].

In this chapter we will examine the use of geodesic distancesin three speaker comparison sce-

narios:

• A data-mining scenario where the NN-background includes just the recordings of interest for

comparison.

• A data-mining scenario where the NN-background includes the recordings of interest for

comparison as well as additional recordings whose purpose is to attempt to more densely sam-

ple the manifold, the hope being that this would yield a more accurate approximate geodesic

distance between the recordings of interest.

• An evaluation scenario where the NN-background does not include any of the recordings we

wish to compare and includes only recordings that attempt todensely sample the manifold.
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7.4 ISOMAP

ISOMAP [55] is a technique that is used to explore the existence and dimension of the manifold,

as well as embed points into it [55]. The embedding uses the graph-geodesic distances, to map the

data from the original high dimensional euclidean space into a lower dimensional space in which the

euclidean distance is equivalent to the geodesic in the original space. We will refer to the euclidean

distance in the embedded space as the ISOMAP distance. Multidimensional scaling (MDS), a

technique used for dimensionality reduction and data visualization [60], is used to perform the

embedding. The optimal size of the lower-dimensional coordinate space is, in general, not known

a-priori and can be estimated by examining the decay of the residual variance, the variance in the

data unaccounted for by the embedding. In this chapter we used the software package [61] to apply

ISOMAP.

It is important to note that ISOMAP requires access to all thedata, one wishes to embed, a-priori

to estimate the manifold and embed the points in it. This requirement prohibits ISOMAP from being

used in an evaluation scenario where one does not have accessto the testing recordings to train the

classifier.

7.4.1 ISOMAP Applied to Speech Recordings

The speaker-similarity euclidean space which we have chosen to represent speech recordings de-

scribed in Section 7.1 has a dimension of30720, however, previous work [53] had shown that good

speaker separation can be done in a significantly smaller space of dimensionality400. This smaller

space is essentially the subspace of largest variability inthe original space. In this section, we

attempt to uncover whether the data lies near a non-linear manifold and if so what its dimension is:

We apply ISOMAP withK = 6, the parameter used to build theNN -graph, to threeNN -

backgrounds:

• 5213 recordings of the NIST SRE Eval-04 data-set, which contain212 speakers from both

genders.

• 5742 recordings, of both genders, from the1 and3 conversation enroll and1 conversation

test tasks of the NIST SRE Eval-06.

• 23000 recordings, of both genders, sub-selected from the NIST SRE04/06/08 evaluations as

well as the Fisher corpora.
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Figure 7-5 examines the decay of the residual error as the embedding dimension is increased. Note

that most of the variability in the Eval-04 data-set can be captured by a50 dimensional manifold,

and similarly for the Eval-06 data-set. However, when the NN-background includes speech from

multiple sources the intrinsic dimension is closer to100 with an overall higher residual error, which

seems to indicate a lack of consistency in the manifold across the data-sets.
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Figure 7-5: Decay of residual error with increasing embedding dimension.

To further highlight the existence of an underlying manifold of speaker variability, Figure 7-6

shows the two-dimensional embedding, with Eval-04 as the NN-background, of5 recordings from

10 male and10 female speakers randomly selected from the212 speakers from the Eval-04 data-set.

Each set of similarly colored “o”s represents recordings from a male speaker, and the set of similarly

colored “x”s represents recordings from a female speaker. It is interesting to note that both speaker

and gender separation can be observed in this two-dimensional embedding.
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Figure 7-6:5 recordings each from20 speakers embedded on the estimated two-dimensional mani-
fold. “o” for males, and “x” for females.
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7.5 Graph Geodesics for Speaker Recognition

In this section we examine the possibility of using approximate-geodesics and manifold distances

to perform speaker verification. We do this by comparing three classifiers:

CE Labels two recordings as belonging to the same speaker if theeuclidean distance between them

in the original speaker-similarity space is below a threshold.

CG Labels two recordings as belonging to the same speaker if thegraph-geodesic distance between

them is below a threshold.

CI Labels two recordings as belonging to the same speaker if theISOMAP distance is below a

threshold.

ForCG andCI , we use aK = 6 NN-graph and will explicitly state what NN-background was used

in each of the results presented below. ForCI , the dimensionality of the manifold is fixed at50.

7.5.1 Data-Mining Task

The previous section showed that indeed speech recordings lie near a low-dimensional manifold in

the model parameter space. One would therefore expect that using graph-geodesic distances rather

than euclidean distances will yield more accurate speaker comparisons. We explore this expectation

using data-mining experiments, where it is assumed that allenroll and test data is available, though

unlabeled, to the classifier.

Figure 7-7 shows a detection error trade-off (DET) plot thatcompares the three classifiers on

the NIST SRE Eval-04 data-set, where pair-wise comparisonsbetween all the recordings were per-

formed. ForCG andCI , the NN-background consisted of the Eval-04 data-set itself. Note the

large improvement in classification when the manifold is taken into account, either by using graph

geodesics (CG) or the ISOMAP distance (CI ). It is also important to note that the50 dimensional

embedding performed by the ISOMAP algorithm does not completely characterize the manifold,

thus resulting in the performance ofCI being poorer than that ofCG.

Figure 7-8 shows the DET plot of the classifier performance for all trials of the NIST SRE Eval-

06 1 conversation train 1 conversation test (1c) task [18]. TwoCG andCI classifiers were trained,

the first used only the1c data as the NN-background, while the second also included the enrollment

recordings from the NIST SRE Eval-06 3 conversation train 1 conversation test (3c) task. Similarly

to the results on Eval-04 theCG andCI classifiers outperformCE, with CG performing better than
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Figure 7-7: DET plot of classifiers using euclidean, geodesic and ISOMAP distances for the NIST
SRE Eval-04 data-set.

the correspondingCI . The DET-plot also shows the performance of aCG classifier whose NN-

background contains a total of23000 recordings from NIST SRE Eval-(04/06/08) and the Fisher

database. One would expect extending the NN-background beyond the Eval-061c and3c will yield

improvement across the whole DET curve as the additional data will result in denser sampling of the

manifold yielding more accurate geodesic distances. However, as seen in the figure, performance is

improved in the low false-alarm regime and worsened at the low probability-of-miss regime. This

lack of overall improvement may be due to a miss-match in the underlying manifold on which the

Eval-06 and the Fisher data lie.
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Figure 7-8: DET plot of classifiers using euclidean, geodesic and ISOMAP distances on All trials
of the Eval-061c task.
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7.5.2 NIST SRE Task

The data-mining results showed that, if the evaluation datais available a-priori, the graph-geodesic

distances can greatly improve classification results, and that the choice of the NN-background in

computing the graph geodesics is important since it essentially defines the manifold. In an evalua-

tion scenario, such as the NIST SRE, the classifier does not have a-priori access to the evaluation

data and thus the NN-background cannot include the data on which the classifier will be evaluated,

as was done in the data-mining experiments. This restriction also prohibits us from using ISOMAP

to perform the embedding, since it requires the train and test data to be part of the NN-background.

Therefore, in this section we focus on comparing graph geodesics to the euclidean distance on all

trials of the Eval-06 1c task:

ForCG, the NN-background used was the Fisher data-set and the number of nearest neighbors (K)

used to create the NN-graph was varied from2 to 25. Figure 7-9 shows the effect of varyingK

on the detection cost function point (DCF) and the equal error rate (EER) point, with the minimum

DCF occurring atK = 3 and min EER occurring atK = 23. In Figure 7-10, we show the DET

plot for theCG classifiers forK = 3 & 23 as well as theCE baseline. These, figures show that

the performance of the geodesic distance classifier is basedon the choice ofK and only yields an

improvement over the baseline in certain regimes of the DET plot. The discrepancy between these

results and the significant improvements seen in the data-mining experiments is perhaps due to a

miss-match in the underlying manifolds of the Fisher data and the Eval-06 data.
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Figure 7-9: DCF and EER vs K ofCG on All trials of the Eval-061c task.
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Figure 7-10: DET plot forCG with K = 3 andK = 6 as well asCE .

7.6 Discussion

Using the ISOMAP algorithm, we have empirically shown that there exists an underlying manifold

on which speech-recordings live in the speaker-similarityspace. We used NN-graph embedding

as a proxy for the manifold, which allowed for computing graph-geodesic distances. Using the

graph-geodesic distance and the ISOMAP distance in the manifold embedding greatly improves

classification, over the euclidean baseline, in data-mining experiments. Results on NIST-SRE Eval-

06 core task show that this improvement is only observed in some regimes of the DET plot at the cost

of degradation in others. Future work could examine this discrepancy in performance improvement

between the data-mining experiments and the NIST SRE experiments, with the ultimate goal being

a competitive classifier that fully exploits the structure of the manifold.
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Chapter 8

Graph Embedding: Graph-Relational

Features

In this thesis we’ve already explored two ways to leverage comparisons between the trial recordings

and a large auxiliary set to improve speaker comparison: In Chapter 6, we used a large set of

impostor recordings to reduce false-alarms, by performingadaptive score normalization based on

the immediate neighborhood around the trial recordings. InChapter 7, we used the scores between

the trial and background recordings to embed the trial recordings as nodes in a graph and used the

graph-geodesic distance between them as a speaker-match score. In this chapter, we combine the

local neighborhood around the trial recordings with the geodesic distance between them and other

relational features to perform speaker comparison.

Motivated by the link prediction problem [62], this work embeds the trial recordings along

with the background set in a graph and, in addition to using the shortest path as a match score,

extracts several other features that capture the interconnection between the trial recordings and the

background. We will refer to these as graph-relational features and use them to represent each trial.

These features are used in a classifier, e.g. linear SVM, to separate between true trials, where the

trial recordings correspond to the same speaker, and false ones.

We will begin with a description of the total variability system which we will use both as a base-

line and for graph construction. We then discuss the graph construction and embedding, followed

by the relational features we’ll extract from the graph. Next, we present the classifier used along

with the train and test setup. We conclude with results that show the efficacy of these features and

suggestions for future work.
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8.1 Total Variability (TV) and Graph Embedding

The baseline system used in this work, and the one used to build the graph, is the total variability

(TV) system, as in Section 2.2.6, followed by SNorm score normalization, Section 2.2.7. The par-

ticular configuration is presented in [53] and operates on cepstral features, extracted using a 25 ms

Hamming window. 19 Mel frequency cepstral coefficients together with log energy are calculated

every 10 ms. Delta and double delta coefficients were then calculated using a 5 frame window to

produce 60-dimensional feature vectors. This 60-dimensional feature vector was subjected to fea-

ture warping using a 3 s sliding window. The UBMs used are gender dependent Gaussian mixture

models containing 2048 Gaussians. The UBM and the LDA projection are trained on data from the

Switchboard II, Switchboard cellular, and telephone recordings from the 2004/05/06 NIST SRE.

The TV subspace is trained on these corpora as well as the Fisher English corpus. The WCCN

matrix is computed using only the telephone recordings fromthe 2004/05/06 NIST SRE data sets.

The gender dependent impostor lists used for SNorm consisted of 614 female and406 male English

telephone recordings drawn from the 2005/06 NIST SRE data-sets. We will usês(Rα,Rβ) and

s(Rα,Rβ) to refer to the TV and TV combined with SNorm symmetric scoring functions between

two recordingsRα andRβ .

s(Rα,Rβ) is used to compute a pair-wise match score between each pair of recordings in the set

consisting of the background and trial recordings, resulting in a square and symmetric match-score

matrix. The score matrix encodes not only the direct comparison between the trial recordings, but

also how they interact with the background set. This information can be leveraged to improve on the

direct match score. Motivated by the link prediction problem [62], we generate a relational graph

that summarizes the score matrix and extract graph-relational features. These features combined

with the direct match score are combined to train a classifierthat discriminates between true and

false trials.

Section 7.2 of the previous chapter describes how the relational graph can be constructed. How-

ever, unlike the previous chapter, we do not restrict ourselves to justNN -graphs, and allow for

ǫ-graphs as well. The choice of graph construction method, and the parametersK andǫ, will re-

sult in very different graphs. These differences allow us toexamine the match-score matrix from

different perspectives which we speculate would yield somewhat complementary graph-relational

features. We therefore include both construction methods and several parameter choices in the

feature extraction process.
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Another choice in graph construction is whether the edges ofthe graph are weighted or not.

Weighted graphs, like those of used in the previous chapter,use the pair-wise score between two

recordings for the weight of the edge connecting them. Binary graphs on the other hand have all

their edge weights set to unity, therefore all the information is encoded in whether an edge exists

between two nodes or not. In the next section, we propose several graph-relational features, some

applicable to both binary and weighted graphs, others to only one.

8.2 Graph-Relational Features

Once the trial and background recordings are embedded in a graph we can extract several features

that capture the interaction between the trial recordings via the graph. These features are split into

two main classes: those that examine only the immediate neighborhood of the trial recordings and

those that extend beyond that. To simplify the presentationof the features we first present some

notation:

• The nodes in the graph, representing trial and background recordings, are indexed from1 to

T , whereT is the total number of nodes in the graph.

• Each trial consists of a target and test recordingTGT andTST respectively.

• NNx is the set of neighbors of nodex, i.e. the nodes connected tox by an edge. For example

NNTGT is the set of neighbors ofTGT .

• |X| is the cardinality of the setX .

• ||x|| is the 2-norm of the vectorx .

• The vectorsvx are typically sparse vector, of sizeTx1, that capture the interaction ofx with

the remaining graph nodes:

- Zero valued entries in the vectors indicate the lack of an edge between the recordingx and

the nodes corresponding to the zero locations.

- For weighted graphs, the value of the non-zero vector entries indicates the weight of the

edge betweenx and the corresponding graph nodes.

- For binary graphs, all non-zero entries have a value of one and indicate edges betweenx

and the corresponding graph nodes.
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8.2.1 Neighborhood Features

The premise of these neighborhood features is that ifTGT andTST are recordings of the same

speaker then their match scores with the background recordings should be similar indicating they

lie within the same neighborhood of the graph.

Binary graph

We adopt the following features, which were proposed in [62]for link prediction:

• Common neighbors=|NNTGT ∩NNTST | counts the number of common neighbors between

TGT andTST .

• Jaccard’s coefficient=|NNTGT ∩NNTST |
|NNTGT ∪NNTST | normalizes the common neighbor score by the to-

tal number of nodes connected to bothTGT andTST . An example scenario where the

normalization would be useful, is where a particular targetrecordingTGT shares the same

number of common neighbors with two separate test recordings TST1 andTST2, however

|NNTST2
| ≫ |NNTST1

| and thus the Jaccard coefficient would penalizeTST2.

• Adamic=Σz∈NNTGT∩NNTST

1
log|NNz |

a measure that combines the size of the intersection set

with how highly connected the nodes in the intersection are.This could be thought of as

another form of normalized common neighbors.

Weighted graph

The features in this section are inspired by those of the binary graph.

• Inner product=vTTGT .vTST is based on the common neighbors measure.

• Normalized inner products=
vT
TGT

.vTST

||vTGT ||.||vTST ||
and

vT
TGT

.vTST

||vTGT ||+||vTST ||
which are inspired by Jac-

card’s coefficient.

• Adamic Weighted=Σz∈NNTGT ∩NNTST

1
log||vz||

, based on the binary Adamic feature.

• Landmark Euclidean distance=||vTGT − vTST ||, a measure that considers the recordings in

the graph as landmarks and that the vectorsvTGT andvTST represent the coordinates ofTGT

andTST in the space defined by the landmarks.
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8.2.2 Paths Features

In the previous sections our discussion has focused on graphs constructed based on match scores.

One can also create graphs based on the Euclidean distance between the TV representation of the

recordings. In the K-NN version of the distance based graphsthe NN are selected to be the closest

ones to a recording in the Euclidean space. And in the epsilonversion of the graphs, edges exist

between nodes that are less thanǫ apart from one another. Given the normalization of the match

score presented in Section 2.2.6 the euclidean distance between two recordings is just

e(Ra,Rb) =
√

2− 2ŝ(Ra,Rb). (8.1)

These distance graphs allow for extracting paths based features that go beyond the immediate neigh-

borhoods of the trial recordings:

Shortest path

• Shortest path=2−SP (TGT,TST ), whereSP (TGT, TST ) is the value of the shortest path from

nodeTGT to TST , which we compute using a Matlab implementation of the Dijkstra algo-

rithm [9].

• Number of hops=2−NH(TGT,TST ), whereNH(TGT, TST ) is the number of edges traversed

along the shortest path fromTGT to TST .

N-Step Markov (NSM):

NSM is a feature used to quantify the relative importance ofTGT to TST [63] by computing the

probability that a random walk started atTGT will visit TST afterN steps are taken. This can be

computed as the value at the index of theTST vector:

NSM(TGT, .) = AiTGT +A2iTGT +A3iTGT + ...+AN iTGT , (8.2)

whereiTGT is a vector of sizeTx1 of all zeros except for1 at the index of theTGT , andA is an

TxT matrix representing transition probabilities from one node to another. We obtainA from the

distance graph by dividing each outward edge from a node by the sum of all outward edges from

that node. In this work we choose to setN = 15 since beyond that the contribution ofAN iTGT to

the NSM score is minimal.
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Table 8.1: The graph-relational features used in classification
K used in K-NN ǫ used in Epsilon Graph

BGN 5, 10, 20, 50, 100, .35, .4, .45
250, 500, 750, 1000

WGN 5, 10, 20, 50, 100, -.4, -.3, -.2, -.1,
250, 500, 750, 1000 0, .1, .2, .3, .4

Paths 1.1, 1.2, 1.3

8.3 Classifier

Section 8.1 presented two graph embedding techniques, K-NNand epsilon graphs, each with a

parameter that can be varied to obtain different resultant graphs. These graphs are then used in

Section 8.2 to extract three categories of features: binarygraph neighborhood (BGN), weighted

graph neighborhood (WGN) and paths features. Combining thedifferent graph construction with

the different feature extraction techniques results in a large set of features to represent each trial.

We narrow the set down to135 features according to the efficacy of each individual feature on the

development set. Table 8.1 lists the resulting set.

These relational features combined with the baseline match-score result in a136-dimensional

feature vector that represents each trial of interest. The features are individually normalized to have

zero mean and unit variance across the training set. A linearSVM classifier is then trained, per

gender, on the development set to separate between true and false trials. This is done using the

LibSVM toolbox [64] with five fold cross-validation to set the regularization parameterc. Once

trained, the SVM is used to classify test trials as true or false. The next section presents the results

of our approach on speaker recognition and speaker-mining tasks.

8.4 Results

We evaluate the proposed algorithms on the one-conversation train one-conversation test scenario,

where each trial contains one target recording and one test.All the experiments use the 2008 NIST

SRE English telephony data as a training/development set. And final performance is measured on

condition5 of the 2010 NIST SRE which consists of normal vocal effort English telephony speech.

8.4.1 Speaker Recognition Task

The speaker recognition task follows the standard NIST SRE task requiring that each trial be consid-

ered independently of all other trials in the evaluation. Therefore, the auxiliary set used to build the
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graph and extract graph-relational features for a given trial consisted of only impostor recordings.

The background sets used are of size6932 for males and9281 for females and consist of record-

ings from the 2004/05/06 NIST SREs.The regularization parameterc was set via cross-validation

to 5 for males and15 for females. Figure 8-1 shows the detection error trade-off(DET) curves of

the baseline, in blue, and our proposed algorithm, in red, onthe NIST SRE 08 data, which was

also used to train the SVM classifier. When examining this plot it is important to keep in mind

that we are testing on the SVM training data, however the plotdoes highlight the potential of the

graph-relational features.
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Figure 8-1: Speaker recognition DET plots of the baseline and proposed system on the training set
(NIST SRE 08).

Figure 8-2 shows the DET curves of the baseline, in blue, and our proposed algorithm, in red,

on the held out test set, NIST SRE 10. Note that our algorithm yields moderate improvement over

the baseline.

8.4.2 Speaker-Mining Task

In the speaker-mining task, we relax the constraint requiring each trial to be considered indepen-

dently and include all the trials of the particular evaluation in the graph background set along with

recordings from the 2004/05/06 NIST SREs. This yielded background sets of size8475 for males

and12099 for females on the development set and9868 and13209 for males and females on the

held out test set. We note that in this task the background setis not only comprised of impostor
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Figure 8-2: Speaker recognition DET plots of the baseline and proposed system on the held out test
set (NIST SRE 10).

recordings and may have speaker overlap with the trial of interest. During SVM training the reg-

ularization parameterc was set via cross-validation to3 for males and2 for females. Figure 8-3

shows the DET curves of the baseline, in blue, and our proposed algorithm, in red, on the NIST

SRE 08 data used to train the SVM classifier. Keeping in mind that we are testing on the training

data, it is still worthwhile to note the potential of the graph-relational features for speaker mining.

Figure 8-4 shows the DET curves of the baseline, in blue, and our proposed algorithm, in red,

on the held out test set, and clearly shows the improvement ofour algorithm over the baseline.
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Figure 8-3: Speaker mining DET plots of the baseline and proposed system on the training set
(NIST SRE 08).
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Figure 8-4: Speaker mining DET plots of the baseline and proposed system on the held out test set
(NIST SRE 10).

8.5 Discussion

In this chapter, we presented a framework to use graph-relational features extracted from speaker

similarity graphs for improved speaker comparison. We applied this framework to two speaker

comparison tasks, speaker recognition and mining. In both tasks, our proposed system outperformed
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the baseline, with significant improvement observed in the speaker-mining task. We also present

results from test-on-train scenarios to highlight the potential of the features. There was a noticeable

discrepancy between the test-on-train results and testingon the held-out set which is a concern that

should be addressed in future work.

The goal of this chapter was to highlight the benefit of using graph-relational features in speaker

verification. It, however, does not fully explore this topicand leaves many issues to be addressed in

future work, some examples are:

• It is expected that there is significant correlation in the different graph-relational features,

specifically between those of the same class (neighborhood or path) and those extracted from

the same type of graph (K −NN or ǫ). It would be of interest to understand this correlation

and compensate for it in the classifier.

• In this work we chose to use a linear SVM for the classifier, however other classifiers should

be considered.

• The set of graph-relational features used in this work is notan exhaustive one and there may

be other better or complementary ones we have not considered.

• We consideredK−NN andǫ graph construction techniques, yet there are other choicesthat

may be useful.

• When constructing the graphs we used unlabeled auxiliary recordings, it may however be

beneficial to use speaker labeled recordings along with graph construction techniques that

exploit the labels.
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Chapter 9

Graph Embedding: Data Visualization

The NN-graph of speech recordings, Section 7.2, can serve asa good method to visualize the effects

of the algorithms on the data-sets. In the NN-graph the location of the vertices is not important, only

the existence and weights of the edges between them. The graph can, therefore, be “laid out” (the

process of choosing vertex locations) in a manner that wouldresult in good visualization. We use

the GUESS [65] software package to perform both the visualization and the layout using the GEM

algorithm [66]. An example of such a layout is presented in Figure 9-1 which shows the layout

of the K = 6 NN-graph of the Eval-04 telephony data, where the system used was the one in

Section 7.1. Male and female recordings are represented by red and green nodes respectively, and

the visualization clearly shows the gender separation. This data visualization technique can be used

as both an exploratory and a visual analysis tool. In this chapter we present a brief case study

showing how this could be done.

In [67] a channel-blind system was proposed that could be used across the different tasks in

the NIST 2010 Evaluation [20]. These include recordings of telephony speech as well as various

microphone recordings collected from interviews conducted in two separate rooms. This system is

based on the TV system, Section 2.2.6 with WCCN and LDA supposedly performing the crucial

role of removing channel variability. We use the data visualization technique to examine both

the efficacy of the channel compensation in the system as wellas to explore the full NIST 2010

evaluation recordings. We present only male recordings since similar results are observed with

female recordings. The graphs show all male recordings of the core conditions of the 2010 extended

NIST SRE, and the number of NNs is set toK = 3.

We begin by showing the efficacy of the channel-blind system by using the system in building
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Figure 9-1: Eval-04 NN-graphK = 6 male (red) and female (green) recordings.

the NN-graph. Figure 9-2 shows the resultant visualizationwith speaker meta-data overlaid such

that recordings of the same speaker are colored alike. The clusters of similar color, representing

clusters of recordings of the same speaker, show that the system is indeed assigning lower cosine

distance scores to pairs of recordings of the same speaker.

Next, we examine the importance of the channel compensationperformed by the combina-

tion of WCCN/LDA. To do this, we build a NN-graph using the channel-blind system without the

WCCN/LDA step, the corresponding visualization is in Figure 9-3. We notice that the speaker clus-

tering observed with the full channel-blind system is no longer visible, however, there does seem to

be some structure to the graph.

Further exploration, by overlaying channel meta-data, shows that the structure can be attributed

to channel variability. Figure 9-4 shows the layout of the NN-graph using the channel-blind system

without WCCN/LDA with: colors representing different telephone and microphone channels, the

node shape representing the two different rooms the interview data was collected in. Upon careful
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Figure 9-2: Graph visualization of all NIST SRE 2010 Male recordings using the full channel-blind
system with speaker meta data overlaid.

inspection of the graph, one notices that the room accountedfor more variability than the inter-

view microphones, specifically for the far-talking microphones: MIC CH 05/07/08/12/13. Another

worthwhile observation, is that the two phone numbers (215573qqn and 215573now) which are

land-line phones located in each of the rooms, cluster near the interview data of the corresponding

room, and more specifically near the close-talking and desk microphones: MIC CH 02/04.

This ability to visualize and explore the dominant variability within a data-set may prove to be

a useful tool when dealing with newly collected data-sets. In this particular case study, the greater

effect of the room variability over that of the microphones,seems to suggest that future NIST SREs

should include tasks that test for robustness over varying recording rooms.

Another useful aspect of visualization, which we will only mention here, is to help identify key

errors in a data-set. For example, a speaker or gender key error would show up as a node or group

of nodes not clustering with their same speaker/gender labeled counterparts.
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Figure 9-3: Graph visualization of all NIST SRE 2010 Male recordings using the channel-blind
system without WCCN/LDA channel compensation with speakermeta data overlaid.

Figure 9-4: Graph visualization of all NIST SRE 2010 Male recordings using the channel-blind
system without WCCN/LDA channel compensation with channelmeta data overlaid.
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Appendix A

Useful Machine Learning Concepts

A.1 Support Vector Machines (SVMs)

An SVM [25] is a two-class classifier constructed from sums ofa kernel functionK(·, ·),

f(x) =

L
∑

s=1

γsysK(x,xs) + b, (A.1)

where theys are the ideal outputs,
∑L

s=1 γsys = 0, andγs > 0. The vectorsxs are support vectors

(a subset of the training data) and obtained from the training set by an optimization process [37].

The ideal outputs are either1 or−1, depending upon whether the corresponding support vector is in

class0 or class1, respectively. For classification, a class decision is based upon whether the value,

f(x), is above or below a threshold (usually0).

The kernelK(·, ·) is constrained to have certain properties (the Mercer condition), so thatK(·, ·)

can be expressed as

K(x, z) = φ(x)Tφ(z), (A.2)

whereφ(x) is a mapping from the input space (wherex lives) to a possibly infinite-dimensional

SVM feature space. We will refer to theφ(x) as the SVM features.

The focus of the SVM training process is to model the boundarybetween classes: the boundary

is a hyperplane in the SVM feature space defined by the vectorw normal to it:

w =

L
∑

s=1

γsysφ(x) + b (A.3)
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The training process identifies the subset of the training data which are the support vectorsxs (data

that if removed from training set would lead to a different classifier) and associated weightsγs.

Figure A-1 shows the in-class (+) and out-of-class (−) training points in SVM feature space, the

support vectors (circled points), the linear decision boundary, and the normal (w) to it. We will

refer to the support vectors, their associated weights, anddiscriminating direction (w) as the “bi-

products” of the SVM training process.

hyperplane

w

seperating

Figure A-1: Example of separating hyperplane

A.2 Gaussian Mixture Models (GMMs)

A Gaussian mixture model (GMM) is a probability density function comprised of a mixture of

Gaussian density functions [68]. It models the probabilitydensity of a vectorr of sizeD as:

g(r) =

M
∑

i=1

wiN (r;mi,Σi), (A.4)
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wherewi is the mixing weight of theith mixture,mi is the mean vector of theith mixture,Σi is the

covariance matrix of theith mixture, and

N (r;mi,Σi) =
1

(2π)D/2|Σi|1/2
exp{−

1

2
(r−mi)

TΣ−1
i (r−mi)}. (A.5)

Maximum likelihood (ML) training is typically used to fit themodel parameters of the GMM, and

is done using expectation maximization (EM) [68]. In this thesis we only consider GMMs with

diagonal covariance matrices.

A.3 Maximum A Posteriori (MAP) Adaptation of GMMs

Gaussian mixture models (GMMs) are used throughout this thesis to model features extracted from

a recording. This is typically done by adapting the parameters of a universal background model

(UBM), a GMM trained to model features extracted from a largeand diverse set of recordings:

gUBM (r) =

M
∑

i=1

wUBM,iN (r;mUBM,i,ΣUBM,i). (A.6)

In this section we present maximum a posteriori (MAP) adaptation of the means of the UBM to

a recordingRα = {rα,1, rα,2, ..., rα,Nα} [2]. MAP adaptation uses the UBM means (mUBM,i) as

a prior and moves the means in the direction of theα ML estimate of the means (̂mα,i), which maxi-

mizes the likelihood ofrα being generated by the GMM̂gα(r) =
∑M

i=1 wUBM,iN (r; m̂α,i,ΣUBM,i).

The amount of movement towards the ML means is based on the amount of adaptation data: the

more data available the more the adapted means (m(α,i)) move away from the UBM means and

closer to the ML means. Specifically the adapted means are:

mα,i =
Ni

Ni + τ
m̂α,i +

τ

Ni + τ
mUBM,i ∀i (A.7)

Ni =

Nα
∑

n=1

wiN (rn;mi,Σi)
∑M

j=1wjN (rn;mj ,Σj)
& m̂α,i =

1

Nα
Nirn, (A.8)

whereτ is a relevance factor that is empirically chosen.

Note that, if a single Gaussian were used instead of GMMs, i.e. gUBM (r) = N (r;mUBM ,ΣUBM ),
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thenm̂α would just be the sample mean ofrα:

m̂α =
1

Nα

Nα
∑

n=1

rα,n. (A.9)

Another important observation is that asNi increases (i.e. as more adaptation data is available) the

adapted mean approaches the ML mean, withm̂α = mα when an infinite amount of adaptation

data is available.

In a similar manner the covariance matrices of the GMM can also be adapted by MAP adaptation,

the details of which can be found in [2].
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