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Abstract

Level-crossing sampling refers to a sampling method that generates a sequence of
timing samples when a signal crosses a specified set of levels. Conventional sampling
techniques more typically rely on producing a sequence of amplitude samples at a
specified set of timings. Level-crossing sampling has been considered as a promising
alternative to time sampling when it is difficult to implement high-precision quantizers
but where high timing resolution is possible. Although Logans theorem provides
conditions in which signals are recoverable from samples obtained by zero-crossing,
which is a level-crossing sampling method with one level, associated conditions for a
multi-level framework have not yet been developed.

This thesis studies a recently proposed level-crossing sampling method, which
corresponds to amplitude sampling. This method establishes an amplitude-time re-
lationship representation of the original signal, which is referred to as the amplitude-
time function. The pre-designed levels determine when samples of the amplitude-time
function are taken. This sampling procedure enables us to design two algorithms, the
Bandlimited-Interpolation Approximation (BIA) algorithm and the Iterative Ampli-
tude Sampling Reconstruction (IASR) algorithm, that can reconstruct the original
signal from these timing samples with improved accuracy over existing multi-level-
crossing sampling approaches. By relating amplitude sampling with nonuniform time
sampling, we further compare these algorithms with one of the more efficient nonuni-
form time sampling methods, the Adaptive Weights Method (AWM). Simulations
show that not only do these two algorithms attain high signal-to-error ratio (SER),
but the IASR can generally reconstruct the original signal with fewer iterations than
the AWM.

Thesis Supervisor: A. V. Oppenheim
Title: Ford Professor of Engineering
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Chapter 1

Introduction

1.1 Motivation

Sampling theorems play an important role in signal processing as a connection be-

tween the analog world and digital processing. The most well-studied sampling the-

orem is the Shannon-Nyquist theorem [1], which formalizes a discrete representation

of a bandlimited signal. It has had a profound impact on communication systems,

the digital signal processing industry, and a great number of extensions have been

proposed [2–4]. However, the Shannon-Nyquist sampling theorem and most of its

extensions study a time-sampling framework, where a signal is represented by a con-

tinuous amplitude sequence corresponding to a specified set of time values. When a

high-precision quantizer is difficult to implement but timing resolution can be suf-

ficiently high, a promising alternative to the time-sampling method is level-crossing

sampling [5], in which the time values are recorded when the signal crosses a specified

set of thresholds. Therefore, a signal is instead represented by a time sequence and

its amplitude information is inherited in the sampling methodology.

A significant result of level-crossing sampling is Logan’s theorem [6], which studies

a specific class of level-crossing sampling – zero-crossing sampling, in which the level

is set to be zero. The theorem provides sufficient conditions for reconstructing a signal

under zero-crossing sampling. In [7], Petros showed that although Logan’s theorem
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provides no stability1 guarantee, stability can typically be ensured with additional

assumptions on the sparsity of some basis. However, a more generalized theorem

for level-crossing sampling with multiple levels is still not discovered. Most exist-

ing generalized level-crossing sampling methods focus on a low-power-consumption

Analog-to-Digital Converter design [8–10]. They simply reconstruct signals by the

zero-order-hold and thus represent piecewise-constant approximations of the origi-

nal signal. Advanced signal reconstruction techniques for generalized level-crossing

sampling are still under-explored.

This thesis studies a framework, referred to as amplitude sampling, recently pro-

posed in ongoing doctoral research described in [11]. This framework potentially

allows us to theoretically pursue a more accurate reconstruction than most existing

level-crossing sampling methods with multiple levels. Specifically, while conventional

level-crossing sampling methods only consider samples as amplitude-time ordered

pairs and therefore lose information in between, amplitude sampling establishes an

amplitude-time representation of the entire signal. It is accomplished first by adding

a ramp to the signal to make it strictly monotonic and then using the monotonic func-

tion as the one-to-one mapping between time and amplitude. With the mapping, a

function expressed in an amplitude-time relationship can be achieved, which we will

later refer to as the amplitude-time function. Samples taken from amplitude-time

functions form a time sequence. Therefore as conventional level-crossing sampling

techniques, amplitude sampling represents the original signal by a time sequence.

Our goal is to recover the original signal from this sequence.

The thesis focuses on establishing algorithms to reconstruct a bandlimited signal

from uniform samples of its corresponding amplitude-time function. The bandlim-

ited assumption will be utilized to design amplitude sampling reconstructions. This

assumption can be more generalized in future study. With the bandlimited assump-

tion, there is an additional advantage to using amplitude sampling over level-crossing

sampling. We know that if an input signal f is bandlimited and has finite energy, i.e.

f ∈ L2, it attenuates to zero as time goes to infinity. Therefore, it will stop crossing

1The definition of stability will be given in Chapter 2
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predefined levels after a finite amount of time under a level-sampling regime. Without

any further assumption other than the bandlimitedness, these obtained samples can-

not be a sampling sequence2 and cannot be able to reconstruct the original function

in practice. However, in amplitude sampling, the slope of the ramp can be carefully

chosen so that the density of the samples in time can be guaranteed to satisfy the

nonuniform sampling theorem for a stable reconstruction. Therefore, the error of a

resulting bandlimited function from an amplitude sampling reconstruction algorithm

can be bounded by a finite scaling of the error on the sufficiently dense samples. In

this thesis, samples on amplitude-time functions are uniformly taken since uniform

levels are easy to implement. This also can potentially be generalized in future work.

To reconstruct the original signal from amplitude sampling, two steps are needed;

the first step is to realize the transformation between the amplitude-time function

and the original signal, and the second step is to approximate a continuous signal

from discrete samples in amplitude. An iterative algorithm is proposed for the first

step to attain the transformation, with which two other algorithms, the bandlimited-

interpolation approximation (BIA) and the iterative amplitude sampling reconstruc-

tion (IASR), are introduced for the second step. The BIA is a direct approximate

algorithm that can achieve arbitrarily large signal-to-error ratio (SER) by increasing

the sampling rate; the IASR on the other hand is an iterative algorithm that may

be able to converge to the original function when the sampling density is sufficiently

high.

Since uniform samples in amplitude can be one-to-one mapped to nonuniform

samples in time, another way to reconstruct the original signal is to recover the signal

from these nonuniform samples by nonuniform time sampling reconstruction methods.

Background study on nonuniform time sampling theorem and algorithms is provided

in Section 2.1. In this thesis, simulations based on different parameter settings are

performed to compare our proposed algorithms with a specific nonuniform sampling

method, the adaptive weights method (AWM), which is proven to be the most efficient

algorithm in numerical experiments [12]. Since our proposed algorithms are designed

2The definition of a sampling sequence will be provided in Section 2.1

13



based on amplitude sampling, the SER of both the BIA and the IASR after the first

iteration is significantly greater than that of the AWM after the first iteration. In

most simulation results, the IASR converges within fewer iterations than the AWM.

Moreover, simulation results suggest two major differences between parameter effects

on the convergence rate of the IASR and of the AWM. We show that with those two

differences, parameters can be designed to further improve the convergence rate of

the IASR.

The remaining of the thesis is organized as follows. Section 1.2 provides the def-

inition of amplitude-time functions and formulates the amplitude sampling regime.

Chapter 2 studies backgrounds for nonuniform sampling theorems, iterative nonuni-

form sampling algorithms, and specifically the AWM. Chapter 3 explores time-domain

properties of amplitude-time functions. These properties include the periodicity of

amplitude-time functions when input signals are periodic and properties that re-

sult from two interpretations of the transformation mα: a matrix representation and

an interpretation that can be indicated in a figure. These two interpretations will

be introduced in Chapter 3. Moreover, with the figurative interpretation, we also

develop and prove an iterative algorithm that realizes the transformation between

time-amplitude functions and amplitude-time functions. With this realization, in

amplitude sampling reconstruction design we can assume that the transformation is

implementable. Chapter 4 discusses frequency-domain properties of amplitude-time

functions, which are useful both in designing amplitude sampling reconstruction al-

gorithms and in performance analysis of these algorithms. Chapter 5 proposes two

amplitude sampling algorithms, the BIA and the IASR, to reconstruct the original

signal. Simulation settings and results are discussed in details and how parameters

can be chosen to be beneficial for amplitude sampling reconstruction is suggested.

Chapter 6 concludes the thesis and outlines some future research directions.

14



1.2 Problem Definition

In this section, we provide the definition of amplitude-time functions, which as men-

tioned in Section 1.1 is a representation of the original signal f(t) in an amplitude-time

relationship derived by a one-to-one mapping between time and amplitude. Recall

that the signal f(t) is assumed to be bandlimited. By Bernstein’s inequality [13], if

a function is bandlimited, its first derivative is bounded. Therefore, a simple method

to obtain a strictly monotonic function as the one-to-one mapping between time and

amplitude is to add a ramp with a sufficiently high slope αt to f(t), i.e. the acquired

monotonic function g(t) = f(t) + αt = y satisfies g′(t) = f ′(t) + α > 0, where y

can be thought of as the amplitude variable. Then the corresponding amplitude-time

function h(y) can be defined as

h(y) = g−1(y)− 1

α
y. (1.1)

Under such a definition, h(y) with y = f(t) + αt is bounded if f(t) is bounded since

h(f(t) + αt) = t− 1

α
(f(t) + αt)

= − 1

α
f(t). (1.2)

From (1.2), we obtain a relationship between f and h in the form of functional

composition [14]. Moreover, since g(t) = f(t) + αt is designed to be invertible, this

relationship uniquely determines h from f .

A similar procedure is used to express f(t) in terms of h(y). The slope of the

ramp is selected to be 1/α so that the inverse function of t = h(y) +y/α is g(t). Note

that y/α is sufficiently large, i.e. h′(y) + 1/α > 0. After αt is subtracted from g(t),

f(t) is recovered. Therefore another relationship between f and h can be formulated

as

f(h(y) +
1

α
y) = −αh(y). (1.3)

A similar argument can be made to show that Eq. (1.3) uniquely determines f

15



Figure 1-1: The transformation mα uniquely determines h from f as defined in Eq.
(1.2). Similarly, the reconstruction of f from h is m1/α as shown in Eq. (1.3).

from h. In summary, as shown in Figure 1-1, the relationships in (1.2) and (1.3)

can be interpreted as an invertible transformation between f and h. The subscript α

of the transformation mα is the slope of the corresponding ramp. As we will see in

Section 3.4, the relationships in Figure 1-1 is useful in designing algorithms to attain

h from f (or f from h) since it may not be feasible to directly implement an inverse

function. With the definition of amplitude-time functions and the mα transformation,

we now can explore how to recover a signal from uniform samples of its corresponding

amplitude-time function.
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Chapter 2

Nonuniform Time Sampling: A

Short Review

Since the early work on the Shannon-Nyquist theorem, many extensions have been

introduced such as sampling theorems for bandpass signals, sampling theorems for

time-limited signals 1, and sampling with the value of a signal and its derivatives [15],

[16]. In this chapter, we focus on nonuniform sampling. As mentioned in Chapter 1, in

amplitude sampling, uniform samples {h(n∆)} of the amplitude-time function can be

mapped to nonuniform samples {f(tn)} of the original signal. Nonuniform sampling

theorems provide a basis for analyzing the accuracy of our proposed reconstruction

algorithms. Moreover, once nonuniform samples are obtained, nonuniform sampling

methods can be applied to recover f(t). Therefore, we can evaluate the efficiency

of our proposed algorithms by comparing our methods with nonuniform sampling

reconstruction methods. Both aspects will be explored in Chapter 5.

We provide background for nonuniform sampling of bandlimited signals in this

chapter 2. Definitions and conditions for a sequence of nonuniform samples to be a

uniqueness sequence and a sampling sequence are first presented. We will show in

Section 2.1 how these definitions relate to the validity of nonuniform sampling meth-

ods. Several nonuniform sampling methods are then discussed. Moreover, since we

1Time-limited signals refer to signals f(t) that are 0 when |t| > T for some T .
2We mention in Section 1.1 that we focus on recovering bandlimited signals and the reason why

such constraint is reasonable is also discussed in Section 1.1.
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propose an iterative reconstruction algorithm for amplitude sampling, a general struc-

ture of iterative nonuniform sampling reconstruction is demonstrated as a basis for

comparing our algorithm with this structure. Among iterative nonuniform sampling

algorithms, we describe the adaptive weights method (AWM) in the most details.

This method has been shown to perform the best in numerical results [12]. Thus,

we later compare our proposed iterative reconstruction algorithm with the AWM in

Section 5.4.

2.1 The Nonuniform Sampling Theorem

As mentioned earlier, definitions of a uniqueness sequence and a sampling sequence

will be presented. A uniqueness sequence is defined as follows:

Definition 2.1. [17, 18] The set of points {tn} is a uniqueness sequence for B(S)

if there are no two different functions f, g ∈ B(S) that agree in {tn}.

Here we can take B(S) as the space of bandlimited signals with S as its support

in frequency domain. It is clear that if there exist two different bandlimited functions

f and g that agree in {tn}, then we cannot distinguish {g(tn)} from {f(tn)} and

therefore we cannot reconstruct both f and g based on these samples with merely the

bandlimited assumption. That is, {f(tn)} can be a representation of f(t) in B(S) if

and only if {tn} is a uniqueness sequence.

The idea of representing a signal by its nonuniform sampling can be traced back to

Cauchy as stated in Black’s paper [19]. Black also discussed scenarios where nonuni-

form sampling is encountered, for example, random sampling for nonsynchronous

multiplexing [19]. They stated possible conditions for a uniqueness sequence for a

bandlimited-signal space. These conditions were later proved by [20, 21] in the fol-

lowing theorem:

Theorem 2.2. [20] If the average sampling rate of the nonuniform samples (tn, f(tn))

is higher than the Nyquist rate, the nonuniform samples can uniquely represent a ban-

dlimited signal. That is, {tn} is a uniqueness sequence for B(S) being the bandlimited

signal space.
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A more rigorous statement can be found in [21], in which Beutler also proved the

theorem but in a more general mathematical setting.

However, Theorem 2.2 is not useful in practice since it does not imply how a

finite-energy perturbation on samples affects the reconstructed signal. The resulting

error can be unbounded. In reality we can hardly design an algorithm with infinite

precision or introduce no measure error. The definition of a sampling sequence was

then introduced to resolve this issue as shown in the follows:

Definition 2.3. [17] The set of points {tn} is a sampling sequence for B(S) if there

exists a constant K such that

∫ ∞
−∞
‖f(t)‖2dt ≤ K

∑
‖f(tn)‖2 (2.1)

for all f(t) ∈ B(S), where B(S) consists of all square integrable function whose

Fourier transform is supported on S.

We first notice that Definition 2.3 implies {tn} is also a uniqueness sequence but

the converse does not hold. Definition 2.3 ensures that the error induced by noisy

samples will be bounded if the noise is also bounded; sampling with a sampling

sequence is known as stable sampling. In order to be able to present the conditions

for a sampling sequence, the definition of the Beurling lower density is given as follows:

Definition 2.4. [22, 23] The Beurling lower density of a sequence {tn} is defined

as

D−({tn}) = lim infr→∞ inf
a

1

r
]{{tn} ∩ [a, a+ r]}. (2.2)

We now can state the necessary and sufficient conditions for a sampling sequence

in the following theorem that was proved in [17] :

Theorem 2.5. [17] A sequence {tn} is a set of stable sampling for B(S) if the

Beurling lower density D−({tn}) is at least m(S)
2π

, where m(S) is the measurement of

the support of S.
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In cases where there are infinite samples in the past or within a finite interval,

since such samples constitute a uniqueness sequence but not a sampling sequence, a

small perturbation can lead to a greatly different reconstructed signal.

From Theorem 2.2 and 2.5, if the Beurling lower density is higher than the Nyquist

rate, uniqueness is ensured and stable reconstruction is possible. Several reconstruc-

tion methods have been proposed under this condition. Yen [4] considered three

nonuniform sampling regimes: migrations of a finite number of uniform samples,

uniform samples with a single gap, and recurrent nonuniform sampling. The last

sampling regime gives an explicit formula to reconstruct a signal from groups of N

points where each group satisfies Theorem 2.2. However, Yen’s method is impracti-

cal to realize [24]. Yao and Thomas derived a Langrange interpolation formula as a

representation for samples deviating from its uniform counterpart by less than (1/4)

unit [25]. They showed in a later paper [26] that the reconstruction is not stable

when some samples deviate more than (1/4) unit. Yao and Thomas discovered that

a Lagrange interpolation representation guarantees the stability.

Besides directly reconstructing signals by taking interpolations on nonuniform

samples, an alternative is iterative reconstruction, which has been shown to be more

applicable in practice. In [20], applications of nonuniform sampling reconstruction

such as video coding and error concealment are shown. Several iterative reconstruc-

tion methods have been discussed [12], many of which follow a structure that will be

described in the next section. Moreover, a highly practical iterative reconstruction

method, the adaptive weights method, will be stated in Section 2.2 and will later be

compared with the algorithms developed in this thesis.

2.2 Iterative Nonuniform Sampling Reconstructions

and the Adaptive Weigths Method (AWM)

In this section, we provide more details on iterative nonuniform sampling reconstruc-

tion not only because it is usually more practical than direct reconstruction but also
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because we later use it to evaluate the performance of our proposed iterative ampli-

tude sampling algorithm. This section first presents a general technique for developing

an iterative reconstruction algorithm, where we follow the discussion in [12]. Then we

will focus on one particular algorithm, the adaptive weights method (AWM), showing

how it utilizes the technique and giving the bound for its convergence rate. The AWM

then will be used to compare our proposed algorithms.

We first state a proposition presented in [12]:

Proposition 2.6. [12] Let A be a bounded operator on a Banach space (B, ‖ · ‖B)

such that there exists some γ < 1

‖f − Af‖B ≤ γ‖f‖B, (2.3)

for all f in B. Then A is invertible on B and f can be recovered from Af by the

following iteration algorithm. Setting f0 = 0 and

fn+1 = fn + A(f − fn), (2.4)

we have limn→∞ fn = f and

‖f − fn‖B ≤ γn+1‖f‖B. (2.5)

We note that the linear convergence shown in Eq. (2.5) can be observed by

rewriting Eq. (2.4) as f−fn+1 = f−fn−A(f−fn) = (Id−A)(f−fn). Since from Eq.

(2.3), we know ‖I−A‖ ≤ γ, we therefore obtain ‖f−fn+1‖B = ‖(Id−A)(f−fn)‖B <

γ‖f − fn‖B. By Banach fixed point theorem [27], we have limn→∞ fn = f and

‖f − fn‖B ≤ γn+1‖f − f0‖B which is exactly Eq. (2.5).

The strategy of Proposition 2.6 has been applied in a number of nonuniform

sampling algorithms [28, 29]. Due to the linearity in Eq. (2.4), once the operator A

is found and a parameter γ < 1 is found to satisfy Eq. (2.3), this strategy is easy

to be implemented; moreover, it guarantees a geometric convergence rate. In order
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to find a class of sampling spaces that are applicable to this proposition, [12] focused

on the study of frames. [12] indicated that if a sequence of frames can be discovered,

then A can be defined as the frame operator 3 and can be proved to satisfy Eq. (2.3).

Furthermore, the convergence rate and the stability can be determined by the upper

and lower frame bounds. Among these frame methods, the AWM was shown to be

practical due to its simplicity, fast convergence rate, and robustness compared to

several other iterative methods [12]. It is especially beneficial in a numerical aspect

since the interpolation function of the AWM is of finite-length support, which can be

numerically realized without introducing errors. As a result, we later compare our

iterative amplitude sampling reconstruction (IASR) algorithm with the AWM. The

AWM algorithm is as follows:

Assume that there is a nonuniform sequence of timing . . . < tn < tn+1 < . . .

at which samples are obtained. We denote χn as the characteristic function of half

interval [tn, tn+1); i.e. χn(t) = 1 if t ∈ [tn, tn+1) and zero otherwise. We then obtain

a zero order hold approximation of f by
∑

n∈N f(tn)χn(t). The operator A is defined

as passing the zero order hold approximation through a low-pass filter with the cutoff

frequency as the bandwidth of f . That is, Af = P (
∑

n∈N f(tn)χn(t)) where the

operator P represents the low-pass filter. With the operator A, now we can state the

following theorem.

Theorem 2.7. [12] If δ = sup(tn+1 − tn) < π
W

where W is the bandwidth of f(t),

then f is uniquely determined by its samples f(tn) and can be reconstructed iteratively

as follows:

f0 = Af = P (
∑
n∈N

f(tn)χn(t)).fk+1 = fk + A(f − fk). (2.6)

Then limn→∞ fn = f and

‖f − fk‖B ≤ (
δW

π
)k+1‖f‖B. (2.7)

3Both the definition of frames and the way to relate A with a frame operator can be found in [12].
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Figure 2-1: Adaptive weights method (AWM) in amplitude sampling reconstruction
where k denotes the index of iterations

This theorem shows the AWM converges linearly with the convergence rate r =

δW
π

4. The proof of this theorem can be found in [12]. We should notice that the

convergence rate is determined by the maximum time difference δ and the bandwidth

W . Since δ is not the Beurling lower sampling density (or the average sampling rate

in generic cases), it is more restrictive than the requirement for a unique and stable

sequence as in Theorem 2.5. In fact, when we apply the AWM to amplitude sampling,

δ is affected by the transformation parameter α and the first derivative of the original

signal f . It will be clarified further in Section 5.4 when the AWM is compared with

our proposed algorithms. Here we first give a flow diagram Figure 2-1 to explain how

the AWM can fit into amplitude sampling settings.

As indicated in Figure 2-1, the uniform samples {(n∆, h(n∆))} of an amplitude-

time function are first mapped to the corresponding nonuniform sampling points

{(tn, f(tn))} on the original signal. Then the AWM is applied to these nonuniform

samples. Figure 2-1 will be revisited in Chapter 5.

4The convergence rate r of a sequence {xk} with linear convergence is defined to be

limk→∞
‖xk+1−x∗‖
‖xk−x∗‖ where limk→∞ = x∗. Therefore, the sequence converges faster as the conver-

gence rate r → 0.
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Chapter 3

Time Domain Properties of

Amplitude-time Functions

In this chapter, we study the relationship between f and h in the time domain.

In Chapter 4, we will discuss the relationship in the frequency domain. Exploring

properties of the relationship is helpful for understanding the nature of amplitude

sampling and for developing reconstruction algorithms. However, since the transfor-

mation mα on f(t) is not linear, i.e. mα(f1 + f2) 6= mα(f1) + mα(f2), even if f can

be expressed as a linear combination of some simple functions, h may not be able to

have an explicit formulation related to the linear combination. Therefore, it is gen-

erally difficult to analyze whether properties such as periodicity and bandlimitedness

of time-amplitude functions can be preserved in their corresponding amplitude-time

functions. Nevertheless, this analysis is important since it provides insights in recon-

struction algorithm design and is crucial for reconstruction error analysis. Periodicity

in particular will be studied in this chapter and bandlimitedness will be explored in

Chapter 4; these properties will be revisited in Chapter 5 when we discuss amplitude

sampling reconstruction design.

To better understand the transformation mα, we provide two interpretations; one

is a matrix formulation and the other is a figurative expression. While the ma-

trix formulation is important for analyzing parameter effects on amplitude sampling

reconstruction algorithms in Section 5.4, the figurative interpretation illustrates an
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iterative algorithm to realize the transformation mα, which may be difficult to di-

rectly realize by its original definition: obtaining the inverse function of the function

g(t) = f(t) +αt = y and subtracting the inverse function with a ramp 1
α
y. The itera-

tive algorithm and its convergence rate are stated in Section 3.4. With the algorithm,

we can then assume that the transformation mα is implementable and can be inher-

ited in our reconstruction algorithms for f from uniform samples of h as developed

in Chapter 5.

3.1 Properties of mα for Periodic Signals

In this section, we demonstrate that periodicity is preserved under the transformation

mα.

If f(t) is periodic with a period T , i.e.

f(t+ T ) = f(t), (3.1)

then the following can be obtained:

g(t+ T ) = f(t+ T ) + α(t+ T )

= f(t) + α(t+ T )

= y + αT,
(3.2)

where g(t) = f(t) + αt = y, and thus

t+ T = g−1(y + αT ). (3.3)
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From Eq. (3.3), h(y) is periodic with period αT :

h(y + αT ) = g−1(y + αT )− 1

α
(y + αT )

= t+ T − 1

α
(y + αT )

= g−1(y)− 1

α
y

= h(y). (3.4)

Therefore periodicity is preserved under the transformation mα and if f(t) is

periodic with a period T , then h(y) is periodic with a period αT . The study of

periodic input signals is important for several reasons. Recall that our goal is to design

a reconstruction algorithm for amplitude sampling on bandlimited signals. If the

input signals are both bandlimited and periodic, then they will only consist of finite

number of harmonics. With this simplification, it might be possible to analyze how the

number and the size of these harmonics correspond to harmonics in h(y). Moreover,

to compute the Fourier transform, we only need to take a finite number of samples

and calculate their discrete Fourier transform (DFT) coefficients. For periodic and

bandlimited functions, the DFT of samples of one period will not introduce aliasing or

resolution issues. Moreover, since h is also periodic when f is periodic, as we will show

in Section 5.3.3, we can simulate bandlimited interpolation of uniform samples h(n∆)

without any truncation error 1. Understanding periodic functions will therefore be

helpful for evaluating our simulation results.

3.2 Matrix Representation of mα

As mentioned in the beginning of this chapter, we introduce a matrix representation

and figurative interpretation of mα. The matrix representation will be provided in

this section along with properties that will be derived from this representation.

As motivation for the matrix formulation of mα, we discuss the following. Al-

1The truncation error refers to the error that is induced by approximating bandlimited-
interpolation by a sum of finite number of truncated sinc functions. It will be made more clear
in Section 5.3.3
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though we have shown in Section 3.1 that periodicity can be preserved under the

transformation mα and this may lead to an approachable simplification for our re-

construction problem, it is still not clear whether a bandlimited periodic function

can be reconstructed. Since a bandlimited periodic function consists of a finite num-

ber of harmonics, understanding how these harmonics interact with each other under

the transformation may be helpful to understand the corresponding amplitude-time

function. For example, we would like to find the relationship between mα(sin t) and

mα(sin 2t), between mα(sin t) and mα(2 sin t), and between mα(sin t) and m2α(sin t).

That is, how time scaling, amplitude scaling, and a change of α affect the associ-

ated amplitude-time function. Interestingly, the answer to this question can be easily

derived once we express mα in a matrix form.

In the following subsections, we first define scaled amplitude-time functions h̃,

redefine the corresponding transformation based on the relationship between f and

h̃, and show the matrix representation of the scaled transformation m̃α. We then

utilize this matrix representation to help us study the relationships we mention in the

last paragraph.

3.2.1 Scaled Amplitude-time Functions and Matrix Repre-

sentation of m̃α

We now introduce the definition of scaled amplitude-time functions and the corre-

sponding scaled transformation m̃α. As shown in Eq. (1.2) and Eq. (1.3), the

parameter α can be viewed as a scaling factor both in amplitude and time, since the

factor − 1
α

multiplies f(t) and the factor α scales the variable t in the warped function

of h. Therefore, when f is fixed but α increases, the corresponding function h shrinks

in amplitude but expands in time. This effect can also be observed from Section 3.1,

where scaling the period with α implies an expansion in time. To normalize for these

effects, we define the scaled amplitude-time function as

h̃(y) = −αh(αy). (3.5)
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ĥ(t)

Figure 3-1: Figures of f , h, h̃

From Eq. (3.5), a new relationship between f(t) and h̃(y) which we denote by m̃α

can be expressed as

f(y − 1

α
h̃(y)) = h̃(y).

h̃(t+
1

α
f(t)) = f(t). (3.6)

Since in this subsection we will discuss how time scaling, amplitude scaling, and

a change of α affect the corresponding amplitude-time function, we add subscripts to

each (scaled) amplitude-time function to avoid ambiguity. That is, hα,f (y) stands for

mα(f)(y) and h̃α,f (y) stands for m̃α(f)(y).

After h is normalized as in Eq. (3.5), the relationship of the corresponding pa-

rameter α between a transformation from f to h̃ and the transformation from h̃ back

to f differs in signs rather than being reciprocals to each other. Moreover, from Eq.

(3.6), both scaling factors that are previously in front of h̃ and in front of the t in the

warped function of f in Eq. (1.2) no longer exist. If h̃ and f are drawn in the same

figure, as shown in Figure 3-1, h̃ can be interpreted as a tilted f . Furthermore, from

Eq. (3.6), as α goes to infinity, h̃(t) will become f(t). Since h̃ is the scaled replica of

h, as h̃ approaches the bandlimited function f , h intuitively will be more and more

similar to a bandlimited function. This intuition will be strengthened by properties

of the Fourier transform of h as presented in Chapter 4.

The relationships in Eq. (3.6) can also be expressed in a matrix formulation as

 y

h̃α,f (y)

 =

1 1
α

0 1

 t

f(t)

 . (3.7)

Note that because of the scaling, the matrix has unit diagonal entries. Along
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with the fact that the matrix is uppertriangular, the matrix representation of the

transformation m̃α forms the unitriangular group. This fact indicates the invert-

ibility, commutability, and transitivity of the transformation. Moreover, the matrix

form indicates that although the transformation between f and h̃ is not linear, the

transformation between (t, f(t)) and (y, h̃(y)) is. This matrix interpretation leads to

the observations of the following two properties described in the next two subsections

respectively.

3.2.2 Time Scaling and Amplitude Scaling Effects on Scaled

Amplitude-time Functions

In this subsection we explain how time scaling and amplitude scaling on f affect h̃.

We first interpret time scaling and amplitude scaling on f(t) in a matrix form. The

scaled function f̃(t) = Af(t/B) can be expressed as

 t̃

f̃(t̃)

 =

B 0

0 A

 t

f(t)

 . (3.8)

As a result, we could express the procedure of operating on f̃(t) with m̃α to obtain

h̃α,f̃ (y) as

 ỹ

h̃α,f̃ (ỹ)

 =

1 1
α

0 1

B 0

0 A

 t

f(t)

 =

B 0

0 A

1 A
Bα

0 1

 t

f(t)

 =

B 0

0 A

 y

h̃Bα/A,f (y)

 .
(3.9)

The matrix formulation in Eq. (3.9) can also be expressed as:

ỹ = By.

h̃α,f̃ (ỹ) = h̃Bα/A,f (y). (3.10)
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The equations (3.5) and (3.10) lead to:

h̃α,f̃ (y) = h̃Bα/A,f (
y

B
).

⇒− αhα,f̃ (αy) = −Bα
A
hBα/A,f (

Bα

A

y

B
) = −Bα

A
hBα/A,f (

αy

A
). (3.11)

As a result, the amplitude-time function obtained from a scaled f can also be at-

tained by scaling an amplitude-time function which is transformed from the unscaled

f but with a scaled α. In fact, when A = 1, Eq. (3.11) becomes

hα,f̃ (y) = BhBα,f (y); (3.12)

when A = B, Eq. (3.11) becomes

hα,f̃ (y) = hα,f (y/A). (3.13)

From Eq. (3.12) we observe that functions related by time-scaling correspond

to the same amplitude-time function with corresponding amplitude-scaling when the

transformation mα is chosen according to the scaling factor. This leads to an inter-

esting discussion about how our reconstruction algorithm performs when it is dealing

with the same amplitude-time function but is trying to reconstruct f with different

bandwidths.

From Eq. (3.13), we observe that when the ratio of the amplitude scaling factor

A to the time expanding factor B is fixed, the corresponding amplitude-time func-

tion will be the same except that its timing will be scaled correspondingly with A.

It suggests the Fourier transform of the amplitude-time function corresponding to

f(At) will be that corresponding to Af(t) with expanding frequency. Discussions on

this effect will be provided in Section 5.4.2.2 and 5.4.2.3. This observation is also

important for amplitude sampling reconstruction design as we conclude in Section

5.5.
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3.2.3 Function Space Generated by mα

In this subsection, we explore the function space spanned by h̃ under the transforma-

tion m̃α. We observe that the matrix representation of m̃α is a unitriangular matrix

which belongs to the unitriangular matrix group. It indicates that if we operate

on f(t) with a sequence of m̃αn , the scaled amplitude-function obtained after the

transformation sequence can be achieved by a single transformation. That is, y

h̃(y)

 =

1 1
α1

0 1

1 1
α2

0 1

 . . .
1 1

αn

0 1

 t

f(t)

 =

1 1
α1

+ 1
α2

+ · · ·+ 1
αn

0 1

 t

f(t)

 .
In other words, composing m̃α does not expand the function space of scaled

amplitude-time functions. We also notice that time-amplitude functions are also

in this space. Therefore, exploring properties of amplitude-time functions by first as-

suming α to be any sufficiently large number will not lose any generosity. Moreover,

even when α is not accurate, we may still be able to modify the obtained amplitude-

time function by composing it with some error-correcting m̃β transformation if β is

carefully chosen.

3.3 Figurative Interpretation of mα

As we discuss in this section the transformation m̃α transformation can be interpreted

in a figure. Given a value y = t0, the value h̃(t0) can be obtained from the plot of

f(t).

From the relationship shown in Eq. (3.6), finding h̃(t0) is equivalent to finding t1

so that t0 = t1+ 1
α
f(t1) and then taking the value f(t1) as h̃(t0). As shown in Figure 3-

2, t1 can be determined by drawing a line with a slope −1/α through (t0, 0). With the

knowledge of t1, the value h̃(t0) = h̃(t1 + 1
α
f(t1)) = f(t1) can be observed as indicated

in the plot. This interpretation is useful in designing an iterative algorithm for mα

implementation, which is shown in Section 3.4. This will be removed if I don’t

have time. Moreover, with the help of plots, it can lead to a discussion
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Figure 3-2: Determination of the value h̃(t0) = f(t0 − 1
α
f(t0)) and the value v(t0) =

f(t0 + 1
α
f(t0)) from the plot of f(t)

Figure 3-3: An illustration of how the value hn(t0) = f(t0 − 1
α
hn−1(t0)) approaches

h̃(t0) through iterations.

about the change of difference between two functions before and after the

transformation.

3.4 An Iterative Algorithm

In this section, we propose an iterative method to realize mα since it may be difficult

to directly implement the transformation, which is defined by taking the inverse

function of the input function and subtracting the inverse function with a ramp. To

be more precise, the algorithm shown in this section implements m̃α; to realize mα,

the function h̃ that is obtained from the implementation needs to be scaled back to h

according to Eq. (3.5). Since m̃α and m̃−α differ only in sign, if h(y) can be iteratively

constructed from f(t), f(t) can be iteratively constructed from h(y). Here we take

advantage of the figurative interpretation of mα to illustrate the method.

As discussed in Section 3.3 and shown in Figure 3-2, the value h̃(t0) can be ob-

tained from the plot of f(t). Since this figurative interpretation is obtained from Eq.
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(3.6), which has a functional composition form, we first interpret functional compo-

sition in a plot. The value v(t0) = f(t0 + 1
α
f(t0)) can be observed by drawing a

line with slope −1/α through (t0, f(t0)). Therefore t2 = t0 + 1
α
f(t0) is determined

and thus the value v(t0) = f(t0 + 1
α
f(t0)) = f(t2) is attained as shown in Figure 3-2.

Figure 3-2 also shows that h̃(t0) is obtained by finding a value before the time t0 while

v(t0) is obtained by finding a value after the time t0. Therefore, instead of finding

f(t0 + 1
α
f(t0)), we pursuit the value h0(t0) = f(t0 − 1

α
f(t0)), which can be shown in

Figure 3-3.

Now we iteratively update our approximation of h̃ by composing f with the func-

tion obtained from the last iteration. As shown in Figure 3-3, if f is composed with

t − 1
α
h0(t), the value h1(t0) = f(t0 − 1

α
h0(t0)) can still be observed in the plot of

f . Moreover, the iteration hn+1(t0) = f(t0 − 1
α
hn(t0)) appears to converge to h̃(t0),

where n denotes the index of the iteration. We now prove that not only such iteration

uniquely converges to h̃(t), its convergence rate can also be determined.

First, we recognize that as n goes to infinity the second equation of Eq. (3.6) and

the iteration hn+1(t) = f(t− 1
α
hn(t)) become the same if the limit exists. Moreover,

Figure 3-3 suggests an explanation by the fixed-point theorem [30]. This can be

achieved by reformulating the problem as finding t1 such that t1 = t0 − 1
α
f(t1) :=

pt0(t1). If pt0(t) satisfies the Lipschitz condition [31], i.e.

|pt0(a)− pt0(b)| ≤ λ|a− b| (3.14)

for some |λ| < 1, where λ = sup |f
′(t)|
α

, then the iteration will uniquely converge to

the fixed point pt0(t1) = t1. Since g(t) is required to be invertible, which implies

f ′(t) + α > 0 for all t, we only need to add a constraint on the positive derivative of

f(t) to ensure α > sup|f ′(t)| so that |λ| < 1 can be satisfied. We also observe that

the algorithm is of linear convergencce with a convergence rate λ. This once again

indicates advantages of choosing larger α since λ decreases as α is increased.

As we mention in the beginning of this chapter, with this iterative algorithm to

realize the transformation mα, we will assume this transformation is implementable
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when we discuss algorithms for the amplitude sampling reconstruction in Chapter 5.
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Chapter 4

Frequency Domain Properties of

Amplitude-time Functions

In this chapter, we discuss the frequency domain properties of amplitude-time func-

tions. Since the goal is to design reconstruction algorithms to recover f from uniform

samples of h, if h is bandlimited then f can be reconstructed by applying bandlimited

interpolations of samples h(n∆) and operating m1/α to retrieve f . However, in this

chapter we first prove that h is not bandlimited when f is bandlimited unless f is a

constant. Nevertheless, the Fourier transform of h is shown to exponentially decay

in frequency [11] with faster decay with increasing α. A sketch of the proof of the

exponential decay rate is provided in Section 4.2. Simulation results are shown to

verify the theoretical result in Section 4.3. These properties indicate that although

an amplitude-time function generally cannot be reconstructed from its uniform am-

plitude samples by bandlimited interpolation if f is assumed to be bandlimited, the

aliasing introduced from sampling can be negligible if the sampling rate is sufficiently

high. A bandlimited-interpolation approximation of h based on samples h(n∆) can

achieve high signal-to-error ratio if ∆ is sufficiently small. This observation leads

to a reconstruction algorithm, the bandlimited-interpolation approximation (BIA)

algorithm, that will be introduced and verified in Chapter 5 through simulations.
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4.1 Bandwidth of h(y)

As noted earlier, h(y) is not bandlimited unless f(t) is a constant. We prove it in

this section by contradiction. If h(y) is assumed to be bandlimited, h(y) would be an

entire function of first order after analytically extending h(y) to the entire complex

plane [32]. Since f is assumed to be bandlimited, after analytic extension f(t) and

f(t) + αt are also entire functions of first order. Moreover, the composition of two

entire functions remains an entire function. Therefore, u(z) = h(f(z) + αz) will

be entire if h is entire. From Eq. (1.2), we know that u(z)|z∈R = − 1
α
f(z). Both

h(f(z) + αz) and − 1
α
f(z) are entire; that is, they are analytic on the whole complex

plane. Furthermore, the values on the real line of h(f(z) + αz) and − 1
α
f(z) are the

same. By analytic continuation1, it implies h(f(z) + αz) = − 1
α
f(z) on the whole

complex plane. However, from [34], if h(f(z)+αz) is an entire function of finite order

and both h and f are entire functions, then either f(z) is polynomial or h(z) is of

zero order. Since f(z) is bandlimited, f(z) being polynomial will imply it to be a

constant function. Therefore, h(z) is bandlimited if and only if f(z) is a constant. In

that case h is also a constant.

4.2 Decay Rate of Fourier Transform ĥ(ξ)

Although h(y) is not bandlimited in general, it is shown in [11] that its Fourier

transform exponentially decays as frequency increases. In this section, we present a

sketch of the proof which somewhat different from in [11]. From [32], we have the

following theorem:

Theorem 4.1. [32] The Fourier transform of h(y) exponentially decays, i.e. ĥ(ξ)eσ|ξ| ∈

L2, if and only if the following two conditions are satisfied:

(a) h(y) can be analytically extended in a strip |={y}| < σ.

(b) ‖h(y)‖∞ ≤ C uniformly in the strip where C is a constant.

1The theorem of analytic continuation can be found in most complex analysis book, e.g. [33].
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Figure 4-1: The amplitude-time function h(y) is by definition − 1
α
f(g−1(y)). To show

that the Fourier transform of h(y) exponentially decays, we need to find a strip in
Y-plane where g−1(y) can be analytically extended; the width of the strip is V .

Here ĥ(ξ) is the Fourier transform of h with ξ being its radiant frequency. The

variable y here is extended to the complex plane, i.e. y = y1 + ıy2 where y1, y2 ∈ R,

and ={y} = y2.

Here we only outline a procedure to show (a).

From Eq. (1.2), Figure 4-1 is obtained. Since f(t) is assumed to be bandlimited

to W , it is an entire function and is analytic on the entire complex plane. If we

can find a strip with width V > 0 where g−1 is well-defined and analytic2, then

h(y) = g−1(y) + 1
α
y is analytic in a strip with width V > 0, which satisfies (a). By

(a) the width will then indicate the decay rate of the Fourier transform of h.

From the Inverse Function Theorem [33], if g′(t) 6= 0, g(t) is locally injective.

However, locally injective generally cannot imply globally injective; g(t) is required

to be globally injective on the preimage of the strip in Y-plane to ensure g−1 to be

well-defined on the strip. Here we only show a method to determine a region in Y-

plane where g−1 can be locally well-defined and thus h is locally well-defined. A proof

to show h(y) is well-defined in the strip, i.e. g(t) is globally injective on the preimage

of the strip in Y-plane, can be found in [11]. Since the boundary is mapped to the

boundary by Open Mapping Theorem [33] and also by the fact that h is continuous,

a lower bound of the width of the strip can be found in Y-plane.

2Y-plane denotes the complex plane extension of y and T-plane denotes the complex plane ex-
tension of t.
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If f(t) is bandlimited to W , by Bernstein’s inequalities [13],

|f(t)| ≤ ‖f‖C(<)e
W |={t}|. (4.1)

|f ′(t)| ≤ W‖f‖C(<)e
W |={t}|, (4.2)

where ‖f‖C(<) refers to the infinity norm when f is restricted to the real line. Then

g′(t) = f ′(t) + α. (4.3)

|g′(t)| ≤ |f ′(t) + α| ≤ |f ′(t)|+ α ≤ W‖f‖C(<)e
W |={t}| + α (4.4)

= AWeW |={t}| + α, (4.5)

where we let A = ‖f‖C(<).

By Eq. (4.2) we know if

|={t}| ≤ 1

W
log

α

AW
, (4.6)

then

f ′(t) ≤ AWeW |={t}| (4.7)

≤ α. (4.8)

Then g′(t) 6= 0. Therefore, g(t) is locally injective in a strip with width |U | =

1
W

log α
AW

. To determine V , we need to find V = min|={t}|=U |={g(t)}|. By (4.1),

|={g(t)}| ≥ −|={‖f‖C(<)e
W |={t}|}|+ |={αt}|

≥ −AeW |U | + α|U |

=
α

W
log

α

AW
− α

W

= V, (4.9)

where ={t} = U .
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The decay rate shown in Eq. (4.9) is slightly smaller than the result shown in [11].

This is because only the zeroth and the first order of Bernstein’s inequalities are

utilized. [11] uses more orders of Bernstein’s inequalities to show global invertibility

and determines the decay rate. However, after h is scaled as in Eq. (3.5), the decay

rate shown in Eq. (4.9) and the decay rate shown in [11] will be the same as α goes

to infinity.

4.3 Simulations

In this section, simulation results are shown to verify the bound given by [11].

Amplitude-time functions obtained from the same f(t) with different choices of α

are compared. We also compare amplitude-time functions obtained from the same

mα transform but with their corresponding time-amplitude functions having different

frequency components.

From [11], if f is bandlimited to W and |f | ≤ A, then

|ĥ(ξ)| = O(e−|ξ|(
α
W

log( α
AW

)−α−AW
W

)), (4.10)

where ĥ(ξ) stands for the Fourier transform of h(y) and ξ is the angular frequency.

To match with Theorem 4.1, we will denote σ = α
W

log( α
AW

) − α−AW
W

as the decay

rate factor. By the definition of the big-O notation, Eq. (4.10) is equivalent to the

following statement: ∃ξ0 such that ∀ξ > ξ0,

|ĥ(ξ)| < C(e−|ξ|(
α
W

log( α
AW

)−α−AW
W

)), (4.11)

for some constant C. The coefficients C and ξ0 can be chosen so that |ĥ(ξ0)| =

C(e−|ξ0|(
α
W

log( α
AW

)−α−AW
W

)).

Compared with Eq. (4.9), the above differs from Eq. (4.9) by a value A, which

can not be neglected if α is not larger than AW . It can be neglected as α goes

to infinity. An important fact is that although we consider the factor AW in Eq.

(4.10), this factor is in the equation because Eq. (4.10) is derived from Bernstein’s
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inequality of the first derivative of f as shown in Section 4.2. Therefore, when we

cannot estimate the maximum negative first derivative, we can use the Bernstein

bound AW . When we have a better bound of the first derivative, we should instead

use that bound to approach a larger exponential decay rate. It also indicates that

when f(t) = A sin(Wt), the exponential decay rate shown in Eq. (4.10) is tight. We

give another observation as followed:

σ =
α

W
log

α

AW
− α− AW

W

≤ α

W
(
α

AW
− 1)− α− AW

W

=
α

W
(
α− AW
AW

)− α− AW
W

= A(
α

AW
− 1)2. (4.12)

The inequality comes from the Taylor series expansion of log x around x = 1 and

is true for all x > 0. We first notice from Eq. (4.12) that the bound σ will never

be negative since we require α > AW for amplitude sampling to be well-defined.

Moreover, when α
AW

goes to 1, σ ' A( α
AW
− 1)2 since the zeroth and first order of

the Taylor series can well approximate log x around 1 and thus the Fourier transform

will decay slowly. This effect can be observed when we analyze our reconstruction

algorithms in Section 5.4.

According to Eq. (4.10), as α increases, the magnitude of ĥ(ξ) decays faster. We

first compare ga(t) = sin(2πt) + 8t with gb(t) = sin(2πt) + 32t. However, as shown

in Section 3.1, the corresponding period of hb is 32 while that of ha is 8. In order to

compare these functions based on the same frequency scale, we instead compare h̃(y)

as defined in Eq. (3.5). The following decay rates are then acquired from Eq. (4.10): |
ˆ̃ha(ξ)| = O(e−|ξ|(

8
2π

log( 8
2π

)− 8
2π

+1)).

| ˆ̃hb(ξ)| = O(e−|ξ|(
8

2π
log( 32

2π
)− 8

2π
+ 1

4
)).

(4.13)

As shown in Figure 4-2, | ˆ̃hb(ξ)| decays faster than | ˆ̃ha(ξ)|. Both of them satisfy Eq.

(4.13).
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Figure 4-2: Comparison between two amplitude-time functions transformed from
f(t) = sin(2πt) with m8 and m32 respectively
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Figure 4-3: Comparison between amplitude-time functions transformed from f(t)
with different frequency components with the same transformation m16

We then compare how frequency components of f affect the decay rate. In order

to compare sin(4πt) with sin(2πt)+sin(4πt), the latter is scaled so that the maximum

amplitude is not greater than 1. Then we obtain gc(t) = sin(4πt) + 16t and gd(t) =

C(sin(4πt) + sin(2πt)) + 16t. Here C is the scaling factor that makes ‖gd(t)‖C(<) =

1. From (3.13), the decay rate is larger as the frequency scaling factor B is larger

and the amplitude scaling factor A is smaller. That is, the decay rate is larger as

the low frequency components is larger. Therefore, when AW = D is fixed and

when the bandwidth is required to be smaller than W̃ , the decay rate of the Fourier

transform of h̃(y) intuitively should be the smallest when it is transformed from

f(t) = D
W̃

sin(2πW̃ t). As shown in Figure 4-3, | ˆ̃hc(ξ)| decays faster than | ˆ̃hd(ξ)| does,

which satisfies the statement above. This observation suggests a conjecture in Section

5.4.1.1 and will be helpful for simulation analysis.
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Chapter 5

Amplitude Sampling

Reconstruction Algorithms

As mentioned in Section 1.1, to reconstruct the original signal from uniform samples

of its amplitude-time function, two steps are involved. The first step is to implement

mα. In Section 3.4 we have already provided an iterative algorithm to implement

mα. In this chapter, we assume that mα is implementable and we focus on the

second step, reconstructing a continuous signal from a discrete representation, which

is our main goal: amplitude sampling reconstruction. Two reconstruction algorithms

are introduced. The first algorithm, the Bandlimited-Interpolation Approximation

(BIA), approximates h(y) by the bandlimited interpolation of h(n∆) and transforms

the resulting approximate amplitude-time function ȟ(y) into the approximate signal

f̌(t) by the transformation m1/α. Another reconstruction algorithm, the Iterative

Amplitude Sampling Reconstruction (IASR), attempts to iteratively remove out-of-

band components by low-pass filtering (with cutoff frequency W ) the approximate

time-amplitude function f̌(t) obtained from the BIA and updating the approximated

function by comparing the samples of its amplitude-time representation with the

original samples h(n∆). Since our sampling space is different from the bandlimited

signal space (mα is not linear), it is difficult to find a direct exact reconstruction

algorithm. However, we can utilize our understanding on mα as discussed in Chapters

3 and 4 to analyze our iterative reconstruction algorithm.
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Nevertheless, there is another way to reconstruct f . As discussed in Section 1.1,

each sample (n∆, h(n∆)) can be bijectively mapped to a nonuniform sample point

(tn, f(tn)) in f . Therefore, other than reconstructing f directly from the uniform

samples of h, an alternative is to first transform the uniform samples of h into the

nonuniform samples of f and then implement nonuniform time sampling reconstruc-

tion methods. Since our proposed algorithm is iterative, it is reasonable to compare

our performance with an iterative nonuniform time sampling reconstruction algo-

rithm. Moreover, since the adaptive weights method (AWM) was shown to perform

the best in numerical results [12], we compare our algorithms with the AWM. Both

the algorithm and the proof of the convergence of the AWM can be found in Section

2.2. Simulation settings are provided in Section 5.3 and simulation results of our

proposed methods and the AWM are shown in Section 5.4.

5.1 the Bandlimited-Interpolation Approximation

(BIA) Algorithm

In this section we introduce the bandlimited-interpolation approximation (BIA) al-

gorithm that can approximate f arbitrarily well without iterations if the sampling

rate is sufficiently large. Since f can be obtained from h by m1/α, one approach to

recovering f is to first approximate h from its samples. One approximation of h(y)

is the bandlimited-interpolation of its uniform samples {h(n∆)}. However, since the

bandlimited-interpolation function ȟ(y) is by definition bandlimited, it cannot be the

same as h(y) since h(y) is not bandlimited unless f is a constant as explained in Sec-

tion 4.1. Nevertheless, according to [11], ‖ȟ(y)− h(y)‖∞ ≤ Ce−
σ
∆ for some constant

C > 0 where σ = α
W

log( α
AW

) − α−AW
W

. That is, the error measured in the L∞ norm

between ȟ(y) and h(y) decreases exponentially fast as 1/∆ increases. The signal f(t)

then is approximated by f̌(t), the function transformed from ȟ(y) by m1/α. Similarly,

f̌(t) cannot be the same as f(t) since f̌(t) will not be bandlimited.

It should be noticed that ȟ(y) + y/α should be invertible. This would affect the
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Figure 5-1: Bandlimited-interpolation approximation (BIA) algorithm flow diagram

Figure 5-2: Iterative Amplitude Sampling Reconstruction Algorithm (IASR) flow
diagram

range of ∆ we can choose when we implement amplitude sampling. A necessary and

sufficient condition on ∆ has not yet been found to ensure the invertibility. Moreover,

the error bound between f(t) and f̌(t) is still unknown. However, our simulation

result shows that the error can be arbitrarily small if samples are sufficiently dense;

this result is consistent with the intuition that the energy outside an adequately

high band is negligible due to the exponential decay rate of the Fourier transform of

amplitude-time functions as discussed in Section 4.2. Simulation results are shown in

Section 5.4.

5.2 the Iterative Amplitude Sampling Reconstruc-

tion (IASR) Algorithm

From Section 5.1, the BIA cannot be exact because the resulting function f̌(t) is not

bandlimited. To improve the reconstruction, a new approximation f̆0(t) is obtained

from f̌(t) by processing f̌(t) through a low-pass filter. Since the values of the samples

h(n∆) are known, it suggests transforming f̆0(t) back to the amplitude domain by mα

and re-sampling to obtain {h̆0(n∆)}. Since {h̆0(n∆)} are not the same as {h(n∆)},

this suggests an iterative algorithm in which h̆0(n∆) is subtracted from h(n∆) and

interpolating the error samples eh,1(n∆) = h̆0(n∆)−h(n∆), repeating the process to
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obtain ef,1(t) and then adding it back to f̆0(t). The iteration process is summarized

in Figure 5-2.

A necessary condition determining whether this iterative algorithm reconstructs

f(t) follows from Theorem 2.2 and Theorem 2.5. If there exists h2(y) transformed from

a bandlimited function f2(t) 6= f(t) such that h2(n∆) = h(n∆) for each n, we cannot

determine whether the reconstructed function is f or f2. Since the sampled sequence

{(n∆, h(n∆))} can be bijectively mapped to a sequence {(tn, f(tn))}, conditions for

the IASR to be able to reconstruct the original signal then become conditions for these

nonuniform timings {tn} to be a uniqueness sequence and also a sampling sequence,

since as discussed in Section 2.1 stable reconstruction is crucial in practice. Because

a sampling sequence implies a uniqueness sequence, we can find the conditions for

{tn} based on Theorem 2.5 by measuring the Beurling lower density as follows.

Since f(tn) + αtn = n∆, we then have tn = n∆−f(tn)
α

. To find the number of

sampling between time a and time a + r is equivalent to find the number of integer

n such that

a ≤ n∆− f(tn)

α
≤ a+ r.

⇒−A+ αa

∆
≤ f(tn + αa)

∆
≤ n ≤ α(a+ r) + f(tn)

∆
≤ α(a+ r) + A

∆
, (5.1)

where the leftmost and rightmost inequality follows from ‖f‖ ≤ A. From Eq. 5.1, we

obtain
1

r
d2A+ αr

∆
e ≤ 1

r
]{{tn} ∩ [a, a+ r]} ≤ 1

r
(d2A+ αr

∆
e+ 1) (5.2)

for every a and r. From Eq. 5.2 we then obtain

D−({tn}) = lim infr→∞ inf
a

1

r
]{{tn} ∩ [a, a+ r]} =

α

∆
. (5.3)

Therefore, if α
∆
> W

π
and if the iterative reconstruction algorithm converges, the

function that the reconstruction algorithm converges to will be f(t).

However, to analyze the convergence of the algorithm, we cannot emulate the

conventional analysis on iterative nonuniform sampling algorithms as outlined in
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Proposition 2.6. As shown in Figure 5-2, our iteration can be formulated as fk+1 =

fk+B(h−mαfk) = fk+B(mαf−mαfk). It is different from fk+1 = fk+A(f−fk) as in

Eq. (2.4). A way to prove the convergence of the IASR is to show ‖B(mαf−mαfk)‖ ≤

‖B‖‖mαf −mαfk‖ < γ‖f − fk‖ for some γ < 1. Note that since B consists of ban-

dlimited interpolation, low-pass filtering, and an m1/α transformation, it is easier

to analyze L2 norm of B. However, although we can show that the L1 norm of

‖mαf −mαfk‖ is the same as the L1 norm of ‖f − fk‖, the nonlinearity of mα makes

it difficult to analyze ‖mαf − mαfk‖ in L2 norm and therefore the convergence of

the IASR has not yet been proven. However, simulation results shown in Section

5.4 indicate that our IASR algorithm converges and outperforms the AWM in the

convergence rate if α is properly chosen.

5.3 Simulation and Comparison of the BIA, IASR,

and AWM Algorithms

As discussed in the beginning of this chapter, we evaluate the two proposed algorithms

through simulations and compare them with a nonuniform sampling reconstruction

method, the AWM, based on different parameter settings. In this section we first

describe the generation of the tested signals f(t) and the samples {h(n∆)}. Our goal

is to reconstruct the signal f(t) from its corresponding samples {h(n∆)}. How these

algorithms are numerically implemented is then discussed. The flow diagrams for the

BIA algorithm, the IASR algorithm, and the AWM are shown in Figure 5-1, Figure

5-2, and Figure 2-1 respectively. Moreover, since the AWM requires the largest time

difference δ between two consecutive nonuniform samples to be smaller than π/W

and our controlled parameter is ∆, conditions on ∆ to achieve this constraint will be

provided in this section.
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5.3.1 Input Signal Generations

As discussed in Section 1.1, we study the performance of our reconstruction algo-

rithms on the recovery of bandlimited signals. Both randomly generated bandlimited

signals and deterministic sinusoidal signals are tested. The former can evaluate gen-

eral parameter effects while the latter can assess the worst case. This objective will

be made clear in Section 5.4.

To simulate a randomly generated bandlimited signal f(t), a sequence of 10000

points {f(t̂n)} with amplitude values lying between −0.5 and 0.5 is uniformly gen-

erated, where t̂n = 0.0001n are the sufficiently fine timings such that {f(t̂n)} well

approximates the continuous signal f(t) 1. The simulated timing ranges from 0 to

0.9999 and f(t) is assumed to be periodic with a period 1. Therefore, {f(t̂n)} ap-

proximate one period of f(t) 2. In order to obtain a bandlimited signal, the sequence

is then filtered by a low-pass filter with a specified bandwidth W , which will later be

one of our controlled parameters. Then the amplitude of the sequence is scaled so

that the maximum value of |f ′(t)| is 0.5. Therefore as long as the parameter α in the

transformation mα is chosen to be greater than 0.5 the corresponding function h is

well-defined.

In addition to randomly generated signals, we have tested reconstruction algo-

rithms on deterministic sinusoidal signals so that the effect of each parameter can be

more carefully evaluated. In the case of deterministic input signals, we fix most of

our reference signals as f(t) = sin(2πt)/8, and study how the reconstruction perfor-

mance of all three methods changes when we vary the controlled parameters. These

discussions will be provided in Section 5.4.2.

1The notation t̂n is used to distinguish from the nonuniform timing tn.
2If a function is not periodic but is bandlimited, it will not be time-limited. (The definition of

time-limited signal can be found in a footnote in Chapter 2.) In that case, we cannot simulate it
without numerical errors since we will need to truncate its time-domain representation and will need
to take samples on its frequency-domain representation. Because in both time and frequency domain
we can only simulate a finite-length sequence of discrete samples, the assumption of a function being
periodic will be without loss of generality.
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Figure 5-3: mα and h(n∆) simulations

5.3.2 Simulations of mα and h(n∆)

With f simulated, we also need to simulate its corresponding amplitude-time function

samples h(n∆) so that the performance of the three algorithms can be tested. As

shown in (a) of the Figure 5-2, after f is simulated, the transformation mα from f(t)

to h(y) should be realized. This is achieved by approximating h(y) = g−1(y) − 1
α
y

with sufficiently close sample points {h(0.001k)} where k ranges from 1 to 1000α; α

is chosen to be an integer in our simulations. Since the period T1 of f is assumed to

be 1, h will be periodic with a period T2 = α ∗T1 = α; thus {h(0.001k)} approximate

one period of h. To obtain these values {h(0.001k)}, a ramp αt is first added to the

simulated input signal f(t) to acquire g(t) = f(t) +αt. As discussed in Section 5.3.1,

its discrete approximation in our simulation will then be {g(0.0001n)} as indicated

in Figure 5-3. A sequence {uk} that satisfies g(uk) = 0.001k = ŷk is approximated by

linear interpolation of g(0.0001n) so that for each k between 1 and 1000α the value

g−1(0.001k) can be approximated by uk. The amplitude-time function h(y) then can

be approximated by h(ŷk) = uk − 1
α

(ŷk).

To obtain the simulated samples {h(n∆)} that will be used to test our algorithms,

∆ will be chosen to be larger than 0.001 but small enough to ensure that {h(n∆)}

can be uniquely mapped to a bandlimited signal with a bandwidth smaller than or

equal to W . The referenced ∆ is 0.05; {h(n∆)} are obtained by choosing one sample

from every 50 fine instances h(ŷk). The transformation m 1
α

in Figure 5-1 and 5-2 is

simulated in the same way as mα except that the parameter α is replaced by 1
α

.
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5.3.3 the Bandlimited Interpolation Simulation for a Peri-

odic Function

In the previous two subsection, the constructions of both f(t) and samples {h(n∆)}

are described and the simulated f and h(n∆) will later be regarded as the ground

truth data. That is, {h(n∆)} are used to reconstruct f(t) and the error is considered

as the difference between the reconstructed signal and f(t). In this subsection, we

focus on the numerical realization of our algorithms as in Figure 5-1 and Figure 5-2.

To be more precise, we focus on the implementation of the bandlimited interpolation,

which is defined as follows:

Given a sequence x[n], its bandlimited interpolation x̂(t) is defined as

x̂(t) =
∞∑

n=−∞

x[n]
sin(π( t

∆
− n))

π( t
∆
− n)

=
∞∑

n=−∞

x[n]sinc(
t

∆
− n), (5.4)

where sinc(x) = sin(πx)
πx

. We denote x[n] = h(n∆) in Figure 5-4, and therefore x(t)

can be thought of as h(y), which is not assumed to be bandlimited.

Instead of approximating x̂(t) by a finite summation of truncated sinc functions

(since we cannot simulate an infinitely-long function) based on x[n], we instead obtain

x̂(t) by using the DFT. We show in this subsection the validity of this method. In

fact, by doing so, the numerical error of simulating bandlimited interpolation for a

periodic function will be from the implementation of DFT rather than the error of

truncating a summation with infinite terms and a truncated interpolation function.

From Eq. (5.4), we know that obtaining the bandlimited interpolation x̂(t) of

x[n] is equivalent to taking the discrete time Fourier transform (DTFT) of x[n],

normalizing the frequency scale, and using a low-pass filter with scaling factor ∆ and

bandwidth π
∆

, as shown in Figure 5-4 by the red arrows. We can therefore express
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(A) and (C) in Figure 5-4 as:

(A) x[n] =
1

2π

∫ 2π

0

X̂(ejω)ejωndω. (5.5)

=
1

2π

∫ 2π

0

M−1∑
k=0

bkδ(ω −
2π∆

T
k)ejωndω. (5.6)

=
1

2π

M−1∑
k=0

bke
j 2π∆
T
kn. (5.7)

(B) x[n] =
1

M

M−1∑
k=0

cke
j 2π
M
kn. (5.8)

(C) x(t) =
∆

2π

∫ 2π
∆

0

X(jΩ)ejΩtdΩ. (5.9)

=
∆

2π

∫ 2π
∆

0

X̂(ejΩ∆)ejΩtdΩ. (5.10)

=
1

2π

∫ 2π

0

X̂(ejω)ej
ω
∆
tdω. (5.11)

=
1

2π

M−1∑
k=0

bke
j 2π∆
T
k t

∆ . (5.12)

=
1

2π

M−1∑
k=0

bke
j 2πk
T
t. (5.13)

Note that here we utilize the fact that x[n] is periodic with a period T and therefore its

DTFT X̂(ejω) can be expressed as
∑M−1

k=0 bkδ(ω− 2π∆
T
k). We compare the expression

of x[n] in Eq. (5.7) with the discrete Fourier series (DFT) based on one period of x[n]

as shown in Eq. (5.8). We then obtain bk
2π

= ck
M

where M is the number of samples in

a period which is equal to T
∆

. By replacing bk
2π

in Eq. (5.13) with ck
M

, we then obtain

x̂(t) =
M−1∑
k=0

ck
M

expj
2π
T
kt . (5.14)

Therefore, in order to obtain ȟ(y) from {h(n∆)}, we calculate the DFT of h(n∆)

with length M = 1000α as discussed in Section 5.3.2. Then we oversample ȟ(y) by

a factor of 100 as shown in Figure 5-5 and use these samples to approximate the

continuous function ȟ(y). Since we lose a factor of 10 sample points when linear

53



Figure 5-4: Bandlimited-interpolation implementation for periodic functions

interpolation is used to approximate the inverse functions both in mα and m1/α, this

oversampling cancels out this data loss and thus our f̌(t) has the same sufficiently

fine sampling rate as f(t). The simulations of the low-pass filter and sampling are

straight forward and are not discussed in this thesis.

5.3.4 Parameter Constraints on the AWM in Amplitude Sam-

pling

As discussed in the beginning of this chapter, in order to better understand the per-

formance of our proposed algorithms, we compare them with the adaptive weights

method (AWM), which was proven by [12] to perform the best among iterative nonuni-

form sampling reconstruction algorithms. For the AWM to be applied as described

in Theorem 2.7, the parameter δ should be sufficiently small. Since the nonuniform

sampling {f(tn)} are mapped from uniform sampling {h(n∆)}, the time difference

δ = sup{tn+1− tn} of consecutive nonuniform samples on f can be estimated from ∆.

In this subsection we discuss the relationship and provide a criterion that guarantees

54



Figure 5-5: Simulation for bandlimited interpolation on h(n∆)

the applicability of Theorem 2.7.

The sufficient bound of ∆ for Theorem 2.7 to be applicable can be derived as

follows:

f(tn) + αtn = n∆.

f(tn+1) + αtn+1 = (n+ 1)∆.

⇒tn+1 − tn =
∆− (f(tn+1)− f(tn))

α
. (5.15)

By mean value theorem [35], there exists ηn ∈ (tn, tn+1) such that f(tn+1)− f(tn) =

f ′(ηn)(tn+1 − tn). Therefore, Eq. 5.15 can be rewritten as

tn+1 − tn +
f ′(ηn)(tn+1 − tn)

α
=

∆

α
.

⇒tn+1 − tn =
∆

α

1

1 + f ′(ηn)
α

. (5.16)

The condition for Theorem 2.7 to be applicable then can be related to ∆ as follows:

tn+1 − tn =
∆

α

1

1 + f ′(ηn)
α

<
π

W
. (5.17)

Also, since the condition |f
′(t)
α
| < 1∀t is required for amplitude sampling to be well-

defined,
1

1 + f ′(ηn)
α

>
1

2
. (5.18)
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From Eq. (5.17) and Eq. (5.18),

∆

α

1

2
<

∆

α

1

1 + f ′(ηn)
α

<
π

W
.

⇒∆

α
<

2π

W
. (5.19)

Recall that from Theorem 2.5, a nonuniform time sequence is a sampling sequence

if the Beurling lower density is larger than twice the bandwidth. As shown in Eq.

(5.3), the Beurling lower density on the original function is α
∆

. A sufficient condition

to apply Theorem 2.7 to show the uniqueness and stability of the nonuniform time

sequence will then be ∆
α
< π

W
. However, for the AWM to be applicable, Eq. (5.19) is

needed, which requires twice the sampling rate for samples to be a unique represen-

tation of a bandlimited function with a bandwidth W . It is because instead of using

the average sampling rate ∆/α to prove the AWM, [12] used the maximum sampling

time difference δ to pursue an explicit bound for the convergence rate. From Eq.

(5.17), in amplitude sampling, the value of δ depends on how α is chosen and the

value of the largest negative first derivative of f . This observation will be verified in

our simulation results in Section 5.4.

5.4 Numerical Results on Reconstruction Algorithms

In this section simulation results based on different parameters α, ∆, W are shown.

As discussed in Section 5.3.1, both randomly generated bandlimited signals and de-

terministic sinusoidal signals are tested. For both types of tested signals, we will

evaluate single parameter effects on our algorithms (the IASR and the BIA) and on

the nonuniform sampling method (the AWM in particular) by changing one of the

three parameters at a time and comparing the signal-to-error ratio (SER) per iter-

ation. Since the BIA implements the first iteration of the IASR without low-pass

filtering f̌ , it does not involve any iteration. Its reconstructed signal does not change

over iterations and neither does its SER. Although the BIA does not improve over

iterations, it is important to analyze its performance. Since the performance of the
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BIA shows approximately the accuracy of the first approximation of the IASR, it

can be used to evaluate parameter settings in which the reconstructed signal from

the IASR is sufficiently close to the original signal after the first iteration and may

already be satisfactory in some applications. Moreover, because the reconstructed

function f̌(t) is transformed from the amplitude-time function ȟ(y), which is the

bandlimited approximation of h(y), it indicates how close h(y) is to a bandlimited

function. Furthermore, by evaluating the number of iterations for the AWM to reach

the same SER as the BIA, we can analyze how much our algorithms outperform the

AWM based on amplitude sampling since the design of the AWM is under a general

nonuniform sampling setting.

In Section 5.4.1, we will first show simulation results when input signals are ran-

domly generated. In such case we also evaluate the robustness of our algorithms.

However, to further analyze the parameter effects on our algorithms, for example

parameter effects under some worst case scenarios, we specify the input signals and

evaluate the reconstructions under more parameter settings such as changing the

amplitude or fixing the value of the largest first derivative of f . Reasons for those

settings along with simulation results based on those settings will be made clear in

Section 5.4.2. We will summarize these discussions in Section 5.5 and present desir-

able parameter settings for amplitude sampling.

5.4.1 Randomly Generated Signals

We first present the simulation results when the bandlimited input signal is randomly

generated as described in Section 5.3.1. Our default parameter setting is as follows:

α = 4, ∆ = 1/20, and W = 16π. In this subsection, we will discuss the simulation

results when α, δ, W are individually changed and when α/∆ is fixed but α is changed.

We will also evaluate the robustness of each algorithm by calculating the variance of

the SER per iteration with the default parameter setting. We will discuss the effect

of α on three algorithms in details. The analysis on effects of other parameters will

be a modification of the effect of α.
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5.4.1.1 Change of α

In this section, we discuss simulation results when α is changed from 4 to 2. We

focus on two comparisons: the comparison between the BIA and the AWM, and the

comparison between the convergence rate of the IASR and that of the AWM. As

mentioned in the beginning of Section 5.4, the performance of the BIA in general

is similar to that of the IASR after the first iteration. That is, we do not need to

compare the performance of the IASR after one iteration with the AWM but instead

comparing the BIA with the AWM. As shown in Figure 5-6a, while the SER of the

IASR after the first iteration is close to that of the BIA, the IASR after the first

iteration performs slightly better because it operates one more step, low-pass filtering

the reconstructed signal f̌(t), which removes error outside the bandwidth W .

As shown in Figure 5-6a, the BIA estimates f(t) much more accurate than the

AWM does after the first iteration. The SER of the BIA is approximately doubled

as α is twice as large; the SER of the AWM on the contrary hardly changes. For the

comparison between two iterative algorithms, as α increases, both the IASR and the

AWM converge faster.

As mentioned in this subsection, we provide details in analyzing the effects of α on

all three algorithms. We will first focus on the analysis of the two amplitude sampling

algorithms, the BIA and the IASR. However, to evaluate the simulation results, i.e.

to analyze the SER, we should first distinguish what are the steps in the BIA and in

the IASR that produce error. Since h is not bandlimited if f is bandlimited but not

a constant, approximating h by the bandlimited-interpolation on {h(n∆)} introduce

aliasing. If numerical errors are not taken into account, in both algorithms the only

step that introduces error is the bandlimited interpolation. Therefore, to evaluate the

error on h, we only need to analyze the aliasing effect. However, to estimate the SER

on f , the transformation mα will be involved. In this case, we would like to analyze

how ‖f − f̌‖ relates with ‖h− ȟ‖. Due to the nonlinearity of the transformation mα,

it is difficult to analyze how errors relate before and after the transformation. Since

h can be interpreted as a tilted and scaled version of f (as illustrated in Figure 3-1),
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‖f − f̌‖ might be bounded by a finite scaling of ‖h− ȟ‖. Although we have not found

a bound when the error is measured in L2 norm, we will show that the parameter

effects on the SER of f can be approximately evaluated by the aliasing on h.

We first show that by increasing α, aliasing effect can be reduced and thus it im-

proves the performance of both the BIA and the IASR. One observation is that from

Eq. (3.5), as α increases, h will be more similar to − 1
α
f( t

α
), which is a bandlimited

function. The aliasing effect is reduced and thus ȟ(y) gets closer to h(y). The recon-

structed f̌(t) therefore gets closer to f(t). This explanation can be strengthened by

the exponential decay rate of the Fourier transform of h as shown in Eq. (4.10). When

α is sufficiently large, the decay rate will mostly be determined by the dominating

factor and thus becomes exp−|ξ|
α
W

log( α
AW

) = α
AW
−|ξ| α

W . In this dominating factor, α

appears both in the base and in the exponent. This observation shows that the tail

of the Fourier transform of h decays at least as fast as α
AW
−|ξ| α

W . Therefore, as α

increases, the signal that is outside the radiant frequency π/∆ (f̂(ξ) where |ξ| > π
∆

)

that introduces aliasing can be negligible if ∆ is sufficiently small so that π
∆
> ξ0

(where ξ0 is the same notation as in Eq. (4.11)).

However, note that there may be dependency between ξ0 and α. If ξ0 increases as

α increases, we may need to find a smaller ∆ so that f̂(ξ) where |ξ| > π
∆

still decays

exponentially. That is, as we change α without changing ∆, the exponential decay rate

α
AW
−|ξ| α

W may not be able to be applied to signal outside the radiant frequency π/∆

that introduces aliasing error. Although we have not been able to show that ξ0 does

not need to increase as α increases, the following intuition suggests it. Since h(y) can

be thought of as a tilted function of − 1
α
f( y

α
) with which the bandwidth W

α
decreases

as α increases, the increase of α intuitively might allow smaller ξ0 rather than require

larger ξ0. Moreover, since W
α

is inversely scaled with α, if ∆ is sufficiently small to

be able to show the signal beyond radiant frequency π/∆ decays exponentially, when

α is scaled with B > 1, we may only need B∆ to ensure that ȟ(ξ) where |ξ| > π
(B∆)

decays exponentially. In fact, our simulation results fit well with this intuition when

we fix α
∆

but increase α as shown in Figure 5-7.

From the previous paragraph we state that the performance of the BIA and the
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IASR should improve as α increases, which is consistent with the simulation results.

We now discuss how much the SER can be improved when α is increased. We may

want to estimate the aliasing effect by calculating the ratio of the L2 norm of the

signal to that of the signal where |ξ| > π/∆; this ratio will be close to the SER of h if

∆ is sufficiently small3. Although the approximated SER can be arbitrarily close to

the true SER if ∆ is sufficiently small, it is still hard to estimate the approximated

SER. To analyze how increasing α affects the approximated SER, not only do we

need the decay rate for ȟ(ξ) where |ξ > π
∆
| remains bounded by the exponent in Eq.

(4.10) as α is increased but ∆ is fixed, we also need to determine how increasing α

affects the coefficient C in Eq. (4.11) 4. In order to estimate the approximated SER

(the ratio of the energy of the signal to the energy of the signal where |ξ| > π/∆),

we present a conjecture that can roughly capture the shape of the Fourier transform

of h. With the shape of the Fourier transform ĥ, we can evaluate the approximated

SER. Although this conjecture may need modifications to be correct, it conveys the

idea that since h(y) can be thought of as a tilted − 1
α
f( y

α
), ĥ should be similar to the

Fourier transform of − 1
α
f( y

α
).

Conjecture 5.1. The coefficient ξ0 in (4.11) can be chosen to be smaller than or

equal to W if α > 1. Moreover, when ∆ is sufficiently small, the ratio of the L2 norm

of the signal in which |ξ| > π
∆

to the L2 norm of the entire signal can be bounded by

C̃0(
∫∞
π
∆
e−2|ξ|( α

W
log( α

AW
)−α−AW

W
)dξ)1/2 or be approximated by C̃1(e−

π
∆

( α
W

log( α
AW

)−α−AW
W

)) 5

where C̃0 and C̃1 are bounded constants independent of the parameters.

Conjecture 5.1 states that the ratio of the L2 norm of the signal to the L2 norm

3It is not the same because the energy of the error calculated in the SER is ‖
∑
k ĥ(ξ + 2πk

∆ )‖2

rather than
∑
k ‖ĥ(ξ + 2πk

∆ )‖2. However, if the exponential decay rate is so large that the energy

contained in ĥ(ξ) where ξ > 3 π∆ is negligible, this two term can be relatively close compared to the
energy of the whole signal. Dividing the energy of the signal where ξ > π/Delta by the energy of
the whole signal will be a sufficiently accurate estimation of the SER of the reconstruction of h.

4To give a lower bound on a ratio, we need to lower bound the numerator while upper bound the
denominator. Although we wish to upper bound the denominator by the exponential decay rate,
we need to be able to find the constant factor C for the exponential decay rate and evaluate how
parameters affect C. Only when we can find the correspondence between C and other parameters
can we analyze the parameter effects on the SER.

5The second approximation is trying to bound L2 norm by L∞ norm, which is not valid in general.
However, it can be a good approximation since we only want to obtain a rough estimation on how
the approximated SER scales with parameters.
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of the entire signal will approximately be of the form C̃1(e
π
∆

( α
W

log( α
AW

)−α−AW
W

)). When

α is sufficiently large, it will approximately be of the form α
AW

π
∆

α
W . As a result,

the SER of h will approximately be of the form 20 π
∆

α
W

log( α
AW

). We formulate this

approximation in the following conjecture.

Conjecture 5.2. When α is sufficiently large, the SER of h will approximately be

20
π

∆

α

W
log(

α

AW
) (5.20)

with some bounded constant offset. As displayed in Figure 5-6a, as α is doubled, the

value of the dark line is more than twice the value of the dashed line.

We now can approach the second estimation, the convergence rate of the IASR.

Since the IASR utilizes the same bandlimited-interpolation as the BIA in each iter-

ation, it seems that the analysis for each iteration can apply the same conjecture as

Conjecture 5.2. However, it is not true because Conjecture 5.2 is based on the as-

sumption that the amplitude-time function that will be approximated by a bandlim-

ited interpolation is transformed from a bandlimited signal. Since the bandlimited-

interpolation is taken on eh,k = h − hk rather than mα(f − fk) where k is the index

of the iteration, we do not know whether eh,k = h − hk can be acquired from the

transformation mα from a bandlimited function and thus cannot use the conjecture

anymore. We again face the same situation where we need to describe the relation-

ships between errors before and after the transformation. As a result, there will be

two parts that determine the error obtained in the next iteration. One is the change

from mα(f − fk) to eh,k = h− hk; the other one is the bandlimited approximation of

eh,k. Since the change from mα(f − fk) to eh,k = h−hk is determined by how mα op-

erates on f and fk, intuitively if mα will not tilt either f or fk too much, there will be

little difference between mα(f − fk) and eh,k. We know when α is sufficiently greater

than the largest negative derivative, h will have a similar shape as f . Therefore, the

convergence rate may mostly depend on α and AW .

Here we evaluate the effect of α on the performance of the AWM. The first obser-

vation is that as α increases, since h gets closer to − 1
α
f( t

α
), the nonuniform samples
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are more uniformly distributed. A rigorous way to show it is by Eq. (5.17). Since ∆

is fixed and f ′(ηn) is bounded, as α increases, the right hand side of Eq. (5.17) tends

to be ∆
α

and depends less and less on f .

Moreover, from Eq. (5.17), δ = sup{tn+1− tn} is approximately inversely propor-

tional to α. By Theorem 2.7, since the error bound is proportional to ( δW
π

)
k

where

k is the index of the iteration, the SER will be greater than or equal to 20k log( π
δW

).

This factor can be approximated by 20k log( απ
∆W

). In comparison with Conjecture

5.2, when α is scaled with B > 1, the SER of the BIA is scaled more than B times

while the SER obtained after each iteration of the AWM increases by 20 logB. This

benefit attained from the BIA does not consider the advantage of using the BIA over

the AWM in the first iteration only, since the latter is merely a zero order hold ap-

proximation. We can say more: as α is scaled with B, the number of iterations for

the AWM to reach the same SER as of the BIA may be more than 1/B times as

before α is scaled.

With the SER of the AWM over iterations, we can also analyze the slope of the

SER. The slope of the SER of the AWM, which is bounded by 20 log( π
δW

), can be

approximated by 20 log( απ
∆W

). Although the convergence rate r of the AWM decreases

(where r is defined as in the footnote in Section 2.2) as α increases, the first guess

is hardly affected since the first guess is a zero order hold approximation. Moreover,

the AWM converges much more slowly than our method. It is because the larger α

is, the more we can gain from the exponential decay rate of the Fourier transform of

h. Therefore, since we know more about the samples than merely the fact that they

are nonuniformly distributed when mapped to the time domain, we can utilize this

knowledge to outperform the AWM.

We should emphasize that although all these conjectures are not rigorous and are

likely to be incorrect, they are important for future research directions and providing

intuitions. Moreover, with all these discussions, it is clear where the difficulty of

analyzing the BIA and the IASR algorithms is. We state the two most important

unsolved problems in analyzing the SER of the BIA and the IASR: one is to find a

more precise description of the shape of ĥ(ξ) than having an exponential decay; the
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other one is to find the L2 errors relationship before and after the transformation. In

the following discussion, we will come back to conjectures discussed in this section

and utilize them to analyze other parameter effects.

5.4.1.2 Change of ∆

To test the effect of ∆, we decrease the sampling rate from 1/20 to 1/10. As shown

in Figure 5-6b, the SER of the BIA is approximately doubled as ∆ is scaled by

a half. This can be explained by Conjecture 5.2. The IASR still converges much

faster than the AWM. Moreover, the rate of the convergence of the IASR seems to

be relatively invariant to the change of ∆. This observation will be more apparent

when we discuss the case when AW is very close to α in Section 5.4.2.3. On the

other hand, the simulated convergence rate of the AWM still follows the theoretical

rate δW
π

. Thus the slope of its SER s = 20 log( π
δW

) as discussed in Section 5.4.1.1

decreases as ∆ is doubled, since ∆/α approximately equals to δ.

While nearly all the observations are similar to observations when α is increased,

one interesting difference is the effect of ∆ on the convergence rate of the IASR. As

discussed in Section 5.4.1.1, the convergence rate of the IASR will be determined

by how errors are related before and after the transformation mα and also by the

bandlimitedness of the error eh,k. This might be more related with how tilted h and

hk can be (where k is the index of the iteration), which is mostly determined by α,

W , and A. Therefore, in the simulation result, the convergence rate seems to be

invariant to the change of ∆. Another explanation is that the error eh,k = h − hk

might become really close to a bandlimited function after the first iteration and thus

as long as ∆ is sufficiently small, the slope of the SER will be invariant to ∆ and be

more relevant to A, W , and α.

5.4.1.3 Change of W

To understand the effect of the bandwidth, W is increased from 16π to 32π. Figure 5-

6c shows that as W is decreased by a half, the SER of the BIA approximately doubles.

It can be explained by Conjecture 5.2. We should recall that in Section 5.3.1, the
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randomly generated signals will be scaled in amplitude accordingly to the change of

bandwidth W to ensure the first derivative of f is smaller than one. Therefore, AW

in Eq. (5.20) is fixed and the SER will approximately be inversely proportional to

W . The simulated convergence rate of the AWM follows the theoretical rate r = δW
π

and therefore the slope of its SER 20 log( π
δW

) still decreases by the same factor as in

the case of α and ∆. The simulated SER of the IASR also converges faster as W is

decreased. It satisfies our intuition that as W increased, α
AW

gets closer to 1 and thus

h will be more tilted. Therefore, mα(f − fk) will be more different from h− hk.

5.4.1.4 Fix α/∆ with a change of α

Besides changing one of the three parameters at a time, we also consider fixing the

average nonuniform sampling rate. That is, we fix α/∆ while increasing α. The

simulation results are shown in Figure 5-7. Here α and ∆ are increased by a factor

of 4 simultaneously; thus the modified parameter settings are α = 16 and ∆ = 1/5.

As shown in Figure 5-7, the SER of the BIA hardly improves as α increases. This

is slightly different from the implication of our conjecture. It suggests that either the

conjecture needs some modification or π
∆

is no longer greater than ξ0. For the AWM,

the convergence rate hardly changes. This follows the theoretical bound since δ is

approximately unchanged. From Eq. (5.17), when α
∆

is fixed and α is increased, the

negative term would be smaller and thus the corresponding nonuniform samples will

be more uniformly distributed; this however hardly affects the simulated convergence

rate of the AWM which is still dominated by the average nonuniform sampling rate

of f . On the contrary, as α increases, the IASR converges faster. As we discussed in

Section 5.4.1.1 on the relationship between ∆ and α so that the out-of-band signal

(ȟ(ξ) where |ξ| > π
∆

) has exponential decay, we predict that when α becomes Bα we

may only need B∆ to ensure that the out-of-band signal decays exponentially. This is

supported by the simulation result. Also, as we mention in Section 5.4.1.2, the IASR

is relatively invariant to any change of ∆ as long as ∆ is sufficiently small. This

conjecture is supported by the simulation result as well since the IASR can converge

faster when α is increased.
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Figure 5-6: Comparison among three reconstruction algorithms (IASR, AWM, BIA)
based on changing a single parameter – (a) α, (b) ∆, (c) W .
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Figure 5-7: Comparison among three reconstruction algorithms when average sam-
pling rate in time is fixed but α is increased

5.4.1.5 Variance Analysis and Numerical Error

In order to test the robustness of our algorithms, we also simulate our methods 100

times on randomly generated signals with the default parameter settings (α = 4,

∆ = 1/20, W = 16π). Its mean and two standard deviations are calculated as shown

in Figure 5-8. We can see that although the standard deviation of the SER of the

IASR is greater than that of the the AWM, every SER value within the confidence

interval of the IASR is much larger than the value within the confidence interval of

the AWM. Moreover, this standard deviation may be due to the numerical errors from

the realizations of mα and m1/α. These errors are not produced in the simulation of

the AWM, since the AWM only involves one transformation, which is performed when

the nonuniform samples are mapped from h(n∆). Moreover, in our implementation

each f(tn) is not calculated by −αh(n∆) but directly by f(tn) = f(h(n∆) + 1
α
n∆).
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Figure 5-8: Robustness comparison among three reconstruction algorithms

The difference between these two implementations is that the samples h(n∆) would

suffer numerical error from the linear interpolation while f will not. With the lat-

ter implementation, the nonuniform samples {(tn, f(tn))} only encounter numerical

errors from the timing {tn} 6, rather than from a noisy f . This explains why in our

simulation results, when algorithms converge, the AWM would obtain higher SER.

Although the IASR does not attain the same SER as the AWM does, by applying The-

orem 2.5 to our simulation results, since the Beurling lower density D−({tn}) = ∆/α

is taken to be larger than twice the bandwidth, the reconstructed signal is ensured

to be extremely close to the original signal if the numerical error is sufficiently small.

5.4.2 Deterministic sinusoidal functions

In this subsection, we simulate deterministic signals with only one harmonic. Simu-

lating deterministic functions is important for worst case analysis. As shown in Figure

4-3 and discussed in Section 4.3, when A and W are fixed, the Fourier transform of h

will decay slowlier when f consists of more high-frequency components. It intuitively

suggests that the Fourier transform of the amplitude-time function corresponding to

f(t) = A sin(Wt) may decay the slowliest among all other f with the same maxi-

mum amplitude and bandwidth. Although it is not proved, it is reasonable since in

6The value tn may not be equal to the true h(n∆) + n∆
α since h contains numerical errors.

However, since the uniformly sampled value is obtained by directly calculating f(tn), (tn, f(tn)) is
really a sample point on the plot of f .
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such case the maximum negative derivative will be AW and thus reaches the bound

provided by Bernstein’s inequality as shown in Eq. (4.2), by which we develop the

exponential decay rate of ĥ(ξ). Thus, to better understand how parameters can affect

our proposed algorithms when the bound for the Fourier transform decay rate is tight,

these single harmonic sinusoidal functions are simulated to test our algorithms.

Besides the three parameters α, ∆, and W , we also compare three algorithms in

the situation when W is changed but the corresponding h is the same except with

a different amplitude scaling. This effect is discussed in Section 3.2.2. Moreover, in

order to understand when our algorithms outperform the AWM and also the weakness

of our algorithms, we design our tested signals and parameters so that the magnitude

of the maximum negative first derivative of f is close to α.

We set the input signal f(t) = sin(2πt)/8 + 2t as the reference signal in Figure

5-12, 5-9, and 5-11 with the same ∆ = 1/20 so that the parameter effects can be

analyzed by comparing the performance after changing some parameters with this

default setting. Since in these simulations, α
AW

is not large, the conjecture may not

be able to be used 7. In this subsection, we will therefore not use the conjecture

but will rather indicate important discoveries from simulation results and provide

reasonable explanations.

5.4.2.1 Change of α and ∆

As discussed in Section 5.4.1, when only α or ∆ is changed, the effects of these

parameters are similar to those when signals are randomly generated. In Figure 5-9a,

α is changed to be 4 and in Figure 5-9b ∆ is changed to be 1/10.

As α is doubled, the SER of the BIA is more than twice as large, and as ∆

decreases, the SER of the BIA is scaled with similar factor as with 1
∆

. This observation

is consistent with the the simulated result when the signal is randomly generated as

shown in Figure 5-6b. Moreover, the IASR converges faster as α increases and the

convergence rate is relatively invariant to the change of ∆. These two results also

7The conjecture requires large decay rate of the Fourier transform; when α
AW is not large, the

decay rate will not be sufficiently large for the conjecture to be applied.
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Figure 5-9: Comparison based on deterministic sinusoidal signals based on changing
a single parameter – (a) α, (b) ∆

are the same as when input signals are randomly generated. One more interesting

observation is that although we mention that the simulation result of the BIA should

be similar to that of the first iteration of the IASR, it is not the case when ∆ = 0.1

as shown in Figure 5-9b. The observation suggests that adding a low-pass filter

sometimes will be useful in enhancing the performance of the BIA.

5.4.2.2 Change of W and A

We also discuss the situation when the bandwidth W is doubled. However, while

the amplitude of randomly generated functions as discussed in Section 5.3.1 will be

normalized with respect to a change of bandwidth so that the maximum absolute

value of the first derivative of the input function is smaller than one, it is not the case

in Figure 5-10a. The tested function corresponding to the green, purple, and dashed

black lines is sin(4πt)/8 + 2t without any normalization. As a result, the size of the

parameter AW is affected. When α
AW

gets closer to 1, both the SER of the BIA and

the convergence rate of the IASR become worse and get closer to the corresponding

performance of the AWM.

We also would like to experiment on settings in which α
AW

approaches 1 but

instead by changing A; that is, the tested signal becomes sin(2πt)/4 + 2t. This

simulation result is shown in Figure 5-10b. In this case, the BIA performs better
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when A is increased than when W is increased while AW is the same. However, the

convergence rate of the IASR does not seem to change when AW is fixed. The IASR

converges more slowly when AW is increased. On the contrary, the convergence rate

of the AWM is relatively invariant to changing A. Therefore, the AWM can converge

faster than the IASR when A is increased as in Figure 5-10b.

While the AWM still can be explained by its theoretical convergence rate r, here

we explain the performance of the BIA and the IASR by two equations. First, if α
AW

is much greater than 1, i.e. α
W
� A, then by (4.10), we can obtain the following:

σ =
α

W
log(

α

AW
)− α− AW

W

=
α

W
log(

α

AWe
) + A

≈ α

W
log(

α

AWe
)

= A
α

AW
log(

α

AWe
). (5.21)

From Eq. (5.21) we observe that the BIA should perform better when A is in-

creased than W is increased when A and W are increased by the same factor respec-

tively 8. In cases where α
AW
' 1, from Eq. (4.12), we still can observe that it is

better to increase A than W . However, since the convergence rate of the AWM does

not depend on A, changing A hardly affects the performance of the AWM. Therefore,

our algorithm may converge slowlier than the AWM when α
AW
≈ 1 and W is small.

Conversely, when α
AW
≈ 1 but W is large, we may still consider to use the IASR

algorithm. It is because the convergence rate r of the AWM is proportional to W , al-

though the IASR will converge slowlier as well when W is increased, the performance

of the first iteration is much better than that of the AWM. This suggestion will be

strengthened in Section 5.4.2.3.

In fact, there is an interesting interpretation of how A and W affect amplitude

sampling when AW is fixed. This interpretation can be observed from Eq. (3.13).

8This statement introduces the same ambiguity as discussed in Subsubsection 5.4.1.1 about the
dependence of ξ0 in Eq. (4.11) on parameters A and W . As discussed in Subsubsection 5.4.1.1, we
assume that ∆ is sufficiently small so that π

∆ remains to be greater than ξ0 when parameters are
changed; the ambiguity can be resolved.
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Figure 5-10: Comparison based on deterministic sinusoidal signals based on changing
a single parameter – (a) W , (b) the amplitude A

If we denote the amplitude-time function corresponding to the tested signal whose

SER is indicated by the green line in Figure 5-10a as h1(y) and that in Figure 5-10b

as h2(y), from Eq. (3.13) we know h1(y) = h2(2y). That is, the algorithms in fact

are reconstructing the original signal based on samples from the same amplitude-time

function except that h1(y) which corresponds to f with a larger W varies twice as

fast as h2 and therefore expands twice as much as h2 does in frequency domain. This

observation explains why the convergence rates of the IASR are similar when AW is

fixed while the SER after the first iteration when A is increased is larger than when

W is increased.

We also discuss the situation when the average sampling rate of f remains the

same but with different α as in the random input signal cases. The simulation results

can be explained as in Section 5.4.1.4 and are shown in Figure 5-11. It once again

supports that when α is increased by a factor B > 1, the SER of the IASR after

the first iteration can almost be achieved by also scaling ∆ by B; that is, we can

reduce the sampling rate in the amplitude domain when α is increased (or keep the

average sampling rate in the time domain). Moreover, the convergence rate of the

IASR depends more on α than on ∆. Therefore, with α
∆

fixed, we can enhance the

performance of the IASR by increasing α.

We next perform experiments on the performance of the BIA and the IASR when
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Figure 5-12: Comparison based on deterministic sinusoidal signals with the same
amplitude-time function but different scaling in amplitude

the amplitude-time functions are the same but with different amplitude scaling. The

simulation result is shown in Figure 5-12 where the compared signal is chosen to be

sin(4πt)/8 + 4t. By Eq. (3.12), it is easy to check that its corresponding amplitude-

time function is half-sized of the original amplitude-time function. The simulation

result reveals that the performance of all three algorithms hardly changes.

5.4.2.3 Effect of α
AW

So far we have discussed simulation results when parameters are changed as in the

setup of randomly generated input signals. However, as discussed in Section 5.4.2.2,

a factor that dominates our performance is how close α
AW

is to 1. This statement can

also be understood from Eq. (4.12). When α
AW
→ 1, the inequality in Eq. (4.12) will
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be closer to an equality; since the right hand side is a quadratic function, it will goes

to 0 approximately quadratically fast as α
AW
→ 1. In other words, the exponential

decay rate will be so small that the Fourier transform of h will act like a constant. In

this case, the aliasing effect from the signal where |ξ| > π/∆ cannot be neglected if

∆ is not sufficiently small and therefore the bandlimited-interpolation approximation

ȟ(y) will be much different from h(y).

We also would like to understand how the AWM performs when δ approaches

π
W

. In Section 5.3.4, Eq. (5.19) requires the sampling rate on the amplitude-time

function h to be twice as fast as the Nyquist rate to guarantee the validity of the

AWM. This requirement is due to the negative term −(f ′(ηn)) in Eq. (5.17). The

higher the negative derivative is, the more positive this term is and thus the tighter the

requirement in Eq. (5.19) is. The constraints on Theorem (2.7) cannot be guaranteed

if ∆ is not sufficiently small.

From the above discussion, it suggests that the closer the largest magnitude of the

negative derivative is to α, the worse both the IASR and the AWM will perform. This

suggestion fits our intuition as well, since the closer the negative derivative f ′(t0) is

to α, the smoother g(t) = f(t) +αt is around t0, and the sharper h(y) will be around

y = f(t0) + αt0. On one hand, the sharper a function is, the larger high frequency

components are and the more different a bandlimited-interpolation approximation ȟ

is from h. On the other hand, the sharper h is around a certain timing, the fewer

sampling points can be obtained around that timing, and thus the greater distance

nonuniform samples are from their uniform counterparts.

To understand how α
AW

affects both our methods and the AWM, we keep α
AW

to be close to 1 and test their performance with respect to different ∆ and different

W . As shown in Figure 5-13, the input signal is fixed to be sin(2πt)/8 + t and ∆ is

increased as follows: {0.05, 0.1, 0.2, 0.25}. In this case, α
AW

= 1
π/4
≈ 1.273 which is

close to 1. The green, purple, and dashed lines indicate the settings when ∆ = 0.25.

In Figure 5-14, we fix α
AW

by choosing two functions f1(t) = 4 sin(2πt)/8 + 4t as the

red, blue, and dark lines indicate, and f2(t) = sin(8πt)/8 + 4t as the green, purple,

and dashed lines indicate. In this case, 4
π
≈ 1.273 is close to 1. The parameter ∆ is

72



chosen to be 0.05.

In Figure 5-13, when ∆ changes from 0.05 to 0.2, the IASR seems relatively

invariant to the change compared to the AWM. This is similar to the observation in

Section 5.4.1.2. However, when ∆ = 0.25, the IASR fails to converge while the AWM

still can converge and recover the original signal. Since our tested signal is sin(2πt)/8,

we only require more than two sample points to uniquely represent the signal. This

is satisfied in our simulation since there are 4 sample points. This simulation result

implies that either subtle numerical error will affect the convergence of the IASR

when α
AW

is approximately 1, or that the unique representation of f from samples

of h may not be sufficient for the IASR to converge. Although it is difficult to

theoretically find the constraints for the IASR to converge9, when it does and when

α is carefully chosen, the IASR converges more and more faster than the AWM does

as ∆ increases since the convergence rate of the IASR is relatively invariant to the

change of ∆ while the convergence rate10 r of the AWM as shown in Theorem 2.7 is

approximately proportional to ∆.

We now analyze the effects of A and W when α
AW

is fixed and is close to 1. As

revealed in Figure 5-14, the simulation results can also be explained as in Section

5.4.2.2. In Section 5.4.2.2, we mention that the performance of both the IASR and

the AWM increases when A increases (or W decreases) and AW is fixed. However,

when AW is fixed, the convergence rate of the IASR does not seem to change while

the convergence rate r of the AWM is proportional to W . As discussed in Section

5.4.2.2, the former phenomenon can be explained by Eq. (3.13) that when AW is

fixed, the corresponding h(y) is scaled in the variable y in proportional to the scaling

factor of W . The simulation results suggest that when the input function is fixed and

its time and amplitude scale inversely proportionally to each other, the convergence

rate of the IASR may not change. We should notice that it is not the case as in

9In most cases where one can show the convergence of an algorithm, the convergence rate can also
be found. However, as discussed in Subsubsection 5.4.1.1, we show the difficulty of analyzing the
error generated from the bandlimited-approximation for each iteration and the difficulty of analyzing
the relationship between errors before and after the transformation mα. Both are crucial for finding
conditions for the IASR to converge.

10The definition of the convergence rate is the same as the footnote in Section 2.2 described
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Figure 5-13: A ∗W is fixed but ∆ is changed.

Figure 5-6c where the input function is not fixed. This difference indicates that the

convergence rate of the IASR may require more careful analysis and may depend

more than just on A, W , and α. The slope of the SER of the AWM as shwon in

Figure 5-14 follows Theorem 2.7 which indicates that the slope of the SER should be

20 log( π
δW

) and will increase by 20 logB if W is scaled with 1
B

.

As a result, while it is true that both the IASR and the AWM perform better when

W is smaller, the convergence rate of the IASR does not change correspondingly with

W while the convergence rate of the AWM is proportional to W . Therefore, two

statements can be made. Since our convergence rate is relatively more invariant to

the change of W when AW is fixed, when W becomes larger, the IASR performs

better than the AWM. On the other hand, when W is smaller, although our IASR

may not converge as fast as the AWM does, since the approximation obtained after

the first iteration is more accurate, the convergence rate may not matter.

5.5 Simulation Results Summary and Amplitude

Sampling Parameter Design

In this section, we summarize the parameter effects on all three algorithms (the

BIA, the IASR, and the AWM) as discussed in Section 5.4. We will first discuss the

reason why the IASR generally converges within fewer iterations than the AWM does.

With this knowledge, it is natural to understand what may be a range of parameter
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Figure 5-14: A ∗W is fixed but W is changed.

settings in which our algorithms are limited. We then explore parameter settings in

which our proposed algorithms cannot approximate well the original signal; we will

also discuss settings where under amplitude sampling the performance of the AWM

may be limited. It turns out that all three algorithms are restricted under the same

parameter settings where α
AW

is close to 1. However, since α is a parameter we can

choose, we can avoid such settings. We then show that with the assumption that α
AW

is not close to 1, there are two differences between the main factor that affects the

performance of our algorithms and the factor that determines the performance of the

AWM. Namely, one is the effect of ∆; the other one is the effect of A. We will then

show how we can utilize these two differences to design parameters ∆, α, and A (by

scaling f) so that our algorithms (the IASR in particular) can outperform the AWM

and can well recover the original signal.

The main reason that enables the IASR to generally perform much better than

the AWM in both the accuracy of the first approximation and the convergence rate

is that it is designed based on the amplitude sampling settings. That is, {h(n∆)} are

not uniform samples from any signal but instead from a more structural signal that

has many nice properties as presented in Chapter 3 and Chapter 4. Specifically, with

the knowledge of the exponentially decaying Fourier transform of h, we know that a

bandlimited-interpolation approximation of h based on sufficiently dense samples will

introduce little error. Therefore, as shown in Section 5.4, the SER obtained after the
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first iteration of the IASR which takes advantage of this knowledge is much larger

than that of the AWM which only approximates the nonuniform samples by zero

order hold approximation.

As discussed above, our algorithms are designed based on the assumption that h is

close to a bandlimited function and thus aliasing effect introduced by the bandlimited-

interpolation can be negligible or can be removed after few iterations. Therefore,

it is important to analyze the decay rate of the Fourier transform of h in order

to evaluate the performance of our proposed algorithms. As shown in Section 5.4,

we use (4.10) to develop two conjectures on evaluating the SER of the BIA. These

conjectures are helpful in analyzing the performance of the BIA when input signals

are randomly generated. Moreover, the upper bound of the exponential decay rate as

indicated in (4.12) implies that one important factor that affects the exponential decay

rate is α
AW

. Therefore, we also explore the performance of our algorithms when the

exponentially decay rate bound is tight by testing the algorithms on reconstructing

specific sinusoidal functions so that α
AW

is slightly greater than 1. Interestingly, α
AW

is also related with the convergence rate of the IASR. As discussed in Subsubsection

5.4.1.1, the convergence rate of the IASR may be more closely related to how much

the mα transformation tilts f , which is determined by the difference between α and

f ′(t). Since f ′(t) can be bounded by AW by Bernstein’s inequality, the convergence

rate of the IASR will be more related with the factor α
AW

than ∆. From most of the

simulation results, as α
AW

becomes larger, the IASR converges faster and is relatively

invariant to ∆ as long as ∆ is not really close to the required average sampling rate.

The performance of the AWM, on the other hand, depends mostly on the average

sampling rate. Since we map the uniform samples h(n∆) back to nonuniform samples

on f , the sampling rate on f will be α times the sampling rate of h. Therefore, the

most important factor that dominates the convergence rate of the AWM is α
W∆

, which

is obtained by replacing δ in the convergence rate shown in Theorem 2.7 with ∆
α

. We

notice that δ is defined as the supreme of the time difference of nonuniform samples.

From (5.17), we notice that when α is much larger than f ′(t), δ can be approximated

by ∆
α

, which validates our replacement mentioned above. However, when α+ f ′(t) is
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close to 0, δ will be extremely large and will be much different from ∆
α

. The AWM

may still converge to the right function but we can no longer utilize Theorem 2.7.

Moreover, as discussed in Section 2.1, the robustness of nonuniform sampling depends

on the deviation of nonuniform samples to their uniform counterparts. Therefore,

when α + f ′(t) is close to 0, the AWM may encounter a robustness problem. As

mentioned in the last paragraph, we can bound f ′(t) by Bernstein’s inequality with

AW . Whether α+ f ′(t) is close to 0 can be estimated by evaluating the closeness of

α
AW

to 1. Therefore α
AW

should also not be close to 1 when we want to use the AWM

to reconstruct signals based on the amplitude sampling settings.

As discussed in the last two paragraphs, α should not be chosen too close to

AW for both our algorithms or the AWM. We now compare the parameter effects

on our algorithms and on the AWM under the assumption that α
AW

is not close to 1.

From the last two paragraphs and also from the discussion in Section 5.4, we notice

two main differences of the parameter effects on our IASR and the AWM. To begin

with, there is no ∆ parameter in the factor α
AW

that mostly determines the rate of

convergence of the IASR. Moreover, there is no A in the dominated factor α
W∆

of

the AWM. These two main differences have played important roles in the simulation

results in Section 5.4.

As a result, we can utilize these two differences to design amplitude sampling.

The main reason why there is no ∆ factor in the analysis of the convergence rate of

the IASR is based on the assumption that α
AW

is not close to 1 and that the average

sampling rate is slightly larger than the required sampling rate for a unique represen-

tation. From Figure 5-6b and Figure 5-11, once these assumptions are satisfied, then

the IASR algorithm can converge much and much faster than the AWM does when

∆ increases. That is, we may not need small ∆ to achieve a desired reconstruction

convergence rate. This benefit can also be observed when the sampling rate of the

nonuniform samples is fixed. That is, when α
∆

is fixed, the performance of our al-

gorithm will still enhance as α increases, while the performance of the AWM hardly

changes. On the other hand, although decreasing ∆ will not decrease the conver-

gence rate of the IASR as much as that of the AWM, since the SER of the BIA will

77



approximately be scaled inversely proportional to ∆, the IASR may still be able to

converge to the original function with fewer iterations than the AWM does.

We now focus on the other main difference between our algorithms and the AWM,

the effect of AW . While our algorithms will be affected by W and AW , i.e. the

amplitude plays a role, it is not the case for the AWM. If for some applications the

amplitude of f is not a concern or is already known, then we can either scale our

input signal or increase α to compensate the size of the bandwidth W . This benefit

cannot be attained from the AWM, whose convergence rate is determined by W and

not by A. This benefit can be observed from Figure 5-14 and also from subfigure

5-6c, when we fix AW and scale the tested signal correspondingly with respect to the

bandwidth W . We notice that the convergence rate of the IASR is relatively invariant

to the bandwidth W when AW is fixed.
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Chapter 6

Conclusion and Future Directions

In this thesis, we study a recently proposed framework, amplitude sampling [11],

which represents a signal through a time sequence rather than an amplitude sequence

as in the case with conventional sampling methods. Unlike level-crossing sampling,

which also represents a signal by a time sequence, amplitude sampling maps a ban-

dlimited function uniquely to an amplitude-time function by an amplitude-time trans-

formation mα and thus can preserve the information contained in the bandlimited

function and can achieve any required sampling density as shown in Eq. (5.3). As a

result, it is likely to develop an exact reconstruction algorithm under amplitude sam-

pling, which is the objective of this thesis. In order to design an algorithm that can

reconstruct the original signal from samples of its amplitude-time function, we ana-

lyze the time-domain properties and frequency-domain properties of amplitude-time

functions in Chapter 3 and Chapter 4. An iterative algorithm for the implementation

of the transformation mα is also proposed in Chapter 3.

With time-domain properties and frequency domain properties of amplitude-time

functions and the ability to implement mα, the bandlimited-interpolation approxi-

mation (BIA) algorithm and the iterative amplitude sampling reconstruction (IASR)

algorithm are developed and the comparison among these two methods and a nonuni-

form sampling reconstruction algorithm, the adaptive weights method (AWM) are

analyzed based on different parameter settings in Chapter 5. Simulations show that

the SER of the BIA is much greater than the SER of the AWM after the first iteration.
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The IASR on the other hand generally converges and the number of iterations needed

is in general much smaller than that needed by the AWM. Moreover, two differences

in parameter effects on the convergence rate of the IASR and on the convergence rate

of the AWM are presented: the effect of ∆ and the effect of A. The first observation

indicates that in most cases the IASR does not need as high sampling rate as that

for the AWM to attain the same convergence rate. Moreover, the IASR can converge

faster by increasing α but fixing the nonuniform sampling rate. The other obser-

vation shows that the convergence rate of the IASR can be increased by shrinking

the maximum amplitude of the amplitude-time functions. That is, the IASR can

converge faster with smaller maximum amplitude while the convergence rate of the

AWM hardly depends on the size of the A. With this observation, the IASR is able

to converge much faster than the AWM does when a function with high bandwidth

is encountered.

6.1 Future Directions

In this section, we discuss some possible future research directions. There are two

main unsolved problems in this thesis. The first is to prove the convergence of the

IASR and add conditions if needed. The other is to analyze rigourously the parameter

effects on both the BIA and the IASR. We will suggest possible directions to solve

these problems. We will also discuss one interesting research direction: the correctness

of α. Other interesting topics are outlined in the last paragraph of this section.

As mentioned above, we have not yet proved the convergence of the IASR, al-

though in simulations it generally can converge and we have shown that as long as it

does converge it converges to the right function. However, since there is one case in

our simulations where ∆ ≈ π
αW

and the IASR fails to converge, we will need to care-

fully reduce numerical errors to understand whether it is because when the sampling

rate is close to the required sampling rate for a unique reconstruction the simulated

performance of the IASR will be sensitive to numerical errors, or because more con-

ditions are needed to prove the convergence of the IASR besides the sampling rate
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larger than that required for uniqueness. As discussed in Section 5.2, we cannot

utilize methodologies of proving the convergence of iterative nonuniform sampling

algorithms to prove the convergence of the IASR. Therefore, a possible way to prove

the convergence is to directly use a more generalized theorem: the Banach fixed-point

theorem. By which if we can show ‖fk+1 − fk‖ < γ‖fk − fk−1‖ where γ < 1, then

the IASR will have geometric convergence. However, while we do not know much

about the L1 norm of the D/C converter and the low-pass filter but can measure

their L2 norm, we do not know the L2 norm of the transformation mα. That is, we

would hope to analyze how ‖fk+1− fk‖ relates with ‖hk+1− hk‖ in the L2 norm. We

have already pointed out in Subsubsection 5.4.1.1 the importance of analyzing this

relationship since it is also crucial for estimating the convergence rate of the IASR. It

is reasonable since in order to prove the Banach fixed-point theorem we will need γ,

while with γ we also obtain a convergence rate. As a result, the relationship between

errors before and after the transformation mα becomes one of the most important

future research directions for amplitude sampling.

Another unsolved problem is to estimate the parameter effects on the SNR of the

BIA and on the convergence rate of the IASR. To estimate the former, we would

like to modify conjectures in Section 5.4 so that we can obtain a more rigourous and

accurate estimation of the SNR. The goal can be simplified by first restricting the

input signal to be a single harmonic function. With this simplification, we may be

able to directly calculate the Fourier transformation of the amplitude-time function

by using Bessel functions. We can also approach the estimation of the SNR of the BIA

by proving or disproving that when the maximum amplitude A and the bandwidth

W are fixed, the slowest decay rate of ĥ(ξ) will be achieved when f(t) = Asin(Wt),

which is our current intuition. Another important analysis is the convergence rate of

the IASR. As discussed in the last paragraph, we would like to analyze how errors

before and after the transformation mα interacts when measured by the L2 norm.

Another approach for analyzing the convergence rate of the IASR is to restrict the

error to be a single harmonic function (i.e. fk − fk−1 = a sin bt) and understand how

this error will change after one more iteration.
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Another interesting research direction is to understand how we can correct α

when the parameter α in the transformation mα is not precise or is unknown. As

mentioned in Section 3.2.3, the function space defined by the scaled amplitude-time

functions is invariant under the scaled m̃α transformation. With this observation,

we may be able to develop algorithms that can correct an inaccurate α by operating

more amplitude-time transformations. An interesting observation related to this is

that when the amplitude-time function is fixed, only m 1
α

can transform the function

back to a bandlimited function. All the other transformation mβ where β 6= 1
α

will

transform the amplitude-time function into a non-bandlimited signal. It is therefore

likely to utilize this observation to develop an algorithm.

Other future directions include the generalization of the matrix representation

of mα into, for example, a 3 × 3 matrix, whether to keep the assumption that f is

bandlimited or if we can find a better signal space that can provide us more nice

properties for amplitude sampling, and defining other sampling methods that also

recover the original function from a timing sequence by defining other transformations.
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