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Abstract

In this thesis, sparse Finite Impulse Response (FIR) equalizers are designed for sparse
multi-path channels under a pre-defined Mean Squared Error (MSE) constraint. We start
by examining the intrinsic sparsity of the Zero Forcing equalizers and the FIR Minimum
MSE (MMSE) equalizers. Next the equalization MSE is formulated as a quadratic function
of the equalizer coefficients. Both the Linear Equalizer (LE) and the Decision Feedback
Equalizer (DFE) are analyzed. Utilizing the quadratic form, designing a sparse equalizer
under a single MSE constraint becomes an l0-norm minimization problem under a quadratic
constraint, as described in [2]. Three previously developed methods for solving this problem
are applied, namely the successive thinning algorithm, the branch-and-bound algorithm,
and the simple linear programming algorithm. Simulations under various channel speci-
fications, equalizer specifications and algorithm specifications are conducted to show the
dependency of the sparsity on these factors. The channels include the ideal discrete multi-
path channels and the Vehicular A multi-path channels in both the Single-Input-Single-
Output (SISO) and the Multiple-Input-Multiple-Output scenarios. Additionally, the sparse
FIR equalizer is designed for MIMO channels under two MSE constraints. This is formu-
lated as an l0-norm minimization problem under two quadratic constraints. A sub-optimal
solution by decoupling the two constraints is proposed.

Thesis Supervisor: Alan V. Oppenheim
Title: Ford Professor of Engineering
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Chapter 1

Introduction

� 1.1 Background

Filter design can be viewed as a tradeoff between improving level of performance and

reducing complexity. Various complexity measures, such as total filter length, or number of

nonzero coefficients, have been defined for different implementation situations. The total

number of coefficients is traditionally used as an indication of the complexity of a filter

design. However, for cases where the cost of implementation is dominated by arithmetic

operations, the number of non-zero coefficients may be a more appropriate metric given

that operations associated with zero-valued coefficients may be ignored. This leads to

a demand for designs with fewer non-zero coefficients, i.e., sparse designs, which can be

exploited to reduce computation, hardware, or power consumption, depending on the form

of implementation. In the context of this thesis, a sparse equalizer refers to an equalizer

that has a large number of zero coefficients.

In this thesis, attention is restricted to FIR filters. Finite impulse response filters are

generally preferred over an infinite impulse response (IIR) implementation when linear

phase is important, but they typically require more computation, memory and delay. Al-

though memory is relatively inexpensive, increased computation not only makes the filter

more expensive, but also increases the effects of quantization noise. In these cases, sparse

FIR filters in which several of the multiplying coefficients are zero, plays a significant role.

Additionally, it is often possible to cascade sparse filter sections with a non-sparse section

to efficiently realize a high-quality narrowband filter.

In this thesis, the sparse FIR filter design application is focused on multi-path channel

equalization. The necessity and feasibility are given below. For communication channels

characterized by long channel impulse responses that could span tens of symbol periods,

very long equalizers have to be employed to mitigate the resulting inter-symbol interference

(ISI). This increases the complexity of computing and implementing finite impulse response
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CHAPTER 1. INTRODUCTION

equalizers, which grows in proportion to the number of taps. It is reasonable to use the

number of nonzero coefficients as a measure of filter complexity, and thus sparse equalization

becomes critical in order to reduce the complexity at the expense of a tolerable performance

loss. In practice, many multi-path channels have a few dominant paths over the entire

channel impulse response duration. These examples include the power-delay profiles of the

Pedestrian B and Vehicular A wireless channels defined by the ITU [3]. For multi-path

communication channels, its even more important to evaluate the decrease of complexity

introduced by a sparse equalizer. It is also intriguing to see whether we can obtain sparse

equalizers with satisfactory performance if the channel itself is sparse. Moreover, as we will

see in Chapter 2, the equalizer of a multi-path channel tends to be sparse and contains a

significant percentage of small coefficients. This phenomenon allows us to design a sparse

equalizer with a small sacrifice of the equalization performance.

The concept of sparse filter design has been proposed in the literatures. In [1], the

number of nonzero coefficients is reduced by using only the largest taps of the minimum

mean square error (MMSE) solution. An improved subset selection method [7] has also

been developed under the weighted least-squares criterion. Wei [2] proposed two algorithms

to determine the locations of nonzero taps given the maximum error under a weighted least

square criterion. One is a low-complexity greedy algorithm that gives a sparse solution

which is not necessarily optimal. The second focuses on the optimal solution based on

the branch-and-bound (BNB) procedure. There are also algorithms that relax the number

of nonzero coefficients constraint to the l2-norm or the l1-norm of the coefficients. It has

been seen that the l2-norm does not reflect the sparsity of the vector very well, and the

l1-norm recovers the sparse signals with very high probability (Baranuik [20]). In [21], a

modified l1-norm minimization method is proposed in order to obtain a sparse equalizer.

The straightforward exhaustive search method is numerically unstable and NP-hard, which

requires enormous iterations on all the non-zero elements. This is the major factor that

many algorithms avoids using the l0-norm to solve this optimization problem, and instead

introducing relaxations or bounds to either find the sub-optimal solution or fasten the

optimality searching speed.
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1.2. OUTLINE OF THE THESIS

Additionally, both the Linear Equalizer (LE) and the Decision Feedback Equalizer

(DFE) are considered for the sparse equalizer design. The DFE is well known for its ca-

pability in combating intersymbol interference in communication channels. In [4] and [5],

investigations were conducted on different types of equalizers. Instead of the LE, the DFE

is considered in [4] as a way to combat ISI and is further suggested in [5] as a way to

improve sparsity in conjunction with linear programming.

Both Single-Input-Single-Output (SISO) multi-path channels and Multiple-Input-Multiple-

Output (MIMO) multi-path channels are investigated in this thesis. The analysis of the

MIMO case is motived by the popularity of MIMO channels. MIMO technology has at-

tracted attention in wireless communications, because it offers significant increases in data

throughput and link range without additional bandwidth or increased transmit power. It

is motivated by the desire to increase the capacity of digital wireless networks by allowing

multiple transmissions sharing the same time slot and the frequency band tand separating

them spatio-tempolrally at the receiver. In multi-user communication over linear, disper-

sive, and noisy channels, the received signal is composed of the sum of several transmitted

signals corrupted by intersymbol interference (ISI), interuser interference (IUI), and noise.

Typical examples of MIMO systems include TDMA digital cellular systems with multiple

transmit/receive antennas, wideband asychronous CDMA system, and high-density digital

magnetic recording.

� 1.2 Outline of the Thesis

In this thesis, a framework is explored to design sparse FIR equalizers for sparse multi-path

channels.

In Chapter 2, the natural sparsity of equalizers for sparse multi-path channels is ex-

plored. This understanding of the intrinsic equalizer sparsity is necessary for the sparse

equalizer design in Chapter 4 and 6. The discussion first focuses on Zero-Forcing (ZF)

equalizers. We define the ZF-equalizability and analyze the sparsity of ZF equalizer. Then

we relate the FIR finite length Minimum Mean Squared Error (MMSE) equalizers to ZF

equalizers and extended the discussion on sparsity to the FIR MMSE equalizers. Simula-

tions results are presented to show the sparsity of the equalizers.
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CHAPTER 1. INTRODUCTION

In Chapter 3, the equalization Mean Squared Error (MSE) is analyzed for linear, time-

invariant, and noisy channels. To design a sparse FIR equalizer filter under the MSE

criterion, it is necessary to obtain the mathematical expression of the equalization MSE as

a function of the FIR equalizer filter coefficients. We first formulate the MSE expression

for linear equalizers and evaluates the minimum MSE value under different channel and

equalizer specifications. Then we extend the formulation of the MSE expression using

advanced equalizers with feedbacks. The minimum MSE value of the DFE system is also

evaluated under various channel and equalizer specifications.

In Chapter 4, the sparse equalizer design problem under a single MSE constraint is

formulated. We first define the l0-norm as the number of non-zero elements in a vector and

show that this is a l0-norm minimization problem under a quadratic constraint. Second,

three algorithms to solve this problem are presented. These algorithms are implemented

and evaluated in Chapter 5 for the sparse equalizer design. Additionally, a comparison

between this equalizer design problem and the compressive sensing problem is made in this

chapter in order to explain the difference.

In Chapter 5, simulation results of the sparse equalizer design problem defined in Chap-

ter 4 are shown. The sparse equalizer filter design result can be affected by many factors

including the channel specifications, the equalizer specifications and the algorithm specifi-

cations. In this chapter, we examine the effect of the channel SNR, the channel response,

the equalizer type, the equalizer length, the MSE allowance, as well as the algorithm that

is applied.

In Chapter 6, sparse equalizer design is considered for MIMO channels with two MSE

constraints. This problem arises when one or more user subsets have their individual

equalization MSE constraints other than the overall equalization MSE constraint. We start

by defining the MIMO channel equalization MSE. Then the sparse equalizer design problem

is formulated as a zero-norm minimization problem under two quadratic constraints. Due

to the complexity of solving this problem, we propose a low-cost method, which decouples

the two constraints in the original problem and computes a non-optimal solution. The

simulation of this method is planned in future work (Section 7.1).

16



Chapter 2

Zero-Forcing Equalizer, MMSE Equalizer

and Their Sparsity

In this chapter, the intrinsic sparsity of equalizers for sparse multi-path channels is explored.

Before designing the sparse equalizer, understanding the natural sparsity of the equalizers is

necessary. In Section 2.1, the discussion focuses on Zero-Forcing (ZF) equalizers. We show

that if a channel is sparse, its ZF equalizer filter also exhibits a sparse pattern. In Section

2.2, the discussion is extended to finite length Minimum Mean Squared Error (MMSE)

equalizers, which are shown to be non-sparse but often have a significant percentage of

small coefficients.

� 2.1 Zero-Forcing Equalizer

In this section, the equalization of a noise-free communication channel is considered. When

the channel noise v is negligible, removing the inter-symbol interference at the receiver to

recover the input signals results in the zero-forcing equalization problem. Zero-forcing

equalizers are essentially channel inverses used to recover the unknown input signal of a

linear system from its measurable output signal.

� 2.1.1 The existence of a ZF equalizer

The goal of the equalizer is to recover the input signal from the output measurements.

Therefore, zero-forcing requires that the input signal be recovered exactly with a possible

finite delay in the absence of noise. One problem is that a zero forcing (ZF) equalizer

may not exist. In this section, conditions for the existence of a ZF equalizer are defined in

various sparsity multi-channel systems. In the next section, the sparsity of the ZF equalizer

is discussed if it exists.

The following terminology is introduced in order to formulate the existence of a ZF

equalizer. As defined in [8], a matrix Q(z) is said to be unimodular if det Q(z) is a non-zero

constant independent of z−1. Moreover, every matrix has a Smith form [8], which is given

17
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SPARSITY

as follows. For any H(z) ∈ Cn×m[z], there exist some unimodular matrices Q(z) ∈ Cn×n[z]

and P (z) ∈ Cm×m such that (a)

Q(z)H(z)P (z) =



α1(z) 0 . . . 0 0 . . . 0

0 α2(z) . . . 0 0 . . . 0
...

...
. . .

...
... . . .

...

0 0 . . . αp(z) 0 . . . 0

0 0 . . . 0 0 . . . 0
...

...
. . .

...
... . . .

...

0 0 . . . 0 0 . . . 0


(2.1)

for some monic polynomials αi(z), i = 1, 2, . . . , p, where p ≤ minn,m. (b) α1(z) is the

greatest common divisor of all entries of H(z).

A transfer function has an IIR ZF-equalizer if there exists a finite order, stable and

causal rational function W (z) such that W (z)H(z) = z−dI for some finite integer delay

d ≥ 0. A transfer function has an FIR ZF-equalizer if there exists a finite order FIR filter

W (z) such that W (z)H(z) = z−dI for some finite integer delay d ≥ 0.

The necessary and sufficient conditions for the two cases are respectively

(1) H(z) has an IIR ZF-equalizer if and only if H(z) is minimum phase, i.e., all of αi(z)

are minimum phase.

(2) H(z) has an FIR ZF-equalizer if and only if αi(z) = z−di for some di ≥ 0.

The proof is given below. We first show the necessity of (1). Suppose there is a |z0| ≥ 1

and α(z0) = 0 for some i, rank H(z0) < p. Then rank W (z0)H(z0) < p. But rank z−d0 I = p.

18



2.1. ZERO-FORCING EQUALIZER

This completes the necessity part. For sufficiency, let

W (z) = z−dP (z)



1
α1(z)

0 . . . 0 0 . . . 0

0 1
α2(z)

. . . 0 0 . . . 0
...

...
. . .

...
... . . . 0

0 0 . . . 1
αp(z)

0 . . . 0

0 0 . . . 0 0 . . . 0
...

...
. . .

...
... . . .

...

0 0 . . . 0 0 . . . 0


Q(z)

for some d ≥ 0 so that W (z) is causal. Then it straightforward that W (z)H(z) = z−dI.

This completes the sufficiency part of (1). The proof of (2) is similar.

� 2.1.2 Sparsity of ZF Equalizer for multi-path channels

In this section, sparsity and the locations of non-zero coefficients in the ZF equalizer are

explored. We show that if a channel is sparse, i.e., its impulse response contains a large

amount of zero coefficients, the ZF equalizer is sparse as well.

The zero-forcing equalizer for a causal multi-path channel is generally infinitely long,

i.e., is an IIR filter. For cases where FIR ZF equalizers are not achievable, long division is

adopted to compute the IIR zero-forcing equalizer.

To begin with, consider a multi-path channel H(z) = 1 + α1z
−N1 + α2z

−N2 with two

delay taps at n = N1, and n = N2. The zero forcing equalizer’s transfer function is

W (z) = 1
1+α1z−N1+α2z−N2

. By long division, it becomes

W (z) = 1− α1z
−N1 − α2z

−N2 + α2
1z
−2N1 + 2α1α2z

−(N1+N2) + · · ·

or more compactly,

W (z) =
∞∑

λ1=0

∞∑
λ2=0

c αλ11 α
λ2
2 z
−(λ1N1+λ2N2), (2.2)

where c and λi (i = 1, 2) are independent integers.
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Note that each time a new term βzpN1+qN2 is introduced in the long division result,

another two terms α1βz
(p+1)N1+qN2 and α2βz

pN1+(q+1)N2 will be added to the residual, and

thus these two term will appear in the long division. The merging of similar items is taken

into account by the integer c. By induction, the pattern shown in Equation (2.2) holds.

This idea can be applied to a more general multi-path channel H(z) = 1+
∑s−1

i=1 αiz
−Ni ,

whose IIR ZF equalizer transfer function can be written as

W (z) =
∞∑

λ1=0

∞∑
λ2=0

· · ·
∞∑

λs−1=0

c
∏

αλii z
−

∑
λiNi ,

where c and λi (i = 1, 2, . . . , s− 1) are independent integers. Therefore, as the number of

Ni grows, i.e., as the number of taps in the multi-path channel increases, the ZF equalizer

W (z) contains more taps and thus is less sparse. This is illustrated in Figure 2-1.

� 2.2 FIR MMSE Equalizer

In the context of this thesis, the error criterion to evaluate the FIR equalization performance

is chosen to be MSE. For the scope of this thesis, understanding the sparsity of the FIR

MMSE equalizer is helpful. This section discusses the FIR MMSE equalizer filter for a finite

length channel. Specifically, we relate the FIR equalizer coefficients with the ZF equalizer

coefficients and observe the sparsity both in the absence of noise and with additive noise.

For simplicity, we start with a two path channel whose system function is

H(z) = 1 + αz−d.

Denote the IIR zero-forcing equalizer filter system function as

Wa(z) =
∞∑
i=0

piz
−i

and the FIR MMSE equalizer filter system function as

Wb(z) =
N−1∑
i=0

qiz
−i
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The combined system function of the channel and FIR MMSE equalizer is characterized

by

H(z)Wb(z) =H(z)Wa(z)−H(z)(Wa(z)−Wb(z))

=1−H(z)(Wa(z)−Wb(z))

=1− (1 + αz−d)(
N−1∑
i=0

(pi − qi)z−i +
∞∑
i=N

piz
−i)

=1−

[
d−1∑
i=0

(pi − qi)z−i +
N−1∑
i=d

(α(pi−d − qi−d) + (pi − qi))z−i

+
N+d−1∑
N

(α(pi−d − qi−d) + pi)z
−i +

∞∑
N+d

(αpi−d + pi)z
−i

]
(2.3)

Therefore, if x[k] and x̂[k] denote the channel input and equalization output at any

time k respectively, they are related by

x̂[k] = x[k]−

{
d−1∑
i=0

(pi − qi)x[k − i] +
N−1∑
i=d

(α(pi−d − qi−d) + (pi − qi))x[k − i]

+
N+d−1∑
N

(α(pi−d − qi−d) + pi)x[k − i] +
∞∑
N+d

(αpi−d + pi)x[k − i]

}
,

e[k] =x[k]− x̂[k]

=

{
d−1∑
i=0

(pi − qi)x[k − i] +
N−1∑
i=d

(α(pi−d − qi−d) + (pi − qi))x[k − i]

+
N+d−1∑
N

(α(pi−d − qi−d) + pi)x[k − i] +
∞∑
N+d

(αpi−d + pi)x[k − i]

}
.

Assuming that the input signal is white, its auto-correlation function is given by

Ek [x[k]x[k − n]] =

 σ2
x k = n

0 k 6= n
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Therefore, the MSE is given by

E[e[k]2] = δ2
x

[
d−1∑
i=0

(pi − qi)2 +
N−1∑
i=d

(α(pi−d − qi−d) + (pi − qi))2

+
N+d−1∑
N

(α(pi−d − qi−d) + pi)
2 +

∞∑
N+d

(αpi−d + pi)
2

]
.

(2.4)

Since {pi} are the known ZF equalizer coefficients for a given channel, minimizing

Equation (2.4) is equal to minimize the following function of {qi}

f(q0, q1, . . . , qN−1) =
d−1∑
i=0

(pi−qi)2+
N−1∑
i=d

(α(pi−d−qi−d)+(pi−qi))2+
N+d−1∑
N

(α(pi−d−qi−d)+pi)2,

(2.5)

By taking partial derivative with respect to qi and setting it to be zero, each qi can be

determined by the N + d + 1 pi values. In general, the solution qi 6= pi, which means the

FIR MMSE equalizer filter is not a truncated IIR ZF equalizer filter even in the noise-free

case. The truncation affect all values of pis. Therefore, the sparsity pattern shown in ZF

equalizer coefficients does not hold for the FIR MMSE equalizer coefficients.

The sparsities of the ZF equalizer and FIR MMSE equalizer are compared in Figure 2-

2. The difference from (a) to (b) indicates that the sparse pattern is destroyed due to the

finite length constraint. (c) shows that with noise added, the values of the FIR MMSE

equalizer coefficients are further slightly changed. But although (b) and (c) are not sparse,

they contain a lot of small coefficients. These features are important for designing a sparse

FIR equalizer under the MSE criterion with low cost, as will be shown in Chapter 5.
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Figure 2-1: (a) The ZF equalizer coefficients for a multi-path channel with impulse response
h[n] = 1 + 0.6δ[n − 7] + 0.4δ[n − 23]. (b) The ZF equalizer coefficients for a multi-path
channel with impulse response h[n] = 1 + 0.23δ[n − 7] + 0.4δ[n − 13] − 0.7δ[n − 29]. (c)
The ZF equalizer coefficients for a multi-path channel with impulse response h[n] = 1 +
0.17δ[n− 5] + 0.54δ[n− 11]− 0.12δ[n− 23] + 0.3δ[n− 31].
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Figure 2-2: (a) The ZF equalizer coefficients for a multi-path channel with impulse response
h[n] = 1+0.6δ[n−7]+0.4δ[n−23]. (b) The FIR MMSE equalizer coefficients for the same
multi-path channel with no noise. (c) The FIR MMSE equalizer coefficients for the same
multi-path channel with Gaussian white noise and the equalizer input SNR = 10 dB.
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Chapter 3

Mean Squared Error of Channel Equalization

To design a sparse FIR equalizer filter under the Mean Squared Error (MSE) criteria, it is

necessary to first obtain the mathematical expression of the equalization MSE as a function

of the FIR equalizer filter coefficients. In this chapter, the MSE is analyzed for linear,

time-invariant, and noisy channels with two different equalization structures. Section 3.1

formulates the MSE expression for linear equalizers and evaluates the MSE value under

different equalizer specifications. Section 3.2 turns considerations to advanced equalizers

with feedbacks and derives the corresponding MSE expression.

As shown in Figure 3-1, the channels that are discussed in this chapter are modeled by

Y (z) = H(z)X(z) + V (z). (3.1)

For a channel with ni inputs and no outputs, X(z) is an ni×1 vector, and Y (z) is an no×1

vector. H(z) the ni × no dimensional transfer function matrix. This model can be used

to represent a large class of communication channels with multiple inputs and multiple

outputs.

Figure 3-1: Equalization System using linear equalizer

� 3.1 Linear Equalization

This section evaluate the MSE of linear equalizers for linear, and time-invariant channels

with additive noises.
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� 3.1.1 Signal Models and Problem Reductions

Channels can be categorized into four types, namely, the Single-Input-Single-Output (SISO)

channel, the Single-Input-Multiple-Output (SIMO) channel and the Multiple-Input-Multiple-

Output (MIMO) channel. The equalization MSE for all channel types are discussed in the

following subsections respectively. For a MISO channel, since the equalizer estimates every

input signal and the MSE is calculated only between a specific input and its estimation, the

MISO channel equalization system can be reduced to multiple SISO channel equalization

systems.

The SISO case

Figure 3-2: Equalization of a SISO Channel

Let us assume a general transmission scheme given in Figure(3-2). In the discrete equal-

ization context, x[n] represents the sequence of transmitted samples, and y[n] represents

the sequence of received samples. The channel impulse response is denoted by h0(t). Note

that the pulse modulator and the C/D converter share the same sampling period T. Every

input sample x[k] produces exactly one output sample y[k]. Therefore, it is equivalent to

a discrete SISO channel.

Denote the combined response of the pulse modulator p(t) and the channel h0(t) as

h(t), i.e., h(t) = p(t) ? h0(t), where ? denotes convolution. We assume that there is no ISI

in the combined response. The output from the continuous-time transmission channel is
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given by

y(t) =
∑
l

h(t− lT )x[l] + v(t). (3.2)

Figure 3-3: Equalization of a discrete SISO channel

After C/D conversion, the input to the equalizer is sampled at a rate of 1/T so that

y[n] = y(nT )

=
∑
l

h(nT − lT )x[l] + v(nT )

=
∑
l

h[n− l]x[l] + v[n],

(3.3)

where h[n] = h(nT ), and v[n] = v(nT ). Hence, the overall system is equivalent to the

system given in Figure(3-3). Suppose the sampled channel impulse response h[n] is of

length Nc. By denoting h[n] as hn, Equation (3.3) can be rewritten as

yk =
Nc−1∑
l=0

h[l]x[n− l] + v[n] (3.4)

where h[n] is the channel impulse response, and v[n] represents the additive noise.

An FIR equalizer of length Nf is applied to the received samples {yk}in order to recover

x[n]. Note that for every recovered sample x̂k, only the previous Nf samples of y[n] are

involved in the equalization, which means only samples {yk, . . . , yk−Nc+1} are used. For
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these Nf -long samples of interest, it follows from Equation (3.4) that


yk+Nf−1

yk+Nf−2

...

yk

 =


h0 h1 . . . hNc−1 0 . . . . . . 0

0 h0 h1 . . . hNc−1 0 . . . 0
...

. . . . . . . . . . . . . . . . . .
...

0 . . . . . . 0 h0 h1 . . . hNc−1




xk+Nf−1

xk+Nf−2

...

xk−Nc

+


vk+Nf−1

vk+Nf−2

...

vk


(3.5)

or more compactly,

yk:k−Nf+1 = Hxk:k−Nf−Nc+1 + vk:k−Nf+1 (3.6)

where yk:k−Nf+1, xk:k−Nf−Nc+1, nk:k−Nf+1 are column vectors grouping the received, trans-

mitted, and noise samples over that block, and H is a Nf × (Nc +Nf ) Toeplitz matrix as

follows.

H =


h0 h1 . . . hNc−1 0 . . . . . . 0

0 h0 h1 . . . hNc−1 0 . . . 0
...

. . . . . . . . . . . . . . . . . .
...

0 . . . . . . 0 h0 h1 . . . hNc−1

 (3.7)

Taking the decision delay into consideration, the kth equalization error sample is given

by

ek = xk−∆ − x̂k = xk−∆ −wHyk:k−Nf+1 (3.8)

where w is the Nf × 1 vector of equalizer coefficients and ∆ is an integer representing the

decision delay, with 0 ≤ ∆ ≤ Nf +Nc − 1. Therefore, the MSE can be written as

MSE = E[ |ek|2 ]

= E[ eHk ek ]

= E[ (xk−∆ −wHyk:k−Nf+1)H(xk−∆ −wHyk:k−Nf+1) ]

= E[ x2
k−∆ ]−wHE[ yk:k−Nf+1xk−∆ ]− E[ yk:k−Nf+1xk−∆ ]Hw + wHE[ yk:k−Nf+1y

H
k:k−Nf+1w ]

(3.9)

Therefore, as we will see soon, it is useful to define the auto-correlation and the cross-

correlation based on the block of length Nf .
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The (Nf +Nc)× (Nf +Nc) input correlation matrix is given by

Rxx ≡ E[ xk:k−Nf−Nc+1 x
H
k:k−Nf−Nc+1 ]. (3.10)

The noise correlation matrix is given by

Rvv ≡ E[ vk:k−Nf+1 v
H
k:k−Nf+1 ]. (3.11)

The input-output cross-correlation matrix is defined as

Ryx ≡ E[ yk:k−Nf+1 x
H
k:k−Nf−Nc+1 ] = HRxx. (3.12)

The output auto-correlation matrix is defined as

Ryy ≡ E[ yk:k−Nf+1 y
H
k:k−Nf+1 ] = HRxxH

H +Rvv. (3.13)

Denote 1∆ ≡ [0 0 · · · 0︸ ︷︷ ︸
∆

1 0 0 · · · 0︸ ︷︷ ︸
Nf+Nc−∆−1

]H , then xk−∆ can be rewritten as xk−∆ = 1H∆xk:k−Nf−v+1.

Furthermore, denote r∆ = Ryx1∆. Assuming that the source signal x[n] is stationary, we

have E[ x2
k−∆ ] = δ2

x, where δ2
x is the source signal power. Then (3.9) becomes

MSE = δ2
x −wH · r∆ − rH∆w + wHRyyw, (3.14)

which is a quadratic function of the coefficients {w}

The SIMO case

In this section, the MSE is analyzed for channels with oversampling. We show that channels

with oversampling are equivalent to discrete SIMO channels.

As a very common approach in communication systems to improve transmission accu-

racy, oversampling is widely adopted to combat the error introduced by noise. If multiple

samples are taken of the same quantity with uncorrelated noise added to each sample, then

averaging N samples reduces the noise power by a factor of 1/N. This requires a higher

sampling rate at the receiver than that at the transmitter. The typical framework is given

29



CHAPTER 3. MEAN SQUARED ERROR OF CHANNEL EQUALIZATION

Figure 3-4: Equalization of a single channel with oversampling

in Figure 3-4, with oversampling rate p = T1
T2

. Again, we assume that there is no ISI in the

combined response of the pulse modulator and the channel.

Similar to the SISO case described in the previous section, the received signal of the

equalizer is given by

y(t) =
∑
l

h(t− lT1)x[l] + v(t). (3.15)

After C/D conversion, the input to the equalizer is sampled at a rate of 1/(T2) so that

y[m] = y(mT2)

=
∑
l

h(mT2 − lT1)x[l] + v(mT2)
(3.16)

Since y[m] is operated p times faster than the source x[n], samples {y[np], y[np+1], . . . , y[np+

p − 1]} are utilized together at the same time, i.e., input sample time n, to generate an

estimate of x[n]. We rewrite y[m] as a sum of p parallel signals, i.e.,

y[m] =

p∑
i=1

y(i)[n], (3.17)

where n = m mod p, and each y(i)[n] is operated at the rate of 1/T1 with y(i)[n] = y[pn+ i].

More precisely, y(i)[n] is the sub-sampled polyphase components of y[n]. Hence, the overall

system is equivalent to a discrete SIMO as is drawn in FIgure(3-5). Plugging the notation
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Figure 3-5: Equalization of a discrete SIMO channel

of y(i)[n] into Equation (3.16) we obtain the input-output relationship between each path

y(i)[n] =
∑
l

h((pn+ i)T2 − lT1)x[l] + v((pn+ i)T2)

=
∑
l

h((n− l)T1 + iT2)x[l] + v(nT1 + iT2)

=
∑
l=1

N (i)
c h(i)[n− l]x[l] + v(i)[n]

(3.18)

where h(i)[n] = h(nT1+iT2), v(i)[n] = v(nT1+iT2) and N
(i)
c is the length of h(i)[n]. Denoting

y(i)[k] as y
(i)
k , the matrix form of quation (3.18) becomes

y
(i)
k =

[
h

(i)
1 h

(i)
2 . . . h

(i)

N
(i)
c

]


xk

xk−1

...

xk−Nc+1

+ v
(i)
k (3.19)

To simplify the expression, it is beneficial to group the received samples at the equalizer

from all p channel outputs at sample time k into a p × 1 column vector yk. Denote the
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largest length of sampled channel impulse responses h(i)[n] as Nc, i.e., Nc = maxiN
(i)
c . In

this notation, Equation (3.18) becomes


y

(1)
k

y
(2)
k

...

y
(p)
k

 =


h

(1)
1 h

(1)
2 . . . h

(1)
Nc

h
(2)
1 h

(2)
2 . . . h

(2)
Nc

...
. . . . . .

...

h
(p)
1 h

(p)
2 . . . h

(p)
Nc




xk

xk−1

...

xk−Nc+1

+


v

(1)
k

v
(2)
k

...

v
(p)
k

 (3.20)

An equalizer of length Nf is applied to the received samples in order to recover x[n].

Similar to the SISO case, for every recovered sample x̂[k], only the previous Nf samples of

y(i)[n] are involved in the equalization. Again, grouping these samples of interest, Equa-

tion 3.21 can be extended to

y
(1)
k

y
(2)
k

...

y
(p)
k

y
(1)
k−1

y
(2)
k−1

...

y
(p)
k−1

...

y
(1)
k−Nf+1

y
(2)
k−Nf+1

...

y
(p)
k−Nf+1



=



h
(1)
1 h

(1)
2 . . . h

(1)
Nc

h
(2)
1 h

(2)
2 . . . h

(2)
Nc

...
. . . . . .

... 0
h

(p)
1 h

(p)
2 . . . h

(p)
Nc

0 h
(1)
1 h

(1)
2 . . . h

(1)
Nc

0 h
(2)
1 h

(2)
2 . . . h

(2)
Nc

0
...

. . . . . .
...

0

0 h
(p)
1 h

(p)
2 . . . h

(p)
Nc

. . .

h
(1)
1 h

(1)
2 . . . h

(1)
Nc

h
(2)
1 h

(2)
2 . . . h

(2)
Nc0 ...

. . . . . .
...

h
(p)
1 h

(p)
2 . . . h

(p)
Nc




xk

xk−1

...

xk−Nc−Nf+1

+



v
(1)
k

v
(2)
k

...

v
(p)
k

v
(1)
k−1

v
(2)
k−1

...

v
(p)
k−1

...

v
(1)
k−Nc+1

v
(2)
k−Nc+1

...

v
(p)
k−Nc+1


(3.21)
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or in a more compact form,

yk:k−Nf+1 = Hxk:k−Nf−Nc+1 + vk:k−Nf+1 (3.22)

where yk:k−Nf+1 and nk:k−Nf+1 are column vectors grouping the received and noise samples

over that block respectively. Moreover, H is a pNf × (Nc +Nf ) matrix composed by h
(i)
k .

Similar to the SISO case, the kth equalization error sample is given by

ek = xk−∆ − x̂k = xk−∆ −wHyk:k−Nf+1 (3.23)

where w is the Nf × 1 vector of equalizer coefficients and ∆ is an integer representing the

decision delay, with 0 ≤ ∆ ≤ Nf +Nc − 1. And the MSE can also be written as

MSE = E[ x2
k−∆ ]−wHE[ yk:k−Nf+1xk−∆ ]− E[ yk:k−Nf+1xk−∆ ]Hw + wHE[ yk:k−Nf+1y

H
k:k−Nf+1 ]w

(3.24)

By defining the (Nf +Nc)× (Nf +Nc) input auto-correlation matrix

Rxx ≡ E[ xk:k−Nf−Nc+1 x
H
k:k−Nf−Nc+1 ], (3.25)

the (pNf )× (pNf ) noise auto-correlation matrix

Rvv ≡ E[ vk:k−Nf+1 v
H
k:k−Nf+1 ], (3.26)

the (pNf )× (Nf +Nc) output-input cross-correlation matrix

Ryx ≡ E[ yk:k−Nf+1 x
H
k:k−Nf−Nc+1 ] = HRxx (3.27)

and the (pNf )× (pNf ) output auto-correlation matrix

Ryy ≡ E[ yk:k−Nf+1 y
H
k:k−Nf+1 ] = HRxxH

H +Rvv, (3.28)
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the equalization MSE for a SIMO channel in Equation (3.24) can be rewritten as

MSE = δ2
x −wH · r∆ − rH∆w + wHRyyw, (3.29)

which is reduced to the same quadratic form as in the case of SISO channel equalizations

given in Equation (3.14).

The MIMO case

In this section, the equalization MSE for MIMO channels is investigated. We show that

the MSE for MIMO channels can also be reduced to a quadratic form when the channel

matrix is arranged in a certain way.

Figure 3-6: Equalization of a MIMO channel

A general case of a digital communication system with ni inputs and no outputs is

considered. Additive noise for each channel are assumed to be i.i.d. The block diagram of

the multi-input multi-output channel model is given in Figure (3-6). The samples at the

jth output (1 ≤ j ≤ no) have the standard form
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y
(j)
k =

ni∑
i=1

N
(i,j)
c∑
m=0

h(i,j)
m x

(i)
k−m + v

(j)
k (3.30)

where

y
(j)
k is the jth channel output;

h
(i,j)
m is the channel impulse response between the ith input and the jth output, whose

length is denoted by N
(i,j)
c ;

v
(j)
k is the noise vector at the jth output.

Similar to the SIMO case, to simplify the notation, the received samples from all no

channel outputs at sample time k are grouped into a no × 1 column vector yk as follows

yk =
Nc∑
m=0

Hmxk−m + vk (3.31)

, where Hm is the no× ni mth (1 < m < Nc)MIMO channel matrix coefficient described as

follows

Hm =


h

(1,1)
m h

(2,1)
m ... h

(ni,1)
m

h
(1,2)
m h

(2,2)
m ... h

(ni,2)
m

...
. . . . . .

...

h
(1,no)
m h

(2,no)
m ... h

(ni,no)
m .



xk−m =


x

(n1)
k−m

x
(n2)
k−m
...

x
(ni)
k−m

 vk =


vn1
k

vn2
k

...

vno
k


are the input vector at time k−m, and noise vector at time k respectively. The parameterNc

is the maximum length of all the no× ni channel impulse responses, i.e., Nc = maxi,j N
(i,j)
c

An equalizer of length Nf is applied to the received samples in order to recover x[n].

Similar to the SISO and SIMO cases, for every recovered sample x̂[k], only the previous

Nf samples of y(i)[n] are involved in the equalization. Hence, grouping these samples of
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interest,
yk+Nf−1

yk+Nf−2

...

yk

 =


H0 H1 . . . HNc−1 0 . . . . . . 0

0 H0 H1 . . . HNc−1 0 . . . 0
...

. . . . . . . . . . . . . . . . . .
...

0 . . . . . . 0 H0 H1 . . . HNc−1




xk+Nf−1

xk+Nf−2

...

xk−Nc

+


vk+Nf−1

vk+Nf−2

...

vk


or more compactly

yk+Nf−1:k = Hxk−Nf−1:k−Nc + vk−Nf−1:k (3.32)

where

H =


H0 H1 . . . HNc−1 0 . . . . . . 0

0 H0 H1 . . . HNc−1 0 . . . 0
...

. . . . . . . . . . . . . . . . . .
...

0 . . . . . . 0 H0 H1 . . . HNc−1


In equalization systems for MIMO channels, the kth equalization error sample becomes

a vector given by

ek = xk−∆ − x̂k =


e

(1)
k

e
(2)
k

...

e
(ni)
k ,

 (3.33)

where e
(i)
k = xk−∆ − x̂k is the equalization error of user i.

The equalization MSE for the whole system is defined as

MSE = E[ eHk ek ]

= E[xHk−∆xk−∆]−wHE[yk:k−Nf+1xk−∆]− E[yk:k−Nf+1xk−∆]Hw

+ wHE[yk:k−Nf+1y
H
k:k−Nf+1w]

(3.34)

As we will see soon, it is useful to define the auto-correlation and the cross-correlation

in the following way.
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The ni(Nf +Nc)× ni(Nf +Nc) input auto-correlation matrix is defined as

Rxx = E[xk+Nf−1:k−Nc xHk+Nf−1:k−Nc
] (3.35)

The noNf × noNf noise auto-correlation matrix is defined as

Rvv = E[nk+Nf−1:k vHk+Nf−1:k] (3.36)

The channel’s input-output cross-correlation matrix is defined as

Rxy = E[xk+Nf−1:k−Nc yHk+Nf−1:k] = RxxH
H (3.37)

The channel’s output auto-correlation matrix is defined as

Ryy = E[yk+Nf−1:k yHk+Nf−1:k] = HRxxH
H +Rvv (3.38)

Furthermore, denote 1∆ ≡ [ 0 0 · · · 0︸ ︷︷ ︸
∆

1 0 0 · · · 0︸ ︷︷ ︸
Nf+Nc−∆−1

]H , then xk−∆ can be rewritten as xk−∆ =

1H∆xk:k−Nf−v+1. Denote r∆ = Ryx1∆. Denote the ith input signal power E[ x
(i)
k

H
x

(i)
k ] as

δ
(i)
x

2
, and the total input signal power

∑ni

i=1 δ
(i)
x

2
as δ2

x. Together with the assumption of

stationary input signals, we have E[ xHk−∆xk−∆ ] =
∑ni

i=1 δ
(i)
x

2
= δ2

x.

Using all the above notations, the MSE can be rewritten as follows

MSE = δ2
x −wH · r∆ − rH∆w + wHRyyw, (3.39)

which results in the same quadratic form as in the SISO and SIMO cases.

� 3.1.2 The Effect of Equalizer Length and Decision Delay on the

MMSE

The equalizer that produces the Minimum Mean Squared Error (MMSE) is called the

MMSE equalizer, which is also referred to as the Wiener filter. This section focuses the

behavior of MMSE equalizers. The MMSE can be affected by various channel and equalizer
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CHAPTER 3. MEAN SQUARED ERROR OF CHANNEL EQUALIZATION

specifications. In the context of this chapter, the equalizer length, the decision delay and

the Signal-to-Noise Ratio (SNR) are considered.

We first formulate the expression of the MMSE. From Section 3.1.1, the equalization

MSE of all types of channels has the same quadratic form in Equations (3.14), (3.29) and

(3.39). They can be rewritten as

MSE = δ2
x − rH∆R−1

yy r∆ + (w −R−1
yy r∆)HRyy(w −R−1

yy r∆). (3.40)

Since Ryy is positive-definite, from Equation 3.40, the MMSE is achieved by wMMSE =

R−1
yy r∆. This wMMSE solution also follows the Orthogonality Principle. Substituting wMMSE

for w in Equation 3.40, we obtain

MMSE = δ2
x − rH∆R−1

yy r∆. (3.41)

In the following subsection, experimental results are given to show the effect of the

equalizer length on MMSE, the effect of the decision delay on MMSE, and the effect of

SNR on MMSE respectively. The channel impulse response h[n] is chosen to represent an

ideal multipath channel with one direct path and two delayed paths that are aligned with

the sampling grid. More precisely,

h[n] = δ[n] + a1δ[n−N1] + a2δ[n−N2],

where the delays N1 and N2 are positive integers and the amplitudes a1 and a2 are sampled

randomly from the interval [-1,1].

First, we examine in figure 3-7 the effect of the equalizer length N on the equaliza-

tion MMSE. For this experiment, SNR is fixed at 10 dB, and each data point represents

the average of 1600 (a1, a2) pairs. The MMSE is non-decreasing as N increases. It is

straightforward the set of equalizer coefficients with a smaller N is a subset of that with a

greater N, and therefore the former cannot perform better than the latter. This can also

be explained by reference to Equation 3.42. As N increases, the positive-definite matrix

R−1
yy grows, and thus rH∆R−1

yy r∆ is non-decreasing, which will result in a smaller MMSE.
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3.1. LINEAR EQUALIZATION

The staircase patterns can be explained by reference to the relationship between the FIR

MMSE equalizer and the IIR ZF equalizer in Equation 2.5. As N increases, significant

non-zero values in the IIR ZF equalizer are incorporated in the FIR MMSE equalizer only

at certain values of N . As a result , the MMSE decreases the most at these points.
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Figure 3-7: MMSE normalized by δ2
x as a function of the equalizer length N for (a) N1=7,

N2=23, and (b) N1=3, N2=23

Next, for causality, a channel-equalizer system delay ∆ has been introduced during the

analysis of the equalization MSE. The delay is important in finite-length design because a

non-causal filter cannot be implemented, and the delay allows time for the transmit data

symbol to reach the receiver. Figure 3-8 plots the MMSE against the decision delay for

N1 = 7, N2 = 23, and N = 40. Again each data point represents the average of 1600

(a1, a2) pairs. Simulations demonstrate that the optimal decision delay that produces the

least MMSE is given by ∆ = Nc+N
2

. This empirical result is also noted in [13]. Therefore,
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CHAPTER 3. MEAN SQUARED ERROR OF CHANNEL EQUALIZATION

in the sparse linear equalizer design examples given in Chapter 6, the decision delay ∆ is

chosen to be Nc+N
2

.
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Figure 3-8: MMSE normalized by δ2
x as a function of the equalization decision delay ∆ for

channel length Nc = 24 and equalizer length N = 40.

Last, we show in Figure 3-9 the effect of the channel SNR on the MMSE for N1 =

7, N2 = 23, and N = 30. The MMSE decreases monotonically with SNR. This can be

understood by rewriting Equation 3.42 as

MMSE

δ2
x

= 1− rH∆ [HHH +
1

SNR
I]−1r∆. (3.42)

As SNR increases, the values of the diagonal elements in the positive-definite matrix

[HHH + 1
SNR

I]−1 increase. As a result, rH∆ [HHH + 1
SNR

I]−1r∆ increases and the normalized

MMSE decreases.
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Figure 3-9: MMSE normalized by δ2
x as a function of the channel SNR for N1=7, N2=23,

and N = 30.

� 3.2 Decision Feedback Equalization

In this section, the equalization performance using Decision Feedback Equalizers (DFEs)

is discussed. First, the DFE structure and its assumption are stated in Section 3.2.1.

Next, the equalization MSE is derived in Section 3.2.2. Finally, Section 3.2.3 evaluates the

MMSE value under various equalizer specifications. These results are useful for developing

the sparse equalizers as will be shown in Chapter 5.

� 3.2.1 DFE structure and assumption

The basic structure of DFE consists of a feedforward filter (FFF), a feedback filter (FBF)

and a memoryless decision device. The typical framework of a Decision Feedback Equal-

ization system is given in Figure (3-10).
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CHAPTER 3. MEAN SQUARED ERROR OF CHANNEL EQUALIZATION

Figure 3-10: Equalization using DFE

The design of decision feedback equalizers has been traditionally carried out assuming

that the past estimations are error-free, thus simplifying the mathematical derivations

involved. The analysis of the performance becomes very complicated when past errors

are taken into consideration. When an error is made by the receiver, the output of the

FBF is no longer the desired value and the probability of subsequent errors is increased.

Simulations also show that errors tend to occur in bursts. This can be understood from

the structure of the feedback loop, where if one error occurs, it will be fed back and will

bias the input to the decision block and thus most likely produce another error. This error

propagation phenomenon is more severe when the tap weights and/or the number of the

feedback taps are large. Duttweiler [12] derived an upper bound on the probability of error.

The result is a relation between the true performance of the system and the performance

it would have if the past errors were ignored in the FBF. In real applications, if the MMSE

caused by the estimation errors is less than -30 dB, the correct past estimation assumption

will not bring much loss in the DFE performance; If it is greater than -30 dB, the error is

believed to severely affect the equalization results and becomes non-negligible. Figure 3-11

shows the histogram of the MSE caused by past esimation errors based on 1270 different

channel setups. The MSE is below -30 dB in over 95% of the cases.
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3.2. DECISION FEEDBACK EQUALIZATION

To mitigate the error propagation, a couple of techniques can be applied as proposed by

[9], [10] and [11]. Typical approaches include inserting an additional delay in the decision-

making device and estimating based on a block of symbols to gather more information.

Other methods turn to state machines to model the error propagation and cancel the error

according to the probabilistic model. Given that the error propagation in the problem of

this thesis produces a small MSE, as is shown in Figure 3-11, for all the following analysis,

correct past estimations are assumed.
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Figure 3-11: Histogram of the equalization MSE caused by past estimation errors

� 3.2.2 Problem Reductions

This section aims at obtaining the MSE as a function of the FFF and FBF coefficients.

Section 3.1.1 has demonstrated that for all types of channels, by grouping the samples and

constructing channel transfer matrix H in a specific way, the transmission system resembles

a discrete SISO channel. Therefore, this section ignores the discussion on channels and

directly analyzes discrete SISO channel equalizations.
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Denote wf as the feedforward filter coefficient vector, and wb as the feedback filter

coefficient vector respectively. In the context of this thesis, we do not investigate the effect

of the decision box and thus assume that the decision box is an identity system. The kth

error sample is defined as

ek = xk−∆ − ( wH
f yk:k−Nf+1 −wH

b x̂k−∆−1:k−∆−Nb
) (3.43)

where x̂k−∆−1:k−∆−Nb
is the output vector segment that represents the estimations for

xk−∆−1:k−∆−Nb
. Assuming correct past estimations, we can be substitute xk−∆−1:k−∆−Nb

for x̂k−∆−1:k−∆−Nb
, and therefore

ek = xk−∆ − [ wf
H wb

H ]︸ ︷︷ ︸
≡wH

 yk:k−Nf+1

xk−∆−1:k−∆−Nb


︸ ︷︷ ︸

≡ỹ

(3.44)

where w is the coefficient vector in combination of the feedforward filter coefficient vector

and the feedback filter coefficient vector, with length (Nf +Nb).

As we will see soon, it is useful to define the auto-correlation and the cross-correlation

in the following way.

Rỹỹ ≡ E[ỹỹH ]

Rỹx ≡ E[ỹ xHk:k−Nf−v+1].
(3.45)

Furthermore, denote r̃∆ = Rỹx1∆, and T∆ =
[

0Nb×(∆+1) INb
0Nb×(Nf+Nc−Nb−∆−1)

]H
.

Plugging in ỹ, Equation 3.45 becomes

Rỹỹ =

 Ryy E[ |xk−∆|2 ]HT∆

E[ |xk−∆|2 ]TH∆ H
H E[ |xk−∆|2 ]INb

 (3.46)

and

Rỹx =

 E[ |xk−∆|2H

E[ |xk−∆|2TH∆

 . (3.47)
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With the above notations, the MSE can be written as

MSE = E[ |xk−∆|2 ]−wH r̃∆ − r̃H∆w + wHRỹỹw (3.48)

which is also a quadratic function of the equalizer coefficients w = wf ; wb.

� 3.2.3 The effect of Decision Delay, FFF lengh, and FBF length

on the MMSE

In most practical situations, computational and implementational complexity considera-

tions often place a constraint on the maximum number of total (the sum of feedforward

and feedback) filter coefficients that can be used. In addition, the decision delay setting

could affect performance significantly as well, as is in the case of LE. The effect of decision

delay becomes more severe when the filter is short. Therefore, it becomes important to

understand the dependence of the finite length MMSE-DFE performance on the number of

its feedforward filter taps Nf , the number of its feedback filter taps Nb, and on the decision

delay ∆ in order to set them properly. These results are useful in the sparse DFE design

as we will show in Chapter 5.

Currently, all techniques for setting these three parameters, (Nf , Nb, ∆) are either

ad-hoc or computationally intense, which requires an exhaustive search over these three

parameters and inversion of a matrix whose size is equal to the total number of feedforward

and feedback taps for each step in the search. This optimal 2-dimensional search algorithm

is presented as follows.

Using the Orthogonality Principle of linear least square estimation, to minimize the

MSE in Equation 3.48, wMMSE is chosen to be R−1
ỹỹ r̃∆. Plugging in the wMMSE into

Equation 3.48, we get

MMSE(N,Nb,∆) = Constant− rH∆R
−1
ỹỹ r∗∆ (3.49)

Hence, for any choice of the triplet (N,Nb,∆) Equation 3.49 is used to evaluate its perfor-

mance. Unfortunately, there is no closed-form solution for the optimum triplet (N,Nb,∆)

45



CHAPTER 3. MEAN SQUARED ERROR OF CHANNEL EQUALIZATION

Table 3.1: MMSE with respect to Nf and ∆

∆ = 4 ∆ = 5 ∆ = 6 ∆ = 7 ∆ = 8 ∆ = 9 ∆ = 10 ∆ = 11 ∆ = 12 ∆ = 13 ∆ = 14
Nf=7 0.3000 0.2800 0.2670 0.2200 0.2011 0.8437
Nf=8 0.3000 0.2800 0.2670 0.2176 0.1977 0.1979 0.8437
Nf=9 0.3000 0.2800 0.2670 0.2176 0.1963 0.1796 0.1805 0.8437
Nf=10 0.3000 0.2800 0.2670 0.2176 0.1963 0.1744 0.1712 0.1805 0.8437
Nf=11 0.3000 0.2800 0.2670 0.2176 0.1963 0.1744 0.1699 0.1711 0.1805 0.8437
Nf=12 0.3000 0.2800 0.2670 0.2176 0.1963 0.1744 0.1699 0.1682 0.1711 0.1805 0.8437

that best balances the performance and complexity, and it can only be found by numerical

search. The optimal triplet (N,Nb,∆) that gives the least MMSE(N,Nb,∆) is used to

implement the DFE. Under the implementation constraint Nf + Nb = Ntotal (where Ntotal

is the given constraint), determining the optimum triplet is computationally intense since

it requires an exhaustive 2-dimensional search and computation of the inverse Rỹỹ.

Several theorems are given in [14] on the relationship between the three parameters

under certain conditions. Suppose the channel length is Nc. The two theorems that are

related to this thesis are described as follows:

Theorem I: If Nb ≥ Nc, MSE(∆ = 0) ≥ MSE(∆ = 1) ≥ ... ≥ MSE(∆ = Nf − 1), where

MSE(∆ = k) is the MMSE when ∆ = k with Nf and Nb being fixed.

Theorem II: If Nb ≥ Nc, there must exist a positive N0 so that when Nf > N0,MSE(∆ =

Nf − 1) = min{MSE(∆ = Nf − 1), ...,MSE(∆ = Nf +Nc − 1)}.

From the two theorems, if Nb ≥ Nc and Nf is large enough, the optimum decision delay

is Nb−1. There is no closed-form solution for N0 defined in theorem II, but it can be verified

via extensive simulations. We show in Table 3.2.3 the MMSE values with respect to Nf and

∆. The channel response h[n] is given by h = 1+a1h[n−3]+a2h[n−7]. The feedback filter

length Nb = Nc = 8. For illustration, the numbers in bold font in Table 3.2.3 correspond

to the optimum ∆ for the specified Nf . It is shown that, in this example, the N0 defined in

Theorem II is 11, i.e., when Nf > 11, the optimum ∆ equals Nf − 1; otherwise it does not.

It is also shown that Nb ≥ Nc, MSE(∆ = 0) ≥ MSE(∆ = 1) ≥ ... ≥ MSE(∆ = Nf − 1)

holds for every Nf , as expected by Theorem I.
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Chapter 4

L0 norm minimization under a quadratic

contraint

In this chapter, the sparse equalizer design problem under a single MSE constraint is

formulated. In Section 4.1 we show that it can be reduced to an l0-norm minimization

problem under a quadratic constraint. The viewing of the sparse equalizer design as an

l0-norm minimization problem under a quadratic constraint is first established by Wei in

[2]. Next, in Section 4.2, three previously developed classes of algorithms are applied to

solve this problem. Two of the algorithms discussed were originally investigated by Wei in

[2].

� 4.1 Problem Formulation

� 4.1.1 Norm

Before defining the l0-norm minimization problem, the definition of Norm is given in this

subsection.

p-norm

For a real number p ≥ 1, the p-norm or lp-norm of x is defined by

‖x‖p = (|x1|p + |x2|p + . . .+ |xn|p)
1
p . (4.1)

Note that for p = 1, ‖x‖1 = (|x1| + |x2| + . . . + |xn|) is the taxicab norm or Man-

hattan norm; For p = 2, ‖x‖2 = (|x1|2 + |x2|2 + . . . + |xn|2)
1
2 is the Euclidean norm; As

p approaches ∞, limp→∞(|x1|p + |x2|p + . . . + |xn|p)
1
p = maxn{x1, x2, . . . , xn}the p-norm

approaches maximum norm.

For all p ≥ 1, the p-norms and maximum norm as defined above indeed satisfy the

properties of a “length function” (or norm), which are that: (1) only the zero vector has zero

length; (2) the length of the vector is positive homogeneous with respect to multiplication
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by a scalar; (3) the length of the sum of two vectors is no larger than the sum of lengths

of the vectors (triangle inequality). Abstractly speaking, this means that Rn together with

the p-norm is a Banach space [18].

This definition is still of some interest for 0 < p < 1. Accordingly, Equation 4.1 defines

an absolutely homogeneous function. However, it does not define a norm 1, because it

violates the triangle inequality, i.e, is not subadditive. However, the resulting function

does not define an F-norm, because it is not subadditive. In Rn for n > 1, the formula for

0 < p < 1
‖x‖p = (|x1|p + |x2|p + . . .+ |xn|p)

defines a subadditive function, which defines an F-norm. This F-norm is not homogeneous.

zero norm

When p goes to zero, it is referred to as zero norm. There are two definitions of l0 norms.

The mathematical definition of the l0 norm was established by Banach’s Theory of

Linear Operations. The space of sequences has a complete metric topology provided by

the Fnorm
∑

n 2−n xn
1+xn

, which is discussed by Rolewicz [15] in Metric Linear Spaces. This

l0-normed space is studied in functional analysis, probability theory, and harmonic analysis.

Another function was called the l0 “norm” by Donoho [16], whose quotation marks

warn that this function is not a proper norm. Donoho suggested the terminology p-“norm”

locally, on bounded sets. When this “norm” is localized to a bounded set, it is the limit of

p-norms as p approaches 0, i.e.,

lim
p→0

(|x1|p + |x2|p + . . .+ |xn|p).

This is not a norm, because it is not continuous with respect to scalar-vector multiplication

(as the scalar approaches zero); it is not a proper norm because it is not homogeneous.

Defining 00 = 0, Donoho’s zero “norm” of x is equal to the number of non-zero coordinates

of vector x.

1except in R1, where it coincides with the Euclidean norm, and in R0, where it is trivial.
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In the context of this thesis, the second definition of l0 “norm” in order to denote the

number of non-zero elements in a vector. From this point on, the quotation marks are

omitted for simplicity.

� 4.1.2 Problem Formulation and Visualization

This section focuses on the sparse equalizer design under a pre-defined MSE constraint ξ.

From Chapter 2 we know that typically an FIR MMSE equalizer is not sparse. Thus it is

necessary to bring in a looser MSE constraint than the MMSE constraint. The problem

can be formulated as

min
w
‖w‖0

s.t. MSE ≤ ξ = MMSE ξm + Excess Error ξe

(4.2)

From Chapter 3, we obtain the MSE as a function of the equalizer coefficients as follows

MSE = δ2
x −wH · r∆ − rH∆w + wHRyyw

= MMSE + (w −R−1
yy r∆)HRyy(w −R−1

yy r∆)
(4.3)

where MMSE = δ2
x − rH∆R−1

yy r∆. Therefore, problem 4.2 can be rewritten as

min
w
‖w‖0

s.t. (w −wM)HR(w −wM) ≤ ξe

(4.4)

where wM = R−1
yy r∆ and R = Ryy.

This problem is visualized in Figure (4-1). The feasible set that satisfies the quadratic

constraint is an ellipse centered at wM in the N-dimensional space. The size of the ellipse

is determined by the excess error tolerance ξe. The problem is to find the most sparse w

in this region.
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Figure 4-1: Visualization of zero-norm minimization under one quadratic constraint

� 4.1.3 Comparison with Compressive Sensing

Zero-norm in compressive sensing helps in compressing image signals by eliminating coeffi-

cients that are zero or very small, while considering only the large and needed signal struc-

tures. Compressive sensing asserts that a sparse signal can be recovered from much fewer

samples or measurements than the number of samples suggested by Shannon- Nyquist’s

traditional method. Compressive sensing is based mainly on the principles of:

(1) sparsity, relevant to the signal to be compressed;

Sparsity of the signal helps expressing the idea that the information rate of the signal

is much smaller than suggested by its bandwidth. Compressive sensing helps in exploiting

the fact that most of the natural signals are compressible and sparse, in the sense that they

have a specific representation when they are expressed in the proper basis, say ψ.

(2) incoherence, relevant to the sensing models;
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Incoherence expresses the idea that the signals having a sparse representation must be

spread out in the domain in which they are acquired. Incoherence suggests that unlike the

signals of interest, the sampling waveform has an extremely dense representation in ψ.

Compressive sensing is analyzed in three basic stages.

1. Matrix transforming, where the orthogonal matrix ψ changes.

2. Encoding, where measurement matrix is encoded by ψ, to form φi =< ψi, A > .

3. Decoding, where K + 1 values recover A under ψ.

Therefore, the problem is to find a stable measurement matrix A such that there is

minimum or no damage to the compressed signal during the dimensional reduction from

RN to RK+1. Also, a reconstruction algorithm is needed to recover the original signal from

the K + 1 measurements.

That defines the compressive sensing problem

min
w
‖w‖0 s.t. Aw = b,

where the original N-dimensional signal, say wM is recoverable from the (K+1)-dimensional

b. In general, the exact solution to the above problem can be solved by a subset problem

of the form

min
w
‖w‖0

s.t. ‖b− Aw‖2
2 ≤ ε.

(4.5)

for a sufficiently small ε, and is a NP-hard problem. The region of feasible sets in the

(K+1)-dimensional space is depicted in Figure 4-2.

When formulated in this way, the compressive sensing problem shares some similarities

with our sparse equalizer filter design problem. Rewriting 4.5 as

min
w
‖w‖0

s.t. (w − A−1b)TATA(w − A−1b) ≤ ε,

(4.6)

By comparing the sparse filter design problem 4.4 and the compressive sensing problem 4.6,

we see that if R can be decomposed into ATA and wM can be written as wM = A−1b, where

b is a lower dimensional vector, the two problems are very similar. However, this requires
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that wM is compressible to a lower dimensional space without any information loss, which

is often not true in the filter design problem. Therefore, our problem is distinct from the

compressive sensing problem.

Figure 4-2: Visualization of compressive sensing

� 4.2 Problem Solutions

In this section we discuss the solutions to problem 4.4. It has been seen that the l2-

norm does not reflect the sparsity of the vector very well, and the l1-norm recovers the

sparse signals with very high probability (Baranuik [20]). This can further be challenged

by the actual l0-norm optimization that counts the number of zero elements in w. The

straightforward exhaustive search method is numerically unstable and NP-hard, which

requires enormous iterations on all the non-zero elements. This is the major factor that

many algorithms avoids using the l0-norm to solve this optimization problem, and instead

introducing relaxations or bounds to either find the sub-optimal solution or fasten the

optimality searching speed.

� 4.2.1 Sub-optimal Solution

In this section, a heuristic algorithm for solving 4.4 that we refer to as successive thinning

is presented. This method is discussed in Wei [2] as a low-complexity algorithm to com-

pute the sparse solution. Similar approaches were proposed in Sui et al [19] for channel
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equalization. The separability can be with respect to a generalized notion of summation,

e.g., a product of non-negative functions is also regarded as separable.

Here the algorithm is adapted to problem 4.4. The algorithm was applied to sparse filter

design by [2]. The basic idea is to re-optimize the non-zero coefficients by setting more

and more coefficients to zero. It terminates when the re-optimized result no longer satisfies

the error constraint. Problem 4.4 may be solved by determining for each K = 1, 2, . . . , N

whether a feasible solution with K zero coefficients exists. As K increases from 1 (or

decreases from N), since the number of subsets is proportional to
(
N
K

)
, the complexity of

evaluating the existence grows as least as fast as
(
N
K

)
. For K = 1, the successive thinning

algorithm carries out the minimization of the excess error. We denote Z(1) as the resulting

minimizing subset (in this case a single index). For K = 2, we restrict the minimization to

only those sets of indices that include Z(1). By induction, let Z(K) represent the minimizer

over this restricted collection of subsets of size K. For larger values of K, the subsets

considered in the minimization are constrained to contain Z(K−1), the minimizer for the

previous step K − 1, thus limiting the search to just adding one new index to Z(K−1). As

stated at the beginning of this paragraph, the algorithm terminates when the minimum

value corresponding to Z(K+1) exceeds the MSE constraint for some K, at which point the

last feasible subset Z(K) becomes the final subset of zero-valued coefficients. Given Z(K),

i.e., the indices of the zero coefficients, we may then solve for the values of the non-zero

coefficients to produce a feasible solution with zero-norm equal to N −K. The successive

thinning algorithm greatly reduces the number of subsets that are explored in the optimal

case. The number of subsets evaluated in the Kth step is at most N−K+1, corresponding

to the N − (K − 1) choices for the index to be added. Since the number of steps can be

at most N, the total number of subsets grows only quadratically with N. As we will see in

the simulation results given in section 5.3, the successive thinning algorithm discussed in

this section produces solutions that are in many instances either optimally sparse or close

to optimal. Optimality or near-optimality is certified by running the branch-and-bound

algorithm [2] described in the next section, which does guarantee an optimal solution.

Thus the successive thinning algorithm is useful as a method for obtaining sparse solutions

with relatively low complexity.
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� 4.2.2 The Branch-and-Bound Solution

In Section 4.2.1, low-complexity algorithms were presented for solving problem 4.4 but

were not aiming at obtaining the optimal solution. In this section, attention is turned

to the optimal algorithms. Specifically, an algorithm based on a standard approach to

combinatorial optimization known as branch-and-bound is considered due to its ability to

avoid an exhaustive enumeration of all 2N potential subproblems. The branch-and-bound

procedure is applied to problem 4.4 in [2]. In the context of this thesis, only an overview of

our branch-and-bound algorithm is presented. More details are described by [2]. Additional

background on branch-and-bound can be found in [17].

First we introduce a binary indicator variable un with the un=0 if the corresponding

wn = 0 and un = 1 otherwise. Then the sum of the indicator variables un equals to the

zero-norm of w. Using this fact, problem 4.4 can be re-written as follows:

min
w,u

N∑
n=1

un

s.t. (w − wM)HR(w − wM) ≤ ξe,

|wn| ≤ Bnun ∀n,

un ∈ {0, 1} ∀n,

(4.7)

where Bn is a positive constant for each n. The second constraint ensures that un behaves

as an indicator variable, specifically by requiring that wn = 0 if un = 0 and also forcing un

to zero if wn = 0 because the sum of the un is being minimized. When un = 1, the second

constraint becomes a bound on the absolute value of wn . The constants Bn are chosen

to be large enough so that these bounds on |wn| do not affect feasible sets of w. The Bn

values are determined in the relaxation part and is discussed in [2].

In the branch-and-bound procedure, problem 4.4 is successively divided into subprob-

lems in a tree manner with fewer variables. The first two subproblems are formed by

selecting an indicator variable un and making it to 0 in the left child subproblem and to 1

in the other one. Each of the two subproblems, if not solved directly, is divided into an-

other two subproblems by fixing another indicator variable to 0 or 1. This process therefore
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Figure 4-3: The subproblem tree of the branch-and-bound method

produces a binary tree of subproblems as depicted in Figure 4-3. A bound is described in

[2] to help restrict the number of enumerations. The bounding part includes the computa-

tion of a lower bound on the optimal value of each subproblemInfeasible subproblems are

denoted by a lower bound of +∞. Since a child subproblem has one more constraint added

than its parent problem, Now we explain the relationship of the lower bound between two

generations and the passing of the lower bound.

the lower bound for the child cannot be less than that of the parent. Note that the lower

bounds illustrated in Figure(4-3) is non-decreasing from the root to the leaves. In addition,

feasible solutions may be found for certain subproblems. The algorithm keeps a dynamic

record of the best feasible solution, i.e., the solution that produces the lowest cost so far,

referred to as the incumbent solution in [2]. If the lower bound for a subproblem is equal to

or higher than the cost of the incumbent solution, then the subproblem cannot lead to better

solutions and can thus be eliminated from the tree along with all of its descendants. The

elimination operation helps avoiding an exhaustive search over all potential subproblems,
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although in worst-case examples the complexity of branch-and-bound remains exponential

in N [17], for typical instances the situation can be much improved.

� 4.2.3 Simple Linear Programming Algorithm

An even simpler approach to obtain a non-optimal solution to problem 4.4 is presented in

this section. This greedy algorithm based approach has been developed in previous research

including [1], [23] and [24]. The idea is to find the smallest element in the current equalizer

coefficient vector and set it to zero. If the resulting coefficient vector still satisfies the MSE

constraint, the above procedure is repeated. This method is visualized in Figure 4-4. At

each iteration step, the feasible set is projected to a lower dimensional space by setting the

current smallest coefficient to be zero. The algorithm terminates at step N −K where the

projection of the feasible set onto the K-dimensional space is empty.

To explain the non-optimality of this approach, note that in Figure 4-1, when a pro-

jection of the wM on a lower dimensional space does not exist in the elliptic region, it is

possible that a sparse solution does exist. In other words, it is possible that the projection

of wM on any axis is not in the elliptic region while the region does have intersections with

some axises.
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Figure 4-4: Visualization of the simple linear programming technique for the sparse equal-
izer design problem.
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Chapter 5

Sparse Equalizer Design and Simulation

Results

This chapter presents the simulation results for the sparse equalizer filter design problem

defined in Chapter 4. The sparse equalizer filter design result can be affected by the chan-

nel specifications including SNR and the channel response, by the equalizer specifications

including equalizer type and length, and by the algorithm specifications including the MSE

tolerance. We examine the effect of the above factors in the following sections.

� 5.1 The effect of Channel Specifications

In this section, sparse equalizer design is simulated for two types of channels, the simple

multi-path channel and the Vehicular A channel respectively. Results are given to illustrate

the dependency of the number of non-zero coefficients in the sparse equalizer filter on various

channel setups. The optimal algorithm described in Section 4.2.2 is applied to eliminate

the effect of non-optimal solutions.

� 5.1.1 Simple Multi-path Channel

In the initial simulation, the channel response h[n] is chosen to represent an ideal multi-path

channel with a direct path and two delayed paths. More precisely,

h[n] = δ[n] + a1δ[n−N1] + a2δ[n−N2] (5.1)

Linear equalizers are adopted in this subsection. Based on the discussion in Section

3.1.2, a good choice for ∆ is (Nf +Nc)/2, and is used for all the analysis related to linear

equalizer in this chapter.
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Figure 5-1: Number of nonzero taps vs. Channel SNR

� 5.1.2 Practical Wireless Communication Channel

In this section we demonstrate the sparse equalizer design feasibility for a realistic com-

munication channel. In practice, besides the physical propagation channel, transmitter

and receiver filters have their system transfer function as well, which will also shape the

transmitted signal. As is shown in Figure (5-2), we assume that the transmit and receive

filters are square-root raised-cosine filters. The raised-cosine filter is a filter frequently

used for pulse-shaping in digital modulation due to its ability to minimize the ISI. Its

frequency-domain description is a piecewise function given by

H(Ω) =


T, |Ω| ≤ 1−β

2T

T
2

[
1 + cos

(
πT
β

(
|Ω| − 1−β

2T

))]
, 1−β

2T
≤ |Ω| ≤ 1+β

2T

0, otherwise

(5.2)
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Table 5.1: An example of Vehicular A multi-path Channel

ak distribution ak (dB) τk (ns)
Rayleigh -5 21
Rayleigh -6 76
Rayleigh -8 127
Rayleigh -9 213
Rayleigh -11 350

where β is the roll-off factor which takes value between 0 and 1. The name raised-cosine

stems from the fact that the non-zero portion of the frequency spectrum of its simplest

form (β = 1) is a cosine function raised up to sit above the frequency axis. The excess

bandwidth parameter β is set to 0.8.

Figure 5-2: Vehicular A Channel Setup

An example of a five-delay-path channel propagation response can be expressed as

h(t) =
5∑
i=0

aiδ(t− τi) (5.3)

According to the Vehicular A multi-path Channel specifications described in the ITU-2000

standard [3], the parameter ai and τi are given in Table 5.1.2 In particular, to obtain a

representative evaluation on the equalization performance, we averaged 1000 cases. Each

case we generate ak and τi with their mean values determined by Table 5.1.2 and with

variances to be 5% of the corresponding absolute mean values.
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To fit into the context of the discrete equalization sparsity formulation, the effective

discrete-time channel response is obtained by

h[n] =
5∑
i=0

aip(n− τi) (5.4)

where the pulse p(t) is the convolution of the transmit and receive filter responses and the

sampling period has been normalized to unity.
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Figure 5-3: Effective discrete-time channel response for the Vehicular A multi-path channel
example

The resulting discrete-time channel response is plotted in Figure 5-3. The remainder of

the experimental setup is the same as in Section 5.1.1.

In Figure 5-4, we show the coefficient values for the length 50 equalizer for SNR=10 dB

and a sparse equalizer with an MSE that is 20% higher. The sparse equalizer has about one
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third as many non-zero coefficients as the MMSE equalizer. The larger coefficients in the

MMSE equalizer tend to be retained in the sparse equalizer, including a cluster surrounding

the largest coefficient that corresponds to the strongest path in the channel.
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Figure 5-4: (a) Coefficient values for the length 50 MMSE equalizer with SNR = 10 dB.
(b) A corresponding sparse equalizer with excess error ratio = 0.2.

� 5.2 The effect of Equalizer Specifications

In this section, the simple multi-path channel given in Section 5.1.1 is implemented to

analyze the effect of the equalizer specifications on the number of non-zero coefficients in

the sparse equalizer. Again, the Branch-and-Bound algorithm is applied to eliminate the

effect of non-optimal solutions.

Figure (5-5) shows the effect of the length N on both the MMSE and the number of non-

zero coefficients in a sparse equalizer. For this experiment, the excess error ratio is fixed

to 20%. SNR is 10 dB, and each data point again represents the average of 1600 (a1,a2)

pairs. The staircase patterns can be explained by reference to Section 3.1.2. The MMSE
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Figure 5-5: Number of nonzero taps vs. equalizer length

decreases the most at some special values of N, which means the excess error tolerance

decreases at these special values of N. This error constraint change leads to an increase

in the number of non-zero coefficients that are required. For example, for N1 = 7 and

N2 = 23, the largest decreases occur at 30 = N2 + N1, 39 = 2N2 − N1, and 46 = 2N2,

followed by smaller decreases at other integer combinations of N1 and N2.

Figure (5-5) compares the the number of non-zero coefficients using the linear equalizer

and the decision feedback equalizer. For this experiment, the excess error ratio is fixed to

20%. SNR is 10 dB, and each data point again represents the average of 1600 (a1,a2) pairs.

Based on the discussion in Section 3.1.2, the decision delay ∆ is set to (Nf + Nc)/2 for

linear equalizers. Based on the discussion in Section 3.2.3, the decision delay ∆ is set to

Nf − 1. Nb varies from 1 to Nc and the corresponding Nf varies from N − 1 to N − Nc.

In (b), each data point represents the average of the Nc FFF/FBF length pairs. The error

bar in (b) reflect the change of the number of non-zero taps as the FFF/FBF length ratio

varies. The comparison between (a) and (b) demonstrate that using the DFE structure

can achieve a more sparse equalizer than using the LE under the same equalizer length

constraint and the MSE constraint for the same channel.
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Figure 5-6: Number of nonzero taps vs. equalizer length using LE and DFE.

� 5.3 The effect of Algorithm Specifications

Figure 5-7 shows the number of nonzero coefficients versus excess error ratio by applying

the branch-and-bound algorithm. As a parameter of the algorithm input, the excess error

ratio is defined as (ξ− ξMMSE)/ξMMSE, where ξ represents the estimation error of the sparse

equalizer filter, and ξMMSE denotes the estimation error of the MMSE equalizer filter. The

number of non-zero coefficients, averaged over 1600 uniformly distributed (a1,a2) pairs, is

viewed as a function of the excess error ratio for N1 = 7, N2 = 23, N = 2N2, and SNR =

10 dB. The left-most point corresponds to the MMSE equalizer, which in general does not

have any zero values. However, for sparse multi-path channels, the MMSE equalizer has

a lot of coefficients with small values, which introduces small excess errors when forced to

zero. Hence there is an abrupt decrease in the number of non-zero coefficients as soon as

ξ/ξMMSE exceeds 1, followed by a rapid approach toward an asymptote. The gain in sparsity
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Figure 5-7: Number of nonzero taps vs. excess error

is slightly smaller for the higher SNR value and the behavior is similar for all values of N.

It has been observed that the tradeoff between sparsity and MSE is quite favorable in the

sense that the number of non-zero coefficients can be reduced substantially with only a

small increase in the MSE.

Figure 5-8 plots the time and the corresponding number of non-zero coefficients at each

iteration. The computing time tends to grow exponentially as the number of iteration

increases. The number of non-zero coefficients in the sparse equalizer decreases at each

iteration. Therefore, there is a tradeoff when we place a limit on the number of iterations.

Observations indicate that the number of non-zero coefficients converges mostly in less than

20 iterations.

It is also helpful to examine the optimality of the lower bound given by the successive

thinning algorithm. We have observed in the experiments that it is rare for the successive

thinning solution to not be optimal. Figure (5-9) indicates that for over 85% of the 1600

experiments, the successive thinning algorithm gives an exact estimation of the actual cost.

The tightness of the this non-optimal solution may be due to a number of factors present
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Figure 5-8: The number of non-zero coefficients and the computing time vs. the number
of iterations in the Branch-and-Bound algorithm.

in this idealized example, including the high level of sparsity, the relative unambiguity

regarding which coefficients should be non-zero, and the diagonally dominant structure of

the matrix R. Moreover, considering the computational cost of the BNB algorithm shown

in Figure 5-8, we can turn to the successive thinning method as a low-cost substitute.
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Figure 5-9: Histogram of the difference between the successive thinning result and the
optimal result
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Chapter 6

Zero-norm Minimization under Two

Quadratic Constraints

In this chapter, sparse equalizer design is considered for MIMO channels with two MSE

constraints. This problem arises when one or more user subsets have their individual

MSE constraints other than the overall equalization MSE constraint. First, the MSE of

the MIMO channel equalization is defined in Section 6.1. Next, Section 6.2 shows that

this design problem can be formulated as a zero-norm minimization under two quadratic

constraints. Due to the complexity to solve this problem, in Section 6.3 we propose a

method to decouple the two constraints in the original problem, which will generate a

sub-optimal solution. The simulation of this method is planned in Future Work (Section

7.1)).

� 6.1 MIMO MSE

Suppose the MIMO channel has ni inputs and no outputs, and the corresponding linear

equalizer has no inputs and ni outputs. The equalization MSE of a MIMO channel can

be defined between each channel-input-equalization-output pair, and thus there are ni of

them. For example, the MSE between the lth channel input and the equalization output is

defined as

MSEl = E[(x
(l)
k − x̂

(l)
k−∆)

2
] (6.1)

As we will see soon, it is useful to define the following auto-correlation and cross-

correlation matrices in addition to Equations 3.35, 3.36, 3.37 and 3.38. Suppose the maxi-

mum channel length is Nc and the equalizer length is Nf .

The lth (Nf +Nc)× (Nf +Nc) input auto-correlation matrix is given by

Rx(l)x(l) = E[x
(l)
k+Nf−1:k−Nc

x
(l)H
k+Nf−1:k−Nc

] (1 ≤ l ≤ ni) (6.2)
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where

x
(l)
k+Nf−1:k−Nc

=


x

(l)
k+Nf−1

x
(l)
k+Nf−2

...

x
(l)
k−Nc


The lth channel’s input-output cross-correlation matrix is given by

Rx(l)y = E[x
(l)
k+Nf−1:k−Nc

yHk+Nf−1:k] = RxxH
H (6.3)

Denote 1∆ ≡ [0 0 · · · 0︸ ︷︷ ︸
∆

1 0 0 · · · 0︸ ︷︷ ︸
Nf+Nc−∆−1

]H . Then x
(l)
k−∆ can be rewritten as x

(l)
k−∆ = 1H∆x

(l)
k:k−Nf−v+1.

Furthermore, denote r
(l)
∆ = Rx(l)y1∆. Assuming that the source signals {x(l)} are stationary,

we have E[ x
(l)
k−∆

2
] = δ2

x(l)
, where δ2

x(l)
is the l(th)source signal power.

Using the above notations, Equation 6.7 can be rewritten as

MSEl = δ2
x(l) −wH · r(l)

∆ − r
(l)
∆

H
w + wHRyyw, (6.4)

The MSEtotal is used to measure the system’s overall performance, and is defined as the

sum the MSE of all input-output pairs, i.e., MSEtotal =
∑ni

m=1 MSEm. The MSE discussed

for the MIMO case In Section 3.1.3 is exactly the MSEtotal.

� 6.2 Problem Formulation and Visualization

In Chapter 4, the sparse equalizer design problem is formulated under a single MSE con-

straint. For the MIMO case we discussed in Section 3.1.3, it corresponds to minimizing

the equalizer coefficient l0-norm subject to a pre-defined MSEtotal tolerance. However, this

formulation is not applicable when specific MSE constraint is placed on several {MSEl}s.

In this section, we formulate the sparse equalizer design problem under two MSE con-

straints. Specifically, the MSEtotal is required to be less than a pre-defined value ξ, and the

MSEa is required to be less than another pre-defined value ξa. The MSEa denotes the MSE

constraint asked by a subset of users, and is equal to the sum of the MSEl for these users.
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Therefore, this problem can be formulated as

min
w
‖w‖0

s.t. MSEa ≤ ξa

MSEtotal ≤ ξtotal

or equivalently

min
w
‖w‖0

s.t. MSEa ≤ ξa

MSEb ≤ ξb

(6.5)

where MSEb is the sum of the MSEl for the users not in subset a, and ξb = ξ − ξa. From

Equation 6.7, we obtain

MSEa = δ2
x(a) −wH · r(a)

∆ − r
(a)
∆

H
w + wHRyyw

= MMSEa + (w −wMa)
HRyy(w −wMa),

(6.6)

where wMa = R−1
yy r

(a)
∆ , and the superscript (a) denotes the grouping of the users in a.

MSEb = δ2
x(b) −wH · r(a)

∆ − r
(a)
∆

H
w + wHRyyw

= MMSEb + (w −wMa)
HRyy(w −wMa),

(6.7)

where wMa = R−1
yy r

(a)
∆ , and the superscript (a) denotes the grouping of the users in a.

The problem is visualized in Figure 6-1. The two quadratic constraints correspond to

the two ellipses centered at wMa and wMb respectively. The ellipse sizes are determined

by the excess error allowance ξea and ξeb respectively. The excess error allowance is the

difference between the MMSE and the MSE constraint. The problem is find the most

sparse vector w∗ in the intersection of the two ellipses.

� 6.3 Sub-optimal Solution

Finding the most sparse vector w∗ in the intersection of the two ellipses shown in Figure 6-1

is NP-hard. There is no efficient algorithm on the l0-norm minimization problem under
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Figure 6-1: Visualization of the l0-norm minimization under two quadratic constraints

two quadratic constraints. In this section, we propose a low-complexity method that does

not search for the most sparse solution but can find a sparse solution in most cases.

The idea is to decouple the two constraint to two independent constraints so that we

can solve the two sub-problems independently. There are two parts in this method.

Part I

The equalizer filter coefficients are separated into two sets, wa and wb, where w = wa +wb.

wa is used to control MSEa and the other set is used to control MSEb. The goal of this

part is to find a valid separation that both the MSEa constraint and MSEb constraint are

satisfied. The process is visualized in Figure 6-2. Separating w into wa and wb is equivalent

to projecting the two ellipses onto two orthogonal lower-dimensional spaces. In Figure 6-2,

P and Q denote the dimensionality in wa and wb respectively, where N = P +Q.

In the following paragraph, we propose two methods to find the valid separation. One

is a numerical search algorithm and the other one is an iterative approach. Denote Uab as

the binary indicator vector to represent the separation, where the value 1 means the corre-
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Figure 6-2: Visualization of the constraints separation in the sub-optimal method

sponding coefficient is separated to wa and the value 0 means the corresponding coefficient

is separated to wb.

Figure 6-3 shows an example of the numerical search method for equalizer length N = 4.

Each generation in the tree represents a coefficient, and the left branch denotes that the

coefficient is separated to {wa} and vice versa. If the equalizer length is N , there are

2N leaves, and each leave represents a separation. When visiting a specific node, the

algorithm checks if the MSEa constraint and the MSEb constraint can both be satisfied. If

the constraint can be satisfied, we put indicator 1 in the leave and 0 otherwise. To show

that this indicator can help reduce the number of enumerations, we refer to the example

in Figure 6-3. The leave in the middle uses [w1 0 w3 0] to equalize the channel for the
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user set a, and uses [0 w2 0 w4] to equalize the channel for the use set b. Indicators 01

represent that the MSEa constraint cannot be satisfied, thus the first leave node can be

eliminated from the searching candidates because it can never achieve a better result than

the current leave. When the equalizer length N is larger, the indicators can help reduce

the computational cost.

Figure 6-3: The tree of feasible separation searching

Figure 6-4 gives the flow graph of the the iterative algorithm to find a valid separation

Uab in problem 6.9. The algorithm is initialized by wMMSE, the coefficients that minimizes

MSEtotal. The left rectangular takes the input coefficient values and finds the best sepa-

ration that minimizes the sum of MSEa and MSEb based on the given value. Then the

right rectangular uses the separation, and optimizes the coefficient values in wa and wb

individually. If the new coefficients wa and wb can satisfy the MSEa and MSEb constraint,

then the valid separation is given by the current Uab. At each step, the MSEa and MSEb

are non-increasing, so this algorithm is able to find the local optimal separation.
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Figure 6-4: Iterative approach for finding the valid separation in problem 6.9

Part II

Using this separation, the original problem is decoupled into two independent problems,

and we solve the two problems individually. Specifically, the two sub-problems are

min
wa

‖wa‖0

s.t. (wa −wMa)
HR(wa −wMa) ≤ ξea,

and

min
wb

‖wb‖0

s.t. (wb −wMb)
HR(wb −wMb) ≤ ξeb.

(6.8)

Note that both sub-problems are reduced to the l0-norm minimization problem under a

single quadratic constraint, and can be solved using the methods discussed in Chapter 4.
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The two sub-problems in 6.8 can be rewritten in a more compacted form

min
w
‖w‖0

s.t. (wa −wMa)
HR(wa −wMa) ≤ ξea,

(wb −wMb)
HR(wb −wMb) ≤ ξeb

wa = Uab. ∗ w

wb = (I − Uab). ∗ w

(6.9)

where Uab is the binary indicator vector which denotes the separation.

This sub-optimal approach fails when a valid separation does not exist. This means

that in Figure 6-2, the projection of the ellipses onto any two orthogonal sub-spaces is

empty. In this case, even when the two ellipses have intersections, i.e., the original problem

is feasible, the sub-optimal solution is unable to provide any optimal or non-optimal result.
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Chapter 7

Conclusion and Future Work

In this thesis, we have considered the design of discrete-time equalizers according to a

measure of the number of nonzero coefficients compared to a more conventional measure

based on the total number of filter coefficients. The measure of the number of nonzero

taps can be more closely aligned with the actual implementation cost . Using this measure,

we obtain equalizers with less number of nonzero elements, which we refer to as sparse

equalizers. Specifically, this thesis focuses on the sparse equalizer design for a class of

linear, time-invariant multi-path channels.

Chapter 2 of this thesis focused on the intrinsic sparsity of the multi-path channel

equalizers. We showed in Figure 2-1 that the ZF equalizer exhibits a sparse pattern for

sparse multi-path channels. We showed in Figure 2-2 that the FIR MMSE equalizers often

have a significant percentage of small coefficients. This becomes the basis of the sparse

equalizer design for multi-path channels with a small performance loss.

Chapter 3 of this thesis evaluated the equalization MSE under various channel and

equalizer specifications. We demonstrated that the LE MSE can be described by a quadratic

function for the four channel types, i.e., the SISO channel, the SIMO channel, the MISO

channel and the MIMO channel. Moreover, we showed that the DFE MSE can also be

described by a quadratic function. This extended the sparse filter design for the decision

feedback scenarios. Additionally, the dependency of the MMSE on the channel and equal-

izer specifications were investigated. Figure 3-7 indicated that the MMSE decreases with

the equalizer length N . Figure 3-8 verified the empirical optimal decision delay, which is

∆ =
Nc+Nf

2
. Figure 3-9 showed that the MMSE decreases with the channel SNR. Table 1

proved the optimal decision delay Theorems of the DFE.

Chapter 4 of this thesis formulated the sparse equalizer design problem under a single

MSE constraint. We defined it as an l0-norm minimization problem under a quadratic

constraint. For the scope of this thesis, three algorithms were presented to solve the sparse
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equalizer design problem. We discussed the advantage and the disadvantage of each method

and then verified them in Chapter 5.

Then in Chapter 5 we simulated the problem defined in Chapter 4. We plotted the

number of nonzero coefficients in the designed equalizer versus different channel specifica-

tions and equalizer specifications. These simulation results can be explained by referring

to Chapter 2 and 3. The most significant result is that the number of non-zero coefficients

decrease rapidly as the excess error ratio goes from 0 to 0.02. This indicates that a sparse

equalizer can be achieved with a very small MSE increase. This is related the discussion

in Chapter 2. We also found that the successive thinning algorithm presented in Chapter

4 produces the optimal solution in over 95% cases. Therefore, it would be a good choice

to use the successive thinning method instead of the optimal branch-and-bound approach

especially when the computational cost is a major concern.

Chapter 6 of this thesis developed the sparse equalizer design problem under two MSE

constraints required by two groups of users. We formulated it as an l0-norm minimization

problem under two quadratic constraints. There is no effective algorithm that is applicable

to this problem. We proposed a low-complexity algorithm that decouples the problem into

two subproblems. This method does not find the optimal solution but provides a possibility

to solve the problem.

� 7.1 Future Work

First, more research can be conducted on the channel. In this thesis, we focused on the

sparse filter design on sparse multi-path channels. It would be helpful to investigate the

sparse equalizer design for non-sparse channels and compare them with the results in this

thesis. Obtaining the general characterstics of channels that are suitable for the sparse

equalizer design is very important for the applications.

Second, from an optimization point of view, the development of algorithms to solve the

l0-norm minimization problem under one quadratic constraint is a potentially rich area for

future study. It may be possible to devise more efficient optimal algorithms by combining

the linear and diagonal relaxations in such a way that the new relaxation is stronger than
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either alone. It is also interesting to explore the sub-optimal heuristic algorithm by defining

new subset selection criteria.

Third, it is clear from Chapter 6 that an optimal algorithm for sparse filter design

under two quadratic constraint has not been developed. Moreover, the non-optimal solution

proposed in 6.3 requires simulations on the real data to evaluate its performance. It is also

intriguing to develop computationally efficient algorithms on finding the valid separation

Uab.

Last, the sparsity concept can be applied to other problems either in the scope of the

filter design or other applications beyond signal processing. For example, the sparsity mea-

sure can be extended to IIR filters. It can also be applied to sensor arrays since the array

elements can be expensive to manufacture or operate. Other applications include portfolio

optimization [22]. Adopting the sparsity measure can help improve the savings in compu-

tation, power consumption, hardware, or communication resulting from the elimination of

operations involving zero-valued coefficients.
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