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ABSTRACT

Incremental refinement algorithms can quickly produce approximate results and may then improve the quality of
those results in subsequent stages of computation. They offer promise for the development of real-time systems
whose performance degrades gracefully under diminishing hard deadlines. We present a new class of incremental
refinement algorithms which employ mixed-radix signal representations for the calculation of successive approx-
imations to the DFT. This class includes algorithms with a wide range of cost/quality tradeoff characteristics.
This work generalizes a previously reported class of algorithms which employ binary signal representations only.
The mixed-radix formulation allows solutions of a given level of quality to be achieved using significantly fewer
arithmetic operations in many instances. Under certain restrictions, these algorithms can also be implemented
with no computational overhead using fixed-point binary hardware.

Keywords: approximate processing, incremental refinement algorithms, successive approximations, discrete
Fourier transform, short-time Fourier transform, mixed-radix numbering systems, real-time systems

1 INTRODUCTION

The next generation of real-time signal processors will be called upon to perform increasingly demanding tasks
within complex and dynamically evolving environments. The success with which these systems are deployed will
depend upon their ability to respond to changing deadline times, variations in the complexity of computational
tasks, and fluctuations in the availability of computing resources. Established design techniques simply will not
scale to meet the demands of such systems, and new approaches! are required.

In the Systems and Artificial Intelligence communities there has been an increasing interest in the realization of
real-time systems through the use of approximate processing that allows systematic tradeoffs to be made between
resource usage and output quality. The goal of this approach is to enable systems to adapt their performance to
problem complexity, current deadlines, and resource availability. Such systems can continuously maximize their
performance within the constraints imposed by the currently available resources and, in this way, offer graceful
degradation of performance in adverse circumstances as an alternative to system failure. Much of this work 1s
reviewed in two recent publications.?? Of particular importance in this approach is that algorithms be available
that can quickly produce a usable approximation and can then improve its quality incrementally.

We are currently investigating incremental refinement algorithms for approximate digital signal processing
and have recently reported a family of algorithms? for computing successive approximations to the DFT. Based
upon a two’s complement binary encoding of the signal under analysis, these algorithms allow a wide variety of
tradeoffs between output quality and computational cost to be achieved in successive refinement stages. We have
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now extended these to a larger class of incremental refinement algorithms by considering a larger set of signal
representations. We show that this enables equivalent sequences of successive approximation to be obtained using
fewer arithmetic operations, and we describe a simple technique for efficiently implementing these algorithms
using fixed-point two’s complement binary arithmetic.

We begin by introducing the mixed radix complement representation, a class of numbering systems based on
the use of the radix complement convention in a mixed radix setting. In section 3 this numbering system is used
to develop a class of algorithms for incremental DFT refinement. A method for selecting the signal representation
which minimizes the number of arithmetic operations needed to produce a given level of output quality is derived
in section 4. Section 5 describes techniques for supporting mixed radix complement representations efficiently in
standard binary hardware. This is followed by a brief performance example.

2 MIXED RADIX COMPLEMENT REPRESENTATIONS

Consider the class of nonredundant, positional, and weighted mixed-radix numbering systems which employ a
fixed number of unsigned digits.>® Numbering systems in this class can be uniquely identified by the number
of digits used for each number, say D, and a D-tuple of radices associated with the digit positions, denoted
(mp-1,mp_2,...,m1, mg). Without loss of generality, we shall assume that the radix point is fixed directly to
the right of the least significant digit of this representation.* In any such system, a total of

D-1
Q=[] ma (1)
d=0
different numbers can be constructed from unique sequences of digits, which we denote zp_jzp_s ..., z120, With

z; €{0,1,2,...,m; —1} for 0 < i < D—1. Werefer to a digit sequence of this kind as a number and the quantity
that it represents as its value.

The conventional method for assigning a positive numerical value, which we denote as zt+, to each of these
digit sequences is according to the relation

¥ = zot =z omo+za(m omo)+...+zp_1(mp_s-mp_3z-...-my-mg)
D-1
= > zafa @)
d=0
where
1) dIO,
ﬁ""{H}’;émj, 1<d< D-1, (3)

This interpretation allows only unsigned quantities to be represented, and covers the range of integers [0, Q — 1].

Complement representations® can also be used within the context of mixed-radix systems. In particular, we
can employ a mized radiz complement interpretation that is analogous to radix complement in the fixed-radix
case.! Following radix complement, we define the value z of a mixed radix complement representation to be

_ [ at 0<at <(Q/2)—-1,
‘”"{x+—Q, Q2<it<Q@-1, )

This enables the representation of values in the range [-Q/2,@/2 — 1], generalizing the asymmetry of radix
complement representations for fixed radices. If we restrict our discussion to numbering systems for which mp_;

*This is because the value of a number whose radix point lies to the immediate left of its rth digit is always related to its value
with the radix point to the right of its least significant digit by a constant multiple.

tWe use the term “radix complement” to refer explicitly to fixed-radices, and prefix it with “mixed” when discussing the more
general class of representations.
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zaz1zo | 000 001 010 011 100 101 110 111 200 201 210 211 300 301 310 311
zt 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
z 0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 3 -2 -1

Table 1: The mapping of numbers to values in the (4,2,2) mixed radix system. Each number (a digit sequence
rax120) is shown with its unsigned value (%) and its mixed radix complement value (z).

is even, another expression relating numbers to their mixed radix complement value is:

D-1
r = a(l’d,d)ﬁd (5)
d=0
where
_l Y (d#D-1)v(0<y < (mp-1/2) - 1),
cwd={ I DI T, ®)

and fq4 is as defined in equation (3). The equivalence of (
illustrates the mapping of numbers to values for the (4,2,2
radix complement interpretations.

4) and (5) for even mp_; is easily shown. Table 1
) numbering system using both unsigned and mixed

3 INCREMENTAL REFINEMENT OF DFT
APPROXIMATIONS

The mixed radix complement representations described in the previous section offer a generalization of the more
familiar radix complement methods. As such, one can consider their use within the context of derivations for
which radix complement is suitable, but the broader class may offer some advantage. We propose to do just this
in the context of a class of methods for producing successive approximations to the DFT.

3.1 Successive approximations of the DFT

Suppose that the N-point signal frame z(n) is real valued, windowed to length N, < N, and encoded using
a D-digit mixed radix complement representation with radices (mp_1,mp—_2,...,m1,mg). We denote by x4(n)
the dth digit of the nth sample of z(n). For each value of 0 < d < D — 1, z4(n) can be considered an N-point
digit vector, indexed by n. With the requirement that mp_; be even, z(n) can be related to the digit vectors
z4(n), through equation (5), by

>
I

z(n) = a(zq(n),n)B4, 0<n<N-1 (7)
0

a
1}

The DFT of z(n) can then be expressed as

N-1 /D-1 L,
X(ky=3 (Z a(xd(n),d)ﬁd) eIHFE 0<k<N-1 (8)

n=0 \d=0
Using a backward differencing approach,”® we can produce an alternative expression for X (k):

D-1N-1

X(k) =3 > ga()Gra(k), 1<k<N-1 9)

d=0 n=0
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where

— (z (0)1d —a(zq(N - 1)»d)) n=0,
i) = { Sy - Dy iemen-1 o
and e—j?wkn/N
Gn,d(k) = ﬁdm (11)

The values of X (k) in equations (8) and (9) differ only in that the DC component of (9) has been lost in the
differencing operation of (10).

Following a derivation? which has been applied to binary encoded signals, we can use equation (9) as the basis
for defining a class of successive approximations to the DFT of z(n). The ith successive approximation, X;(k), is
defined to be

7‘,‘—1

D-1
Xik)y= > > ga(n)Gna(k), 1<k<c (12)

d=D-v; n=0

where the indexing bounds ¢;, 7;, and v; are control variable sequences which characterize the successive ap-
proximations. The control variables are naturally constrained by 1 < ¢; < N/2, 1 < r; < min(N,, + 1, N), and
1 < wv; < D. In order to achieve approximations of monotonically increasing quality, we also require that they be
nondecreasing with ¢ and that ¢;41 + 7i41 + vig1 > ¢ + 75 + v5.

The quality of each approximation obtained in this way is a function of the corresponding values of the control
variables. As with binary representations,® the frequency coverage of the ith successive approximation, denoted
qc,; and measured in radians, is

2me;
c,i = 1
Gei =~ (13)

and its frequency resolution may be shown to be approximately
Qri = T4 (14)

with ¢, ; being the number of resolvable frequency components in Xi(k). Assuming z(n) to be well-scaled with
respect to the uniformly divided quantization range [-Q/2, Q/2~—1], the noise introduced by reducing the effective
number of quantization levels can be shown to produce a SNR (in dB) of about

D-1

i =20 Y logmg (15)
d=D-v;

after the ith approximation.

3.2 Incremental DFT refinement algorithms

A proposed approach to the calculation of a sequence of successive approximations is the use of an incremen-
tal refinement algorithm which at each stage of computation improves the previous approximation via update
equations.* Each successive approximation of (12) is related to the previous one by:

. { Xio1(k) + Ci(k), cio1 <k <, (16)

X; =
Xio1(k) + Ri(k) + Vi(k), 1<k <cio,

where C;(k) is the coverage update, which is defined as

D-1 r
Ci(k) = Z ng(n)Gn,d(k), (17)

d=D-v; n=0
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R;(k) is the resolution update, which is defined as

D-1 T
R(k)= Y 3 gan)Gnalk), (18)

d=D-v; n=r;_1+1
and V;(k) is the SNR update, which is defined as

D-v;_1-1 ri

Vi) = > Y 9a(n)Gaalk). (19)

d=D-v; n=0

Here, ¢co = 79 = v9 = 0 and Xo(k) = 0 for all k. Using stored pre-computed values for the terms of the above
summation, and omitting those terms for which g4(n) = 0, the update equations through stage ¢ may be directly
evaluated at a computational cost of

ki = 2¢irivi%i (20)
where
1 D-1 r;—1
Y= Z Z (1—6(ga(n))) (21)
e d=D-v; n=0

k; represents the total computational cost of generating X;(k) from X (k) and has the units of real additions.* It
is a function of 7;, the fraction of non-zero elements in the portion of g4(n) over which computation is performed,
which is itself defined using the Dirac unit impulse function. This algorithm requires that 25:_01 (mg—1)NyN real
values be pre-computed and stored in memory. By replacing each addition operation with a scaling (by shifting
the radix point) and a real addition, the storage requirement can be reduced to maxo<q<p—1(ma — 1)Ny N real
values.

3.3 Frequency reversal for mixed radix complement representations

A primary characteristic of these incremental refinement algorithms is the dependence of their quality/cost
tradeoffs on the signal data. Their computational cost has been observed to vary according to the frequency
content of the signal under analysis, and a frequency reversal technique!®® has been proposed which reduces the
cost of analyzing signals with significant high-frequency energy. This technique can be applied when using mixed
radix complement representations, however some additional issues should be addressed.

The frequency reversal technique was originated in the context of single-digit signed digit signal representa-
tions. In it, the signal under analysis is multiplied by the signal (—1)", causing the frequency spectrum from 0
to 7 rads to be effectively flipped about 7/2 rads. When computationally advantageous, spectral analysis is then
performed on the modulated signal instead of the original, and the results reordered to correct for the frequency
reversal.

Direct application of this approach when using mixed radix complement representations can be problematic
because the individual digit vectors z4(n) are comprised of unsigned digits only. Thus, multiplication of each
digit vector by (—1)" results in a signal that can no longer be represented in mixed radix complement form. An
alternative method of performing frequency reversal is available, however, which does not require multiplication
by —1. We define the mixed radix complement frequency reversed signal r4(n), for fixed 0 < d < D — 1, as:

z4(n), n even,
ra(n)=4¢ _ (22)
z4(n), n odd,

*The computation required for producing g4(n) from z4(n) is omitted from this metric for simplicity.

422/ SPIE Vol. 2563

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 01/30/2013 Terms of Use: http://spiedl.org/terms



where T is the complement of the digit z (i.e. z4(n) = (mq — 1) — z4(n)). The signal r4(n) can be equivalently
expressed as
N1
ra(n) = za(n)(=1)" + ma »_ 6(n — 20— 1) (23)
1=0
Restricting N to be even, we can derive the relationship between X4(k), the DFT of x4(n), and R4(k), the DFT
of r4(k) from equation (23):

Z

- N-1
Ra(k) = xd(n)(~1)"e‘f%kn +my Z
0 n=0
N-1
= Xa((k+ N/2) mod N) + my Z o= Rk

n=0

= Xa((k+ N/2) mod N)+mdg(6(k)—6(lc—N/2)) (24)

N/2-1
Z é(n — 21— l)e_j%rk"
1=0

n

We see that the frequency spectrum obtained from r4(n), is a frequency reversed version of X4(k), with a constant
factor added to the highest and lowest frequency measurements. Thus, when N is even, by using the complement
operation as in equation (22) we can obtain the full benefits of the frequency reversal technique while maintaining
the unsigned digit representation for z4(#n).

4 EFFICIENCY ANALYSIS FOR RADIX SELECTION

The numbering system used for signal representation with this approach to incremental DFT refinement is of
fundamental importance to the cost/quality tradeoff achieved in successive refinement stages. To motivate our
analysis of their relationship, we begin with a brief example. Consider an initial approximation to a DFT with
N = 256 and N,, = 128, for which ¢.; = 7/8 rads, ¢, = 32 components, and ¢,1 = 12 dB. Using two’s
complement binary format signal representation, (i.e. Vd : mq = 2), we derive from equations (13)-(15) the
control values ¢; = 16, r; = 32, and v; = 2. Assuming the signal under analysis to be comprised of independent
and uniformly distributed values, we put 93 = 0.5. The computational cost of performing this approximation is,
by equation (20), k; = 1024 additions. A mixed radix complement representation, radix (4, 2,4) say, can also be
used to represent the signal frame, and an identical first approximation can be computed from it using the control
values ¢; = 16, r; = 32, and v; = 1. Again assuming the signal frame to possess an independent and uniform
distribution of quantization levels, we let 41 = 0.75. This approximation can be computed for only k; = 768
additions, a reduction in cost of 25%.

This example hints at the importance of proper radix selection for efficient computation and leads us to ask:
what signal representation minimizes the total number of arithmetic operation needed to produce an approxima-
tion of a given quality? Under assumptions similar to those made in our example above, this question is answered
definitively by the following theorem.

THEOREM 1. Fiz i as any positive integer. Put q.;, ¢ri, and ¢, ; as the approzimation quality achieved in
frequency coverage, resolution, and SNR after i successive approrimations to the DFT have been performed using
the algorithm described in section 3. Let @ be the total number of signal quantization levels incorporated through
stage 1 so that q,; = 20log Q. Assuming the signal under analysis to be independent and uniformly distributed
across quantization levels, the total computational cost of achieving a solution of the quality given by qci, qr;,
and ¢, ; s minimized by refining over a single digit vector of the mized radiz complement signal representation
with mo = Q.

ProOF: We begin by remarking that each mixed radix numbering system that represents a signal uniformly
quantized to @ levels is defined by a tuple of radices which form an integer factorization of Q. So, let us denote
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by Mg the set of all factorizations of @ over N\{1}, where each m € Mg is a D-tuple (for some D > 0) of

integer factors m = (mp_1,mp_2,...,mg) so that Q = Hd—o mgq. Since we are considering the computation
only through stage 7, no generality is lost by assuming that all digit vectors are used through stage i. Thus, we
put v; = D.*

Under the assumptions for signal value distribution, the fraction of non-zero elements in g4(n) is

Yi = DZ d_l (25)

Using equation (20) with fixed ¢; = (N/27)q. i, 7i = ¢r,i, and v; = D, we see that

k_czmd‘l (26)

for some constant C' dependent upon q.;, ¢r;, and ¢, ;. Our challenge is to minimize equation (26) uniquely. We
will identify its minima by demonstrating, equivalently, that for all @, the function

md—l

k(m) = 3 — - (27)

d=0

is minimized over Mg by m = (Q).

Since k has no dependence on the ordering of factors in m, we will consider all factorizations which are
reorderings of the same factors to be equivalent and, without loss of generality, consider as canonical those
D-tuples for which mg > my_; and restrict our discussion to them.

Let us denote by smg the subset of Mg which contains all factorizations of @ with D factors, and denote by
mp an element of QRD We will first establish the form of m7,, the factorization that minimizes k over each ﬂﬁD

Put p, for 0 < n < N — 1 as prime factors of @ (with repeats) so that p, > p,—1 and Q = Hn o Pn. Obv10usly,
me # 0 for 1 < D < N. We claim that

N-1
min _k(mp) = k(m}) with mp, = ( H Pn | ,PD-2,PD=3,-..,P0) (28)
mDEmg n=D-1
This will be shown by comparison of k(mj,) with k(m},), where m}, # mj, = (my,_,,mp_,,...,mpy) € MY.
Now,
p-1 _, | ) —1 D-2
m/, —1 ( n=D- 1p" pn—1
ki) — Hmp) = ( : )— . sy el
dg mii H :D—l Pn 7;) Pn

3

D-1 D-2
1 1
d=0 md n_D 1Pn n= 0p
1 b=z
(BN (E )
ngDl—lp" (r;) pn) (d D-1 m,

Since pp_s,...,po are the smallest prime factors of @, then p; < m} for 0 < ¢ < D — 2. Further, the strict
inequality must hold for at least one of these, because m}, # m/,, Consequently.

S 1 + 1
N-1 e
Hn:D— 1Pn mo
> 0 (29)
*Obviously, if further improvement in SNR is subsequently performed, additional digit vectors may be present in the signal

representation.
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The last step is based on the observation that m{ < H _D 1 Pn, and finalizes our proof of the claim (28).

Having established the member of 9318 which minimizes k, we will now demonstrate that mj}, are ordered in
D, and specifically that
k(m}) < k(m}p ;) when MG # 0, MO+ # 0 (30)

This can be shown directly as follows:

>

-1 D-2
1 1 1 1
(D+1)—T‘ _)*(D—N_—- —)
( Hn:Dlp” 0 Pn Hn:[l)-—lp" n=0 Pn
_ 1 -pp_1 1
= 1= N-1 -
H =p-1Pn  PD-1
(1411 pn) (o-s = 1)
N-1

Hn:D—lpn

> 0 (31)

k(mp 1) — k(mp)

a,
I

This assertion relies only upon the fact that p, > 1 for 0 <n < N — 1, and proves claim (30). Clearly, from (28),
VQ :3m} = (Q) € 9)1%3 This m7 is shown in (30) to minimize k over all Mq. This radix also minimizes k;, and
the theorem is proved. |

The implications of this theorem for radix selection are quite clear. To minimize computational cost, one
should always use the largest radix representation which provides the desired quality in SNR. Thus, when a
refinement stage with an improvement of SNR of greater than 6 dB* is desired, a higher radix representation
will always offer an improvement over the use of a binary signal representation. How much of an improvement
can we expect? A simple efficiency analysis can be performed by restricting our consideration only to fixed-radix
representations. Suppose we are computing an approximation with the quality ¢.;, ¢,;, and ¢, ; for some ¢,
and let @ be defined as in the theorem. Suppose we are using a radix-p representation, so ) = p’'. Again
assuming the signal frame to be comprised of an independent and uniform distribution of quantization levels, we
let v; = (p — 1)/p. It can then be easily shown that

p—1

k;, =C
plogp

(32)
for some constant C' that depends on ¢.;, ¢ri, and ¢,,;. This expression allows numeric comparisons of the
relative cost of various (fixed) radices to be made. These costs are shown in Fig. 1 for radices 2 through 32, with
the cost incurred using binary encoding normalized to unity.

5 MIXED RADIX COMPLEMENT ARITHMETIC USING
FIXED-POINT BINARY HARDWARE

Donald Knuth has observed® that the number ...azasajap in unsigned radix p is equivalent to the number

..Z3ZoZ1Zo in unsigned radix p* where each x4 has the same value as the number ayg4y—1-..@uds+1¢uq has in
radix p. A similar equivalence exists between mixed radix complement representations with power-of-two radices
and two’s complement binary. This relationship can be exploited to achieve the flexibility and efficiency of higher
radix representations when using general purpose two’s complement fixed-point binary hardware.

Consider the D-digit mixed radix complement representation of the value z in a numbering system with
qa =2% for 0 < d < D-1and ug € N, and put @ as in equation (1). This number zp_12p_2...2o can

*20log2 ~ 6 dB is the increase in SNR when an additional binary digit vector in the approximation.
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Relative Cost for Computing a Solution of a Given Quality
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S o4l
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O 9 1 1
2 4 8 16 32
Radix

Figure 1: The predicted relative costs of obtaining a solution of a given quality using various fixed-radix repre-
sentations. These costs were obtained using the relation (p — 1)/plogp and normalized. The numerical values
obtained for radices 2, 4, 8, 16, and 32 are shown.

be encoded as a binary number where each of the digits z,4 is represented by a group of u4 bits as follows. Let
ap-1ap—2...ap be a binary number containing of B = log, @ bits. Using the mapping suggested by Knuth, we
formally define the values of these bits so that

satuqg—1
Tq = Z ab2b““ (33)

b=sy4

where sq = log, 84. The bits as,4u,—1--.as,41a5, are the unsigned binary representation of the digit z4. A
diagram of the relationship between the mixed radix complement representation, the binary representation, and
mgq, uq, and sq is given in Fig. 2.

To establish the equivalence of this mapping with respect to the mixed radix complement and two’s complement
binary representations, we must show that the mixed radix complement value, z, of zp_12p_2... 2 is equal to
the two’s complement binary value, a, of ag_1ag_» ...ag. This can be done using the relation mapping digits to
value given in equation (5):

a = Za(ab,b)fzb
b=0
D—-2 sgtuqg—1

= a(ap_y,B-1)28"1 4 Z ab2b—|—Z > a2

b=sp_1 b=s54-1
= a(ap_1,B-128"1 + Z ab2b+2a(xd, (34)
b=sp_1

The function 84 used here is the one associated with the numbering system for zp_1zp—-2...xo. Now,ifag_1 =0,
then zp_1 < mp_1/2, and consequently

B-2 B-1
alap-1, B — 1)2B_1 + Z a2t = Z ap2’
b=sB_-1 b=sp_1
= oa(zp-1,D—-1)Bp_1 (35)
Else, agp_1 = 1,80 zp_1 > mp_1/2 and
B-2 B~
alapo, B-12871+ Y @2 = 28714 N a2
b=sp_1 b=sp-1
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4; 33,3, 23 2, Ay Ay

[ — N Sy—
X3 X, X Xp
m3=4 my=8 m;=2my=4
U3=2 l12=3 U1=1 l10=2
$3=6  $,=3 ;=2 s4=0

Figure 2: The relationship between the digits z3 ...z of a (4,8, 1,4) mixed radix complement number, its mapping
into a binary number a7 ...ajap, and the variables used in the text to describe the mapping.

B-2
— 2B—1+ Z ab2b _2.3

b=sp_1
(tp-1 —mp-1)Bp_1
= a(zp-1,D-1)fp-1 (36)

Considering equations (34)-(36) in conjunction with equation (5), it is apparent that a = ZdD;[)l a(zy,d)fq = .

The equivalence of value maintained through the mapping of equation (33) establishes an isomorphism between
arithmetic operations on mixed radix complement and two’s complement binary representations. As long as the
conventions of two’s complement binary arithmetic are observed, such as extension of the sign bit to the MSB of
the word, the two numerical representations can be considered equivalent, and the results from any mathematical
operation can be interpreted in either. In this way, mixed radix complement numbers can be stored in binary
encoded form and used directly in binary calculations by grouping bits together. The results may be interpreted
in mixed radix complement by selecting groups of bits in a similar manner.

6 EXAMPLE

The computational efficiency of higher radix representations has been verified by applying our algorithms for
incremental DFT refinement to the approximation of the discrete STFT.!! A recording of a flute playing two
successive notes (sampled at 8 kHz and quantized to 256 levels) was represented in radix 4 and analyzed by
applying a sequence of four DFT approximations to each STFT signal frame. The quality of these successive ap-
proximations was q.; = (657/128,757 /128,857 /128,957 /128), ¢, ; = (45, 85, 85,120), and ¢, ; = (12,12,12,12).
The STFT parameters used were N = 256, L = 64, and N,, = 128 (rectangular windowing was applied). The
results of these approximations, shown in Fig. 3(a)-(d), each required about 55% of the arithmetic operations
required to produce results of the same quality using a binary signal representation.*

We have previously reported* an analysis of the same signal using a binary signal representation. In comparison
with those results, the last two approximation stages here produce identical results at a significantly reduced total
cost. The first and second stages generate results of higher quality but require more computation. The use of
radix 4 makes the quality increments of 6 dB used in the previous example unrealizable, highlighting an important
tradeoff inherent in the mixed radix framework. While higher radix representations are more efficient overall,
using them requires that a sacrifice be made in the granularity of the quality increments. In order to achieve fine
gradations in SNR, less efficient smaller radices must be used.

*This percentage is predicted by equation (32) to be 75%. The difference between the predicted and observed values is due to the
pessimistic assumption of an uncorrelated signal in equation (32)’s derivation.
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Stage 1 — 14% Cost Stage 2 ~ 31% Cost
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Figure 3: Incremental refinement of STFT approximations based on a radix-4 signal representation. STFT
magnitude is shown and net computational cost is given as a percentage of the number of arithmetic operations
required for FFT-based exact STFT analysis. (a) Result of stage 1: initial approximation. (b) Result of stage 2:
refinement in coverage and resolution. (c) Result of stage 3: refinement in coverage. (d) Result of stage 4:
refinement in coverage and resolution.

7 CONCLUSION

We have presented a new class of algorithms for computing successive approximations to the DFT. These algo-
rithms utilize mixed-radix signal representations as opposed to the binary signal representation of our previously
reported algorithms for incremenetal DFT refinement. We have shown that the mixed-radix signal representations
leads to greater computational efficiency. Techniques for implementing these algorithms using general purpose
computing hardware were also described. The work was motivated by the growing need for approximation al-
gorithms with incremental refinement properties for the development of real-time signal processors that perform
demanding tasks in complex and dynamically changing environments.
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