
A C++ SOFTWARE ENVIRONMENT FOR THE DEVELOPMENT OF
EMBEDDED SIGNAL PROCESSING SYSTEMS

Joseph M. Winograd and S. Hamid Nawab

ECS Department, Boston University, Boston, MA 02215

ABSTRACT

A new environment for the rapid development of embedded
signal processing software is described. The environment
encourages incremental design via modular and hierarchi-
cal structuring of applications, and additional features are
included which support the prototyping, testing, implemen-
tation, and integration stages of the system design cycle.
Written in C++, the environment is comprised of a script-
ing language for the definition of system components and
a class library which includes a basic application frame-
work. Support is provided for incorporating both numeric
and symbolic signal representations, as well as integrating
multiple signal processing techniques within a single appli-
cation. A sophisticated control mechanism allows dynamic
scheduling of signal processing operations according to algo-
rit hmically defined schema. Signal processing applications
developed in this environment are themselves objects, and
are suitable for embedding within a larger overall system.

1. INTRODUCTION

This paper describes a new software environment for the
rapid development of embedded signal processing systems
which offers a unique combination of features with respect
to currently available design tools such as Ptolemy [l], ADE
[a], and Matlab [3]. The environment presents a unified
platform in which embedded signal processing applications
which require sophisticated control can be designed, proto-
typed, tested, and implemented. In particular, this can be
accomplished without the need for the labor intensive and
error prone steps of manual format conversion and design
reentry which are inevitable when incompatible tools are
required for different stages of a system’s design cycle. An
object-oriented design philosophy is employed throughout
the environment, enabling applications to be constructed
and tested in an incremental manner. The environment
has been used to develop systems employing the IPUS sig-
nal processing model [4], and has therefore been entitled
the IPUS C++ Platform (ICP).

This work was sponsored in part by the Department of the
Navy, Office of the Chief of Naval Research, contract number
N00014-93-1-0686 as part of the Advanced Research Projects
Agency’s RASSP program. It was also sponsored in part by the
Rome Laboratories of the Air Force Systems Command under
contract number F30602-91-C-0038.

2. SOFTWARE DETAILS

ICP has been written using the C++ language and was de-
veloped and tested with the GNU g++ compiler on a Sun
670MP platform. C++ was selected for its efficiency, porta-
bility, reverse compatibiiity with the C language, and the
potential for porting applications to DSP hardware through
the use of target independent C++ to C translators (such
as one of the widely used derivatives of AT&T’s cfront [5])
in conjunction with C language cross-compilers.

ICP provides a library of base classes with a rich set
of default behaviors. Mechanisms are provided for all sys-
tem level features such as execution of control plans, in-
vocation of signal processing algorithms, and organization
of shared data objects. The construction of a signal pro-
cessing application is a process of deriving concrete objects
with application specific behaviors from these base classes.
The application developer must define signal representa-
tions, signal processing algorithms, and application specific
control strategies. The resulting signal processing system
is itself an object, and is suitable for embedding within a
larger overall software system.

A scripting language based on the C++ pre-processor’s
macro facility has been developed which simplifies the pro-
cess of constructing an application. Defined by a formal
production grammar which may be considered an extension
to that of the C++ language, it facilitates the derivation
of software components through the use of natural, direct
statements. We have found it to enhance code readability,
greatly reduce the amount of keyboard entry required for
coding a system, and reduce the amount of C++ knowledge
required by system implementors. A source code segment
using this scripting language is given in Fig. l(a). Because
it is directly parsed and compiled, no additional translation,
conversion, or code-generation steps intervene between the
high-level system design and the testing and integration
stages of development.

Central to the design of an ICP application is the ap-
plicate’on class which serves as the framework within which
all other system components are instantiated. The appli-
cation class provides a basic interface between the signal
processing sub-system and external software components.
It may be directed to process signals from one or more sig-
nal sources and will provide the results of processing along
with information about the signal processing system’s cur-
rent internal state. It also provides a trace facility which
allows all internaI structures and operations to be displayed
in textual and graphical form at runtime for performance

271 5
0-7803-2431 6/95 $4.00 0 1995 IEEE

monitoring and testing. We have used these facilities to
implement an X-Windows front-end for the interactive ex-
ecution and testing of ICP applications.

3. ARCHITECTURAL MODEL

The basic system model employed within ICP is that of
a collection of independent signal processing algorithms
which are invoked according to algorithmically defined con-
trol plans. In addition to supporting standard signal pro-
cessing architectures, this paradigm allows the development
of systems which may alter their processing activities in re-
sponse to conditions such as fluctuating system resources,
requests from other system components, or the results of
their own calculations.

This flexibility is provided through the use of a con-
trol mechanism (or planner) based on the RESUN control
paradigm [6]. The planner allows for both strategic (plan-
based) and opportunistic (reactive) control to be applied.
The strategic component is based on an application specific
goal/plan/subgoal hierarchy (referred to collectively as con-
trol plans) in which all system goals are explicitly submit-
ted to the planner and may be addressed by either a single
algorithm or decomposed into an algorithmically defined
sequence of further subgoals. Fig. l (b) shows a schematic
diagram of a portion of the control plans for the radar signal
analysis application described in section 4. The opportunis-
tic component of control is provided by daemon-like refocus
units, which are objects that may be instantiated from any
point in the system and are invoked to redirect control flow
whenever a specific pre-condition arises in the system.

ICP’s architectural model casts the process of generat-
ing the output associated with a given input signal as a
series of transformations between multiple abstract signal
representations [7] . These representations may be strictly
numeric, such as raw signal data or the results of a DFT,
or symbolic, as in the determination of a radar return cell
as background noise, clutter, or target. All signal represen-
tations are stored on a global, hierarchical blackboard data
structure [8].

4. APPLICATION

We have used ICP to construct a system for the analy-
sis of radar signals based on techniques from [9, 10, 111.
The problem addressed by the system is the detection and
separation of clutter patches of homogeneous probability
distribution within range-azimuth returns of a non-imaging
radar. The input to the application is a record of the am-
plitude of radar pulse returns across a partitioned range-
azimuth plane. Its output is a list of homogeneous patches,
each described by their boundary and a characterization of
their distribution.

The application incorporates four signal representa-
tions, each derived from the ICP signal representation base
class. Instances of these objects are maintained in separate
areas of the blackboard-structured database which we refer
to as the return, map, region, and patch levels. The return
level representation contains the input to the system-raw
radar return data. The map representation contains a bi-
nary mapping of each return cell to a label of either clutter

or clear. Each instance of the region representation de-
scribes a region of contiguous clutter cells within a map
level signal. The patch level representation describes an
area of contiguous clutter cells with homogeneous proba-
bility distribution and forms the output of the application.
Graphical displays of these representations, generated using
the trace facility of ICP, are shown in Fig. 2(a)-(d).

Algorithms for producing these successive representa-
tions of the radar data have been adapted to a control
strategy for signal reprocessing [4] and encoded as a set
of control plans. Within these plans, the map representa-
tion is produced from the return representation by appli-
cation of a technique from [9] in which the parameters to
a series of morphological operations are iteratively refined
until satisfactory segregation of clutter regions from back-
ground noise is achieved. Clutter regions are produced from
the map representation using a recursive nearest-neighbor
region growing algorithm. Patch level representations are
produced Gom the clutter regions through the use of Oz-
turk’s algorithm [lo] for distribution estimation. Statisti-
cal characterizations are made independently for a series of
non-overlapping 10-by-10 cell tiles within each clutter re-
gion to detect possible homogeneous patches. The results
of that analysis are subjected to a series of practical con-
straints on patch geometry and reprocessing is performed
with alternate tilings to verify and refine patch boundaries.

5. RELATION TO OTHER WORK

In order to distinguish ICP from other tools which might
be employed during the development of an embedded signal
processing system, we present in Table 1 a list of key design
elements of ICP and indicate their presence (or absence) in
selected tools from the commercial and research communi-
ties. I t should be noted that each of these tools provide
additional features not available in ICP and that complete
evaluations are beyond the scope of this report.

We have already pointed out several benefits of taking
an object-oriented approach to the design of complex signal
processing systems. The application of this design philoso-
phy to signal processing domains was pioneered by a series
of projects at MIT which culminated in the development
of the ADE system [Z]. A focal point of this work was the
development of a well-defined concept of the “signal as ob-
ject.” Related work by Milios and Nawab [7] proposed the
use of numeric and symbolic representations for encoding
signals in a hierarchy of levels of abstraction, as is done by
ICP.

In ADE, the automation of certain design tasks is facil-
itated by the symbolic encoding of properties of the com-
ponent systems. This property based analysis provides a
higher level of description (using a metalanguage) than that
provided by an input-output relation or algorithmic de-
scription of a system, simplifying ADE’s automatic rear-
rangement of composite systems. A strong analogy may
be drawn between this metalanguage and the hierarchical
RESUN control structure adopted by ICP. Each algorithm
which performs a transformation between signal representa-
tions (i.e. a system, in the classical sense) is declared in the
scripting metalanguage of ICP to fulfill a specific subgoal in
the control plans. This information is used by the planner

271 6

DESIGN TOOLS
ADE I Matlab I Ptolemy 1 ICP SYSTEM FEATURES

Table 1: Comparison of features of tools for the design of embedded systems for signal processing.

to make its scheduling decisions; in this sense performing
a similar task to that done by ADE, but dynamically, at
run-time.

The Matlab [3] system provides an interactive environ-
ment for prototyping and testing of system components.
One important feature shared by Matlab and ICP is the
support for graphical display of signals during debugging
sessions. The data-intensive nature of most signal process-
ing applications can make text-based error diagnosis a dif-
ficult task. The ability to perform data visualization at
all stages of processing can greatly simplify this procedure.
Notably lacking from Matlab, though, is support for object-
oriented design and the migration of prototypes outside of
the interpreted Matlab environment.

Ptolemy [l] represents the current state-of-the-art of de-
sign tools for signal processing systems. It fully embraces
object-oriented design principles using C++, supports ab-
stract signal representations through object polymorphism
in a similar manner to ICP, and offers a graphical meta-
language for system design. This graphical interface, ad-
ditionally, allows visualization of signal data during sys-
tem testing. Most notable, however, is that the Ptolemy
system was designed to support a wide range of computa-
tional and control paradigms. It, thus, differs in scope from
ICP, which, by design, provides only one. The difference
in code size of Ptolemy (-500K lines of source) and ICP
(-12K lines of source) highlights this difference. Further,
Ptolemy supports neither the RESUN control paradigm nor
the blackboard database model used by ICP, although it
could potentially be extended to do so.

[a] M. M. CoveU, C. S. Myers, and A. V. Oppenheim.
Computer-aided algorithm design and rearrangement.
In A. V. Oppenheim and S. H. Nawab, editors, Sym-
bolic and Knowledge-Based Signal Processing, pages
30-87. Prentice-Hall, Englewood Cliffs, N J, 1992.

[3] The Mathworks, Inc., Natick, MA. Matlab User’s
Guide, August 1992.

[4] S. H. Nawab and V. Lesser. Integrated processing and
understanding of signals. In A. V. Oppenheim and
S. H. Nawab, editors, Symbolic and Knowledge-Based
Signal Processing, pages 251-285. Prentice-Hall, En-
glewood Cliffs, NJ, 1992.

[5] CenterLine Software, Inc., Cambridge, MA. AT&T
Ci-+ Language System, 1990.

[6] N. Carver and V. Lesser. A planner for the control of
problem-solving systems. IEEE Trans. on Sys., Man,
and Cybernetics, 23(6):1519-1536, 1993.

[7] E. E. Milios and S. H. Nawab. Signal abstractions in
signal processing software. IEEE Trans. Acoust. Speech
and Signal Processing, 37(6):913-928, June 1989.

Blackboard systems for
knowledge-based signal processing. In A. V. Op-
penheim and S. H. Nawab, editors, Symbolic and
Knowledge-Based Signal Processing, pages 205-250.
Prentice-Hall, Englewood Cliffs, NJ, 1992.

A New Approach to Radar Detection
Based on the Partitioning and Statistical Character-
ization of the Surveillance Volume. Ph.D. dissertation,

[8] N. Carver and V. Lesser.

[9] M. Slamani.

Syracuse Univ., 1994.
[lo] M. Rangaswamy et al. Signal detection in correlated

Gaussian and non-Gaussian radar clutter. Technical
Report RL-TR-93-79, Rome Laboratory Air Force Ma-
terial Command, Griffiss Air Force Base, NY, May
1993.

6. ACKNOWLEDGMENTS

The authors gratefully acknowledge the contributions of
Erkan Dorken and Iftekhar Mahmood, who adapted and
implemented the radar clutter analysis application in ICP,
and Michael Bosse, who authored the X-Windows interface.
Thanks also to Norman Carver and Victor Lesser for con-
sultations on RESUN and IPUS.

[11] D. Weiner. Private communications, 1991.

7. REFERENCES

[l] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt.
Ptolemy: A framework for simulating and prototyping
heterogeneous systems. Int. J . Comp. Sim., 4:155-183,
April 1994.

271 7

DEFINE-NP-PLAN(DiscrepancyDetectioWpLevel.
P I D - D I S C R E P A N C Y - D E T E C T I O N - W - L W ,
SGID-HAVf_DISCREPANCY-DETECTION.
"SOU-*', Fint.)

BEGIN-IN-CONSTRAINT~(DiscrepancyDetectionMapLevel)
if (inputs.length0) {

inputs.resetFirst0;
return (((SOU *) inputs.item())->hypothesis->levelO

1
else I

return 0;
1

== MAP-LEVEL) ;

END-IN-CONSTRAINTS

BEGIN-SCHEMA(DiscrepancyDetectionMapLevel 1
STEP (1)

STEP(2)
posti(SGID-HAVj-CELLS-RECOVERED, getInput0)

setoutput((void *) ST-CONTINUE-REPROCESSING_LOOP 1 ;
setstatus (ST-FINISHED 1 ;

END-SCHEMA

Figure 1: (a) Source code for the definition of a short control plan schema using the scripting language. (b) Diagram of a
portion of the goal/plan/subgoal hierarchy from a radar clutter analysis application.

(c) (4
Figure 2: Graphical output of radar clutter analysis application developed in ICP. (a) Return level (b) Map level (c) Region
level (d) Patch level.

2718

