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ABSTRACT 

A new environment for the rapid development of embedded 
signal processing software is described. The environment 
encourages incremental design via modular and hierarchi- 
cal structuring of applications, and additional features are 
included which support the prototyping, testing, implemen- 
tation, and integration stages of the system design cycle. 
Written in C++, the environment is comprised of a script- 
ing language for the definition of system components and 
a class library which includes a basic application frame- 
work. Support is provided for incorporating both numeric 
and symbolic signal representations, as well as integrating 
multiple signal processing techniques within a single appli- 
cation. A sophisticated control mechanism allows dynamic 
scheduling of signal processing operations according to algo- 
rit hmically defined schema. Signal processing applications 
developed in this environment are themselves objects, and 
are suitable for embedding within a larger overall system. 

1. INTRODUCTION 

This paper describes a new software environment for the 
rapid development of embedded signal processing systems 
which offers a unique combination of features with respect 
to currently available design tools such as Ptolemy [l], ADE 
[a], and Matlab [3]. The environment presents a unified 
platform in which embedded signal processing applications 
which require sophisticated control can be designed, proto- 
typed, tested, and implemented. In particular, this can be 
accomplished without the need for the labor intensive and 
error prone steps of manual format conversion and design 
reentry which are inevitable when incompatible tools are 
required for different stages of a system’s design cycle. An 
object-oriented design philosophy is employed throughout 
the environment, enabling applications to be constructed 
and tested in an incremental manner. The environment 
has been used to develop systems employing the IPUS sig- 
nal processing model [4], and has therefore been entitled 
the IPUS C++ Platform (ICP). 

This work was sponsored in part by the Department of the 
Navy, Office of the Chief of Naval Research, contract number 
N00014-93-1-0686 as part of the Advanced Research Projects 
Agency’s RASSP program. It was also sponsored in part by the 
Rome Laboratories of the Air Force Systems Command under 
contract number F30602-91-C-0038. 

2. SOFTWARE DETAILS 

ICP has been written using the C++ language and was de- 
veloped and tested with the GNU g++ compiler on a Sun 
670MP platform. C++ was selected for its efficiency, porta- 
bility, reverse compatibiiity with the C language, and the 
potential for porting applications to DSP hardware through 
the use of target independent C++ to C translators (such 
as one of the widely used derivatives of AT&T’s cfront [ 5 ] )  
in conjunction with C language cross-compilers. 

ICP provides a library of base classes with a rich set 
of default behaviors. Mechanisms are provided for all sys- 
tem level features such as execution of control plans, in- 
vocation of signal processing algorithms, and organization 
of shared data objects. The construction of a signal pro- 
cessing application is a process of deriving concrete objects 
with application specific behaviors from these base classes. 
The application developer must define signal representa- 
tions, signal processing algorithms, and application specific 
control strategies. The resulting signal processing system 
is itself an object, and is suitable for embedding within a 
larger overall software system. 

A scripting language based on the C++ pre-processor’s 
macro facility has been developed which simplifies the pro- 
cess of constructing an application. Defined by a formal 
production grammar which may be considered an extension 
to that of the C++ language, it facilitates the derivation 
of software components through the use of natural, direct 
statements. We have found it to enhance code readability, 
greatly reduce the amount of keyboard entry required for 
coding a system, and reduce the amount of C++ knowledge 
required by system implementors. A source code segment 
using this scripting language is given in Fig. l(a). Because 
it is directly parsed and compiled, no additional translation, 
conversion, or code-generation steps intervene between the 
high-level system design and the testing and integration 
stages of development. 

Central to the design of an ICP application is the ap- 
plicate’on class which serves as the framework within which 
all other system components are instantiated. The appli- 
cation class provides a basic interface between the signal 
processing sub-system and external software components. 
It may be directed to process signals from one or more sig- 
nal sources and will provide the results of processing along 
with information about the signal processing system’s cur- 
rent internal state. It also provides a trace facility which 
allows all internaI structures and operations to be displayed 
in textual and graphical form at runtime for performance 
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monitoring and testing. We have used these facilities to 
implement an X-Windows front-end for the interactive ex- 
ecution and testing of ICP applications. 

3. ARCHITECTURAL MODEL 

The basic system model employed within ICP is that of 
a collection of independent signal processing algorithms 
which are invoked according to algorithmically defined con- 
trol plans. In addition to supporting standard signal pro- 
cessing architectures, this paradigm allows the development 
of systems which may alter their processing activities in re- 
sponse to conditions such as fluctuating system resources, 
requests from other system components, or the results of 
their own calculations. 

This flexibility is provided through the use of a con- 
trol mechanism (or planner) based on the RESUN control 
paradigm [6]. The planner allows for both strategic (plan- 
based) and opportunistic (reactive) control to be applied. 
The strategic component is based on an application specific 
goal/plan/subgoal hierarchy (referred to collectively as con- 
trol plans) in which all system goals are explicitly submit- 
ted to the planner and may be addressed by either a single 
algorithm or decomposed into an algorithmically defined 
sequence of further subgoals. Fig. l (b)  shows a schematic 
diagram of a portion of the control plans for the radar signal 
analysis application described in section 4. The opportunis- 
tic component of control is provided by daemon-like refocus 
units, which are objects that may be instantiated from any 
point in the system and are invoked to redirect control flow 
whenever a specific pre-condition arises in the system. 

ICP’s architectural model casts the process of generat- 
ing the output associated with a given input signal as a 
series of transformations between multiple abstract signal 
representations [7 ] .  These representations may be strictly 
numeric, such as raw signal data or the results of a DFT, 
or symbolic, as in the determination of a radar return cell 
as background noise, clutter, or target. All signal represen- 
tations are stored on a global, hierarchical blackboard data 
structure [8]. 

4. APPLICATION 

We have used ICP to construct a system for the analy- 
sis of radar signals based on techniques from [9, 10, 111. 
The problem addressed by the system is the detection and 
separation of clutter patches of homogeneous probability 
distribution within range-azimuth returns of a non-imaging 
radar. The input to the application is a record of the am- 
plitude of radar pulse returns across a partitioned range- 
azimuth plane. Its output is a list of homogeneous patches, 
each described by their boundary and a characterization of 
their distribution. 

The application incorporates four signal representa- 
tions, each derived from the ICP signal representation base 
class. Instances of these objects are maintained in separate 
areas of the blackboard-structured database which we refer 
to as the return, map, region, and patch levels. The return 
level representation contains the input to the system-raw 
radar return data. The map representation contains a bi- 
nary mapping of each return cell to a label of either clutter 

or clear. Each instance of the region representation de- 
scribes a region of contiguous clutter cells within a map 
level signal. The patch level representation describes an 
area of contiguous clutter cells with homogeneous proba- 
bility distribution and forms the output of the application. 
Graphical displays of these representations, generated using 
the trace facility of ICP, are shown in Fig. 2(a)-(d). 

Algorithms for producing these successive representa- 
tions of the radar data have been adapted to a control 
strategy for signal reprocessing [4] and encoded as a set 
of control plans. Within these plans, the map representa- 
tion is produced from the return representation by appli- 
cation of a technique from [9] in which the parameters to 
a series of morphological operations are iteratively refined 
until satisfactory segregation of clutter regions from back- 
ground noise is achieved. Clutter regions are produced from 
the map representation using a recursive nearest-neighbor 
region growing algorithm. Patch level representations are 
produced Gom the clutter regions through the use of Oz- 
turk’s algorithm [lo] for distribution estimation. Statisti- 
cal characterizations are made independently for a series of 
non-overlapping 10-by-10 cell tiles within each clutter re- 
gion to detect possible homogeneous patches. The results 
of that analysis are subjected to a series of practical con- 
straints on patch geometry and reprocessing is performed 
with alternate tilings to  verify and refine patch boundaries. 

5. RELATION TO OTHER WORK 

In order to distinguish ICP from other tools which might 
be employed during the development of an embedded signal 
processing system, we present in Table 1 a list of key design 
elements of ICP and indicate their presence (or absence) in 
selected tools from the commercial and research communi- 
ties. I t  should be noted that each of these tools provide 
additional features not available in ICP and that complete 
evaluations are beyond the scope of this report. 

We have already pointed out several benefits of taking 
an object-oriented approach to the design of complex signal 
processing systems. The application of this design philoso- 
phy to signal processing domains was pioneered by a series 
of projects at MIT which culminated in the development 
of the ADE system [Z]. A focal point of this work was the 
development of a well-defined concept of the “signal as ob- 
ject.” Related work by Milios and Nawab [7] proposed the 
use of numeric and symbolic representations for encoding 
signals in a hierarchy of levels of abstraction, as is done by 
ICP. 

In ADE, the automation of certain design tasks is facil- 
itated by the symbolic encoding of properties of the com- 
ponent systems. This property based analysis provides a 
higher level of description (using a metalanguage) than that 
provided by an input-output relation or algorithmic de- 
scription of a system, simplifying ADE’s automatic rear- 
rangement of composite systems. A strong analogy may 
be drawn between this metalanguage and the hierarchical 
RESUN control structure adopted by ICP. Each algorithm 
which performs a transformation between signal representa- 
tions (i.e. a system, in the classical sense) is declared in the 
scripting metalanguage of ICP to fulfill a specific subgoal in 
the control plans. This information is used by the planner 

271 6 



DESIGN TOOLS 
ADE I Matlab I Ptolemy 1 ICP SYSTEM FEATURES 

Table 1: Comparison of features of tools for the design of embedded systems for signal processing. 

to make its scheduling decisions; in this sense performing 
a similar task to that done by ADE, but dynamically, at 
run-time. 

The Matlab [3] system provides an interactive environ- 
ment for prototyping and testing of system components. 
One important feature shared by Matlab and ICP is the 
support for graphical display of signals during debugging 
sessions. The data-intensive nature of most signal process- 
ing applications can make text-based error diagnosis a dif- 
ficult task. The ability to perform data visualization at 
all stages of processing can greatly simplify this procedure. 
Notably lacking from Matlab, though, is support for object- 
oriented design and the migration of prototypes outside of 
the interpreted Matlab environment. 

Ptolemy [l] represents the current state-of-the-art of de- 
sign tools for signal processing systems. It fully embraces 
object-oriented design principles using C++, supports ab- 
stract signal representations through object polymorphism 
in a similar manner to ICP, and offers a graphical meta- 
language for system design. This graphical interface, ad- 
ditionally, allows visualization of signal data during sys- 
tem testing. Most notable, however, is that the Ptolemy 
system was designed to support a wide range of computa- 
tional and control paradigms. It, thus, differs in scope from 
ICP, which, by design, provides only one. The difference 
in code size of Ptolemy (-500K lines of source) and ICP 
(-12K lines of source) highlights this difference. Further, 
Ptolemy supports neither the RESUN control paradigm nor 
the blackboard database model used by ICP, although it 
could potentially be extended to do so. 
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DEFINE-NP-PLAN( DiscrepancyDetectioWpLevel. 
P I D - D I S C R E P A N C Y - D E T E C T I O N - W - L W ,  
SGID-HAVf_DISCREPANCY-DETECTION. 
"SOU-*', Fint. ) 

BEGIN-IN-CONSTRAINT~( DiscrepancyDetectionMapLevel ) 
if ( inputs.length0) { 

inputs.resetFirst0; 
return (((SOU * )  inputs.item())->hypothesis->levelO 

1 
else I 

return 0; 
1 

== MAP-LEVEL) ; 

END-IN-CONSTRAINTS 

BEGIN-SCHEMA( DiscrepancyDetectionMapLevel 1 
STEP (1) 

STEP(2) 
posti( SGID-HAVj-CELLS-RECOVERED, getInput0 ) 

setoutput( (void * )  ST-CONTINUE-REPROCESSING_LOOP 1 ;  
setstatus ( ST-FINISHED 1 ; 

END-SCHEMA 

Figure 1: (a) Source code for the definition of a short control plan schema using the scripting language. (b) Diagram of a 
portion of the goal/plan/subgoal hierarchy from a radar clutter analysis application. 

(c) (4 
Figure 2: Graphical output of radar clutter analysis application developed in ICP. (a) Return level (b) Map level (c) Region 
level (d) Patch level. 
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