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Equation (17) is an explicit formula for the elements of the function 
matrix P = g ( A ) .  It does not (directly) require the knowledge of the simi- 
larity transformation matrices T and T - '  in (3). Thus, the elements of P 
can be computed directly from the knowledge of the  companion matrix A, 
its eigenvalues, and the function g. 

Now, it will be shown that (17) has  also a remarkable recursive property 
(24), which allows one  to  compute  the function matrix P using somewhat 
less than 6n2 multiplications and n2 divisions. The preceding statement 
assumes, of course, that all eigenvalues of A are known, and all g(Ai) 
( i =  1, n) are also known. It is also interesting to note that the  evaluation of 
P using the similarity transformation (3) would require about n3 multipli- 
cations  and n3 additions  more than is required using (24), which is derived 
below. 

From (8) and (14) it is easy to see that 

qi,j- 1 = qi.j& + am-,+ 1 (18) 

These values are now  used to obtain  the remaining two elements of the 
matrix P,  using the recursive formula (24). Note that the subscript i in (24) 
must vary faster than  the subscript j. Also note that 

j = n - l  n - 2 . . .  , ,1 

i = 1 ,2 ; . . ,n  + j - 1. 

Upon completion of these simple computations,  the matrix P has the 
following form, 

And, of course, it  can be easily checked that P 2  = A.  
The evaluation of g = exp (A) can be performed in a similar manner. 
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A Comparison of Roundoff Noise in Floating Point and 
Fixed  Point Digital Filter Realizations 

Abstract-A statistical  model  for  roundoff noise in  floating  point 
(21) digital  filters, proposed by Kaneko and Liu.  is tested  experimentally 

for  first-  and second-order digital  filters. Good agreement  between 
theory  and  experiment is obtained.  The  model is used to  specify a 
comparison between  floating  point  and  fixed  point  digital  filter 
realizations  on  the basis of their  output  noise-to-signal  ratio, and 

(22) curves representing  this  comparison  are  presented. One can find 
values of  the  filtar parameters at  which  the  fixed and the  floating 
point curves will cross, for equal total  register  lengths. 

Recently, Kaneko and Liu' used a statistical modd  to predict theo- 
(23) retically the effect of roundoff noise in digital lilters realized with floating 

point  arithmetic. This letter is concerned with providing an experimentil 
verification of the model, and the use of the model in specifying a quantita- 

(24) tive comparison between fixed point and floating point realizations. We 
restrict attention to first- and second-order filters, both in the interest of 

Equation (24) is the desired recursive formula. 
simplicity and because more complicated digital filters are often con- 
structed as combinations of first- and second-order filters. 

Example: In order to present an arithmetically simple example, a 
second-order  companion matrix A with real eigenvalues is considered, and 
a  square root function of this  matrix is evaluated. 

-~ 
FIRST-ORDER CASE 

For a first-order filter of the form 

A = [  - 4  5 '1 
g ( A )  = A* = P.  

The eigenvalues of A are 

I ,  = 1 I z  = 4. 

In this case. 

and 

X I  = - 4  x 2 - 2  - 3' 

From (17) it follows that 

P 1 . 2  = f P 2 . 2  3 P 3 . 2  = 7. 
3 1  

w, = OW.- l  + x,, (1) 

where x ,  is the  input and w, is the output, the computed output yn is 

Y .  = [aY,-,(l + E " )  + X"I(1 + 5.). (2) 

The  random variables E, and 5. account for the roundoff errors due  to the 
floating point multiply and add, respectively, and are  bounded by 

Following Kaneko and Liu, we de& the  error en=yn - w,, subtract (1) 
from (2), neglect second-order terms in e, E, and 5,  and obtain  a difference 
equation for the  error e,,, as 

e, - ae , - ,  = aw,-,(&, + 5.) +x,(, = Y,. (4) 
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Assuming that E,  and 5. are  independent from sample to sample  (white), 
and that E,, C., and  the signal x, are  mutually  independent, u, in (4) is white 
noise with variance  dictated by the statistics of x, and  the variances uf and 
u; of E, and r,. The  variance u: of the output noise e, is obtained easily 
from the  variance ut of u, as 

m 

where h, =a“ is the filter impulse  response. 

uf, we obtain 
For example, if  we assume that x, is stationary white noise of variance 

For the we of a high gain filter,  with u = 1 - 6, and 6 small, (6) becomes 

THEORETICAL 

A SINE WAVE (wo 1 6 . 3 O )  

0 0.2 0.5 a7 0.9 0.95 O.! 
a 

1 

If, instead, x, is taken to be a sine wave of the form A sin (coon + 4) with 
4 uniformly distributed in (0,2n),  then 

To test the model, uf was measured  experimentally for white noise and 
sine wave inputs. Each input was applied to a  filter using a 27-bit mantissa, 
and  also  a  filter with the  same coefficient a, but using a  shorter (e.g., 12-bit) 
mantissa in the computation.  The outputs of the two filters  were thin sub- 
tracted,  squared,  and averaged over a sufticiently long  period to obtain  a 
stable  estimate of ut. Kaneko  and Liu assumed that & and e. were both 
uniformly distributed in ( -  2-’, 2-7 with variances ut = 4 ,=i2-2r. Actual 
measurements of the noise due to a  multiply and an add venlied that E, and 
& hwe zero mean, but  indicated  that  the  variances 

uf = U: = (0.23)(2-23 (8) 

would better represent these noise sources. Using (1), (6),  (7), and (8),  we 
can  compute  the output noise-to-signal ratio for both white noise and 
sinusoidal  inputs for the  first-order case as 

Fig. 1 .  Theoretical and experimental noise-to-signal ratio for a first-order  filter, as a 
function of pole position. The noise-to-signal ratio is  represented in bits. 

(64  

d = (0.23)2-’(-) 1  1 - + a’ a2 

In Fig.  1, experimental curves for noise-to-signal ratio  are compared with 
the theoretical  curve of (9). 

SECOND-ORDER  CASE 
An analysis similar to the  above can be carried out for a  second-order 

filter of the  form 

w, = - r2w,-2 + 2r cos 6w,-, + x,,, (10) 

with a complex conjugate pole pair  at z=re*je. Based on experimental 
vedcation of (8) in the  first-order case, we assume  here that the E’S and 
5’s representing  the  errors in the  second-order case have  the same variance, 
as given by (8). 

When x, is stationary white noise, we obtain for the  variance of the 
noise e,, 

3r4 + 12r2cos26 - 16- r4 cosz O)] (11) 
I + ?  

where 

TABLE I 
THEORETICAL AND EXPERIMENTAL NOISE-TO-SIGNAL RATIO FOR A SECOND- 

ORDER  FILTER, AS A FUNCTION OF POLE PosmoN 
I 

1 

White  Noise  Sine Wave 

Theoretical  ,Experimental1  Theoretical  Experimental 

0.55 1 22.5 
0.7 22.5 

1.48 1.66  1.54 1.64 
2.16 1 2.33 ~ 2.23 ’ 2.38 
3.32 ’ 3.33 I 3.35 ~ 3.45 

1.08 0.97  0.94 
0.7 1 45.0 1.36 1.44 1.37 i 1.51 
0.9 1 45.0  2.28  2.51 2.22 2.14 
0.55 I 67.5 ~ 0.42 
0.7 67.5 0.75 ~ 0.88  0.65 , 0.62 
0.9 1.45 I 0.99  67.5  1.63 i 1.97 

0.46 0.39 ~ 0.33 

For the case of a high gain filter,  with r = 1 - 6,  (1 1) becomes approximately 

For the case of sinusoidal  input, we obtain 

a: = A2Gut[2r41H12 + 6r2 cos2 61H12 + - 4r31HIZ COS 6 COS oo 

- r21HI cos (4 - 2w0) + 2rlHI cos 6 c o s  (4 - wO)] (1 4) 

where /HI and 4 represent the  magnitude  and  phase of the  filter system 
function  at  the  input frequency oo. In Table I, a  comparison of theoretical 
and experimental values for output noise-to-signal ratio are  displayed for 
a  second-order  filter. 

FIXED VERSUS FLOATING P o w  COMP~UU~ON 

The  statistical model of floating  point  roundoff noise proposed by 
Kaneko and Liu and  one of fixed point  roundoff noise as presented for 
example by Gold  and Rade? provide  the  framework for comparing  these 
two structures on the basis of the  resulting  noise-to-signal  ratio. We con- 
sider only the  case of white noise  input. 

For the fixed point case, the  register  length  must be chosen suiliciently 
long so that  the output cannot overflow the fixed point word. If h, denotes 
the  impulse  response of the filter, then output w, is bounded  according to 

G = - =  h 2 =  
0: 1 .: n = o  ” (1 - rz)(r4 + 1 - 4 9  cosz 6 + 2? 

) ‘ (12) B. Gold and C. M. Rader, “Etfect of quantization noise in digital filters,” 1966 Sprim 
Joint Computer Conf., AFIPSPmc., vol. 28, Washington, D. C. Spartan, 1966, pp.  21M19. 
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(b)  
Fig. 2. Comparison of fixed point and  Boating point noise-to-signal ratios. 

(a) First-order filter. (b) Second-order filter, 0 =20‘. 

D. 

( I w , ~ )  = (Ix,l) 1 1h.l. (15) 
“ = O  

Interpreting  the bed point numbers as signed fractions, we require for 
no overflows that 1w.I < 1, restricting x, to the range 

1  1 -___ < x, < + 7. (16) 

f 1h.l c Ih”l 
“=O .=0 

With x, white and uniformly distributed between the limits in (16), the 
resulting output noise-to-signal ratio for a first-order filter is 

and for a  second-order filter 

The variance of the roundoff noise due  to a multiplication is taken as 2-” 
with t denoting  the fixed point register length. 

For the case of floating point computation, the noise-to-signal ratio for 
the first-order filter is 

where t is the  number of bits in the mantissa  For the  second-order filter, 
we have 

For a comparison of floating and fixed point arithmetic in the case of a 

first-order filter, Fig. 2(a) presents curves off log, (a’,/u’,ai) as determined 
from (8), (17), and (19). These curves represent a  comparison of the r m s  
noise-to-signal ratio for the two cases, in units of bits. In Fig. 2(b), a similar 
comparison is illustrated for the second-order case. For the purpose of the 
illustration, f9 was kept fixed and only r varied. 

Fig. 2(a) and (b) indicates that floating point arithmetic leads to  a lower 
noise-to-signal ratio  than fixed point if the floating point mantissa is equal 
in length to the fixed point word. We notice that for  high gain filters, as a 
increases toward unity in the  first-order case, and as r increases toward 
unity for f? fixed in the second-order case, the noise-to-signal ratio for  fixed 
point increases faster than for floating point. 

However, this comparison does not account for the  number of bits 
needed for the characteristic in floating point. If c denotes the number of 
bits in the characteristic, this would be accounted for in Fig. 2 by numeri- 
cally adding  the  constant c to the floating point data. This shift will cause 
the floating and fixed point curves to cross at a point where the noise-to- 
signal ratios are equal for equal  total register lengths. 

For the sake of the comparison, we provide just  enough bits in the 
characteristic to allow the same dynamic range for both  the floating and 
the fixed point filters. If t f ,  denotes the fixed point word length, then the 
requirement of identical dynamic range requires that 

c = log, t f X .  (21) 

Assuming for example that t f x =  16 so that c=4, crossover points in the 
noise-to-signal ratio will occur at a=0.996 in the fist-order case, and  at 
r=0.99975, 0=20“, in the second-order case depicted by Fig. 2(b). 

CLIFFORD w m m  
ALAN V. OPPENHEW 
M.I.T. Lincoln Lab. 

Lexington, Mass. 02 173 

A Physical  Proof  of Tellegeo’s Theorem 
Abstract-A physically oriented  proof is given for  the generalized 

Tellegen‘s theorem. The proof consists of  applying  the  law  of energy 
conservation to  a  hypothetical  network  in  which  all branch voltages 
and currents  are  determined  by  independent aources. 

Of all the recently discovered (or rediscovered) network theorems, 
few have been as  stimulating or useful as Tellegen’s theorem.’ It  has been 
used in sensitivity studies, energy and power relations, etc., for both linear 
and nonlinear networks, active as well as passive, time-variable as well as 
time-invariant.’ It is even applicable in other branches of  physics.’ More 
recently, it was also utilized to justify and define the  adjoint network con- 
cept3 which promises to be of great importance in computer-aided circuit 
analysis and optimization. 

In its most general formulation,’ Tellegen’s theorem relates the electri- 
cal quantities of two networks, N. and N,. These networks must be of 
identical topology, but may be arbitrarily different in the way their 
branches are constructed  from impedances and generators.  Then  the 
relation 

holds. In (l), io is the  branch  current vector of N, 6, is the  branch voltage 
vector of Nb, and A, (A,) is a  scalar operator such that when applied to a 
current (voltage) vector satisfying the Kirchhoff laws, the resulting vector 
still obeys these same laws. 

Tellegen’s theorem is usually proved from the Kirchhoff laws, using the 
incidence or loop matrices of the networks.* An alternative proof, perhaps 
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