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A Branch-and-Bound Algorithm for
Quadratically-Constrained Sparse Filter Design

Dennis Wei and Alan V. Oppenheim

Abstract—This paper presents an exact algorithm for sparse
filter design under a quadratic constraint on filter performance.
The algorithm is based on branch-and-bound, a combinatorial
optimization procedure that can either guarantee an optimal
solution or produce a sparse solution with a bound on its
deviation from optimality. To reduce the complexity of branch-
and-bound, several methods are developed for bounding the
optimal filter cost. Bounds based on infeasibility yield incre-
mentally accumulating improvements with minimal computa-
tion, while two convex relaxations, referred to as linear and
diagonal relaxations, are derived to provide stronger bounds.
The approximation properties of the two relaxations are char-
acterized analytically as well as numerically. Design examples
involving wireless channel equalization and minimum-variance
distortionless-response beamforming show that the complexity of
obtaining certifiably optimal solutions can often be significantly
reduced by incorporating diagonal relaxations, especially in more
difficult instances. In the case of early termination due to
computational constraints, diagonal relaxations strengthen the
bound on the proximity of the final solution to the optimum.

I. I NTRODUCTION

The cost of a discrete-time filter implementation is often
largely determined by the number of arithmetic operations.
Accordingly, sparse filters, i.e., filters with relatively few
non-zero coefficients, offer a means to reduce cost, espe-
cially in hardware implementations. Sparse filter design has
been investigated by numerous researchers in the context
of frequency response approximation [1]–[4], communication
channel equalization [5]–[10], speech coding [11], and signal
detection [12].

In a companion paper [13], we formulate a problem of
designing filters of maximal sparsity subject to a quadratic
constraint on filter performance. We show that this gen-
eral formulation encompasses the problems of least-squares
frequency-response approximation, mean square error esti-
mation, and signal detection. The focus in [13] is on low-
complexity algorithms for solving the resulting combinatorial
optimization problem. Such algorithms are desirable when
computation is limited, for example in adaptive design. When
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the quadratic constraint has special structure, low-complexity
algorithms are sufficient to guarantee optimally sparse designs.
For the general case, a backward greedy selection algorithmis
shown empirically to yield optimal or near-optimal solutions
in many instances. We refer the reader to [13] for additional
background on sparse filter design and a more detailed bibli-
ography.

A major shortcoming of many low-complexity methods,
including the backward selection algorithm in [13] and oth-
ers (e.g. [3], [4], [8]–[10]), is that they do not indicate
how close the resulting designs are to the true optimum. In
the present paper, we take a different approach to address
this shortcoming, specifically by combining branch-and-bound
[14], an exact procedure for combinatorial optimization, with
several methods for obtaining lower bounds on the optimal
cost, i.e., bounds on the smallest feasible number of non-zero
coefficients. The resulting algorithm maintains both a solution
to the problem as well as a bound on its deviation from
optimality. The algorithm in the current paper can therefore
be seen as complementary to low-complexity algorithms that
do not come with such guarantees.

One motivation for exact algorithms is to provide certifiably
optimal solutions. In applications such as array design where
the fabrication and operation of array elements can be very
expensive, the guarantee of maximally sparse designs is espe-
cially attractive. Perhaps more importantly, exact algorithms
are valuable as benchmarks for assessing the performance of
lower-complexity algorithms that are often used in practice.
One example of this is the use of the Wiener filter as the
benchmark in adaptive filtering [15]. In the present context,
we have used the algorithm in this paper to evaluate the
backward selection algorithm in [13], showing that the latter
often produces optimal or near-optimal solutions.

Given the complexity of combinatorial optimization prob-
lems such as sparse filter design, there are inevitably problem
instances that are too large or difficult to be solved to optimal-
ity within the computational constraints of the application. In
this setting, branch-and-bound can offer an appealing alterna-
tive. The algorithm can be terminated early, for example after
a specified period of time, yielding both a feasible solutionas
well as a bound on its proximity to the optimum.

The challenge with branch-and-bound, whether run to com-
pletion or terminated early, is the combinatorial complexity
of the problem. In this paper, we address the complexity
by focusing on developing lower bounds on the optimal
cost. While branch-and-bound algorithms have been proposed
for sparse filter design [1], [2], [5], the determination of
bounds does not appear to have received much attention;
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the bounds used in [2], [5] are elementary, while [1] relies
on the general-purpose solver CPLEX [16] which does not
exploit the specifics of the sparse filter design problem. As
we discuss in Section II, strong and efficiently computable
bounds can be instrumental in mitigating the combinatorial
nature of branch-and-bound. Design experiments show that the
bounding techniques in this paper can dramatically decrease
complexity, by orders of magnitude in difficult instances, and
even when our MATLAB implementation is compared to
sophisticated commercial software such as CPLEX. In the case
of early termination, the proposed techniques lead to stronger
guarantees on the final solution.

Three classes of bounds are discussed. Bounds based on
infeasibility require minimal computation and can be easily
applied to every branch-and-bound subproblem, but are con-
sequently rather weak. To derive stronger bounds, we consider
relaxations of the sparse design problem that can be solved
efficiently. The first relaxation, referred to as linear relaxation
[14], is a common technique in integer optimization adaptedto
our problem. The second relaxation exploits the simplicityof
the problem when the matrix defining the quadratic constraint
is diagonal, as discussed in [13]. For the non-diagonal case,
we propose an optimized diagonal approximation referred to
as a diagonal relaxation. The approximation properties of
the two relaxations are analyzed to gain insight into when
diagonal relaxations in particular are expected to give strong
bounds. Numerical experiments complement the analysis and
demonstrate that diagonal relaxations are tighter than linear
relaxations under a range of conditions. Using the channel
equalization and beamforming examples from [13], it is shown
that diagonal relaxations can greatly reduce the time required
to solve an instance to completion, or else give tighter bounds
when the algorithm is terminated early.

The basic optimization problem addressed in this paper is
the same as in [13], and hence we make reference throughout
the current paper to results already derived in [13]. We empha-
size however that the two papers take fundamentally different
approaches: [13] focuses on low-complexity algorithms that
ensure optimal designs in special cases but not in the general
case, whereas the current paper presents an exact algorithm
for the general case as well as methods for bounding the
deviation from optimality. We also note that the linear and
diagonal relaxations were introduced in a preliminary pub-
lication [17]. The current paper significantly extends [17]by
including additional analytical and numerical results pertaining
to the relaxations, presenting a branch-and-bound algorithm
that incorporates the relaxations as well as lower-complexity
bounds, and demonstrating improved computational complex-
ity in solving sparse filter design problems.

The remainder of the paper proceeds as follows. In Section
II, we state the problem of quadratically-constrained sparse
filter design, review the branch-and-bound method for solv-
ing such combinatorial optimization problems, and introduce
our proposed algorithm. In Section III, several methods for
obtaining lower bounds are discussed, beginning with low-
complexity bounds based on infeasibility and proceeding to
linear and diagonal relaxations, together with an analysis
of approximation properties and a numerical comparison.

The branch-and-bound algorithm is applied to filter design
examples in Section IV to illustrate the achievable complexity
reductions.

II. PROBLEM STATEMENT AND BRANCH-AND-BOUND

SOLUTION

As in [13], we consider the problem of minimizing the
number of non-zero coefficients in an FIR filter of lengthN
subject to a quadratic constraint on filter performance, i.e.,

min
b

‖b‖
0

s.t. (b− c)TQ(b− c) ≤ γ, (1)

where the zero-norm‖b‖
0

denotes the number of non-zero
components in the coefficient vectorb, c is a vector rep-
resenting the solution that maximizes performance without
regard to sparsity,Q is a symmetric positive definite matrix
corresponding to the performance criterion, andγ is a positive
constant. As discussed in [13], several variations of the sparse
filter design problem can be reduced to (1). The quadratic
constraint in (1) may be interpreted geometrically as specify-
ing an ellipsoid, denoted asEQ, centered atc. As illustrated
in Fig. 1, the eigenvectors and eigenvalues ofQ determine
the orientation and relative lengths of the axes ofEQ while γ
determines its absolute size. We will make reference to this
ellipsoidal interpretation in Section III.

b1

b2

c

√

γ
λ1

v1

√

γ
λ2

v2

Fig. 1. EllipsoidEQ formed by feasible solutions to problem (1).λ1 and
λ2 are eigenvalues ofQ andv1 andv2 are the associated eigenvectors.

Solving problem (1) generally requires combinatorial opti-
mization, although certain special cases permit much more ef-
ficient algorithms as seen in [13]. In this section, we reviewthe
branch-and-bound procedure for combinatorial optimization
with emphasis on the role of bounds in reducing complexity.
Further background on branch-and-bound can be found in [14].
We then present our specific branch-and-bound algorithm for
solving (1).

For convenience and for later use in Section III-B, problem
(1) is reformulated as a mixed integer optimization problem.
To each coefficientbn we associate a binary-valued indicator
variablein with the property thatin = 0 if bn = 0 andin = 1
otherwise. The sum of the indicator variables is therefore equal
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to ‖b‖
0

and (1) can be restated as follows:

min
b,i

N
∑

n=1

in

s.t. (b− c)TQ(b− c) ≤ γ,

|bn| ≤ Bnin ∀ n,
in ∈ {0, 1} ∀ n,

(2)

whereBn, n = 1, . . . , N , are positive constants. The second
constraint in (2) ensures thatin serves as an indicator, forcing
bn to zero whenin = 0. Whenin = 1, the second constraint
becomes a bound on the absolute value ofbn. The constants
Bn are chosen large enough so that these bounds on|bn| do not
further restrict the set of feasibleb from that in (1). Specific
values forBn will be chosen later in Section III-B in the
context of linear relaxation.

The branch-and-bound procedure solves problem (2) by
recursively dividing it into subproblems with fewer variables.
The first two subproblems are formed by selecting an indicator
variable and fixing it to zero in the first subproblem and
to one in the second. Each of the two subproblems, if not
solved directly, is subdivided into two more subproblems by
fixing a second indicator variable. This process, referred to as
branching, produces a binary tree of subproblems as depicted
in Fig. 2.

i1 = 0 i1 = 1

i2 = 0 i2 = 1 i3 = 0 i3 = 1

i4 = 0 i4 = 1

3

4

4

55

5

67

∞

root incumbent solution
with cost6

infeasible

Fig. 2. Example of a branch-and-bound tree. Each circle represents a
subproblem and the branch labels indicate the indicator variables that are fixed
in going from a parent to a child. The number in each circle is alower bound
on the optimal cost of the corresponding subproblem. Given an incumbent
solution with a cost of6, the subproblems marked by dashed circles need not
be considered any further.

Each subproblem is defined by three index sets, a setZ =
{n : in = 0} corresponding to coefficients constrained to a
value of zero, a setU = {n : in = 1} of coefficients assumed
to be non-zero, and a setF consisting of the remainder. As
shown in [13], a subproblem thus defined is equivalent to the
following problem:

min
bF

|U|+ ‖bF‖0
s.t. (bF − ceff)

T
Qeff (bF − ceff) ≤ γeff ,

(3)

wherebF denotes the|F|-dimensional subvector ofb indexed
by F (similarly for other vectors). Problem (3) is an|F|-
dimensional instance of the original problem (1) with effective
parameters given by

Qeff = QFF −QFU (QUU)
−1

QUF , (4a)

ceff = cF + (Qeff)
−1

(

QFZ −QFU(QUU)
−1QUZ

)

cZ ,
(4b)

γeff = γ − cTZ
((

Q−1
)

ZZ

)−1
cZ , (4c)

whereQFU denotes the submatrix ofQ with rows indexed by
F and columns indexed byU (similarly for other matrices).
This reduced-dimensionality formulation leads to greateref-
ficiency in the branch-and-bound algorithm. Furthermore, the
common structure allows every subproblem to be treated in
the same way.

The creation of subproblems through branching is comple-
mented by the computation of lower bounds on the optimal
cost in (3) for subproblems that are not solved directly.
Infeasible subproblems can be regarded as having a lower
bound of+∞. Since a child subproblem is related to its parent
by the addition of one constraint, the lower bound for the
child must be at least as large as that for the parent. This
non-decreasing property of the lower bounds is illustratedin
Fig. 2. In addition, feasible solutions may also be obtained
for certain subproblems. The algorithm keeps a record of the
feasible solution with the lowest cost thus far, referred toas
the incumbent solution. It is apparent that if the lower bound
for a subproblem is equal to or higher than the cost of the
incumbent solution, then the subproblem cannot lead to better
solutions and can thus be eliminated from the tree along with
all of its descendants. This pruning operation is also illustrated
in Fig. 2. To minimize complexity, it is clearly desirable to
prune as many subproblems as possible.

Although in worst-case examples the complexity of branch-
and-bound remains exponential inN [14], for more typical
instances the situation can be greatly improved. One important
contributor to greater efficiency is an initial incumbent solution
that is already optimal or nearly so. Such a solution allows for
more subproblems to be pruned compared to an incumbent
solution with higher cost. Good initial solutions can oftenbe
provided by heuristic algorithms.

The determination of lower bounds on the other hand is
a more difficult and less studied problem. The availability
and quality of subproblem lower bounds also has a strong
impact on the complexity of branch-and-bound. As with
near-optimal incumbent solutions, stronger (i.e. larger)lower
bounds result in more subproblems being pruned. Moreover,
these lower bounds must be efficiently computable since they
may be evaluated for a large number of subproblems. Section
III discusses several bounding methods with computational
efficiency in mind.

We now introduce our proposed algorithm for solving (1).
A summary is provided in Fig. 3 with certain steps num-
bered for convenient reference. The algorithm is initialized
by generating an incumbent solutionbI using the backward
greedy algorithm of [13]. Other initializations could alsobe
used with no effect on the final solution if the algorithm is
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Input: ParametersQ, c, γ
Output: Optimal solutionbI to (1)

Initialize: Generate incumbent solutionbI using backward
greedy algorithm of [13]. Place root problem in list with
LB = 0.
while list not emptydo

1) Select subproblem with minimalLB and remove from
list. Subproblem parametersQeff , ceff , γeff given by (4).
if ilast = 0 then

2) Identify coefficients inF for which a zero value is
no longer feasible using (6) (Section III-A). UpdateU ,
F , Qeff , ceff if necessary.
if |U| ≥ ‖bI‖0 then

Prune current subproblem, go to step 1.
if LB < |U|+ 2 then

3) Check for solutions with‖bF‖0 = 0, ‖bF‖0 = 1
(Section III-A).
if subproblem solvedand |U|+‖bF‖0 < ‖bI‖0 then

UpdatebI and prune list. Go to step 1.
else
LB ← |U|+ 2.
if LB ≥ ‖bI‖0 then

Prune current subproblem, go to step 1.
4) Generate feasible solutionbF with ‖bF‖0 = |F| − 1.
if |U|+ |F| − 1 < ‖bI‖0 then

UpdatebI and prune list (possibly including current
subproblem).

if ilast = 0 and |F| ≥ Nrelax ≈ 20 then
5) Solve linear or diagonal relaxation (Sections III-B,
III-C) and updateLB.
if LB ≥ ‖bI‖0 then

Prune current subproblem, go to step 1.
6) Create two new subproblems by fixingim to 0, 1,
wherem is given by (5). Go to step 1.

Fig. 3. Branch-and-bound algorithm

run to completion; however, the amount of pruning and hence
the rate of convergence would decrease with an inferior initial
solution. The algorithm uses a list to track subproblems in the
branch-and-bound tree that are open in the sense of having
lower bounds (denoted asLB in Fig. 3) that are less than
the incumbent cost. In each iteration, an open subproblem is
selected and processed in an attempt to improve the lower
bound inherited from its parent. Pruning results as soon as the
lower bound rises above the incumbent cost, a condition thatis
checked at several points. Feasible solutions are also generated
and may occasionally trigger updates to the incumbent solution
and pruning based on the new incumbent cost. A subproblem
that is not solved or pruned leads to branching and the addition
of two subproblems to the list. The algorithm terminates when
the list is empty; alternatively, it can be terminated earlyafter a
specified period of time or number of subproblems processed.

In Step 1, we choose an open subproblem for which the
current lower bound is among the lowest. This choice yields
the fastest possible increase in the global lower bound, i.e.,
the minimum of the lower bounds among open subproblems.

Thus if the algorithm is terminated early, the bound on the
deviation from optimality of the incumbent solution is as tight
as possible. Furthermore, it is prudent to defer on subproblems
with the highest lower bounds since these are the first to be
pruned whenever the incumbent solution is improved.

Steps 2–5 relate to the updating of lower bounds and
are discussed further in Section III. The indicator variable
ilast refers to the last indicator variable that was fixed in
creating a subproblem from its parent. We note for now that
solving relaxations is by far the most computationally intensive
step and is therefore justified only if a sufficient number of
subproblems can be pruned as a result. We have found that it is
not worthwhile to solve relaxations of subproblems for which
ilast = 1 since they rarely lead to pruning. In addition, small
subproblems can often be solved more efficiently by relying
only on the low-complexity steps 2 and 3 and the branch-
and-bound process. For this reason, we solve relaxations only
when the subproblem dimension|F| equals or exceeds a
parameterNrelax. The best value ofNrelax depends on the
complexity of solving relaxations relative to running branch-
and-bound without relaxations. In our experiments, we have
foundNrelax ≈ 20 to be a good choice.

In Step 6, we choose the indexm for branching according
to

m = argmin
n∈F

γ − c2n
(

Q−1
)

nn

, (5)

which results in the smallest possible (but still positive)value
for the parameterγeff in the im = 0 child subproblem. Thus
the im = 0 subproblem, while still feasible, tends to be
severely constrained and the subtree created under the parent
is unbalanced with many more nodes under theim = 1 branch
than under theim = 0 branch. Generally speaking, the higher
that these asymmetric branchings occur in the tree, the greater
the reduction in the number of subproblems. In the extreme
case, if one of the branches under the root problem supports
very few feasible subproblems, the number of subproblems
is almost halved. We have observed that this branching rule
tends to reduce the number of subproblems in agreement with
the above intuition.

III. A PPROACHES TO BOUNDING THE OPTIMAL COST

In this section, we discuss the determination of lower
bounds on the optimal cost of problem (1), beginning in
Section III-A with bounds that are inexpensive to compute
and continuing in Sections III-B and III-C with two convex
relaxations of problem (1) that lead to stronger lower bounds.
The two relaxations are evaluated and compared numerically
in Section III-D. While our presentation will focus on the root
problem (1), all of the techniques are equally applicable to
any subproblem by virtue of the common structure noted in
Section II.

A. Bounds based on infeasibility

We begin with two methods based on infeasibility, corre-
sponding to Steps 2 and 3 in Fig. 3. While the resulting bounds
tend to be weak when used in isolation, they become more
powerful as part of a branch-and-bound algorithm where they
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can be applied inexpensively to each new subproblem, improv-
ing lower bounds incrementally as the algorithm descends the
tree.

For a subproblem specified by index sets(Z,U ,F) as
defined in Section II, the number of elements inU is clearly
a lower bound on the optimal cost in (3). This lower bound
may be improved and the subproblem dimension reduced by
identifying those coefficients inF for which a value of zero
is no longer feasible (Step 2 in Fig. 3). As derived in [13],
settingbn = 0 is feasible for the root problem (1) if and only
if

c2n
(

Q−1
)

nn

≤ γ. (6)

A similar condition stated in terms of the effective parameters
in (4) holds for an arbitrary subproblem. We setin = 1 for
indicesn ∈ F for which (6) is not satisfied, thus increasing
|U| and decreasing|F|. In terms of the branch-and-bound tree,
this corresponds to eliminating infeasiblein = 0 branches. The
increase in|U| and corresponding reduction in dimension can
be significant ifγ is relatively small so that (6) is violated for
many indicesn.

For the remainder of the paper we will assume that the
above test is performed on every subproblem and variables
are eliminated as appropriate. Thus we need only consider
subproblems for which (6) is satisfied for alln ∈ F , i.e., a
feasible solution exists whenever a single coefficient is con-
strained to zero. This fact is used in Step 4 in Fig. 3 to generate
feasible solutions to subproblems with‖bF‖0 = |F| − 1,
where the single zero-valued coefficient is chosen to maximize
the margin in (6). Furthermore, as indicated in Fig. 3, it is
not necessary to perform the test on subproblems for which
ilast = 1. Settingilast = 1 does not change the set of feasible
b, and consequently any coefficient for which a value of zero
is feasible in the parent subproblem retains that property in
the child subproblem.

It is possible to generalize the test to identify larger sub-
sets of coefficients that cannot yield feasible solutions when
simultaneously constrained to zero. However, the required
computation increases dramatically because the number of
subsets grows rapidly with subset size and because the general-
ization of condition (6) requires matrix inversions of increasing
complexity. Moreover, incorporating information from tests
involving larger subsets is less straightforward than simply
setting certainin to 1.

A second class of low-complexity lower bounds relies on
determining whether solutions with small numbers of non-zero
elements are infeasible (Step 3 in Fig. 3). In the extreme case,
the solutionb = 0 is feasible ifβ ≡ γ − cTQc ≥ 0. Hence
a negativeβ implies a lower bound of at least1 (|U| + 1
for a general subproblem) on the optimal cost. For the case
of solutions with a single non-zero coefficient, the feasibility
condition is

− f2
n

Qnn

≤ β, (7)

where the vectorf = Qc. Condition (7) is a special case of a
general condition (equation (13) in [13]) for feasibility when
only a subset of coefficients is permitted to be non-zero. If

(7) is satisfied for somen ∈ F , there exists a solution with
bn non-zero and the remaining coefficients equal to zero, and
therefore the optimal cost is1 provided that the solutionb = 0

has been excluded. Otherwise, we conclude that the optimal
cost is no less than2 (|U|+2 in general). Since this test yields
a lower bound of at most|U|+ 2, the execution of Step 3 in
Fig. 3 depends on whether or not the inherited lower bound
already exceeds|U|+2. The enumeration of solutions can be
extended to larger subsets of coefficients, resulting in either
an optimal solution or progressively higher lower bounds. The
increase in computational effort however is the same as for
generalizations of (6).

B. Linear relaxation

The lower bounds discussed in Section III-A are simple to
compute but are only effective for pruning low-dimensional
or severely constrained subproblems. Better bounds can be
obtained through relaxations1 of problem (1), constructed in
such a way that their solutions yield lower bounds on the
optimal cost of (1). As the term suggests, these relaxations
are also intended to be significantly easier to solve than the
original problem. In this subsection, we apply a common
technique known as linear relaxation to (1) and consider its
approximation properties. An alternative relaxation, referred
to as diagonal relaxation, is developed in Section III-C.

To obtain a linear relaxation of problem (1), we start with
its alternative formulation as a mixed integer optimization
problem (2) and relax the binary constraints onin, allowing
in to vary continuously between0 and 1. The minimization
may then be carried out in two stages. In the first stage,b

is held constant while the objective is minimized with respect
to i, resulting inin = |bn| /Bn for eachn. Substituting back
into (2) gives the following minimization with respect tob,
which we refer to as a linear relaxation:

min
b

N
∑

n=1

|bn|
Bn

s.t. (b− c)TQ(b− c) ≤ γ. (8)

Problem (8) is a quadratically-constrained weighted1-norm
minimization, a convex optimization problem that can be
solved efficiently. Since the set of feasible indicator vectors
i is enlarged in deriving (8) from (2), the optimal value of
(8) is a lower bound on that of (2). More precisely, since the
optimal value of (2) must be an integer, the ceiling of the
optimal value of (8) is also a lower bound.

To maximize the optimal value of (8), thereby maximizing
the lower bound on the optimal value of (2), the constantsBn

in the objective function of (8) should be made as small as
possible. Recall from Section II thatBn must also be large
enough to leave the set of feasibleb in (2) unchanged from
that in (1), i.e., we requireBn ≥ |bn| for all n wheneverb
satisfies the quadratic constraint in (1). These conditionsimply
thatBn should be chosen as

B∗
n = max

{

|bn| : (b− c)TQ(b− c) ≤ γ
}

= max
{

B+∗
n , B−∗

n

}

,
(9)

1Following common usage in the field of optimization, we use the term
relaxation to refer to both the technique used to relax certain constraints in a
problem as well as the modified problem that results.
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where

B±∗
n = max

{

±bn : (b− c)TQ(b− c) ≤ γ
}

=
√

γ
(

Q−1
)

nn
± cn.

(10)

The closed-form expressions forB±∗
n are derived in [18,

App. B.1]. Hence (9) simplifies to

B∗
n =

√

γ
(

Q−1
)

nn
+ |cn| .

A still stronger lower bound on (2) can be obtained by first
separating each coefficientbn into its positive and negative
partsb+n andb−n as follows:

bn = b+n − b−n , b+n , b
−
n ≥ 0. (11)

Under the condition that at least one ofb+n , b−n is always zero,
the representation in (11) is unique,bn = b+n for bn > 0,
and bn = −b−n for bn < 0. By assigning to each pairb+n , b−n
corresponding indicator variablesi+n , i−n and positive constants
B+

n , B−
n , a mixed integer optimization problem equivalent

to (2) may be formulated (see [18, Sec. 3.3.1] for details).
Applying linear relaxation as above to this alternative mixed
integer formulation results in

min
b+,b−

N
∑

n=1

(

b+n
B+

n

+
b−n
B−

n

)

s.t. (b+ − b− − c)TQ(b+ − b− − c) ≤ γ,

b+ ≥ 0, b− ≥ 0.

(12)

Problem (12) is a quadratically constrained linear programand
is also efficiently solvable. The smallest values forB+

n andB−
n

that ensure that (12) is a valid relaxation are given byB+∗
n and

B−∗
n in (10). Using a standard linear programming technique

based on the representation in (11) to replace the absolute
value functions in (8) with linear functions (see [19]), it can
be seen that (8) is a special case of (12) withB+

n = B−
n = Bn.

SinceB∗
n = max{B+∗

n , B−∗
n }, the optimal value of (12) with

B±
n = B±∗

n is at least as large as that of (8) withBn = B∗
n,

and therefore (12) is at least as strong a relaxation as (8).
Henceforth we will use the term linear relaxation to refer to
(12) with B±

n = B±∗
n .

In general, given a relaxation of an optimization problem,
it is of interest to analyze the conditions under which the
relaxation is either a good or a poor approximation to the
original problem. The quality of approximation is often char-
acterized by the approximation ratio, defined as the ratio of
the optimal value of the relaxation to the optimal value of the
original problem. In the case of the linear relaxation in (12),
the quality of approximation can be understood geometrically.
We first note that the cost function in (12) can be regarded
as an asymmetrically-weighted1-norm with different weights
for positive and negative coefficient values. Recalling the
ellipsoidal interpretation of the feasible set discussed in Sec-
tion II, the minimization problem in (12) can be represented
graphically as in Fig. 4. Note that our assumption that (6) is
satisfied for alln implies that the ellipsoidEQ must intersect
all of the coordinate planes; otherwise the problem dimension
could be reduced. The asymmetric diamond shape represents a
level contour of the1-norm weighted by1/B±∗

n . As seen from

(10), the weightsB±∗
n correspond to the maximum extent of

EQ along the positive and negative coordinate directions and
can be found graphically as indicated in Fig. 4. The solution
to the weighted1-norm minimization can be visualized by
inflating the diamond until it just touches the ellipsoid. The
optimal solution is given by the point of tangency and the
optimal value by the tangent contour.

b1

b2

B+

1
B−

1

B+
2

B−

2

EQ

Fig. 4. Interpretation of the linear relaxation as a weighted 1-norm
minimization and a graphical representation of its solution.

Based on the geometric intuition in Fig. 4, the optimal
value of the linear relaxation and the resulting lower boundon
(1) are maximized when the ellipsoidEQ is such that theℓ1
diamond can grow relatively unimpeded. This is the case for
example if the major axis ofEQ is oriented parallel to a level
surface of the1-norm and the remaining ellipsoid axes are very
short. The algebraic equivalent in terms of the matrixQ is to
have one eigenvalue that is much smaller than the others. The
corresponding eigenvector should have components that are
roughly half positive and half negative with magnitudes that
conform to the weightsB±∗

n . In [18, Sec. 3.3.2, App. B.3], it
is shown that for instances constructed as just described, the
optimal value of the linear relaxation is large enough to match
the optimal cost of (1), i.e., the approximation ratio is equal
to 1, the highest possible value. Hence there exist instances of
(1) for which the linear relaxation is a tight approximation.

Conversely, the optimal value of the linear relaxation is
small when the ellipsoid obstructs the growth of theℓ1 ball.
This occurs if the major axis ofEQ is oriented so that it points
toward the origin, or equivalently in terms ofQ if the eigen-
vector associated with the smallest eigenvalue is a multiple of
the vectorc. It is shown in [18, Sec. 3.3.2, App. B.4] that
instances with this property exhibit approximation ratiosthat
are close to zero. The approximation ratio cannot be exactly
equal to zero since that would require the optimal value of
the linear relaxation to be zero, which occurs only ifb = 0

is a feasible solution to (1), i.e., only if the original optimal
cost is also equal to zero. Therefore the worst case is for
the linear relaxation to have an optimal value less than1 (so
that its ceiling is equal to1) while the original problem has
an optimal value equal toN − 1 (given our assumption that
(6) is satisfied for alln, the original optimal cost is at most
N − 1). As shown in [18], there exist instances in which both
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conditions are achieved, yielding a poor approximation ratio
of 1/(N − 1).

The above discussion implies that the approximation ratio
for the linear relaxation can range anywhere between0 and
1, and thus it is not possible to place a non-trivial guarantee
on the ratio that holds for all instances of (1). It is possible
however to obtain an absolute upper bound on the optimal
value of the linear relaxation in terms ofN , the total number
of coefficients. We use the fact that any feasible solution tothe
linear relaxation (12) provides an upper bound on its optimal
value. Choosingb+ − b− = c, i.e., b+n = cn, b−n = 0 for
cn ≥ 0 and b+n = 0, b−n = |cn| for cn < 0 results in an upper
bound of

∑

n:cn>0

cn

B+∗
n

+
∑

n:cn<0

|cn|
B−∗

n

=

N
∑

n=1

|cn|
√

γ
(

Q−1
)

nn
+ |cn|

, (13)

where we have used (10). Given the assumption that (6) is
satisfied for alln, each of the fractions on the right-hand side
of (13) is no greater than1/2, and consequently the optimal
value of the linear relaxation can be no larger thanN/2. This
upper bound can be further reduced by the factor

θ = 1−
√

γ

cTQc
, (14)

which corresponds to scaling the solutionb+−b− = c, which
is in the center of the feasible set, so that it lies on the boundary
nearest the origin.

It is apparent from (13) that the lower bound resulting from
the linear relaxation cannot be tight if the optimal cost in (1)
is greater than⌈θN/2⌉. We infer that it is unlikely for the
linear relaxation to be a good approximation to (1) in most
instances, since if it were, this would imply that the optimal
cost in (1) is not much greater thanθN/2 in most cases, a
fact that is considered unlikely. The situation is exacerbated if
the factorθ in (14) is small. This motivates the consideration
of an alternative relaxation as we describe in Section III-C.

We note in closing that Lemaréchal and Oustry [20] have
shown that a common semidefinite relaxation technique is
equivalent to linear relaxation when applied to sparsity max-
imization problems such as (1). As a consequence, the prop-
erties of the linear relaxation (12) noted in this section also
apply to this type of semidefinite relaxation.

C. Diagonal relaxation

As an alternative to linear relaxations, in this subsectionwe
discuss relaxations of (1) in which the matrixQ is replaced
by a diagonal matrix, an approach we refer to as diagonal
relaxation. As discussed in [13], the sparse design problemis
straightforward to solve in the diagonal case, thus making it
attractive as a relaxation whenQ is non-diagonal.

To obtain a diagonal relaxation, the quadratic constraint in
(1) is replaced with a similar constraint involving a positive
definite diagonal matrixD:

(b− c)TD(b− c) =

N
∑

n=1

Dnn(bn − cn)
2 ≤ γ. (15)

Geometrically, constraint (15) specifies an ellipsoid, denoted
as ED, with axes that are aligned with the coordinate axes.
Since the relaxation is intended to provide a lower bound
for the original problem, we require that the coordinate-
aligned ellipsoidED enclose the original ellipsoidEQ so that
minimizing overED yields a lower bound on the minimum
over EQ. For simplicity, the two ellipsoids are assumed to
be concentric. Then it can be shown [18, Sec. 3.4.1] that the
nesting of the ellipsoids is equivalent toQ−D being positive
semidefinite, which we write asQ−D � 0 or Q � D.

EQ

ED1

ED2

Fig. 5. Two different diagonal relaxations.

For everyD satisfying 0 � D � Q, minimizing ‖b‖
0

subject to (15) results in a lower bound for problem (1). Thus
the set of diagonal relaxations is parameterized byD as shown
in Fig. 5. As with linear relaxations in Section III-B, we are
interested in finding a diagonal relaxation that is as tight as
possible, i.e., a matrixDd such that the minimum zero-norm
associated withDd is maximal among all valid choices of
D. To obtain such a relaxation, we make use of the following
condition derived in [13], which specifies when constraint (15)
admits a feasible solutionb with K zero-valued elements:

SK

(

{Dnnc
2
n}

)

≤ γ, (16)

where SK

(

{Dnnc
2
n}

)

denotes the sum of theK smallest
elements of the sequenceDnnc

2
n, n = 1, . . . , N . Based on

(16), the tightest diagonal relaxation may be determined by
solving the following optimization:

Ed(K) = max
D

SK

(

{Dnnc
2
n}

)

s.t. 0 � D � Q, D diagonal,
(17)

for values ofK increasing from zero. If the optimal value
Ed(K) is less than or equal toγ, then condition (16) holds for
everyD satisfying the constraints in (17), and consequently a
feasible solutionb with K zero-valued coefficients exists for
every suchD. We conclude that the minimum zero-norm in
every diagonal relaxation can be at mostN − K. The value
of K is then incremented by1 and (17) is re-solved. If on
the other handEd(K) is greater thanγ for someK = Kd +
1, then according to (16) there exists aDd for which it is
not feasible to have a solution withKd + 1 zero coefficients.
When combined with the conclusions drawn forK ≤ Kd, this
implies that the minimum zero-norm withD = Dd is equal
to N−Kd. It follows thatN−Kd is the tightest lower bound
achievable with a diagonal relaxation.
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The foregoing procedure determines both the tightest possi-
ble diagonal relaxation and its optimal value at the same time.
For convenience, we will refer to the overall procedure as
solving the diagonal relaxation. The term diagonal relaxation
will refer henceforth to the tightest diagonal relaxation.

The main computational burden in solving the diagonal
relaxation lies in solving (17) for multiple values ofK.
It is shown in [18, Sec. 3.5.3] that (17) can be recast as
the following semidefinite optimization problem in a scalar
variabley0 and vector variablesv andw:

max
y0,v,w

Ky0 +
N
∑

n=1

vn

s.t. 0 � y0I+Diag(w) � Diag(c)QDiag(c),

w − v ≥ 0, v ≤ 0,

(18)

whereDiag(x) denotes a diagonal matrix with the entries of
x along the diagonal. The semidefinite reformulation (18) can
be solved efficiently using interior-point algorithms. Further
efficiency enhancements can be made as detailed in [18,
Sec. 3.5]. For example, the monotonicity of the cost function
in (17) with respect toK permits a binary search overK
instead of the linear search discussed earlier.

As with the linear relaxation in Section III-B, it is of
interest to understand how well the diagonal relaxation can
approximate the original problem. It is clear that ifQ is
already diagonal, the diagonal relaxation and the original
problem coincide and the approximation ratio defined in
Section III-B is equal to1. Based on Fig. 5, we would also
expect the diagonal relaxation to yield a poor approximation
when the original ellipsoidEQ is far from being coordinate-
aligned. For example,EQ may be dominated by a single long
axis with equal components in all coordinate directions, thus
forcing the coordinate-aligned enclosing ellipsoidED to be
much larger thanEQ. This situation corresponds algebraically
to Q having one eigenvalue that is much smaller than the
rest, with the associated eigenvector having components of
equal magnitude. In [18, Sec. 3.4.2], it is shown that when
the smallest eigenvalue ofQ is small enough, the diagonal
relaxation has an optimal cost of zero while the original
problem has a non-zero optimal cost. Thus the approximation
ratio for the diagonal relaxation can range anywhere between 0
and1, as with the linear relaxation. Furthermore, one class of
instances for which the diagonal relaxation has a zero optimal
cost is the same class for which the linear relaxation is a tight
approximation. Hence there is no strict dominance relationship
between the two relaxations (diagonal relaxations are clearly
dominant in the case of diagonalQ).

The above conclusions however are based on extreme
instances, both best-case and worst-case. In more typical
instances, the diagonal relaxation often yields a significantly
better approximation than the linear relaxation. Several such
cases are illustrated numerically in Section III-D. It has also
been our experience as reported in Section IV that the diago-
nal relaxation provides strong bounds for problem instances
encountered in applications of sparse filter design. We are
thus motivated to understand from a theoretical perspective
the situations in which the diagonal relaxation is expectedto

perform favorably. In the remainder of this subsection, we
consider three restricted classes of instances and summarize
our analytical results characterizing the approximation quality
of the diagonal relaxation in these cases.

To state our results, we defineK∗ to be the maximum
number of zero-valued coefficients in problem (1) (i.e.,N
minus the minimum zero-norm), andKd to be the maximum
number of zero-valued coefficients in the diagonal relaxation
of (1). The enclosing conditionEQ ⊆ ED ensures thatKd is
an upper bound onK∗. The ratioKd/K

∗ is thus an alternative
definition of approximation ratio involving the number of
zero-valued components rather than the number of non-zeros,
and is more convenient for expressing our results. A good
approximation corresponds toKd/K

∗ being not much larger
than1. For the cases that we analyze, we obtain upper bounds
on Kd/K

∗ of the following form:

Kd

K∗
≤ ⌈(K + 1)r⌉ − 1

K
≈ r, (19)

where K is a positive integer,r is a real number greater
than 1, andK and r depend on the class of instances under
consideration. The approximation in (19) is justified whenK
is much greater than1.

Our first result relates the quality of approximation to the
condition numberκ(Q), defined as the ratio of the largest
eigenvalueλmax(Q) to the smallest eigenvalueλmin(Q).
Geometrically,κ(Q) corresponds to the ratio between the
longest and shortest axes of the ellipsoidEQ. We expect the
diagonal relaxation to be a good approximation when the
condition number is low. A small value forκ(Q) implies that
EQ is nearly spherical and can therefore be enclosed by a
coordinate-aligned ellipsoidED of comparable size. This is
illustrated in Fig. 6 in the two-dimensional case. SinceEQ can
be well-approximated byED in terms of volume, one would
expect a close approximation in terms of sparsity as well. We
obtain an approximation guarantee in the form of (19) with
K andr defined as follows:

K = K(S) = max K s.t.

λmax(S
−1QS−1)SK

(

{Snnc
2
n}

)

≤ γ, (20)

r = r(S) = κ(S−1QS−1),

whereS can be an arbitrary invertible diagonal matrix. With
S = I, (19) states that the ratioKd/K

∗ is approximately
bounded by the condition numberκ(Q). The bound can be
optimized by choosingS to minimizeκ(S−1QS−1), i.e., as
an optimal diagonal preconditioner forQ.

EQ
EQ

EDED

Fig. 6. Diagonal relaxations for two ellipsoids with contrasting condition
numbers.

Because of space limitations, we describe only the major
steps in the proof of the condition number bound above for
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the caseS = I. The reader is referred to [18, Sec. 3.4.4] for
details. To bound the ratioKd/K

∗, we combine a lower bound
K on K∗ with an upper boundK on Kd. The former can be
derived using the following condition [13] for the feasibility
of solutions to (1) withK zero-valued components:

E0(K) = min
|Z|=K

{

cTZ(Q/QYY)cZ
}

≤ γ, (21)

whereQ/QYY denotes the Schur complement ofQYY . By
definition, K∗ is the largest value ofK for which (21) is
satisfied. HenceK∗ can be bounded from below by means of
an upper bound on the right-hand sideE0(K) in (21). Using
properties of quadratic forms and Schur complements [21] and
the definition ofSK we obtain

E0(K) ≤ min
|Z|=K

{

λmax(Q/QYY) ‖cZ‖22
}

≤ min
|Z|=K

{

λmax(Q) ‖cZ‖22
}

= λmax(Q)SK

(

{c2n}
)

,

from which it can be seen thatK in (20) (with S = I) is
a lower bound onK∗. Similarly, Kd is the largestK such
that Ed(K) in (17) is less than or equal toγ. Therefore
a lower bound onEd(K) yields an upper bound onKd.
Since D = λmin(Q)I is a feasible solution to (17), we
haveEd(K) ≥ λmin(Q)SK({c2n}) and henceKd ≤ K =
max{K : λmin(Q)SK({c2n}) ≤ γ}. The similar expressions
for K andK suggest that their ratio is approximately equal
to the condition numberκ(Q). The detailed derivation in [18]
leads to the bound in (19). The generalization to non-identity
S is due to the invariance of (1) and (17) to arbitrary diagonal
scalings. This property follows from the invariance of the zero-
norm to diagonal scaling and from the ability ofD to absorb
any diagonal scalings in (17) (see [18, Sec. 3.4.3]).

Next we consider the case in whichQ is diagonally domi-
nant, specifically in the sense that

max
m

∑

n6=m

|Qmn|√
QmmQnn

< 1, (22)

i.e., the sum of the normalized off-diagonal entries is small
in every row. In the diagonally dominant case, the diagonal
relaxation is expected to provide a close approximation to the
original problem. By definingZK to be the subset of indices
corresponding to theK smallest values ofQnnc

2
n, a bound of

the form in (19) can be obtained with

K = max K s.t.








1 + max
m∈ZK

∑

n∈ZK

n6=m

|Qmn|√
QmmQnn









SK

(

{Qnnc
2
n}

)

≤ γ,

r =









1 + max
m∈ZK+1

∑

n∈ZK+1

n6=m

|Qmn|√
QmmQnn









/



1−max
m

∑

n6=m

|Qmn|√
QmmQnn



 .

The ratior depends on the degree of diagonal dominance of
Q and approaches1 as the off-diagonal entries converge to
zero. The bound in (19) then implies thatKd approachesK∗

as expected. The proof of the bound follows the same strategy
as for the condition number bound with different expressions
for K andK that reflect the diagonal dominance ofQ; for
details see [18, Sec. 3.4.5].

A geometric analogue to diagonal dominance is the case
in which the axes of the ellipsoidEQ are nearly aligned
with the coordinate axes. Algebraically, this correspondsto
the eigenvectors ofQ being close to the standard basis
vectors. More specifically, we assume thatQ is diagonalized
as Q = VΛVT , where the eigenvaluesλn(Q) and the
orthogonal matrixV of eigenvectors ofQ are ordered in such
a way that∆ ≡ V − I is small. In the nearly coordinate-
aligned case, we also expect a good approximation from the
diagonal relaxation. If the spectral radiusρ(∆) of ∆ is small
enough to satisfy the conditionκ(Q)ρ(∆) < 1, then it can be
shown that (19) holds with

K = max K s.t.
(

1 + κ(Q)ρ(∆) + κ(Q)ρ2(∆)
)

SK

(

{λn(Q)c2n}
)

≤ γ,

r =
1 + κ(Q)ρ(∆) + κ(Q)ρ2(∆)

1− κ(Q)ρ(∆)
.

The ratior now depends on the coordinate alignment ofEQ
and the conditioning ofQ and is close to1 if EQ is nearly
aligned andQ is well-conditioned. The proof is on similar
lines as above [18, Sec. 3.4.6].

D. Numerical comparison of linear and diagonal relaxations

To complement the analysis in Sections III-B and III-C,
we present in this subsection a numerical evaluation of linear
and diagonal relaxations. While it was seen earlier that neither
relaxation dominates the other over all possible instancesof
(1), the numerical comparison indicates that diagonal relax-
ations provide significantly stronger bounds on average in
many classes of instances. The experiments also shed further
light on the approximation properties of the diagonal relax-
ation, revealing in particular a dependence on the eigenvalue
distribution of the matrixQ.

The evaluation is conducted by generating large numbers
of random instances of (1) to facilitate the investigation
of properties of the relaxations. Filter design examples are
considered later in Section IV. The number of dimensionsN is
varied between10 and150 and the parameterγ is normalized
to 1 throughout. In the first three experiments, the eigenvectors
of Q are chosen as an orthonormal set oriented uniformly at
random over the unit sphere inN dimensions. The eigenvalues
of Q are drawn from different power-law distributions and then
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rescaled to match a specified condition numberκ(Q), chosen
from among the values

√
N , N , 10N , and100N . One motiva-

tion for considering power-law eigenvalue distributions stems
from the typical channel frequency responses encountered in
wireline communications [22]. OnceQ is determined, each
componentcn of the ellipsoid center is drawn uniformly from
the interval

[

−
√

(Q−1)nn,
√

(Q−1)nn

]

. These bounds oncn
are in keeping with our assumption that (6) is satisfied for all
n.

The linear relaxation of each instance, and more specifically
the Lagrangian dual derived in [18, App. B.2], is solved using
the functionfmincon in MATLAB. We use the customized
solver described in [18, Sec. 3.5] for the diagonal relaxation;
a general-purpose semidefinite optimization solver such as
SDPT3 [23] or SeDuMi [24] can also be used to solve (18).
In addition, a feasible solution is obtained for each instance
using the backward greedy algorithm of [13]. To assess the
quality of each relaxation, we use the ratio of the optimal
cost of the relaxation to the cost of the backward greedy
solution. These ratios are denoted asRℓ andRd for linear and
diagonal relaxations. Since any feasible solution provides an
upper bound on the optimal cost of (1),Rℓ andRd are lower
bounds on the true approximation ratios, which are difficult
to compute given the large number of instances. Note that we
are returning to the original definition of approximation ratio
in terms of the number of non-zero coefficients and not the
number of zero-valued coefficients as in Section III-C.

In the first experiment, the eigenvalues ofQ are drawn
from a distribution proportional to1/λ, which corresponds
to a uniform distribution forlogλ. While no single eigen-
value distribution can be representative of all positive definite
matrices, the inverse of any positive definite matrix is also
positive definite and a1/λ eigenvalue distribution is unbiased
in this regard since it is invariant under matrix inversion (up
to a possible overall scaling). Fig. 7(a) plots the ratiosRℓ

andRd as functions ofN andκ(Q) under a1/λ distribution,
where each point represents the average of1000 instances.
The linear relaxation approximation ratioRℓ does not vary
much with N or κ(Q). In contrast, the diagonal relaxation
approximation ratioRd is markedly higher for lowerκ(Q), in
agreement with the association between condition number and
ellipsoid sphericality and the bound in (19). Moreover,Rd also
improves with increasingN so that even forκ(Q) = 100N
the diagonal relaxation outperforms the linear relaxationfor
N ≥ 20. The difference is substantial at largeN and is
reflected not only in the average ratios but also in their
distributions; clear separations can be seen in [18, Sec. 3.6]
between histograms of optimal values for diagonal relaxations
and corresponding histograms for linear relaxations.

Figs. 7(b) and 7(c) show average approximation ratiosRℓ

andRd for a uniform eigenvalue distribution and a1/λ2 dis-
tribution respectively. It is straightforward to show thata 1/λ2

distribution for the eigenvalues ofQ corresponds to a uniform
distribution for the eigenvalues ofQ−1. The behavior ofRℓ

is largely unchanged. EachRd curve in Fig. 7(b) however is
lower than its counterpart in Fig. 7(a) and the dependence of
Rd on the condition number is more pronounced. The linear
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Fig. 7. Average approximation ratiosRℓ andRd for (a) a1/λ eigenvalue
distribution, (b) a uniform eigenvalue distribution, (c) a1/λ2 eigenvalue
distribution, and (d) exponentially decayingQ matrices. In (a)–(c),κ(Q) =√
N,N, 10N, 100N from top to bottom within each set of curves. In (d),

ρ = 0.1, 0.5, 0.9, 0.99 from top to bottom within each set of curves.

relaxation is now preferable to the diagonal relaxation when
κ(Q) is significantly greater thanN . On the other hand, the
Rd curves in Fig. 7(c) are higher than in Figs. 7(a) and 7(b)
and the dependence onκ(Q) is reduced.

The differences among Figs. 7(a)–(c) suggest that the
diagonal relaxation yields a better approximation when the
eigenvalue distribution ofQ is weighted toward lower values,
as in Figs. 7(a) and 7(c), so that most of the eigenvalues are
small and of comparable size. While a rigorous explanation
for this dependence on eigenvalue distribution is a subjectfor
future study, the dependence can be explained more informally
by utilizing the inverse relationship between eigenvaluesand
axis lengths of the ellipsoidEQ, combined with the following
geometric intuition: Assuming thatEQ is not close to spherical,
i.e., κ(Q) is relatively large, it is preferable for most of the
ellipsoid axes to be long rather than short, and for the long axes
to be comparable in length. Such an ellipsoid tends to require a
comparatively smaller coordinate-aligned enclosing ellipsoid,
and consequently the diagonal relaxation tends to be a better
approximation. For example, in three dimensions, a severely
oblate spheroid can be enclosed in a smaller coordinate-
aligned ellipsoid on average than an equally severely prolate
spheroid.

In a fourth experiment,Q is chosen to correspond to an
exponentially decaying autocorrelation function with entries
given byQmn = ρ|m−n|, where the decay ratioρ is varied
between0.05 and 0.99. The vectorc is generated as before
based on the diagonal entries ofQ−1. It can be shown that
only positive values ofρ need to be considered sinceρ and−ρ
are equivalent in terms of the zero-norm cost [18, Sec. 3.6].
In addition, Q is diagonally dominant in the sense of (22)
for ρ ≤ 1/3. Fig. 7(d) shows the approximation ratiosRℓ
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and Rd for four values ofρ, averaged over1000 instances
as before. As with the condition numberκ(Q) in Figs. 7(a)–
(c), the decay ratioρ does not appear to have much effect on
Rℓ. Furthermore, while the analysis in Section III-C predicts
a close approximation from the diagonal relaxation forρ =
0.1, it is somewhat surprising that the performance does not
degrade by much even forρ close to1.

The results in Fig. 7 indicate that diagonal relaxations result
in better bounds than linear relaxations in many instances.This
can be true even when the condition numberκ(Q) or the decay
ratio ρ is high, whereas the analysis in Section III-C is more
pessimistic. The experiments also confirm the dependence
of the diagonal relaxation on the conditioning and diagonal
dominance ofQ and indicate an additional dependence on the
eigenvalue distribution.

IV. D ESIGN EXAMPLES

In this section, the design examples in [13] are used to
evaluate the complexity of variants of our branch-and-bound
algorithm employing either linear relaxations, diagonal relax-
ations, or no relaxations. We also compare our algorithm to the
commercial mixed-integer programming solver CPLEX 12.4
[16]. The results demonstrate that the proposed techniques,
in particular diagonal relaxations, can significantly reduce the
complexity of an exact solution to (1), especially in more
difficult instances where order-of-magnitude decreases are
possible. For instances that are too difficult to be solved exactly
in the allotted time, diagonal relaxations yield tighter bounds
on the deviation from optimality of the final solution.

Our branch-and-bound algorithm is implemented in MAT-
LAB 7.11 (2010b), including solvers for linear and diagonal
relaxations as described in Section III-D. For CPLEX, we use
the mixed integer formulation of the problem (more precisely
the split-variable formulation leading to (12)), which is passed
to the CPLEX MEX executable with default solver options.
The experiments are run on a2.4 GHz quad-core Linux
computer with3.9 GB of memory. Our algorithm uses more
than one core only when the dimension of the computation
exceeds50 or so; CPLEX however is able to exploit all four
cores all the time. Complexity is measured in terms of running
time and the number of subproblems processed.

A. Wireless channel equalization

The first example involves the design of sparse equalizers
for a high-definition television terrestrial broadcast channel.
The multipath parameters for the channel are given in Table I,
where the delaysτi are expressed as multiples of the sampling
period. Following [6], [7], the transmit and receive filters
are chosen to be square-root raised-cosine filters with excess
bandwidth parameterβ = 0.115. The transmitted sequence
and noise are assumed to be white with the ratio of the
signal variance to the noise variance, i.e., the input SNR, set
to 10 dB. The number of non-zero equalizer coefficients is
minimized subject to a constraint on the allowable MSEδ.
The formulation of the sparse equalizer design problem in the
form of (1) is discussed in [13]. The solution time is limited
to 105 seconds for all algorithms.

TABLE I
MULTIPATH PARAMETERS FOR THEHDTV EQUALIZATION EXAMPLE .

i 0 1 2 3 4 5
τi 0 4.84 5.25 9.68 20.18 53.26
ai 0.5012 −1 0.1 0.1259 −0.1995 −0.3162

Table II shows the final cost values, solution times, and
numbers of subproblems for equalizer lengthsN = L +
1, 1.5L + 1, 2L + 1, whereL = 54 is the largest channel
delay, and MSE values up to2 dB above the minimum MSE
δmin corresponding to the optimal non-sparse equalizer. Note
that for N = 2L + 1, an exhaustive search would require
considering2109 ≈ 6 × 1032 configurations. The final cost
shown in Table II is the optimal cost when at least one of
the algorithm variants converges within the allowed solution
time; otherwise it is the cost of the incumbent solution at
termination. For instances in which the algorithm does not
converge, the final optimality gap, i.e., the difference between
the incumbent cost and the smallest of the lower bounds for
open subproblems, is shown in parentheses in place of the
solution time.

We focus first on the three variants of the proposed al-
gorithm, which are all implemented in MATLAB and thus
directly comparable in terms of solution time. Table II shows
that the use of diagonal relaxations can dramatically reduce
complexity relative to the other two variants, particularly for
the more difficult instances at larger lengths and intermedi-
ate MSE. Intermediate MSE values pose a greater difficulty
because the sparsity level also tends to be intermediate and
the number of configurations with the same sparsity, i.e., the
binomial coefficient

(

N
K

)

, is very large. Diagonal relaxations
become instrumental for improving lower bounds and pruning
large numbers of subproblems. For instances that cannot be
solved exactly within the given time, diagonal relaxations
result in smaller optimality gaps.

In contrast, for the easier instances at shorter lengths and
higher MSE, the algorithm variant that avoids relaxations is
the most efficient. In these cases, either the dimension or the
incumbent cost is low enough for the infeasibility bounds
in Section III-A to be effective, and consequently the added
effort of solving relaxations is not justified. TheN = 55,
δ/δmin = 0.02 dB instance can also be solved efficiently with-
out relaxations because a significant fraction of the coefficients
cannot take zero values and are thus eliminated as discussed
in Section III-A. For δ/δmin = 0.02 dB andN = 82, 109
however, diagonal relaxations still yield substantial savings.

Linear relaxations are not observed to reduce solution
times except in the most difficult instances where the modest
improvement in lower bounds is still valuable. The linear
relaxation variant is faster than the diagonal relaxation variant
only at high MSE where both relaxations are unnecessary but
the overhead of solving linear relaxations is smaller.

As for the number of subproblems, Table II shows that when
all three variants of our algorithm converge, the one using
diagonal relaxations solves substantially fewer subproblems.
However, when some or all of the variants fail to converge,
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TABLE II
COMPLEXITY OF DIFFERENT BRANCH-AND-BOUND ALGORITHMS FOR THE EQUALIZATION EXAMPLE. NUMBERS IN PARENTHESES INDICATE THE FINAL

OPTIMALITY GAP IN CASES OF NON-CONVERGENCE.

N δ/δmin [dB] final cost time [s] (gap) number of subproblems
none linear diagonal CPLEX none linear diagonal CPLEX

55 0.02 43 0.43 1.40 0.56 19.50 750 750 734 7370
0.05 36 17.3 31.1 6.6 191.5 9492 9236 3890 72256
0.1 28 7.7 35.2 5.0 153.2 6688 3588 712 42466
0.2 20 0.65 7.91 1.19 50.85 1492 698 88 8503
0.4 13 0.15 2.88 1.30 16.80 406 302 74 2463
0.7 8 0.08 1.32 0.81 9.93 166 144 40 1149
1.0 5 0.014 0.141 0.166 1.522 14 12 4 5672
1.5 3 0.011 0.028 0.040 0.425 0 0 0 199
2.0 2 0.002 0.002 0.002 0.182 0 0 0 22

82 0.02 63 75 101 8.5 473 16134 15770 3238 113501
0.05 55 80793 27568 801 23081 506836 279986 37234 3837752
0.1 47 (5) (3) 97621 (2) 339516 290058 543652 10863093
0.2 34 (2) 15217 1057 39982 338074 203282 39622 4446718
0.4 22 330 137 63 1126 35414 9000 1942 121759
0.7 14 7.6 28.6 21.1 206.0 4996 2098 454 17813
1.0 10 0.9 8.9 10.4 80.0 1410 642 196 7887
1.5 5 0.041 0.346 0.758 106.26 34 22 14 130522
2.0 3 0.024 0.043 0.075 0.779 0 0 0 567

109 0.02 85 4242 2576 39 3838 104946 75962 4894 624995
0.05 76 (5) (3) 10131 (2) 317473 270808 148652 7572442
0.1 67 (9) (7) (3) (7) 298086 245448 223834 6902299
0.2 56 (14) (10) (6) (12) 280963 234673 210940 5620187
0.4 38 (9) (6) (3) (6) 288158 214381 217697 5242439
0.7 25 (5) (2) 37185 (2) 212572 262994 243496 5453732
1.0 17 45428 2466 925 14783 347892 61334 12360 889357
1.5 10 22.0 40.7 67.4 795.9 7632 2420 774 40677
2.0 5 0.09 0.66 2.56 20.78 60 34 24 569

the optimality gap becomes the more important statistic since
the number of subproblems may simply reflect the amount
of computation performed in the allotted time. ForN = 82
andδ/δmin = 0.1 dB, the diagonal relaxation variant actually
solves more subproblems but converges in the end. This may
be interpreted as evidence that the algorithm has moved be-
yond the higher-dimensional subproblems that slowed progress
for the other two variants.

In comparison to CPLEX, Table II shows that the diagonal
relaxation variant of our algorithm is much more efficient.
Indeed, the other two variants are also more efficient than
CPLEX in easier instances, whereas in difficult instances
CPLEX becomes comparable to the linear relaxation variant.
These favorable comparisons are obtained despite CPLEX’s
advantages as a compiled executable capable of full multicore
execution. The computational advantage of CPLEX can be
seen in the number of subproblems processed per unit time,
which in more difficult instances is generally an order of
magnitude higher than for our algorithm. It is difficult to
identify precisely the reasons for the relative inefficiency of
CPLEX given its use of many additional techniques beyond
basic branch-and-bound. We have observed that the heuristic
used by CPLEX is less effective than the backward selection
heuristic used in our algorithm. To obtain lower bounds,
CPLEX uses linear relaxations and may solve too many of
them in the sense of not improving bounds, in contrast to
our more judicious approach (see the conditions on Step 5 in
Fig. 3). CPLEX is likely not able to use diagonal relaxations
or the infeasibility bounds in Section III-A, which are specific
to our problem. The infeasibility bounds in particular can

eliminate many infeasible subproblems and improve bounds
incrementally with minimal computation, and can also reduce
subproblem dimensions as discussed in Section II.

The benefits of solving diagonal relaxations in this example
can be partly attributed to the properties of the matrixQ,
which is largely determined by the channel response. In
a multipath environment with a sparse set of arrivals, the
resulting matrixQ tends to be well-conditioned with the
largest entries near the diagonal, although the strict definition
of diagonal dominance in (22) is not satisfied in this example.

B. MVDR beamforming

In a second example, we turn to the design of sparse
minimum-variance distortionless-response (MVDR) beam-
formers for signal detection. Since the current branch-and-
bound algorithm is intended for real-valued filter design, we
focus on a real-valued formulation of the MVDR beamforming
problem. The complex-valued generalization of the branch-
and-bound algorithm is a subject for future study. We consider
an environment with two discrete interference sources at
anglesθ1 and θ2 from the array axis, wherecos θ1 = 0.18
andcos θ2 = 0.73, together with isotropic (white) noise. The
target directionθ0 is swept over140 values fromcos θ0 = 0
to cos θ0 = 1. The interferer powers are set at10 and25 dB
respectively relative to the white noise power, while the signal
power is normalized to unity. The number of non-zero array
weights is fixed at30 and four array lengthsN = 30, 40, 50, 60
are considered. Further details of the experiment can be found
in [13].
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For each lengthN and target angleθ0, the objective is to
maximize the output SNR, defined as the ratio between the
mean array output and the standard deviation. ForN = 30,
the SNR is maximized by the conventional non-sparse MVDR
beamformer. ForN = 40, 50, 60, a linear search over SNR
is performed, starting from the highest SNR achieved at the
next lowest value ofN and increasing in0.05 dB increments.
At a fixed SNR, the minimization of the number of non-zero
weights corresponds to an instance of problem (1), as shown
in [13]. For this example, it suffices to test for feasibility
at each SNR, i.e., to determine whether a solution with30
non-zero weights exists subject to the SNR constraint. We
use branch-and-bound for this purpose, terminating it as soon
as such a solution is found, or alternatively as soon as all
of the subproblem lower bounds rise above30, indicating
infeasibility. We compare the three variants of our algorithm
as in Section IV-A, allowing one hour of processing time
per SNR value, but do not include CPLEX because of its
relative inefficiency. In cases where neither of the terminating
conditions is met within one hour, we obtain bounds on the
maximum achievable SNR at the current(N, θ0) pair instead
of a definite value. The lower bound corresponds to the highest
SNR at which the algorithm is able to find a feasible solution,
while the upper bound corresponds to the lowest SNR at which
the algorithm is able to prove infeasibility.

Table III summarizes the results of the algorithm compar-
ison. Instances are divided into two groups depending on
whether the algorithm variant converged within the allowed
time, and average statistics within each group are reported. For
N = 40, the vast majority of instances are simple enough to be
solved most efficiently without relaxations. ForN = 50 and
60 however, diagonal relaxations reduce the average solution
time and number of subproblems by an order of magnitude
in instances in which the algorithm converges. Indeed for
N = 60, the algorithm fails to converge in a large majority of
instances unless diagonal relaxations are used, in which case
the opposite is true. Diagonal relaxations also yield tighter
bounds on the optimal SNR in cases of non-convergence as
measured by the gap between the upper and lower bounds.
Linear relaxations on the other hand offer no benefits in this
example. We note that the instances in which the diagonal
relaxation variant does not converge tend to correspond to
target array manifold vectors with nearly equal components,
leading to a large number of array configurations with similar
SNR and thus complicating the branch-and-bound search.

As in the channel equalization example, the properties of
the present beamforming example favor the use of diagonal
relaxations. Specifically, the matrixQ has two large eigen-
values corresponding to the interferers while the remaining
eigenvalues are small and equal, corresponding to white noise.
As discussed in Section III-D, diagonal relaxations tend to
result in good approximations for this type of eigenvalue
distribution even though the condition number may be high.

V. CONCLUSIONS AND FUTURE WORK

We have proposed a branch-and-bound algorithm for de-
signing maximally sparse filters subject to a quadratic con-
straint on filter performance, with particular emphasis on the

determination of lower bounds on the optimal cost. Low-
complexity bounds based on infeasibility can be easily in-
corporated into branch-and-bound to yield incremental im-
provement, while stronger bounds can be obtained through
linear and diagonal relaxations, both of which involve convex
optimization and are therefore efficient. Filter design examples
demonstrated that substantial complexity reductions can be
achieved with diagonal relaxations in particular, especially in
more difficult instances and even when comparing a MAT-
LAB implementation to commercial software. In the case of
early termination, solving diagonal relaxations leads to tighter
bounds on the deviation from optimality. The techniques in
this paper make optimal design more accessible not only
to filter designers but also developers of design algorithms.
Specifically, the proposed branch-and-bound algorithm canbe
used to more easily evaluate lower-complexity approximateal-
gorithms, as we have done for the backward greedy algorithm
in [13].

Our positive experience with diagonal relaxations inspires
interest in the general approach of exploiting an efficiently
solvable special case of a problem to approximate a broader
class. A potential next candidate is the tridiagonal case
discussed in [13]. A similar approach has been applied to
design filters with efficient binary representations [18] and
could be extended to sparse filter design under a minimax
constraint on the frequency response [4]. Future work could
also be directed at more sophisticated implementations of the
branch-and-bound algorithm. Our experience with the current
MATLAB implementation suggests that for filters of length
up to 100, optimality can be certified within a few hours on a
present-day computer, a figure that would likely be improved
by implementing the algorithm or critical parts of it in a more
efficient programming language such as C. Branch-and-bound
is also highly parallelizable and could thus benefit from multi-
processor and cloud computing.
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