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Abstract—This paper presents an exact algorithm for sparse the quadratic constraint has special structure, low-ceriy
filter deS|gn under a quadratic constraint on filter performancg. algorithms are sufficient to guarantee optimally sparseydes
The algorithm is based on branch-and-bound, a combinatorié. £ the general case, a backward greedy selection algoisthm
optimization procedure that can either guarantee an optima h iricallv to vield optimal timal solutio
solution or produce a sparse solution with a bound on its S own er_npmca y 1o yield optmal or near-opumal so -
deviation from optimality. To reduce the complexity of branch- In many instances. We refer the reader to [13] for additional
and-bound, several methods are developed for bounding the background on sparse filter design and a more detailed bibli-
optimal filter cost. Bounds based on infeasibility yield ince- ography.
mentally accumulating improvements with minimal computa- A major shortcoming of many low-complexity methods,

tion, while two convex relaxations, referred to as linear ad . . . . .
diagonal relaxations, are derived to provide stronger bouds. including the backward selection algorithm in [13] and oth-

The approximation properties of the two relaxations are cha €rs (e.g. [3], [4], [8]-[10]), is that they do not indicate
acterized analytically as well as numerically. Design exapies how close the resulting designs are to the true optimum. In
involving wireless channel equalization and minimum-varance the present paper, we take a different approach to address
distortionless-response beamforming show that the comptéy of ;g shortcoming, specifically by combining branch-andim
obtaining certifiably optimal solutions can often be signifcantly . . PR
reduced by incorporating diagonal relaxations, especiayl in more [14], an exact procedure f-or. combinatorial opt|m|zat|onﬂw
difficult instances. In the case of early termination due to Several methods for obtaining lower bounds on the optimal
computational constraints, diagonal relaxations strendten the cost, i.e., bounds on the smallest feasible number of nom-ze
bound on the proximity of the final solution to the optimum. coefficients. The resulting algorithm maintains both a soku
to the problem as well as a bound on its deviation from
optimality. The algorithm in the current paper can therefor
be seen as complementary to low-complexity algorithms that
The cost of a discrete-time filter implementation is oftedo not come with such guarantees.
largely determined by the number of arithmetic operations. One motivation for exact algorithms is to provide certifiabl
Accordingly, sparse filters, i.e., filters with relativelye optimal solutions. In applications such as array designrehe
non-zero coefficients, offer a means to reduce cost, espree fabrication and operation of array elements can be very
cially in hardware implementations. Sparse filter desiga haxpensive, the guarantee of maximally sparse designs & esp
been investigated by numerous researchers in the contexlly attractive. Perhaps more importantly, exact aldpnis
of frequency response approximation [1]-[4], communarati are valuable as benchmarks for assessing the performance of
channel equalization [5]-[10], speech coding [11], andhalg lower-complexity algorithms that are often used in praztic
detection [12]. One example of this is the use of the Wiener filter as the
In a companion paper [13], we formulate a problem dienchmark in adaptive filtering [15]. In the present context
designing filters of maximal sparsity subject to a quadratiee have used the algorithm in this paper to evaluate the
constraint on filter performance. We show that this geftvackward selection algorithm in [13], showing that thedatt
eral formulation encompasses the problems of least-sguanfien produces optimal or near-optimal solutions.
frequency-response approximation, mean square error estiGiven the complexity of combinatorial optimization prob-
mation, and signal detection. The focus in [13] is on lowlems such as sparse filter design, there are inevitably @nobl
complexity algorithms for solving the resulting combin@ab instances that are too large or difficult to be solved to ogkim
optimization problem. Such algorithms are desirable whéty within the computational constraints of the applicatidn
computation is limited, for example in adaptive design. Whethis setting, branch-and-bound can offer an appealingreite
tive. The algorithm can be terminated early, for exampleraft
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I. INTRODUCTION



the bounds used in [2], [5] are elementary, while [1] relieShe branch-and-bound algorithm is applied to filter design
on the general-purpose solver CPLEX [16] which does nekamples in Section IV to illustrate the achievable comipfex
exploit the specifics of the sparse filter design problem. Aeductions.

we discuss in Section IlI, strong and efficiently computable

bounds can be instrumental in mitigating the combinatorial

nature of branch-and-bound. Design experiments showlibat t

bounding techniques in this paper can dramatically deereas !l PROBLEM STATEMENT AND BRANCH-AND-BOUND
complexity, by orders of magnitude in difficult instancesda SOLUTION

even when our MATLAB implementation is compared to

sophisticated commercial software such as CPLEX. Inthe cas As in [13], we consider the problem of minimizing the
of early termination, the proposed techniques lead to g&on number of non-zero coefficients in an FIR filter of length

guarantees on the final solution. subject to a quadratic constraint on filter performance, i.e
Three classes of bounds are discussed. Bounds based on

infeasibility require minimal computation and can be aasil
applied to every branch-and-bound subproblem, but are con-
sequently rather weak. To derive stronger bounds, we censid
relaxations of the sparse design problem that can be solygdere the zero-normijb||, denotes the number of non-zero
EfﬁCiently. The first relaxation, referred to as linear ralton Components in the coefficient VeCtdW, c IS a vector rep-
[14], is a common technique in integer optimization adapted resenting the solution that maximizes performance without
our problem. The second relaxation exploits the simpliolty regard to sparsityQ is a symmetric positive definite matrix
the problem when the matrix defining the quadratic Congtra.ﬂfbrresponding to the performance criterion, a,nd a positive

is diagonal, as discussed in [13]. For the non-diagonal,caggnstant. As discussed in [13], several variations of tkessp
we propose an optimized diagonal approximation referred figer design problem can be reduced to (1). The quadratic
as a diagonal relaxation. The approximation properties gbnstraint in (1) may be interpreted geometrically as $peci
the two relaxations are analyzed to gain insight into wheAg an ellipsoid, denoted a&,, centered at. As illustrated
diagonal relaxations in particular are expected to giverslr in Fig. 1, the eigenvectors and eigenvalues@fdetermine
bounds. Numerical experiments complement the analysis af@ orientation and relative lengths of the axesgfwhile ~

demonstrate that diagonal relaxations are tighter thagatin determines its absolute size. We will make reference to this
relaxations under a range of conditions. Using the channglipsoidal interpretation in Section Il

equalization and beamforming examples from [13], it is show
that diagonal relaxations can greatly reduce the time redui
to solve an instance to completion, or else give tighter bdsun
when the algorithm is terminated early.

The basic optimization problem addressed in this paper is
the same as in [13], and hence we make reference throughout
the current paper to results already derived in [13]. We eanph
size however that the two papers take fundamentally diftere
approaches: [13] focuses on low-complexity algorithmg tha
ensure optimal designs in special cases but not in the denera
case, whereas the current paper presents an exact algorithm
for the general case as well as methods for bounding the
deviation from optimality. We also note that the linear and o _ _
diagonal relaxations were introduced in a prefiminary pulf, % Elr=adq formed by feasie sauions o povlen (1 ang
lication [17]. The current paper significantly extends [b¥]
including additional analytical and numerical resultstaiging
to the relaxations, presenting a branch-and-bound afgorit  Solving problem (1) generally requires combinatorial opti
that incorporates the relaxations as well as lower-conifylexmization, although certain special cases permit much miere e
bounds, and demonstrating improved computational compldigient algorithms as seen in [13]. In this section, we revieey
ity in solving sparse filter design problems. branch-and-bound procedure for combinatorial optimarati

The remainder of the paper proceeds as follows. In Sectigfth emphasis on the role of bounds in reducing complexity.
Il, we state the problem of quadratically-constrained sparFurther background on branch-and-bound can be found in [14]
filter design, review the branch-and-bound method for solWVe then present our specific branch-and-bound algorithm for
ing such combinatorial optimization problems, and introelu solving (1).
our proposed algorithm. In Section lll, several methods for For convenience and for later use in Section I1I-B, problem
obtaining lower bounds are discussed, beginning with loW) is reformulated as a mixed integer optimization problem
complexity bounds based on infeasibility and proceeding i@ each coefficienb,, we associate a binary-valued indicator
linear and diagonal relaxations, together with an analysiariablei, with the property that,, = 0 if b, = 0 andi,, =1
of approximation properties and a numerical comparisootherwise. The sum of the indicator variables is therefqueaé

min b, st (b-oTQb-c)<y, (1)

b

by




to ||b||, and (1) can be restated as follows: whereb z denotes théF|-dimensional subvector df indexed
by F (similarly for other vectors). Problem (3) is dtF|-

. iy dimensional instance of the original problem (1) with effiex
g 2_:1 tn parameters given by
st. (b—c)'Q(b—c) <7, @ Qer = Qrr — Qru (Quu) ' Qur, (4a)
bn| < Brin Vn, et = 7 + (Qet) ' (Qrz — Qru(Quu) ' Quz)ez,
ine{0,1} Vn, (40)
i =1-eE((Q7)50) e (40)
whereB,, n = 1,..., N, are positive constants. The second Teft =7 z zZZ 2z

constraint in (2) ensures that serves as an indicator, forcingwherleM denotes the submatrix & with rows indexed by

b, to zero when,, = 0. Wheni,, = 1, the second constraint 7 and columns indexed b/ (similarly for other matrices).
becomes a bound on the absolute valué,pfThe constants Thjs reduced-dimensionality formulation leads to greater

B,, are chosen large enough so that these boungts,odo not  ficiency in the branch-and-bound algorithm. Furthermdre, t
further restrict the set of feasible from that in (1). Specific common structure allows every subproblem to be treated in
values for B,, will be chosen later in Section IlI-B in the the same way.

context of linear relaxation. The creation of subproblems through branching is comple-

The branch-and-bound procedure solves problem (2) Ryented by the computation of lower bounds on the optimal
reCUrSively dIVIdIng it into SprrOblemS with fewer variab. cost in (3) for Subpr0b|ems that are not solved direcﬂy_
The first two subproblems are formed by selecting an indicatgfeasible subproblems can be regarded as having a lower
variable and fixing it to zero in the first subproblem an@ound of+oco. Since a child subproblem is related to its parent
to one in the second. Each of the two subproblems, if ngy the addition of one constraint, the lower bound for the
solved directly, is subdivided into two more subproblems byhild must be at least as large as that for the parent. This
ﬁXing a second indicator variable. This process, refercedst non-decreasing property of the lower bounds is illustrated
branching, produces a binary tree of subproblems as deppictgg. 2. In addition, feasible solutions may also be obtained
in Fig. 2. for certain subproblems. The algorithm keeps a record of the

feasible solution with the lowest cost thus far, referrecaso

root incumbent solutio the incumbent solution. It is apparent that if the lower bibun
with cost6 for a subproblem is equal to or higher than the cost of the
incumbent solution, then the subproblem cannot lead t@bett
solutions and can thus be eliminated from the tree along with
all of its descendants. This pruning operation is alsotilated
in Fig. 2. To minimize complexity, it is clearly desirable to
prune as many subproblems as possible.

Although in worst-case examples the complexity of branch-
and-bound remains exponential ¥ [14], for more typical
instances the situation can be greatly improved. One iraport
contributor to greater efficiency is an initial incumberiigion

infeasible . that is already optimal or nearly so. Such a solution alloovs f
. . more subproblems to be pruned compared to an incumbent
. J . \} J 6 \} . solut_|on with hlgher. cost. Qood initial solutions can oftea
U s provided by heuristic algorithms.

The determination of lower bounds on the other hand is
Fig. 2. Example of a branch-and-bound tree. Each circleesgmts a 3 more difficult and less studied problem. The availability
subproblem and the branch labels indicate the indicatdahias that are fixed d lit f b bl | b d | h t
in going from a parent to a child. The number in each circle leaxger bound an quality of subpro e_m ower bounds also has a s r_ong
on the optimal cost of the corresponding subproblem. Giverinaumbent impact on the complexity of branch-and-bound. As with
solution with a cost o, the subproblems marked by dashed circles need ”ﬁtear-optimal incumbent solutions, stronger (i.e. Iarge\n)er
be considered any further. bounds result in more subproblems being pruned. Moreover,
Each subproblem is defined by th ind £ these lower bounds must be efficiently computable since they
ach subprobiem 1S g Ined by tﬁr.e.e Index sets, sde-t may be evaluated for a large number of subproblems. Section
{"I' tn f_ 0} correspon ing to coe ]luentﬁs_ c_:onstralne tc()j flii discusses several bounding methods with computational
value of zero, a seif = {n : i,, = 1} of coefficients assume efficiency in mind.

to be non-zero, and a st con5|st|ng_of th_e rem_alnder. AS " \We now introduce our proposed algorithm for solving (1).
showp in [13], a subproblem thus defined is equivalent to tI'Ae summary is provided in Fig. 3 with certain steps num-
following problem: bered for convenient reference. The algorithm is initiediz
min U]+ [|bz|, by generating an incumbent solutidn using the backward
br (3) greedy algorithm of [13]. Other initializations could albe
st (br —cer)” Qent (bF — Cott) < Yerts used with no effect on the final solution if the algorithm is



Input: Parameterg, c, -y Thus if the algorithm is terminated early, the bound on the

OL:tptgt:l_ O.ptémal SOLUII-Oan LO (:tl) luti ina backward deviation from optimality of the incumbent solution is agtti
hitialize: Generate incumbent solutidsy using backwar as possible. Furthermore, it is prudent to defer on subprosl

greedy algorithm of [13]. Place root problem in list Witr\/vith the highest lower bounds since these are the first to be

LB =0. pruned whenever the incumbent solution is improved.

Whllleshslt not ebmpt)l;(ilo ith minimdl B and ¢ Steps 2-5 relate to the updating of lower bounds and
) Select subproblem with minim and remove from .6 giscussed further in Section Ill. The indicator vaabl

list. Subproblem parametefes, cerr, Yerr given by (4). ilast refers to the last indicator variable that was fixed in

I d1ast = O. then - . . . creating a subproblem from its parent. We note for now that
2) Identify coefﬁment_s inF for Wh'_Ch a zerg value is solving relaxations is by far the most computationally insige
no longer fea_15|ble using (6) (Section lll-A). Update step and is therefore justified only if a sufficient number of
7 Qeft, Copt If NECessary. subproblems can be pruned as a result. We have found that it is
if 4] = [|brll, then not worthwhile to solve relaxations of subproblems for whic
. Prune current subproblem, go to step 1. i1ast = 1 since they rarely lead to pruning. In addition, small
it LB < |U| +2 then_ . subproblems can often be solved more efficiently by relying
3) Ch_eck for solutions with[br[l, = 0, [|bx[l, = 1 only on the low-complexity steps 2 and 3 and the branch-
.(880“0” lI-A). and-bound process. For this reason, we solve relaxatidgs on
if subproblem solvednd /| + [br |, < [[brllo then nen e subproblem dimensiodF| equals or exceeds a
Updateb; and prune list. Go to step 1. parameterN,..x. The best value ofV, .. depends on the
else complexity of solving relaxations relative to running bcan
.LB el + 2. and-bound without relaxations. In our experiments, we have
it LB > |[by]|, then found N,e1ax = 20 to be a good choice.

Prune current subproblem, go to step 1. | ; : ;
: : . n Step 6, we choose the index for branching accordin
4) Generate feasible solutidny with |bx|l, = |F| - 1. P g d

if [U|+|F|—1<|byl|, then 2

Updateb; and prune list (possibly including current m=argmin 7y — (Q‘?) ’ ®)
subproblem). i . . " .
if dast = 0 and |F| > Nyeax ~ 20 then which results in the smallest possible (but still positivajue
5) Solve linear or diagonal relaxation (Sections I11-8for the parametefy.s; in the i,,, = 0 child subproblem. Thus
I1-C) and updateL B. the i,, = 0 subproblem, while still feasible, tends to be
if LB > ||by||, then severely constrained and the subtree created under thetpare
Prune currgnt subproblem, go to step 1. is unbalanced with many more nodes underithe= 1 branch
6) Create two new subproblems by fixing, to 0,1 than under theé,, = 0 branch. Generally speaking, the higher
wherem is given by (5). Go to step 1. ’ that these asymmetric branchings occur in the tree, theéegrea
the reduction in the number of subproblems. In the extreme
Fig. 3. Branch-and-bound algorithm case, if one of the branches under the root problem supports

very few feasible subproblems, the number of subproblems
is almost halved. We have observed that this branching rule

run to completion: however, the amount of pruning and hengiends to reduce the number of subproblems in agreement with

the rate of convergence would decrease with an inferioiainit € above intuition.
solution. The algorithm uses a list to track subproblem#ia t
branch-and-bound tree that are open in the sense of having
lower bounds (denoted aB in Fig. 3) that are less than In this section, we discuss the determination of lower
the incumbent cost. In each iteration, an open subproblemPunds on the optimal cost of problem (1), beginning in
selected and processed in an attempt to improve the lowzgction Ill-A with bounds that are inexpensive to compute
bound inherited from its parent. Pruning results as soohas fnd continuing in Sections 1I-B and 11I-C with two convex
lower bound rises above the incumbent cost, a conditiorishaf€laxations of problem (1) that lead to stronger lower baund
checked at several points. Feasible solutions are alsaatede The two relaxations are evaluated and compared numerically
and may Occasiona”y trigger updates to the incumbentim“ﬂ:iﬂ Section lI-D. While our presentation will focus on theoto
and pruning based on the new incumbent cost. A subprobl@®blem (1), all of the techniques are equally applicable to
that is not solved or pruned leads to branching and the additi2ny subproblem by virtue of the common structure noted in
of two subproblems to the list. The algorithm terminates mvheSection L.

the list is empty; alternatively, it can be terminated eafter a

specified period of time or number of subproblems processéd. Bounds based on infeasibility

In Step 1, we choose an open subproblem for which theWe begin with two methods based on infeasibility, corre-
current lower bound is among the lowest. This choice yieldponding to Steps 2 and 3 in Fig. 3. While the resulting bounds
the fastest possible increase in the global lower bound, i.eend to be weak when used in isolation, they become more
the minimum of the lower bounds among open subproblenmowerful as part of a branch-and-bound algorithm where they

IIl. APPROACHES TO BOUNDING THE OPTIMAL COST



can be applied inexpensively to each new subproblem, imprdVv) is satisfied for some € F, there exists a solution with
ing lower bounds incrementally as the algorithm descenes th, non-zero and the remaining coefficients equal to zero, and
tree. therefore the optimal cost isprovided that the solutiob = 0

For a subproblem specified by index set8,i{, F) as has been excluded. Otherwise, we conclude that the optimal
defined in Section II, the number of elementdinis clearly costis no less tha® (Ji/|+2 in general). Since this test yields
a lower bound on the optimal cost in (3). This lower bound lower bound of at mogt/| + 2, the execution of Step 3 in
may be improved and the subproblem dimension reduced Big. 3 depends on whether or not the inherited lower bound
identifying those coefficients igF for which a value of zero already exceedg/| + 2. The enumeration of solutions can be
is no longer feasible (Step 2 in Fig. 3). As derived in [13]extended to larger subsets of coefficients, resulting iheeit
settingb,, = 0 is feasible for the root problem (1) if and onlyan optimal solution or progressively higher lower boundse T
if increase in computational effort however is the same as for

c (6) generalizations of (6).

— <.
(Q l)nn . .
. . , ) B. Linear relaxation
A similar condition stated in terms of the effective paraengt . . . .
The lower bounds discussed in Section IlI-A are simple to

in (4) holds for an arbitrary subproblem. We ggt= 1 for

indicesn € F for which (6) is not satisfied, thus increasingcompUte but are only effective for pruning low-dimensional

4| and decreasingF|. In terms of the branch-and-bound tree®! Severely constrained subproblems. Better bounds can be

this corresponds to eliminating infeasilje= 0 branches. The Obtained through relaxatiohof problem (1), constructed in

increase inY{| and corresponding reduction in dimension caﬁuc_h al way ﬂ}atlthi'\r Sﬁ|utl0n8 yield Iowerhboundsl on _the
be significant ify is relatively small so that (6) is violated foroptima C_OSt of (1). As t € t_e_rm sugges_ts, these relaxations
many indices: are also intended to be significantly easier to solve than the

é’iginal problem. In this subsection, we apply a common

For the remainder of the paper we will assume that R hni K i | ) 1 d ider i
above test is performed on every subproblem and variabl&§ nique known as finear re axation .to (1) an _consicer its
roximation properties. An alternative relaxationeredd

are eliminated as appropriate. Thus we need only considéP di | rel ion. is develoned in Section IlI-C
subproblems for which (6) is satisfied for alle F, i.e., a t°$s llaa:gpna l_re axat|c|>n, 'i. eVGI;‘ °peb| In iCt'on t_ t ith
feasible solution exists whenever a single coefficient is-co. 0 obtain a linear relaxation of problem (1), we start wi

strained to zero. This fact is used in Step 4 in Fig. 3 to gdaeréts alternative formulation as a mixed integgr optim.izatio
feasible solutions to subproblems witfb||, = |F| - 1, problem (2) and relax the binary constraints on allowing

where the single zero-valued coefficient is chosen to maemi'» © Vary contmu_ously bgtweeﬁ and 1. The m|n|_m|zat|on
ay then be carried out in two stages. In the first stdge,

the margin in (6). Furthermore, as indicated in Fig. 3, it i@h Id tant while the obiective is minimized with
not necessary to perform the test on subproblems for whigh'€'¢ constant while the objective 1S minimized wi resipe

i1ast = 1. Settingiy,ss = 1 does not change the set of feasibléO i, resulting ini,, = |b,| /By, for eachn. Substituting back

b, and consequently any coefficient for which a value of zellBt(? (2) gives the foIIow_mg m|n|m|za_t|or.1 with respect 1
is feasible in the parent subproblem retains that property\th'Ch we refer to as a linear relaxation:
the child subproblem.

It is possible to generalize the test to identify larger sub-
sets of coefficients that cannot yield feasible solutiongnvh
simultaneously constrained to zero. However, the required-" - " R
computation increases dramatically because the numberwp'm'zat',on' a convex optimization proble_m _that can be
subsets grows rapidly with subset size and because theajenérc,)lved eff|C|er!tIy. Slrl_ce the set of feasible |n<j|cator vest
ization of condition (6) requires matrix inversions of ieasing ! |s_enlarged in deriving (8) from (2), the opymal V‘_"‘Iue of
complexity. Moreover, incorporating information from tes (8) i @ lower bound on that of (2). More precisely, since the
involving larger subsets is less straightforward than gimpPPtimal value of (2) must be an integer, the ceiling of the
setting certaini,, to 1. optimal vqlug of (8) is glso a lower bound. o

A second class of low-complexity lower bounds relies ori!1 To maximize the opt|mall value of (8), thereby maximizing
determining whether solutions with small numbers of nomze_t e lower bound on the optimal value of (2), the constaBiis

elements are infeasible (Step 3 in Fig. 3). In the extreme,ca¥’ th_e objective function Of. (8) should be made as small as
the solutionb — 0 is feasible if3 = v — ¢ZQc > 0. Hence possible. Recall from Section Il thd, must also be large

a negatives implies a lower bound of at least (4| + 1 enough to leave the set of feasiliein (2) unchanged from

for a general subproblem) on the optimal cost. For the ca t In (1), ie., we Feq“”"Bn .Z |.b"| for all n whengverb
of solutions with a single non-zero coefficient, the fedgibi satisfies the quadratic constraint in (1). These conditomty

condition is ) that B,, should be chosen as
* T
_Jn o @ By =max {|b,] : (b —¢)"Q(b—c) < 7}
Qnn :max{B;{*,B;*},
where the vectof = Qc. Condition (7) is a special case of a , _ _ o
Following common usage in the field of optimization, we use tarm

general condition (equ_at.ion (13) in [13]) for feaSib”ith relaxation to refer to both the technique used to relax Tedanstraints in a
only a subset of coefficients is permitted to be non-zero. gfoblem as well as the modified problem that results.

N
min > % st. (b-c)'Qb-c)<~. (8
n=1 n

gaoblem (8) is a quadratically-constrained weightedorm

9)



where

BE* = max {+b, : (b—¢)7Q(b—c) <7}
(10)

(10), the weightsB:;** correspond to the maximum extent of
Eq along the positive and negative coordinate directions and
can be found graphically as indicated in Fig. 4. The solution

to the weightedl-norm minimization can be visualized by
inflating the diamond until it just touches the ellipsoid.eTh

' optimal solution is given by the point of tangency and the
optimal value by the tangent contour.

= \/W(Q—l)nn +cp.

The closed-form expressions fdB™* are derived in [18
App. B.1]. Hence (9) simplifies to

By = (@), + leal. .,

A still stronger lower bound on (2) can be obtained by first
separating each coefficient, into its positive and negative
partsb andb;, as follows:

Under the condition that at least oneldf, b is always zero,
the representation in (11) is uniqui, = b} for b, > 0,
andb,, = —b,, for b, < 0. By assigning to each pairt, b,
corresponding indicator variablés, i, and positive constants
B, B,;, a mixed integer optimization problem equivalent
to (2) may be formulated (see [18, Sec. 3.3.1] for details).
Applying linear relaxation as above to this alternative @aix

integer formulation results in

by

N i _ Fig. 4. Interpretation of the linear relaxation as a weightenorm
: Z <b_n b_n) minimization and a graphical representation of its sotutio
min T + —
btb- B By, (12)
st. (b —b~ —¢)'Q(bt — b~ —¢) <1, Based on_the geomet_rlc intuition in Fl_g. 4, the optimal
N _ value of the linear relaxation and the resulting lower boand
b™ >0, b~ >0.

(1) are maximized when the ellipso&h, is such that the/;
Problem (12) is a quadratically constrained linear progaaeh diamond can grow relatively unimpeded. This is the case for
is also efficiently solvable. The smallest valuesBr andB,, example if the major axis ofq is oriented parallel to a level
that ensure that (12) is a valid relaxation are giverBgy and surface of the-norm and the remaining ellipsoid axes are very
B * in (10). Using a standard linear programming technigushort. The algebraic equivalent in terms of the ma@ixs to
based on the representation in (11) to replace the absolbéve one eigenvalue that is much smaller than the others. The
value functions in (8) with linear functions (see [19]), @arc corresponding eigenvector should have components that are
be seen that (8) is a special case of (12) vith = B,, = B,,. roughly half positive and half negative with magnitudest tha
Since B* = max{B;™*, B;*}, the optimal value of (12) with conform to the weight$3;**. In [18, Sec. 3.3.2, App. B.3], it
B = B** is at least as large as that of (8) wiff), = B>, is shown that for instances constructed as just described, t
and therefore (12) is at least as strong a relaxation as (8ptimal value of the linear relaxation is large enough toahat
Henceforth we will use the term linear relaxation to refer tthe optimal cost of (1), i.e., the approximation ratio is &qu
(12) with Bf = B, to 1, the highest possible value. Hence there exist instances of
In general, given a relaxation of an optimization problen{l) for which the linear relaxation is a tight approximation
it is of interest to analyze the conditions under which the Conversely, the optimal value of the linear relaxation is
relaxation is either a good or a poor approximation to themall when the ellipsoid obstructs the growth of theball.
original problem. The quality of approximation is often cha This occurs if the major axis dq is oriented so that it points
acterized by the approximation ratio, defined as the ratio wiward the origin, or equivalently in terms € if the eigen-
the optimal value of the relaxation to the optimal value & thvector associated with the smallest eigenvalue is a melgpl
original problem. In the case of the linear relaxation in)(12the vectorc. It is shown in [18, Sec. 3.3.2, App. B.4] that
the quality of approximation can be understood geometyicalinstances with this property exhibit approximation ratibat
We first note that the cost function in (12) can be regardede close to zero. The approximation ratio cannot be exactly
as an asymmetrically-weightddnorm with different weights equal to zero since that would require the optimal value of
for positive and negative coefficient values. Recalling thibe linear relaxation to be zero, which occurs onlybif= 0
ellipsoidal interpretation of the feasible set discusse&éc- is a feasible solution to (1), i.e., only if the original aptl
tion Il, the minimization problem in (12) can be representetbst is also equal to zero. Therefore the worst case is for
graphically as in Fig. 4. Note that our assumption that (6) the linear relaxation to have an optimal value less thdeo
satisfied for alln implies that the ellipsoidq must intersect that its ceiling is equal td) while the original problem has
all of the coordinate planes; otherwise the problem din@nsian optimal value equal t&v — 1 (given our assumption that
could be reduced. The asymmetric diamond shape represeni®)as satisfied for alln, the original optimal cost is at most
level contour of the-norm weighted byl / B*. As seen from N — 1). As shown in [18], there exist instances in which both



conditions are achieved, yielding a poor approximatioiratGeometrically, constraint (15) specifies an ellipsoid, ated
of 1/(N —1). as &p, with axes that are aligned with the coordinate axes.

The above discussion implies that the approximation ratiince the relaxation is intended to provide a lower bound
for the linear relaxation can range anywhere betweéeand for the original problem, we require that the coordinate-
1, and thus it is not possible to place a non-trivial guarantedigned ellipsoid€p enclose the original ellipsoiflg so that
on the ratio that holds for all instances of (1). It is possiblminimizing over&p yields a lower bound on the minimum
however to obtain an absolute upper bound on the optimaler £q. For simplicity, the two ellipsoids are assumed to
value of the linear relaxation in terms &f, the total number be concentric. Then it can be shown [18, Sec. 3.4.1] that the
of coefficients. We use the fact that any feasible soluticfiéo nesting of the ellipsoids is equivalent@— D being positive
linear relaxation (12) provides an upper bound on its ogtimsemidefinite, which we write a8 — D = 0 or Q > D.
value. Choosingp™ — b~ = ¢, i.e,, by = ¢,, b, = 0 for
¢, > 0andbt =0, b, =|c,| for ¢, < 0 results in an upper
bound of

N

Cn |Cn| |c71|
n:cp, >0 Bj{ n:cp, <0 B n=14/ V(Q_l)nn + |c71|

where we have used (10). Given the assumption that (6) is
satisfied for alln, each of the fractions on the right-hand side
of (13) is no greater thah/2, and consequently the optimal
value of the linear relaxation can be no larger thér2. This !
upper bound can be further reduced by the factor

o Fig. 5. Two different diagonal relaxations.
0=1- 14
Verae (14)

For everyD satisfying0 < D =< Q, minimizing /b,
which corresponds to scaling the solutib —b~ = ¢, which  subject to (15) results in a lower bound for problem (1). Thus
is in the center of the feasible set, so that it lies on the daon the set of diagonal relaxations is parameterize®bgs shown
nearest the origin. in Fig. 5. As with linear relaxations in Section IlI-B, we are

It is apparent from (13) that the lower bound resulting frormterested in finding a diagonal relaxation that is as tight a
the linear relaxation cannot be tight if the optimal costi) ( possible, i.e., a matriD,; such that the minimum zero-norm
is greater thanéN/2]. We infer that it is unlikely for the associated withD, is maximal among all valid choices of
linear relaxation to be a good approximation to (1) in mo3d. To obtain such a relaxation, we make use of the following
instances, since if it were, this would imply that the optimacondition derived in [13], which specifies when constrair)(
cost in (1) is not much greater tha&iV/2 in most cases, a admits a feasible solutiob with K zero-valued elements:
fact that is considered unlikely. The situation is exacesthaf

2
the factorf in (14) is small. This motivates the consideration SK({DnnCn}) < (16)
of an alternative relaxation as we describe in Section IlI-C \ynere SK({DMCQ }) denotes the sum of thé& smallest
We note in closing that Lemaréchal and Oustry [20] hav§ements of the gequendém&, n =1,...,N. Based on

shown that a common semidefinite relaxation technique (igg), the tightest diagonal relaxation may be determined by
equivalent to linear relaxation when applied to sparsny(masowing the following optimization:

imization problems such as (1). As a consequence, the prop- )
erties of the linear relaxation (12) noted in this sectiospal Eq(K) = max SK({DnnCn})

apply to this type of semidefinite relaxation. st 0<D<Q. D diagonal 17)

for values of K increasing from zero. If the optimal value
E4(K) is less than or equal tg, then condition (16) holds for
As an alternative to linear relaxations, in this subsectien everyD satisfying the constraints in (17), and consequently a
discuss relaxations of (1) in which the mati® is replaced feasible solutiorb with K zero-valued coefficients exists for
by a diagonal matrix, an approach we refer to as diagon@lery suchD. We conclude that the minimum zero-norm in
relaxation. As discussed in [13], the sparse design prolidemevery diagonal relaxation can be at maét— K. The value
straightforward to solve in the diagonal case, thus makingdf K is then incremented by and (17) is re-solved. If on
attractive as a relaxation whe® is non-diagonal. the other hand?;(K) is greater thany for someK = K, +
To obtain a diagonal relaxation, the quadratic constraint i, then according to (16) there existsId; for which it is
(1) is replaced with a similar constraint involving a positi not feasible to have a solution withi; + 1 zero coefficients.
definite diagonal matriXD: When combined with the conclusions drawn #r< K, this
N implies that the minimum zero-norm with = D, is equal
(b — C)TD(b —c) = Z Dy (b — cn)Q <. (15) to ]\_7—Kd. It followg that N — K is_the tightest lower bound
achievable with a diagonal relaxation.

C. Diagonal relaxation

n=1



The foregoing procedure determines both the tightest pogserform favorably. In the remainder of this subsection, we
ble diagonal relaxation and its optimal value at the same.tintonsider three restricted classes of instances and suaemari
For convenience, we will refer to the overall procedure asur analytical results characterizing the approximatioality
solving the diagonal relaxation. The term diagonal relaxat of the diagonal relaxation in these cases.
will refer henceforth to the tightest diagonal relaxation. To state our results, we definE* to be the maximum

The main computational burden in solving the diagonalumber of zero-valued coefficients in problem (1) (.87,
relaxation lies in solving (17) for multiple values dk. minus the minimum zero-norm), and,; to be the maximum
It is shown in [18, Sec. 3.5.3] that (17) can be recast asimber of zero-valued coefficients in the diagonal relaxati
the following semidefinite optimization problem in a scalaof (1). The enclosing conditiofig C £p ensures thaf(, is

variabley, and vector variables andw: an upper bound ok’*. The ratioK;/ K* is thus an alternative
N definition of approximation ratio involving the number of
max  Kyo + Z v, zero-_valued compone_:nts rather than Fhe number of non-zeros
Yo, v, W oy (18) and is more convenient for expressing our results. A good
st. 0 < yoI + Diag(w) < Diag(c)Q Diag(c), approximation corresponds ti,;/K* being not much larger

than1. For the cases that we analyze, we obtain upper bounds
on K,/ K* of the following form:

WhereDiag(x? denotes a diago_nal_njatriX with the_ entries of Ky  [(K+1)r] -1

x along the diagonal. The semidefinite reformulation (18) can K < - K R, (19)

be solved efficiently using interior-point algorithms. ther . L

efficiency enhancements can be made as detailed in [ ,ereK s a positive integery is a real nl_meer greater
Sec. 3.5]. For example, the monotonicity of the cost fumctidnan 1 anqlﬁ andr depen_d on th? class _of_ms_tf_;mces under
in (17) with respect tok permits a binary search ovet consideration. The approximation in (19) is justified wh€n

instead of the linear search discussed earlier. IS much greater tha. . . .
As with the linear relaxation in Section III-B, it is of Our first result relates the quality of approximation to the

interest to understand how well the diagonal relaxation Cgﬁndmoln n)l\meem(Qt), ?thmEd T}S E{he_raﬂo ?f;he largest
approximate the original problem. It is clear that@ is eigenvalue Anax(Q) to the smallest eigenvalu@u(Q).

already diagonal, the diagonal relaxation and the origingleomemczny’h“(Q) corresp?ngs t(ljl. thg_ ra&;) betweenhthe
problem coincide and the approximation ratio defined i ngest and shortest axes of the ellips6ig. We expect the

Section IlI-B is equal tol. Based on Fig. 5, we would alsod"”lgon"le relaxation to be a good approximation when the

expect the diagonal relaxation to yield a poor approximrtalti&ondItlon number is low. A small value for(Q) implies that

when the original ellipsoiq is far from being coordinate- €q is_ nearly_sphericql an_d can therefore be _enclose_d _by a
coordinate-aligned ellipsoidp of comparable size. This is

aligned. For example€fq may be dominated by a single long. S . . . ;

axis with equal components in all coordinate directionssth Ll)lustraltled n F'Q- 6 lndthbe twq-d|menS|ofnaI lcase. Slﬁ@?canld

forcing the coordinate-aligned enclosing ellipsdigh to be e well-approximate ) fD_ n _terms ot volme, one wou
)(;xpect a close approximation in terms of sparsity as well. We

much larger thaifq. This situation corresponds algebraicall o imati tee in the f £ (19) with
to Q having one eigenvalue that is much smaller than trﬂ? ain an approximation guarantee in the form of (19) wi

rest, with the associated eigenvector having componentslgfandr defined as follows:

equal magnitude. In [18, Sec. 3.4.2], it is shown that whenkK = K(S) =max K s.t.

the sm_allest elgenvalu_e @) is small enough,_ the d|ag(_)n_al Amax(sileil)SK({Snnci}) <, (20)
relaxation has an optimal cost of zero while the original e

problem has a non-zero optimal cost. Thus the approximation’ — r(8) =r(ST°QS™),

ratio for the diagonal relaxation can range anywhere betWweewhereS can be an arbitrary invertible diagonal matrix. With
and1, as with the linear relaxation. Furthermore, one class 8f = 1, (19) states that the rati&,/K* is approximately
instances for which the diagonal relaxation has a zero @ptitbounded by the condition numbefQ). The bound can be
cost is the same class for which the linear relaxation isla tigoptimized by choosing to minimize x(S™1QS™1!), i.e., as
approximation. Hence there is no strict dominance relatign an optimal diagonal preconditioner f@}.

between the two relaxations (diagonal relaxations arerlglea

dominant in the case of diagong).

The above conclusions however are based on extreme
instances, both best-case and worst-case. In more typical
instances, the diagonal relaxation often yields a sigmiflga
better approximation than the linear relaxation. Seveuahs &b
cases are illustrated numerically in Section 1lI-D. It hdsoa
been our experience as reported in Section IV that the dia%o— _ , o _ _ L
nal relaxation provides strong bounds for problem instancﬁjgﬁqsér&magonal relaxations for two ellipsoids with comtiag condition
encountered in applications of sparse filter design. We are
thus motivated to understand from a theoretical perspectiv Because of space limitations, we describe only the major
the situations in which the diagonal relaxation is expedted steps in the proof of the condition number bound above for

w—-—v>0 v<0,

&b



the caseS = 1. The reader is referred to [18, Sec. 3.4.4] for

details. To bound the rati;/ K*, we combine a lower bound . — | | &+ ax Z _ |Qmn|
K on K* with an upper bound< on K. The former can be meZin, e N QmmQnn
derived using the following condition [13] for the feasibyjl n#m
of solutions to (1) withK zero-valued components: Qo
1 — max —_=mn
/ m Z V Qmenn

Ey(K) = min {c5(Q/Qyy)ez} <7, (21) nm
|21=K The ratior depends on the degree of diagonal dominance of
Q and approaches$ as the off-diagonal entries converge to
where Q/Qyy denotes the Schur complement @fyy. By zero. The bound in (19) then implies th&t; approacheds *
definition, K* is the largest value of{ for which (21) is as expected. The proof of the bound follows the same strategy
satisfied. Hencé(* can be bounded from below by means oés for the condition number bound with different expression
an upper bound on the right-hand siflg(K’) in (21). Using for K and K that reflect the diagonal dominance @f; for
properties of quadratic forms and Schur complements [2d] adetails see [18, Sec. 3.4.5].
the definition ofSx we obtain A geometric analogue to diagonal dominance is the case
in which the axes of the ellipsoidq are nearly aligned
with the coordinate axes. Algebraically, this correspotuals
T Z=K the eigenvectors ofQ being close to the standard basis
. 2 vectors. More specifically, we assume tl€atis diagonalized
= \QE}( {/\max(Q)HCZ”?} as Q = VAVT, where the eigenvalues, (Q) and the
_ /\max(Q)SK({Ci}), orthogonal matrixV of eigenvectors of) are ordered in_such
a way thatA = V — I is small. In the nearly coordinate-
aligned case, we also expect a good approximation from the
from which it can be seen tha in (20) (with S = I) is  diagonal relaxation. If the spectral radipéA) of A is small

a lower bound onk™. Similarly, K4 is the largestk’ such engugh to satisfy the conditionQ)p(A) < 1, then it can be
that E4(K) in (17) is less than or equal t9. Therefore ghown that (19) holds with

a lower bound onE,(K) yields an upper bound o,.

SinceD = M\.ia(Q)I is a feasible solution to (17), we &£ =max K S.t

have Bu(K) = Aun(Q)Sk({c2}) and hencels < K = (14 w(Q)p(A) + 5(Q)*(A)) Sk ((M(Q)2) < 7,
]{nax{K D Amin(Q)Sk ({2 }) §_7}. '_I'h(_a similar gxpressions 14+ R(Q)p(A) + K(Q)p*(A)

or K and K suggest that their ratio is approximately equalr = - r(Q)p(A)

to the condition numbex(Q). The detailed derivation in [18]
leads to the bound in (19). The generalization to non-identiThe ratior now depends on the coordinate alignmentef
S is due to the invariance of (1) and (17) to arbitrary diagonahd the conditioning ofQ and is close tal if £q is nearly
scalings. This property follows from the invariance of tieece  aligned andQ is well-conditioned. The proof is on similar
norm to diagonal scaling and from the ability Bf to absorb lines as above [18, Sec. 3.4.6].

any diagonal scalings in (17) (see [18, Sec. 3.4.3]).

Next we consider the case in whi€) is diagonally domi- D. Numerical comparison of linear and diagonal relaxations
nant, specifically in the sense that

Bo(K) < min {Ana(Q/Qyy) o2}

To complement the analysis in Sections 11I-B and IlI-C,
we present in this subsection a numerical evaluation oftine
max Z |Qrnl <1 22) and dia_lgonal re_laxations. While it was seen egrlier_ thaheei

m VQrimQnn ’ relaxation dominates the other over all possible instarées
(1), the numerical comparison indicates that diagonalxrela
. ] ) o ations provide significantly stronger bounds on average in
i.e., the sum of the normalized off-diagonal entries is $mafany classes of instances. The experiments also shed rfurthe

in every row. In the diagonally dominant case, the diagon@ni on the approximation properties of the diagonal relax
relaxation is expected to provide a close approximatiomé tation, revealing in particular a dependence on the eigasval
original problem. By definingZxk to be the subset of indices jistribution of the matrixQ.

H 2
corresponding to thé” smallest values of),.,.c;,, @ bound of  The evaluation is conducted by generating large numbers
the form in (19) can be obtained with

of random instances of (1) to facilitate the investigation
of properties of the relaxations. Filter design examples ar
considered later in Section IV. The number of dimensidnis
varied betweerl0 and150 and the parameter is normalized
to 1 throughout. In the first three experiments, the eigenvector

n#m

K =max K s.t.

|an| 2 - B
14+ max = | Sk ({Qunc?}) <7, of Q are chosen as an orthonormal set oriented uniformly at
meZx V@mmQnn ( e ) random over the unit sphere ¥ dimensions. The eigenvalues

n#m of Q are drawn from different power-law distributions and then
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rescaled to match a specified condition numb@®), chosen ¢ 8 ! ]
from among the valueg’N, N, 10N, and100N. One motiva- 508 sosf —
tion for considering power-law eigenvalue distributiotsnss & €06 o ]
from the typical channel frequency responses encountered 5 3 )
wireline communications [22]. Onc€) is determined, each 5% R I
component,, of the ellipsoid center is drawn uniformly from §0-2 fgoz -
the I.nterval[_ \/(_Qil)"”’ \/(Qil)”"] These. bouhd_s ofy, = % 30 60 90 120 150 = % 3 60 90 120 150
are in keeping with our assumption that (6) is satisfied for al number of dimensions N number of dimensions N
n. @ (b)

The linear relaxation of each instance, and more specifical ¢ 1 e —— - T ———
the Lagrangian dual derived in [18, App. B.2], is solved gsin £ 4 ﬁ S o8 //
the functionf m ncon in MATLAB. We use the customized § % R
solver described in [18, Sec. 3.5] for the diagonal relaxgti §°'6 §0'6 —"a
a general-purpose semidefinite optimization solver such (804 “--—..____ BO4 el
SDPT3 [23] or SeDuMi [24] can also be used to solve (18)< g, f;o,z
In addition, a feasible solution is obtained for each instan ; H

using the backward greedy algorithm of [13]. To assess tt % 30 0 90 120 150 % 30 e 90 120 150

S _ A X number of dimensions N number of dimensions N

quality of each relaxation, we use the ratio of the optimal © @
cost of the relaxation to the cost of the backward greedy
solution. These ratios are denotedisand R, for linear and Fig. 7. Average approximation ratia&, and Ry for (a) a1/ eigenvalue
diagonal relaxations. Since any feasible solution pras/ida distribution, (b) a uniform eigenvalue distribution, (c)1a\? eigenvalue

b d th ti | t of dR | distribution, and (d) exponentially decayi@ matrices. In (a)—(c)x(Q) =
upper bound on the opumal cost o (Bie andfig are IOWer /7 n 10N, 100N from top to bottom within each set of curves. In (d),
bounds on the true approximation ratios, which are difficult=0.1,0.5,0.9,0.99 from top to bottom within each set of curves.
to compute given the large number of instances. Note that we
are returning to the original definition of approximatiornioa

in terms of the number of non-zero coefficients and not thgjaxation is now preferable to the diagonal relaxation mhe
number of zero-valued coefficients as in Section IlI-C. 1(Q) is significantly greater that¥. On the other hand, the

In the first experiment, the eigenvalues @ are drawn Ry curves in Fig. 7(c) are higher than in Figs. 7(a) and 7(b)
from a distribution proportional td /A, which corresponds and the dependence a{Q) is reduced.
to a uniform distribution forlog A\. While no single eigen-  The differences among Figs. 7(a)-(c) suggest that the
value distribution can be representative of all positivérie diagonal relaxation yields a better approximation when the
matrices, the inverse of any positive definite matrix is alsgigenvalue distribution o€ is weighted toward lower values,
positive definite and a/\ eigenvalue distribution is unbiasedas in Figs. 7(a) and 7(c), so that most of the eigenvalues are
in this regard since it is invariant under matrix inversiap ( small and of comparable size. While a rigorous explanation
to a possible overall scaling). Fig. 7(a) plots the rati®s for this dependence on eigenvalue distribution is a sulfect
and R, as functions ofV andx(Q) under al /X distribution,  future study, the dependence can be explained more inftyrmal
where each point represents the average @f0 instances. by utilizing the inverse relationship between eigenvalaed
The linear relaxation approximation ratii, does not vary axis lengths of the ellipsoidq, combined with the following
much with N or x(Q). In contrast, the diagonal relaxationgeometric intuition: Assuming thdy, is not close to spherical,
approximation ratiai?, is markedly higher for lower(Q), in i.e., x(Q) is relatively large, it is preferable for most of the
agreement with the association between condition number asllipsoid axes to be long rather than short, and for the lo®g a
ellipsoid sphericality and the bound in (19). Moreougy,also  to be comparable in length. Such an ellipsoid tends to requir
improves with increasingV so that even for(Q) = 100N comparatively smaller coordinate-aligned enclosingpstiid,
the diagonal relaxation outperforms the linear relaxafian and consequently the diagonal relaxation tends to be arbette
N > 20. The difference is substantial at largé and is approximation. For example, in three dimensions, a seyerel
reflected not only in the average ratios but also in thedblate spheroid can be enclosed in a smaller coordinate-

distributions; clear separations can be seen in [18, S&¢. 3aligned ellipsoid on average than an equally severely fola
between histograms of optimal values for diagonal relaxati spheroid.

and corresponding histograms for linear relaxations. In a fourth experimentQ is chosen to correspond to an
Figs. 7(b) and 7(c) show average approximation rafips exponentially decaying autocorrelation function with resg
and R, for a uniform eigenvalue distribution and1a\? dis- given by Q,.,, = p/™~"I, where the decay ratip is varied
tribution respectively. It is straightforward to show tizat/\?> between0.05 and 0.99. The vectorc is generated as before
distribution for the eigenvalues & corresponds to a uniform based on the diagonal entries @ '. It can be shown that
distribution for the eigenvalues d)~!. The behavior of, only positive values op need to be considered singand—p
is largely unchanged. Each; curve in Fig. 7(b) however is are equivalent in terms of the zero-norm cost [18, Sec. 3.6].
lower than its counterpart in Fig. 7(a) and the dependencelofaddition, Q is diagonally dominant in the sense of (22)
R, on the condition number is more pronounced. The linefor p < 1/3. Fig. 7(d) shows the approximation ratidg
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. TABLE |
and R4 for four values ofp, averaged ovet000 inStances  nyiripatH PARAMETERS FOR THEHDTV EQUALIZATION EXAMPLE.

as before. As with the condition numbefQ) in Figs. 7(a)—

(c), the decay ratip does not appear to have much effecton 0 1 9 3 4 5
R,. Furthermore, while the analysis in Section IlI-C predicts —; 0 184 | 5.25 | 9.68 20.18 53.26
a close approximation from the diagonal relaxation fos a; | 0.5012 | —1 | 0.1 | 0.1259 | —0.1995 | —0.3162

0.1, it is somewhat surprising that the performance does not
degrade by much even for close tol.

The results in Fig. 7 indicate that diagonal relaxationslies
in better bounds than linear relaxations in many instaneis.
can be true even when the condition numbk@R) or the decay
ratio p is high, whereas the analysis in Section IlI-C is morg’
pessimistic. The experiments also confirm the depende
of the diagonal relaxation on the conditioning and diagon
dominance ofQ and indicate an additional dependence on t
eigenvalue distribution.

Table Il shows the final cost values, solution times, and
numbers of subproblems for equalizer lengtNs = L +
1.5L 4+ 1,2L 4+ 1, where L = 54 is the largest channel
ay, and MSE values up tdB above the minimum MSE
in corresponding to the optimal non-sparse equalizer. Note
at for N = 2L + 1, an exhaustive search would require
considering2!%® ~ 6 x 1032 configurations. The final cost
shown in Table Il is the optimal cost when at least one of
the algorithm variants converges within the allowed soluti
time; otherwise it is the cost of the incumbent solution at

In this section, the design examples in [13] are used fgrmination. For instances in which the algorithm does not
evaluate the complexity of variants of our branch-and-tibugonverge, the final optimality gap, i.e., the differencentssin
algorithm employing either linear relaxations, diagor&dfk- the incumbent cost and the smallest of the lower bounds for
ations, or no relaxations. We also compare our algorithrhéo topen subproblems, is shown in parentheses in place of the
commercial mixed-integer programming solver CPLEX 12.4o|ution time.
[16]. The results demonstrate that the proposed techniquesye focus first on the three variants of the proposed al-
in particular diagonal relaxations, can significantly regldhe gorithm, which are all implemented in MATLAB and thus
complexity of an exact solution to (1), especially in morgjrectly comparable in terms of solution time. Table Il sisow
difficult instances where order-of-magnitude decreas&s ghat the use of diagonal relaxations can dramatically reduc
possible. For instances that are too difficult to be solvettix complexity relative to the other two variants, particufaior
in the allotted time, diagonal relaxations yield tighteubds  the more difficult instances at larger lengths and intermedi
on the deviation from optimality of the final solution. ate MSE. Intermediate MSE values pose a greater difficulty

Our branch-and-bound algorithm is implemented in MATyacause the sparsity level also tends to be intermediate and
LAB 7.11 (2010b), including solvers for linear and diagonghe nymber of configurations with the same sparsity, i.@, th
relaxations as described in Section III-D. For CPLEX, we Us§nomial coefficient(), is very large. Diagonal relaxations
the mixed integer formulation of the problem (more pregisehecome instrumental for improving lower bounds and pruning
the split-variable formulation leading to (12)), which iagsed |5rge numbers of subproblems. For instances that cannot be
to the CPLEX MEX executable with default solver optionssolyed exactly within the given time, diagonal relaxations
The experiments are run on 24 GHz quad-core Linux (egylt in smaller optimality gaps.
computer with3.9 GB of memory. Our algorithm uses more In contrast, for the easier instances at shorter lengths and

than one core only when the d|m¢nS|on of the C9mPUtat'W?gher MSE, the algorithm variant that avoids relaxatiogs i
exceeds;0 or so; CPLEX however is able to exploit all foury, o o4 efficient. In these cases, either the dimensioneor th
cores all the time. Complexity is measured in terms of rugninf, ., mpent cost is low enough for the infeasibility bounds
time and the number of subproblems processed. in Section 1lI-A to be effective, and consequently the added
effort of solving relaxations is not justified. Th¥ = 55,
A. Wireless channel equalization d/0min = 0.02 dB instance can also be solved efficiently with-
The first examp|e involves the design of sparse equa”z&%t relaxations because a Signiﬁcant fraction of the caeffts
for a high-definition television terrestrial broadcast mhel. cannot take zero values and are thus eliminated as discussed
The multipath parameters for the channel are given in Tabldn Section lll-A. FOrd/dmin = 0.02 dB and N' = 82,109
where the delays; are expressed as multiples of the samplingowever, diagonal relaxations still yield substantialisgs.
period. Following [6], [7], the transmit and receive filters Linear relaxations are not observed to reduce solution
are chosen to be square-root raised-cosine filters withsexcimes except in the most difficult instances where the modest
bandwidth parametef = 0.115. The transmitted sequencemprovement in lower bounds is still valuable. The linear
and noise are assumed to be white with the ratio of thielaxation variant is faster than the diagonal relaxatianant
signal variance to the noise variance, i.e., the input SNR, ©nly at high MSE where both relaxations are unnecessary but
to 10 dB. The number of non-zero equalizer coefficients #e overhead of solving linear relaxations is smaller.
minimized subject to a constraint on the allowable M&E  As for the number of subproblems, Table Il shows that when
The formulation of the sparse equalizer design problemen thll three variants of our algorithm converge, the one using
form of (1) is discussed in [13]. The solution time is limiteddiagonal relaxations solves substantially fewer subenmisl
to 10° seconds for all algorithms. However, when some or all of the variants fail to converge,

IV. DESIGN EXAMPLES
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TABLE Il
COMPLEXITY OF DIFFERENT BRANCHAND-BOUND ALGORITHMS FOR THE EQUALIZATION EXAMPLE NUMBERS IN PARENTHESES INDICATE THE FINAL
OPTIMALITY GAP IN CASES OF NONCONVERGENCE

N 0/0min [dB] | final cost time [s] (gap) number of subproblems
none | linear | diagonal | CPLEX none linear | diagonal CPLEX
55 0.02 43 0.43 1.40 0.56 19.50 750 750 734 7370
0.05 36 17.3 31.1 6.6 191.5 9492 9236 3890 72256
0.1 28 7.7 35.2 5.0 153.2 6688 3588 712 42466
0.2 20 0.65 791 1.19 50.85 1492 698 88 8503
0.4 13 0.15 2.88 1.30 16.80 406 302 74 2463
0.7 8 0.08 1.32 0.81 9.93 166 144 40 1149
1.0 5 0.014 0.141 0.166 1.522 14 12 4 5672
1.5 3 0.011 0.028 0.040 0.425 0 0 0 199
2.0 2 0.002 0.002 0.002 0.182 0 0 0 22
82 0.02 63 75 101 8.5 473 16134 15770 3238 113501
0.05 55 80793 | 27568 801 23081 506836 | 279986 37234 3837752
0.1 a7 (5) (3) 97621 (2) || 339516 | 290058 | 543652 | 10863093
0.2 34 (2) 15217 1057 39982 338074 | 203282 39622 4446718
0.4 22 330 137 63 1126 35414 9000 1942 121759
0.7 14 7.6 28.6 21.1 206.0 4996 2098 454 17813
1.0 10 0.9 8.9 104 80.0 1410 642 196 7887
1.5 5 0.041 0.346 0.758 106.26 34 22 14 130522
2.0 3 0.024 0.043 0.075 0.779 0 0 0 567
109 0.02 85 4242 2576 39 3838 104946 75962 4894 624995
0.05 76 (5) (3) 10131 (2) || 317473 | 270808 | 148652 | 7572442
0.1 67 9) (7) (3) (7) 298086 | 245448 223834 6902299
0.2 56 (14) (10) (6) (12) || 280963 | 234673 | 210940 | 5620187
0.4 38 9) (6) (3) (6) 288158 | 214381 217697 5242439
0.7 25 (5) (2) 37185 (2) 212572 | 262994 243496 5453732
1.0 17 45428 2466 925 14783 347892 61334 12360 889357
1.5 10 22.0 40.7 67.4 795.9 7632 2420 774 40677
2.0 5 0.09 0.66 2.56 20.78 60 34 24 569

the optimality gap becomes the more important statisticesineliminate many infeasible subproblems and improve bounds
the number of subproblems may simply reflect the amouimicrementally with minimal computation, and can also reduc
of computation performed in the allotted time. Fdr = 82  subproblem dimensions as discussed in Section Il
andd/dmin = 0.1 dB, the diagonal relaxation variant actually The benefits of solving diagonal relaxations in this example
solves more subproblems but converges in the end. This nen be partly attributed to the properties of the matix

be interpreted as evidence that the algorithm has moved bgich is largely determined by the channel response. In
yond the higher-dimensional subproblems that slowed ps®ra multipath environment with a sparse set of arrivals, the
for the other two variants. resulting matrix Q tends to be well-conditioned with the
(ljﬁlrgest entries near the diagonal, although the strict itiefin

In comparison to CPLEX, Table Il shows that the diagon ) . . . S PT
par W 29 tof diagonal dominance in (22) is not satisfied in this example

relaxation variant of our algorithm is much more efficien
Indeed, the other two variants are also more efficient than
CPLEX in easier instances, whereas in difficult instancg
CPLEX becomes comparable to the linear relaxation variant.
These favorable comparisons are obtained despite CPLEX'dn a second example, we turn to the design of sparse
advantages as a compiled executable capable of full mraticaninimum-variance distortionless-response (MVDR) beam-
execution. The computational advantage of CPLEX can f@mers for signal detection. Since the current branch-and
seen in the number of subproblems processed per unit tirbeund algorithm is intended for real-valued filter desigm w
which in more difficult instances is generally an order diocus on a real-valued formulation of the MVDR beamforming
magnitude higher than for our algorithm. It is difficult toproblem. The complex-valued generalization of the branch-
identify precisely the reasons for the relative inefficierid  and-bound algorithm is a subject for future study. We caarsid
CPLEX given its use of many additional techniques beyorah environment with two discrete interference sources at
basic branch-and-bound. We have observed that the heuriatiglesf; and 6, from the array axis, whereos#; = 0.18
used by CPLEX is less effective than the backward selectiand cos 3 = 0.73, together with isotropic (white) noise. The
heuristic used in our algorithm. To obtain lower boundsarget directiord, is swept overl40 values fromcosfy = 0
CPLEX uses linear relaxations and may solve too many tif cosfy = 1. The interferer powers are set Hi and25 dB
them in the sense of not improving bounds, in contrast tespectively relative to the white noise power, while thgmsi

our more judicious approach (see the conditions on Step 5Spgawer is normalized to unity. The number of non-zero array
Fig. 3). CPLEX is likely not able to use diagonal relaxationweights is fixed a80 and four array length& = 30, 40, 50, 60

or the infeasibility bounds in Section IlI-A, which are sffec are considered. Further details of the experiment can hadfou
to our problem. The infeasibility bounds in particular cam [13].

MVDR beamforming
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For each lengthV and target anglé,, the objective is to determination of lower bounds on the optimal cost. Low-
maximize the output SNR, defined as the ratio between tbhemplexity bounds based on infeasibility can be easily in-
mean array output and the standard deviation. Fo&= 30, corporated into branch-and-bound to yield incremental im-
the SNR is maximized by the conventional non-sparse MVDBRovement, while stronger bounds can be obtained through
beamformer. ForN = 40,50, 60, a linear search over SNRlinear and diagonal relaxations, both of which involve amav
is performed, starting from the highest SNR achieved at tlgtimization and are therefore efficient. Filter designregples
next lowest value ofV and increasing if).05 dB increments. demonstrated that substantial complexity reductions can b
At a fixed SNR, the minimization of the number of non-zerachieved with diagonal relaxations in particular, esgbcia
weights corresponds to an instance of problem (1), as shomwore difficult instances and even when comparing a MAT-
in [13]. For this example, it suffices to test for feasibilityL AB implementation to commercial software. In the case of
at each SNR, i.e., to determine whether a solution \8ith early termination, solving diagonal relaxations leadsgbter
non-zero weights exists subject to the SNR constraint. Vd@unds on the deviation from optimality. The techniques in
use branch-and-bound for this purpose, terminating it as sahis paper make optimal design more accessible not only
as such a solution is found, or alternatively as soon as #il filter designers but also developers of design algorithms
of the subproblem lower bounds rise abo3® indicating Specifically, the proposed branch-and-bound algorithmbzan
infeasibility. We compare the three variants of our algont used to more easily evaluate lower-complexity approxirakte
as in Section IV-A, allowing one hour of processing timgorithms, as we have done for the backward greedy algorithm
per SNR value, but do not include CPLEX because of ita [13].
relative inefficiency. In cases where neither of the teritimiiaa. =~ Our positive experience with diagonal relaxations inspire
conditions is met within one hour, we obtain bounds on thiaterest in the general approach of exploiting an efficientl
maximum achievable SNR at the curréi, 6,) pair instead solvable special case of a problem to approximate a broader
of a definite value. The lower bound corresponds to the highetass. A potential next candidate is the tridiagonal case
SNR at which the algorithm is able to find a feasible solutiomliscussed in [13]. A similar approach has been applied to
while the upper bound corresponds to the lowest SNR at whidBsign filters with efficient binary representations [18dan
the algorithm is able to prove infeasibility. could be extended to sparse filter design under a minimax

Table Il summarizes the results of the algorithm compagonstraint on the frequency response [4]. Future work could
ison. Instances are divided into two groups depending aiso be directed at more sophisticated implementationkeof t
whether the algorithm variant converged within the alloweldranch-and-bound algorithm. Our experience with the atirre
time, and average statistics within each group are repdfmd MATLAB implementation suggests that for filters of length
N = 40, the vast majority of instances are simple enough to log to 100, optimality can be certified within a few hours on a
solved most efficiently without relaxations. F&f = 50 and present-day computer, a figure that would likely be improved
60 however, diagonal relaxations reduce the average solutiogpimplementing the algorithm or critical parts of it in a neor
time and number of subproblems by an order of magnituééficient programming language such as C. Branch-and-bound
in instances in which the algorithm converges. Indeed f@ also highly parallelizable and could thus benefit from tinul
N = 60, the algorithm fails to converge in a large majority oprocessor and cloud computing.
instances unless diagonal relaxations are used, in whigh ca
the opposite is true. Diagonal relaxations also yield #ght
bounds on the optimal SNR in cases of non-convergence as
measured by the gap between the upper and lower boungs. J. T. Kim, W. J. Oh, and Y. H. Lee, “Design of nonuniformipaced
Linear relaxations on the other hand offer no benefits in this linear-phase FIR filters using mixed integer linear prograny,” IEEE
example. We note that the instances in which the diagona), E@?‘s?ﬁ’gainﬂﬁ'ﬂj%‘Es?gp.; gfg;;rzsz l‘::llall?n.fil:tlerSGh.)kBB branch.
relaxation variant does not converge tend to correspond 10 and-bound algorithm,” irProc. Midwest Symp. Circuits. Syst., vol. 2,
target array manifold vectors with nearly equal components  Aug. 1997, pp. 1445-1448. o .
leading to a large number of array configurations with similal®! gés'i\gﬁt’,t,ei'nabr; 'Tg';"s'g;"' V?)sz,SM:yaé'SS‘z, Eg'cigggffgﬁe filter
SNR and thus complicating the branch-and-bound search. [4] T. Baran, D. Wei, and A. V. Oppenheim, “Linear programmgialgo-

As in the channel equalization example, the properties of rithms for sparse filter designJEEE Trans. Signal Process., vol. 58,
the pre:sent beamfprmlng examplg favor the use of qlagon@] gpAleF(i):g#:\:/La?nMJaer\?vloolf L. B. Milstein, and L. C. Barlags'Non-
relaxations. Specifically, the matri® has two large eigen- uniformly spaced tapped-delay-line equalizet&EE Trans. Commun.,
values corresponding to the interferers while the remginin  vol. 41, no. 9, pp. 1290-1295, Sep. 1993.
eigenvalues are small and equal, corresponding to whitenoi [6] |- J. Fevrier, S. B. Gelfand, and M. P. Fitz, "Reduced céerjty decision

. . . . . feedback equalization for multipath channels with largeygspreads,
As discussed in Section I1I-D, diagonal relaxations tend t0 |Egg Trans. Commun,, vol. 47, no. 6, pp. 927-937, Jun. 1999.
result in good approximations for this type of eigenvalug7] F. K. H. Lee and P. J. McLane, “Design of nonuniformly spdc

distribution even though the condition number may be high. tapped-delay-line equalizers for sparse multipath charin&EE Trans.
Commun., vol. 52, no. 4, pp. 530-535, Apr. 2004.

[8] H. Sui, E. Masry, and B. D. Rao, “Chip-level DS-CDMA dovimi

V. CONCLUSIONS AND FUTURE WORK interference suppression with optimized finger placerhéBEE Trans.

We have proposed a branch-and-bound algorithm for de- Sgna Process, vol. 54, no. 10, pp. 3908-3921, Oct. 2006.
9] G. Kutz and D. Raphaeli, “Determination of tap positiofts sparse

signjng ma_Xima"y sparse filter_s SUbje.Ct to a quadr?‘tic CON-" equalizers,”|EEE Trans. Commun., vol. 55, no. 9, pp. 1712-1724, Sep.
straint on filter performance, with particular emphasis loa t 2007.
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