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The 1/ f family of fractal random processes model a truly
extraordinary range of natural and man-made phenomena, many
of which arise in a variety of signal processing scenarios. Yet
despite their apparent importance, the lack of convenient repre-
sentations for 1/ f processes has, at least until recently, strongly
limited their popularity. In this paper, we demonstrate that 1/ f
processes are, in a broad sense, optimally represented in terms
of orthonormal wavelet bases. Specifically, via a useful frequency-
domain characterization for 1/ f processes, we develop the wavelet
expansion’s role as a Karhunen—Loéve-type expansion for 1/ f
processes. As an illustration of potential, we show that wavelet-
based representations naturally lead to highly efficient solutions
to some fundamental detection and estimation problems involving
1/ f processes.

1. INTRODUCTION

There is a wide range of engineering contexts in which
there is a need to be able to synthesize, analyze, and process
fractal signals. Indeed, fractal geometry abounds in nature.
Fractal waveforms arise, for example, in natural landscapes,
in the distribution of earthquakes, in ocean waves, in
turbulent flow, in the pattern of errors on communication
channels, and even in fluctuations of the stock market.

Some of the most prevalent forms of fractal geometry
arise out of statistical scaling behavior in physical phe-
nomena. An important class of fractal signals with this
character are the 1/f processes [1]. These statistically
self-similar random processes exhibit rich behavior. They
are generally nonstationary, yet they possess stationary at-
tributes: when viewed through certain linear time-invariant
filters they appear stationary. Furthermore, their sample
functions exhibit strong long-term correlation structure with
polynomial-type decay that cannot be captured with tra-
ditional—e.g., autoregressive-moving average—time-series
models. In fact, the development of models for 1/ f-type
behavior remains a research topic of much interest in
engineering, physics, and mathematics communities [2].

Manuscript received January 16, 1992; revised October 30, 1992. This
work was supported in part by the Advanced Research Projects Agency
monitored by ONR under Contract N00014-89-J-1489, and the Air Force
Office of Scientific Research under Grant AFOSR-91-0034,

The author is with the Research Laboratory of Electronics, Massachu-
setts Institute of Technology, Cambridge, MA 02139.

IEEE Log Number 9212427.

While universally acceptable characterizations and rep-
resentations for 1/f processes have, for the most part,
remained elusive, a number of useful models for 1/f
processes can be found in the literature. One class of models
is based upon a fractional integral formulation. A popular
example of this class is the fractional Brownian motion
framework which, although developed more recently by
Mandelbrot and Van Ness [3], also appeared independently
in the work of Kolmogorov. This model can be viewed as
a refinement of an earlier construction due to Barnes and
Allan [4].

Other models for 1/f processes fall into the category of
extended or infinite-order ARMA models. An example is
the well-known “superposition of Lorenzian spectra” model
developed by van der Ziel [5]. The origins of this model
can be traced back at least to the work of Bernamont in
the 1930’s [6]. Another example is the infinite, continuous
transmission line model of Keshner [1] which corresponds
to an ARMA model with alternating poles and zeros
exponentially spaced along the negative real axis of the
s-plane.

While these various models have provided much insight
into 1/ f behavior, their use in signal processing contexts
has been limited. In the case of fractional Brownian motion,
issues of mathematical tractability inhibit the solution of
many basic detection and estimation problems, although
significant progress in this direction has been reported
in Barton and Poor [7]. In addition, the development of
practical data-driven algorithms for processing 1/f data
using fractional Brownian motion models has tradition-
ally proved challenging. However, work in this direction
is described in Lundahl ef al. [8] and, more recently,
both in Deriche and Tewfik [9] and in Kaplan and Kuo
[10]. Finally, in the signal processing context, the use
of extended ARMA models has generally proven use-
ful only in the synthesis of 1/f processes; see, e.g.,
[11].

In this paper, we develop a powerful, signal-processing-
oriented representation for 1/f processes in terms of or-
thonormal wavelet bases, i.e., bases in which the basis
functions are all dilations and translations of a single
prototype function. Because 1/f processes simultaneously
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exhibit both statistical scale invariance and a particular
notion of time invariance, wavelet-based representations
are, in many respects, ideally suited for these processes.
In fact, the wavelet transform constitutes as natural a tool
for the manipulation of these processes as the Fourier
transform does for stationary processes. Furthermore, just
as the discovery of fast Fourier transform (FFT) algorithms
dramatically increased the viability the Fourier-based pro-
cessing of stationary signals in real systems, the existence
of fast discrete wavelet transform (DWT) algorithms for
implementing wavelet transformations means that wavelet-
based representations of 1/f signals are also of great
practical significance. Indeed, they allow the development
of highly efficient signal processing algorithms for 1/f
data.

As the core of the paper, we develop the wavelet ex-
pansion’s role as a Karhunen-Lo@ve-type expansion for
1/ f processes. Specifically, via a useful frequency-domain
characterization for 1/ f processes, we obtain both synthesis
and analysis results. In effect, the synthesis result estab-
lishes that under suitable but mild conditions on the wavelet
basis, 1/f-like behavior can be synthesized from wavelet
expansions whose coefficients are mutually uncorrelated
and have a particular variance structure. Analogously, the
analysis result establishes that under similar conditions,
the coefficients of a wavelet-based expansion of a 1/f
process are effectively uncorrelated and have the expected
variance structure. Not only are we able to validate these
results through simulations, but, in addition, we are able to
identify potential examples of physiological and economic
data consistent with the model.

The final aspect of the paper demonstrates the
potential convenience and efficiency of wavelet-based
representations in signal processing applications. In
particular, we show that these representations lead to
both convenient descriptions of the whitening filters
for 1/f processes, and, in turn, to efficient and
robust solutions to a number of fundamental signal
processing problems involving 1/f processes. The ex-
amples considered include minimum probability of error
signal detection and discrimination, maximum-likelihood
parameter estimation, and minimum-mean-square error
smoothing. While not explored in this paper, there are
some interesting parallels between the these algorithms and
the multiscale signal processing algorithms discussed in
[12].

The format of the paper is as follows. Section II
briefly reviews the theory of orthonormal wavelet bases,
emphasizing a signal processing perspective. The first
half of Section III reviews 1/f processes and their
properties, and the fractional Brownian motion framework.
The latter half of the section develops a useful frequency-
domain characterization for 1/f processes, and explores
its properties and relationships to fractional Brownian
motion. Section IV then develops the wavelet-based
representation for 1/ f processes, and its properties. Finally,
Section V applies the representation to the solution
of some example problems of optimal detection and
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estimation, and Section VI contains some concluding
remarks.

II. ORTHONORMAL WAVELET BASES

In this section, we review those aspects of wavelet
theory that are important in the context of this paper
and introduce some notational conventions. In light of
our application, we explicitly adopt a signal processing
perspective. From this point of view, it is apparent that
while wavelet theory is in some sense new, many of
the ideas underlying wavelets—including constant-Q} filter
banks and time-frequency analysis [13], and quadrature
mirror and conjugate quadrature filters [14]—are rather
familiar. For the interested reader, a number of extensive
introductions to wavelet theory are available; see, e.g.,
[15]1-{18].

An orthonormal wavelet transformation of a signal z(t)
is generally described in terms of the synthesis/analysis
equations

L OED IR (12)
o= [ avrod (1b)

and has the special property that the orthogonal basis
functions are all dilations and translations of a single
function referred to as the basic wavelet 1(t). In particular

Y (t) = 27/ 227t — n) @
where m and n are the dilation and translation indices,
respectively.

An important example of a wavelet basis, and one to
which we will frequently refer, is that derived from the
ideal bandpass wavelet. This wavelet, which we specifically

denote by zE(t), is the impulse response of an ideal bandpass
filter with frequency response

i -={4

More generally, however, the constraints on the Fourier
transform ¥(w) of the basic (or “mother”) wavelet ¥(t)
are less stringent. These include

[T(w)| <1 (4a)
(0)=0 (4b)
T(w) ~ O(|lw] ™), |w| — o0 (4c)

7 < |w| <27
otherwise.

3)

where (4¢) is a consequence of restricting our attention to
regular bases.! For wavelet bases with higher order regu-

A function f(t) is Rth-order regular if its Fourier transform F'(w)
decays according to
F)~O(lwl™®),  Jw|— o0
where the notation O(-) is to be understood to mean that

F(w)

e ol R

< o0

Such functions have R — 1 regular derivatives, where the term “regular”
denotes a function that is at least first-order regular.
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Fig. 1. Critically sampled filter bank interpretation of an or-
thonormal wavelet decomposition.

larity, as are required in many contexts, the corresponding
spectral decay is even stronger. For a wavelet basis to have
Rth-order regularity, it is sufficient (though not necessary)
that ¢(t) possess R vanishing moments:

/m £ p(t) dt = ()" ¥ (0) = 0, r=0,1,---,R—1.

—00

In any event, ¢(t) is often the impulse response of an
at least roughly bandpass filter. In these cases, the wavelet
transformation can typically be interpreted either in terms
of a generalized constant-Q (specifically, octave-band) filter
bank, or in terms of a multiresolution signal analysis.

A. An Octave-Band Filter Bank Interpretation

The filter bank interpretation of the wavelet transform,
depicted in Fig. 1, is obtained by viewing the analysis
equation (1b), for each m, as a filter-and-sample operation,
viz.,

oy = {(t) * Y5 (=1)}He=2-mn-

Although the interpretation applies to a broader class of
bases, it is often convenient to visualize the basis asso-
ciated with the ideal-bandpass wavelet (3). In this case,
the output of each filter in the bank corresponding to
m = ---,—1,0,1,2,--- is sampled at the corresponding
Nyquist rate. More generally, the filter bank is critically
sampled [13] in the sense that reconstruction is not possible
if any of the sampling rates are reduced regardless of
the choice of wavelet. When the wavelet is reasonably
localized in both time and frequency, the decomposition’s
role as a time—frequency analysis is also apparent: each
Z™ constitutes a measure of the information in z(t) within
a frequency band roughly of width 2™ near w =~ 2™w
and within a time interval roughly of duration 27™ near
t = 27 ™n.

For a particular choice of wavelet basis, there can be
significant spectral overlap in the frequency response mag-
nitudes of the filters in the bank, as depicted in the
example of Fig. 2. In such cases, however, orthogonality
is still preserved through an appropriate choice of phase
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Fig. 2. The octave band filters corresponding to an orthonormal
wavelet decomposition. The wavelet basis in this example is one
due to Daubechies [19]).
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Fig. 3. Interpretation of an orthonormal wavelet expansion as a
multirate modulation scheme.

in the prototype filter. Nevertheless, it is possible to con-
struct practical wavelet bases such that the spectral overlap
between channels is small in applications where this is
important.

Finally, with the wavelet transform analysis equation (1b)
interpreted as a filter bank decomposition, the correspond-
ing synthesis equation (1a) may be interpreted as multirate
modulation. In particular, as depicted in Fig. 3, for a given
m each sequence of coefficients z)' is modulated onto
the corresponding wavelet dilate ¥§*(¢) at rate 2™. For
the case of the ideal-bandpass wavelet, this corresponds to
modulating each such sequence z]' into the distinct octave
frequency band 2™7 < w < 2™+lr,

B. Multiresolution Signal Analysis Interpretation

The muitiresolution signal analysis interpretation allows
us to view wavelet analysis as a technique for isolating
variations in the signal that occur on different temporal
scales. The wavelet decomposition specifically corresponds
to a class of linear multiresolution signal analyses in which
a signal space V is decomposed into a nested sequence of
approximation spaces

eCcVocVoCcVicCcVoC:

each of which contains those signals of resolution 2™,
with the notion of resolution dependent upon the particular
wavelet basis involved. Associated with each V, is a linear
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approximation operator A,, defining projections from V
onto V,,, so that A,,z(t) defines the “closest” signal of
resolution 2™ to z(t). Conveniently, the nesting structure
of the V,,, guarantees that coarser scale approximations can
be derived successively from finer scale approximations.

Wavelet-based multiresolution analyses have the special
property that the nature of the resolution-limited approx-
imations is similar in all time intervals and at all scales.
As a consequence, each such analysis can be completely
described in terms of a single scaling function (or “father”
wavelet) ¢(t). Specifically, for each m,

Tt ¢T1(t)7 ¢6n(t)1 ¢T(t)7 ¢5n(t), o

generates an orthonormal basis for V., where the basis
functions are all dilations and translations of one another,
ie.,

P (t) = 2m2p(2™t — n). &)

The corresponding resolution-2™ approximation of a
signal z(t) is then expressed as

Amz(t) = 3 am e (t) ©)

with the coefficients a]' computed according to the pro-
jections

o= [ awemoa ™

In general, ¢(t) has a Fourier transform ®(w) that is at
least roughly lowpass. At the very least, however, ®(w)
satisfies the properties

[ew)l <1 (8a)
|®(0)| = 1 (8b)

O(w) ~ O(jw|™), w — 00. (8¢c)

Consistent with our remarks concerning (4c), the last of
these is a consequence of a regularity requirement on the
bases.

Generally, we may interpret the projection (7) as a
lowpass-like filter-and-sample operation, viz.,

ap’ = {z(t) * $5° (1) He=2-mn )

and (6) as a modulation of these samples onto a lowpass-
like waveform. In fact, an important example of a mul-
tiresolution analysis, especially in the context of this paper,
is generated from the ideal lowpass scaling function. This
scaling function, which we denote by (f)(t), has a Fourier
transform that is the frequency response of an ideal lowpass
filter, i.e.,

= _J1, w| <L
Q(w)—{ﬂ, lw| > =.

In this case, the corresponding multiresolution analysis is
based upon perfectly bandlimited signal approximations,
whereby A,,z(t) represents z(¢) bandlimited to w = 2™.
Furthermore, we may interpret (9) and (6) in the context

(10)
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of classical sampling theory [20]. In particular, ¢(¢) in
(9) plays the role of an anti-aliasing filter and (6) is the
interpolation formula associated with the sampling theorem.
While the bandlimited multiresolution analysis is tech-
nically unrealizable, one can construct practical analyses
which constitute a close approximation to this analysis.

The relationship between a wavelet basis and its associ-
ated multiresolution analysis is apparent when we consider
the information lost between successive resolution-limited
approximations. Each such detail signal

Dpz(t) = Apt12(t) — Amz(t) (11

lies in the orthogonal complement subspace Oy, of V, in
Vns1- In tumn, it is the basic wavelet that directly leads to
the orthonormal basis

9T (), 96 (8, 9T (8), 95 (1), -

for O,,, where ¥ (t) is as defined in terms of dilations
and translations of (t) as per (2). Hence, we have

Dma(t) =Y algm(t) 12)
with (cf. (1b))

o0
or = [ svre
Furthermore, it is from this point of view that one can
recognize that it is the ideal bandpass wavelet (3) that
is associated with the bandlimited multiresolution analysis
defined via (10).

Combining (11) with (12) we obtain the representation

Amz(t)= Y Dma(t)= Y D asw¥p(t) (13)

m<M m<M n

consistent with the notion that A sz (t) is an approximation
to z(t) in which details on scales smaller than 2 are
discarded. Finally, accumulating the detail signals over
all m by taking M — oo in (13) yields the efficient
orthonormal representation

o(t) =YY 2P (D)

that is the synthesis formula (1a).

The multiresolution signal analysis viewpoint not only
provides a highly useful conceptual interpretation of the
wavelet transform, but perhaps even more importantly,
leads to a particularly efficient algorithm for the compu-
tation of the wavelet transform of a signal. Furthermore,
it is the existence of this algorithm that ultimately makes
the representations discussed in this paper of such prac-
tical significance. However, a detailed understanding of
this algorithm, which is based on an intimate relationship
between orthonormal wavelet bases and a class of discrete-
time conjugate quadrature filter banks, is not essential to an
appreciation of the main results of the paper. A summary
for the interested reader is provided in Appendix L
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C. Examples

The ideal bandpass wavelet (3) leads to a basis with
excellent frequency localization properties but very poor
temporal localization since 9)(t) decays only like 1/t for
large ¢. Fortunately, in applications one can choose from
among many possible wavelet bases to make a variety of
different tradeoffs. In this section, we briefly summarize
some other families of wavelet bases.

For example, at another extreme from the bandlimited
multiresolution analysis lies the Haar-based multiresolution
analysis in which approximations at resolution 2™ are
piecewise-constant on intervals of length 27™. In this case,
the corresponding scaling function is given by

_f1, o<t<1
#(t) = {0, otherwise -

and the associated wavelet is

1, 0<t<1/2
Y(t)y=4¢ -1, 1/2<t<1 |
0, otherwise.

This analysis is realizable and exhibits excellent temporal
localization but very poor frequency localization— ¥(w)
falls off only like 1/w for w — oo.

The family of Battle-Lemarie wavelet bases [21], [19] is
obtained from multiresolution analyses based upon orthog-
onalized Pth-order spline functions. In fact, in this class the
Haar-based wavelet basis corresponds to the case P = 0,
while the bandpass wavelet basis corresponds to P — oo.
The Battle~Lemarie bases have very reasonable localization
properties: they are characterized by exponential decay in
the time domain and decay like 1/|w|F+! in the frequency
domain. Hence while they are, strictly speaking, unreal-
izable, the exponential decay property ensures that good
approximations may be realized via truncation.

Finally, an important class of practical wavelet bases due
to Daubechies [19] has not only reasonable localization in
both time and frequency, but finite-extent basis functions
as well. In particular, Daubechies bases of order R are
derived from conjugate quadrature filter pairs of length
2R for R = 1,2,---, and have the property that the basis
functions are maximally regular in the sense of having the
maximum number of vanishing moments (R) for a given
order. More generally, the development of other families of
wavelets based on multirate filter bank theory continues to
receive considerable attention in the literature, as described
in, e.g., [22]-{24].

II. 1/f PROCESS CHARACTERIZATIONS

The term “1/f process” has traditionally been used to
describe a broad class of physical signals having measured
power spectra obeying a power law relationship of the form

2
Oz

|wl

Sz{w) ~ (14

for some spectral parameter . In any spectral analysis, of
course, data length generally limits access to information
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at lower frequencies and data resolution limits access to
detail at higher frequencies. Nevertheless, there are many
examples of phenomena for which arbitrarily large data
records justify a 1/f spectrum of the form (14) over all
accessible frequencies. However, (14) is not integrable and,
hence, strictly speaking, does not constitute a valid power
spectrum in the theory of stationary random processes.
As a consequence, a number of subtleties arise in the
development of mathematical models for 1/f behavior.

In spite of the paradox of the 1/f spectrum, a truly
enormous and tremendously varied collection of natural and
man-made phenomena exhibit 1/f-type spectral behavior
over many decades of frequency. A partial list includes
(see, e.g., [1], [25]-]29] and the references therein):

« geophysical time series such as variation in temper-
ature and rainfall records, measurements of oceanic
flows, flood level variation in the Nile river, wobble
in the Earth’s axis, frequency variation in the Earth’s
rotation, and sunspot variations;

» economic time series such as the Dow Jones Industrial
Average;

« physiological time series such as instantaneous heart
rate records for healthy patients, EEG variations un-
der pleasing stimuli, and insulin uptake rate data for
diabetics;

« biological time series such as voltages across nerve
and synthetic membranes;

« electromagnetic fluctuations such as in galactic radia-
tion noise, the intensity of light sources, and flux flow
in superconductors;

« electronic device noises in field effect and bipolar
transistors, vacuum tubes, and Schottky, Zener, and
tunnel diodes;

« resistance fluctuations in metal film, semiconductor
films and contacts, germanium filaments in carbon
and aqueous solution, thermocells, and concentrations
cells;

« frequency variation in hourglasses, quartz crystal os-
cillators, atomic clocks, and superconducting cavity
resonators;

» man-induced phenomena including variations in traffic
flow and amplitude and frequency variation in Western,
African, Asian, and Indian music, both modem and
traditional;

« generation of perceptually pleasing physiological stim-
uli, such as artificial music and breezes;

* burst errors on communication channels;

* texture variation in natural terrain, landscapes, and
cloud formations.

While v = 1 in many of these examples, more generally

0 < « < 2. However, there are many examples of
phenomena in which v lies well outside this range. For
~ > 1, the lack of integrability of (14) in a neighborhood
of the spectral origin reflects the preponderance of low-
frequency energy in the corresponding processes. This
phenomenon is termed the infrared (IR) catastrophe. For
many physical phenomena, measurements corresponding
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to very small frequencies show no low-frequency roll off,
which is usually understood to reveal an inherent nonsta-
tionarity in the underlying process. Such is the case for
the Wiener process, with which it is sometimes convenient
to associate a 1/f spectrum with ¥ = 2. For v < 1, the
lack of integrability in the tails of the spectrum reflects
a preponderance of high-frequency energy and is termed
the ultraviolet (UV) catastrophe. Such behavior is familiar
for generalized Gaussian processes such as stationary white
Gaussian noise, which may be considered a 1/f process
with y = 0 and its usual derivatives. In general, it is agreed
that the transition from stationary to nonstationary behavior
occurs at some parameter value in the range 0 < v < 2,
although opinions differ as to the exact transition point [27].

Physical 1/f processes possess a number of special
characteristics. For example, as is reflected by the fact that
(14) obeys, for every a, the scaling equation

S2(w) = la]"S.(aw).

1/ f processes possess statistical self-similarity, i.e., their
statistics are invariant to dilations and contractions of the
time axis, to within an amplitude factor. As such, 1/f
processes have no “characteristic scale.” In turn, the self-
similarity inherent in 1/f processes typically gives rise to
fractal structure in the associated time waveforms.

Another related property of 1/f processes is their so-
called persistent statistical dependence. Indeed, the gener-
alized Fourier pair [30]

|71 1
7
2 () cos (yn/2)  |w|?

valid for v > 0 but v # 1,2,3,--- suggests that the
autocorrelation R, (7) associated with the spectrum (14)
for 0 < v < 1 is characterized by slow decay of the form

Ro(r) ~ |7~

(15)

In fact, this power-law decay in correlation structure dis-
tinguishes 1/f processes from many traditional models
used for time series analysis. For example, the well-studied
family of autoregressive moving-average (ARMA) models
have a correlation structure invariably characterized by
exponential decay. As a consequence, ARMA models are
generally inadequate for capturing long-term dependence
in data.

Perhaps the most popular mathematical characteriza-
tion of 1/f processes is obtained through the concept
of fractional Brownian motion. In the next section, we
briefly review this model, and, in the process, reveal
many important properties of 1/ f processes. Unavoidably,
several mathematical subtleties arise in the development of
fractional Brownian motion, making this section somewhat
less accessible to the nonspecialist than the remainder of
the paper. Furthermore, while insightful, a detailed under-
standing of these subtleties is not essential to appreciating
the main results of the paper. For these reasons, the reader
may find it easier to skip over this section on a first reading,
proceeding directly to Section III-B. There we develop a
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powerful but much simpler mathematical characterization
for 1/f processes.

A. Fractional Brownian Motion and
Fractional Gaussian Noise

The 1/f processes can be viewed as a particular class of
statistically self-similar random processes. Using a rather
well-established - definition, a random process x(t) is said
to be statistically self-similar with parameter H if for any
real a > 0 it obeys the scaling relation

2(t) 2 oAz (at) (16)

where £ denotes equality in a statistical sense. For strict-
sense self-similar processes, this equality is in the sense
of all finite-dimensional joint probability distributions. For
wide-sense self-similar processes, the equality may be inter-
preted in the sense of second-order statistics, i.e., mean and
covariance functions. In this latter case, the self-similarity
relation (16) may be alternately expressed as

M,(t) & E[z(t)] = o~ " M(at) (17a)
R.(t,s) £ E[z(t) 2(s)] = a~ 22 R,(at,as). (17b)

For Gaussian processes, upon which we will focus our
attention, the two definitions are, of course, equivalent. Let
us further restrict our attention to zero-mean processes.

A seemingly natural definition of a Gaussian 1/ f process
z(t) with spectral exponent -y would be the result of driving
stationary white Gaussian noise w(t) through a linear time-
invariant system with impulse response, for H > —1/2

1

’U(t) = N_H:th_l/zu(t) (18)

for which the system function is, for v = 2H + 1, [31]

where I'(+) is the gamma function. Unfortunately, however,
because the system defined via (18) is unstable except for
the degenerate case H = —1/2, the convolution

(t) = v(t) * w(t) = m

t
/ (t —T)H_1/2’w(7') dr 19)

is not well-defined.

The remedy of Barnes and Allan [4] to the dilemma
posed by this construction was to key the integration in
(19) to the time domain origin in their model, thereby
defining their model for 1/ f behavior through the fractional
(Riemann-Liouville) integral [32]

_ 1 ’ H-1/2
o) = TS /0 t— rE-V2u(r)dr.  (20)

Unfortunately, while statistically self-similar with parame-
ter H, the Barnes—Allan process fails to exhibit the spectral
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behavior associated with 1/f processes, even when the
definition is extended for ¢ < 0 through the convention

t 0
/ é—/ ) Q1)
0 t

Fractional Brownian motion (fBm) represents a useful
refinement of the Barnes—Allan process. In the fractional
Brownian motion framework, processes corresponding to
1 < v < 3, for which there is infinite low-frequency
power, are developed as nonstationary self-similar random
processes having finite power in any finite time interval.
These processes are the fractional Brownian motions, and
classical Brownian motion is a special case corresponding
to v = 2. By contrast, processes corresponding to —1 <
v < 1, for which there is infinite high-frequency power,
are developed as generalized stationary Gaussian processes
corresponding to the derivative of a fractional Brownian
motion. It has become popular to refer to these processes as
fractional Gaussian noises, with stationary white Gaussian
noise as a special case corresponding to v = 0. The theory
does not accommodate the cases v > 3 and v < —1.
Furthermore, the models are degenerate for the cases y =
-1,y =1, and v = 3.

Loosely speaking, fractional Brownian motions are the
class of Gaussian statistically self-similar random pro-
cesses having, in some sense, stationary derivatives. More
precisely, because such processes are technically not differ-
entiable, a fractional Brownian motion is a nonstationary
Gaussian self-similar process z(t) satisfying z(0) = 0
whose increment process

A z(t +€) — z(t)

Az(t;€) (22)
is stationary? (and self-similar) for every ¢ > 0. The
stationary increment condition is important, in the sense
that this is the stationary attribute that ultimately leads
to a meaningful notion of spectra for these nonstationary
processes.

Fractional Brownian motion defined in this manner can
be expressed, for 0 < H < 1, in the form

A 1
0= sETim)
0
e = ar
t
+ [t — T|H_1/2w(7') dr] 23)
0

where w(t) is stationary white Gaussian noise, and where
for t < 0,z(t) is defined through the convention (21).
From (23), we see directly that for H = 1/2, fractional
Brownian motion specializes to the Wiener process, i.e.,
classical Brownian motion.

2In fact, fractional Brownian motions for 0 < H < 1 constitute the
only statistically self-similar, zero-mean, mean-square continuous, finite-
variance, Gaussian random processes satisfying £(0) = 0 and having
stationary increments.
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Fig. 4. Synthesis of fractional Brownian motion x(t) in terms
of fractional Gaussian noise z’(t) and stationary white Gaussian
noise w(t).

Likewise, the correlation function for fractional Brownian
motion can be readily derived as

R, (t,s) = E[z(t) z(s)]
= T (P H 2 - - o) 0

where
cos (mH)
nH

From (24), it is trivial to verify that the process is statisti-
cally self-similar with parameter H.

While fractional Brownian motion is not differentiable,
like regular Brownian motion, it does have a generalized
derivative. From (23) we can express this derivative, which
is referred to as the associated “fractional Gaussian noise,”
in the form

0% = Varz(1) = I'(1 — 2H) 25)

d
4 = — — 1 M
z'(t) = dt:c(t) !lII(l)A.Z’(t, €)

1
- I(H' +1/2)
t
. / [t — T[H’“l/zw('r) dr (26)
where we have defined
H =H-1. 27

Equation (26) now provides an interpretation for convolu-
tions of the form (19), and allows us to view fractional
Gaussian noise as a 1/f process with spectral exponent
v’ = 2H' + 1. The resulting conceptually useful synthesis
for fractional Brownian motion depicted in Fig. 4.

The character of fractional Gaussian noise z/(t) strongly
depends on the value of H. Indeed, as shown in [7], for
large lags the correlation of the increment process has the
same algebraic sign as H — 1/2, i.e., for |7| > ¢

Rax(1;€) = E[Az(t;€) Az(t — T3 ¢€)]
~ ok (2H — 1)|r[2H-2,

Consequently, for 1/2 < H < 1, fractional Gaussian noise
exhibits long-term dependence, i.e., persistent correlation,
while for 0 < H < 1/2, it exhibits persistent anticorrela-
tion. For H = 1/2, fractional Gaussian noise specializes to
ordinary stationary white Gaussian noise, for which there
is, of course, no correlation.

From the fractional Brownian motion framework one
can derive a number of other important properties of 1/f
processes as well, among which are its fractal characteris-
tics. Specifically, sample functions of fractional Brownian
motions whose self-similarity parameters lie in the range
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0 < H <1 (ie.,, 1 < v < 3) have a fractal (Haus-
dorff-Besicovitch) dimension given by [27]

D=2-H

that gives a quantitative measure of their roughness.

Perhaps the principal limitation of the fractional Brown-
ian motion framework is that it does not provide useful
models for 1/f processes corresponding to v < —1,v > 3,
and perhaps the most important and ubiquitous case, v = 1.
Indeed, for v = 3(H = 1), fractional Brownian motion
as defined by (23) degenerates to a process whose sample
paths are all lines through the origin, viz.,

z(t) = |t|=(1)

while for v = 1(H = 0), fractional Brownian motion
degenerates to the trivial process

z(t) = 0.

More generally, choosing H < 0 in (23) leads to processes
that are not mean-square-continuous, while choosing H >
1 in (23) leads to processes whose increments are not
stationary [3], [33]).

B. A Frequency-Based Characterization of 1/ f Processes

In this section, we introduce a potentially more general
mathematical characterization of 1/f processes than is
provided by the fractional Brownian motion framework,
and one which is perhaps closer in spirit to the empirical
characterization through which they were introduced. In
fact, we shall use this characterization to define 1/f
processes in a sufficiently precise sense for the purposes
of this paper.

The basic notion is that 1/f processes are those statisti-
cally self-similar random processes that appear stationary
when viewed through ideal bandpass filters. Given that
measurements of spectra for physical processes can only
be obtained over a range of frequencies governed by data
length and resolution limitations suggests that this is a
rather natural means for distinguishing 1/ f processes from
other statistically self-similar processes. More precisely, we
choose the following definition.

Definition 1 A wide-sense statistically self-similar zero-
mean random process z(t) shall be said to be a 1/ f process
if there exist wy and w; satisfying 0 < wy < wy < 00 Such
that when x(t) is filtered by an ideal bandpass filter with
frequency response

Bl(w) — {1, wo < le <wp

0, otherwise 28)

the resulting process y1(t) is wide-sense stationary and has
finite variance.

While choosing an ideal bandpass filter in this definition
may not be critical—that is, it might suffice to choose any
filter whose frequency response B(w) has sufficient decay
as w — 0 and w — O—the use of ideal filters is rather
convenient. Indeed, the fundamental appeal of Definition
1 as a characterization for 1/f processes is its basis in
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the frequency domain. This allows the well-established
tools of Fourier analysis to be extended to this important
class of generally nonstationary processes, and, in turn, the
derivation of a number of properties of 1/ f processes in a
highly straightforward manner.

In accordance with this definition it suffices to find just
one bandpass filter through which the process is station-
ary. In fact, the following theorem establishes that if a
statistically self-similar process is stationary when filtered
by one bandpass filter, then it is stationary when filtered
by any bandpass filter. The theorem also justifies the
terminology “1/f process” in Definition 1, and provides
a natural interpretation of the spectrum (14). A detailed but
straightforward proof of this result is provided in Appendix
II-A.

Theorem 1 A 1/ f process x(t), when filtered by an ideal
bandpass filter with frequency response

B ={b <kl <o

0, otherwise @9

for any 0 < wp, < wy < 00, yields a wide-sense stationary
random process y(t) with finite variance and having power
spectrum, for some 02 >0

2 ¥
g w|’, wr < |w < w

otherwise

(30)

where the spectral exponent vy is related to the self-similarity
parameter H according to v = 2H + 1.

This characterization not only captures the behavior of
many physical 1/f processes, but also encompasses some
important existing mathematical models for 1/f behavior.
As an example, we present the following theorem, whose
proof is provided in Appendix II-B.

Theorem 2 Fractional Brownian motions corresponding
to 0 < H < 1 and the associated fractional Gaussian noises
are 1/ f processes in the sense of Definition 1.

In essence, this theorem states that self-similar random
processes that appear stationary when viewed through a
differentiator, i.e., fractional Brownian motions, also appear
stationary when viewed through any ideal bandpass filter.
Furthermore, we have a trivial corollary that the special
case corresponding to the Wiener process and its derivative,
stationary white Gaussian noise, are also 1/f processes.
However, the Barnes—Allan process with its pronounced
time origin is not a 1/f process in the sense of Definition
1.

A number of interesting technical questions are raised
by the characterization of 1/f processes presented here,
many of which are as yet unexplored. For instance, how
broad a class of processes this definition admits remains
an open question. Indeed, it is not known whether it is
actually possible to construct nontrivial Gaussian processes
that satisfy Definition 1 for values of H outside 0 < H < 1.
Similarly, it is not known whether there other Gaussian
processes besides fractional Brownian motion that satisfy
the definition for 0 < H < 1. Nevertheless, results relevant
to these and other related questions has been recently
reported by Ramanathan and Zeitouni [34].
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IV. WAVELET-BASED MODELS FOR 1/f PROCESSES

In this section, we present the role of orthonormal wavelet
basis expansions as Karhunen-Logve-like expansions for
1/f processes. That is, we show that such wavelet ex-
pansions in terms of uncorrelated random variables con-
stitute good models for 1/f behavior. Karhunen—Logve
expansions have, in general, proven enormously useful in
development and interpretation of classical detection and
estimation theory [35]. Consequently, the results we discuss
in this section have some important implications which we
explore later. In the meantime, we identify two categories
of results: synthesis results and analysis results.

A. Synthesis

First, we demonstrate that nearly-1/f behavior may be
generated from orthonormal wavelet basis expansions in
terms of collections of uncorrelated wavelet coefficients.
In particular we present the following theorem, an earlier
version of which appears in [36], and whose proof is
provided in Appendix II-C.

Theorem 3 Consider any orthonormal wavelet basis with
Rth-order regularity for some R > 1. Then the random
process constructed via the expansion

o(t) =Y > o (t) @31)

where the ' are a collection of mutually uncorrelated,
zero-mean random variables with variances

Varz]' = og22—m

for some parameter 0 < v < 2R, has a time-averaged
spectrum

Sow) =0 Y 27T B2 W) (32

that is nearly 1/f, i.e.,

2 2
9L 9y
— < Sp(w) £ —= 33
pr =5 < o e
for some 0 < 02 < 0% < o0, and has octave-spaced
ripple, i.e., for any integer k

(W] Sz (w) = [2Fw|7 Sz (2Fw). (34)

Several remarks concerning this theorem are appropriate.
First, we emphasize that the nearly 1/f spectrum (32), an
example of which is depicted in Fig. 5, is to be interpreted
in the same manner that (14) is for true 1/f processes.
That is, if z(t) is filtered by an ideal bandpass filter with
frequency response of the form (29), the output of the filter
will have finite power and correspond to a spectrum of the
form (32) over the passband wy, < |w| < wy. Furthermore,
we also emphasize that this spectrum is a time-averaged
one. Indeed, the output of such a bandpass filter will not,
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Fig. 5. The time-averaged spectrum of a 1/f-type process syn-
thesized from the first-order Battle-Lemarie orthonormal wavelet
basis.

in general, be stationary in any sense as a consequence of
the discrete nature of the synthesis.

In general, when the orthonormal wavelet decomposition
is viewed in terms of a generalized octave-band filter bank,
the result of this theorem is intuitively reasonable. In fact,
for the case of the ideal bandpass wavelet basis, it can
be inferred from geometric arguments that the tightest
bounding constants are

ol = oln”

o = o?(2m)".

Interestingly, Theorem 3 also leads to a special interpre-
tation of the case v = 1, arguably the most prevalent of
the 1/f -type processes. In particular, the choice of the
variance progression .

Varz? = 227™
corresponds to distributing power equally among the detail
signals at all resolution scales, since we have for each m

% /_ Z P ()| ¥(27™w)|? dw = 1. (35)

Not surprisingly, a much stronger theorem holds for
the case v = 0. Here we have a particular instance of
an orthonormal basis expansion in terms of uncorrelated
random variables with identical variances, which always
generates a stationary white-noise process whose spectral
density is the variance of the coefficients. Hence, for v = 0
we have

Sow)=0? = o? 3 W)

where the last equality is a consequence of the wavelet
identity [37]

SleE WP =1. (36)

The wavelet basis constraints in Theorem 3 have a
number of practical consequences. To generate 1/ f-like
behavior for 0 < v < 2, it suffices to use a wavelet basis
for which the corresponding multiresolution analysis is at
least regular. Virtually any practical wavelet basis satisfies
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this condition, even the Haar basis. However, to generate
1/ f-like behavior for v > 2, higher regularity (R > 1)
is required, as can be verified experimentally. For instance,
when a Haar-based synthesis (R = 1) of a 1/ f process with
4 = 5 is attempted, the resulting sample functions exhibit
abrupt discontinuities. More generally, without sufficient
regularity, the characteristics of the basis functions mani-
fest themselves in the sample functions generated by the
expansion. However, using more regularity than required
by the theorem would appear to be of no advantage.

As a final remark, we mention that Theorem 3 may,
in principle, be extended to v < 0 provided the wavelet
basis used in the synthesis has a sufficient number of
vanishing moments. This can be deduced from the proof in
Appendix II-C. Typically, however, this case is of relatively
little interest since few, if any, physical 1/f processes are
associated with negative 7.

B. Analysis

This section presents a collection of complementary
results to suggest that wavelet bases are equally useful in
the analysis of 1/f processes. In particular, we provide
both theoretical and empirical evidence suggesting that
when 1/ f processes are expanded in terms of orthonormal
wavelet bases, the resuiting wavelet coefficients are typ-
ically rather weakly correlated, particularly in contrast to
the rather strong correlation present in the original process.

The following theorem provides a convenient expression
for the correlation between arbitrary wavelet coefficients of
a 1/f process. A proof is outlined in Appendix II-D.

Theorem 4 Let x(t) be a 1/f process whose spectral
parameters, in the sense of Theorem 1, are o2 and .
Furthermore, let the = be projections of z(t) onto an
orthonormal wavelet basis corresponding to a wavelet (t)
with R vanishing moments. Then provided 0 < v < 2R, the
correlation between an arbitrary pair of such coefficients
«™ and =T is given by

2—(m+m')/2
27
o 42 ,
: / = g2 ") Ut (2™ w)

e

E[zl e

. e—in27m —n'2~™ Y dw. G7)

Several properties of the second-order statistics of wavelet
coefficients of 1/f processes may be readily derived from
this theorem. For instance, an immediate consequence is
that the variance of each z7' is of the form

Varz)' = g2~ m

where

o0 2
o? = o / %a | () ? do

T )l
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reminiscent of—and consistent with—our synthesis result.
Similarly, defining

!
m ,.m
Elz7al

(38)
\/(Var x™)(Varz™')

as the normalized wavelet correlation, a second conse-
quence is that the wavelet coefficients are wide-sense-
stationary at each scale, i.e., for a fixed scale m,p, " is
a function only of n — n’. Indeed, specializing (37) to the
case m' = m yields

(39

m,m —
pn,n’ -

o0 2 . ,
1 / Iz |\Il(w)|ze'1("_" @ dw.

2r0? J_o |w|?

These results can also be established specifically in the
context of the fractional Brownian motion framework as
shown by Flandrin [38].

Normalized wavelet coefficients which correspond to
synchronous time instants possess a kind of stationarity
across scales as well. From the filter bank interpretation
of wavelet analysis in which the output of the mth filter is
sampled at rate t = 2~™n forn =---,-1,0,1,2,---, we
observe that a pair of wavelet coefficients z7;* and z::L'B' at
distinct scales m and m’ correspond to synchronous time
instants precisely when

2 "n = 27", (40)
Our stationarity result in this case is then that the normal-
ized correlation among time-synchronous wavelet coeffi-
cients corresponding to scales m and m’ is a function only
of m — m’. More precisely, specializing (37) yields

1 ,
—— 9~ (m-m')/2
2ro?

o 0,2 ,
/ 2 g2~ m=m)) U(w)dw (41)

oo @]

mm’ _
pn,n’ -

whenever (40) holds. This result, too, can be shown in
the context of fractional Brownian motion, as shown by
Flandrin [39].

While the stationarity results provide some insight into
the correlation structure among wavelet coefficients, ad-
ditional insight is obtained by examining the magnitude
of the correlation among wavelet coefficients both along
a scale and across scales. The following theorem [37]
identifies some asymptotic properties of the intercoefficient
correlation. A proof is provided in Appendix II-E. A version
of this theorem has also been established in the case of
fractional Brownian motion by Tewfik and Kim [40].

Theorem 5 Consider an orthonormal wavelet basis such
that 1(t) has R vanishing moments, i.e.,

vw)=0, r=01,---,R—1 (42)
for some integer R > 1. Then provided 0 < v < 2R, the
wavelet coefficients obtained by projecting a 1/ f process
onto this basis have a correlation whose magnitude decays
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according to®
P |~ 0|2 = 27| IR 43
as
[27™n — 2™ n'| = oo.

While this theorem makes an interesting statement about
the relative correlation among some wavelet coefficients
well-separated in (m,n)-space, we must avoid inferring
some stronger statements. First, it says nothing about the
correlation among time-synchronous wavelet coefficients
(i.e., those satisfying (40)), regardless of how well separated
they are. Furthermore, while plausible, the theorem itself
does not assert that choosing an analysis wavelet with
a larger number of vanishing moments can reduce the
correlation among wavelet coefficients in the analysis of
1/f processes. Likewise, the theorem does not actually
validate the reasonable hypothesis that choosing a wavelet
with an insufficient number of vanishing moments will
lead to strong correlation among the wavelet coefficients
of 1/f processes. In fact, the theorem identifies neither a
range of m,m’,n,n’ over which (43) holds, nor a leading
multiplicative constant in (43). Consequently, this precludes
us from inferring anything about the absolute correlation
between any particular pair of coefficients.

For the case of the ideal bandpass wavelet basis, however,
we may obtain some more useful bounds on the correlation
among wavelet coefficients. In this case, the basis functions
corresponding to distinct scales have nonoverlapping fre-
quency support. Hence, carefully exploiting the stationarity
properties of 1/f processes developed in Theorem 1, we
may conclude that the wavelet coefficients corresponding to
distinct scales are uncorrelated. However, at a given scale
the correlation at integral lag ! > 0 is nonzero and may be
expressed in the form

2 2m
m,m

Pamet = w7 cos (wl) dw 44)

wo? J,
with

_[@T D@7, vEL g

o2 (In2)/(w), vy=1.
While (44) cannot be evaluated in closed form, integrating
by parts twice and using the triangle inequality gives the
useful closed-form bound

2

m,m oz 1 1+~ 1
'p"’"_' < o2 22ty {1 + 21+ + Ir [1 T 92ty
(46)

valid for v > 0 and integer-valued [ > 1.

In Fig. 6, we plot the exact magnitude of the normalized
correlation (44) obtained by numerical integration as a
function of lag ! together with the bound (46). Note that
correlation among wavelet coefficients is extremely small:
adjacent coefficients have a correlation coefficient of less

3The ceiling function [z] denotes the smallest integer greater than or
equal to x.
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Fig. 6. Along-scale correlation between wavelet coefficients for a
1/ f process for which ¥ = 1. The squares [J indicate a numerical
estimate of the exact magnitude of the normalized correlation
between wavelet coefficients as a function of the lag [ between

_them. The ideal bandpass wavelet was assumed in the analysis. The

triangles A indicate the corresponding values of the closed-form
bound obtained in the text. The circles (O show the average
sample-correlation as computed from a projections of synthesized
1/ f processes onto the fifth-order Daubechies wavelet basis.

than 15%, and more widely separated coefficients have a
correlation coefficient less than 3%.

On the same plot we superimpose the average along-scale
sample correlation between wavelet coefficients obtained
from a 1/ f process synthesized using the method of Corsini
and Saletti [11] based on the extended-ARMA model of
Keshner [1]. In this simulation, a 65 536-sample segment
of a 1/f process was generated for v = 1 and ana-
lyzed using Daubechies fifth-order wavelet basis. Here,
the sample-correlation function of the coefficients at each
scale was computed, and averaged appropriately with the
sample-correlation functions at the other scales. That the
experimental result so closely matches the exact result
for the bandlimited basis suggests that our analysis result
for the bandlimited basis may, in fact, be more broadly
applicable. However, as yet no theoretical statement to this
effect has been established.

As a final remark, the results of this section can be inter-
preted in the context of spectral analysis. In particular, in
light of the octave-band filter bank interpretation of wavelet
bases we may view wavelet-based amalysis, in some sense,
as spectral analysis on a logarithmic frequency scale. The
results of this section, then, together with a consideration of
the spectral characteristics of 1/ f processes viewed through
bandpass filters, suggest that it is this kind of spectral
analysis that is, broadly speaking, best suited to 1/ f-type
behavior.

C. Examples

In this section, we demonstrate, using wavelet-based
analysis, two instances of time series that would appear to
be well-modeled as 1/ f processes. The first is an example
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Fig. 7. Weekly Dow Jones Industrial Average data, to present.
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Fig. 8. Wavelet-based analysis of weekly Dow Jones Industrial
Average data, The time series is analyzed using a fifth-order
Daubechies wavelet basis. (a) Scale-to-scale wavelet coefficient
sample-variance progression. (b) Average magnitude of the normal-
ized along-scale sample correlation between wavelet coefficients.

involving economic data, specifically the 80 years of raw
weekly Dow Jones Industrial Average data depicted in Fig.
7.

As shown in Fig. 8(a), the sample variances of wavelet
coefficients extracted from this data obey a geometric scale-
to-scale progression consistent with a 1/ f process of v = 2.
In Fig. 8(b), we see that the average along-scale sample
correlation among wavelet coefficients is rather weak. Since
adjacent coefficients have a correlation of less than 8%,
and more widely separated coefficients have a correlation
of less than 3%, it would appear reasonable to neglect the
intercoefficient correlation in the analysis of such data.

A second example involves physiological data, specifi-
cally the record of healthy human heart beat interarrival
times depicted in Fig. 9. For these data, which correspond
to approximately 11 h of continuously acquired data, the
quantization levels of the interarrival times are spaced 4
ms apart. As shown in Fig. 10(a), the sample variances of
wavelet coefficients extracted from these data also generally
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Fig. 9. Heartbeat interarrival times for a healthy human patient.
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Fig. 10. Wavelet-based analysis of the heartbeat interarrival times
for a health patient. The time series is analyzed using a fifth-order
Daubechies wavelet basis. (a) Scale-to-scale wavelet coefficient
sample-variance progression. (b) Average magnitude of the normal-
ized along-scale sample correlation between wavelet coefficients.

follow a geometric scale-to-scale progression consistent
with a 1/f process of v ~ 1. When viewing this plot,
keep in mind that the sample-variance measurements are
progressively less reliable estimates of the true variances at
coarser scales (smaller m). In Fig. 10(b), we show the weak
average along-scale sample correlation between wavelet
coefficients. In this case, coefficients separated by lags of
two or more have less than 2% correlation, again suggesting
that such intercoefficient correlation may be neglected in
any wavelet-based analysis.

V. SIGNAL PROCESSING WITH 1/ f PROCESSES

Having presented both theoretical and empirical resuits
to suggest that the orthonormal wavelet transform is an
apparently useful and convenient tool in the synthesis and
analysis of 1/ f-type processes, we now explore the equally
important role of the wavelet transform in processing such
signals.
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There are a great many signal processing problems that
arise which involve 1/f processes either as the signals
of interest, such as in the case of economic data, or as
sources of noise or other interference, such as is the case in
optical systems. From a wealth of applications there arises
need for algorithms for signal detection, identification,
classification, restoration, and enhancement. In this section,
we demonstrate the wavelet expansion’s role in solving
some of the fundamental problems of optimal detection and
estimation with 1/f processes that form the basis of these
algorithms.

In the development of signal processing algorithms for
1/f data, robustness is of tremendous importance. This is
because even when the 1/f signal is of primary interest,
the observed data are invariably subject to various forms of
distortion. Typically, they will be time-limited, resolution-
limited, and corrupted by broadband noise.* By the nature
of the 1/f spectrum, there is a large amount of high-
frequency information in the data, much of which lies
below the broadband noise floor. Consequently, algorithms
for processing 1/f data that do not take into account
such noise have a tendency to rely too strongly on high-
frequency information. The result is often intolerable noise
sensitivity. For this reason, we pay particular attention
to robustness issues in the problems we consider in this
section.

As in earlier sections of the paper, the Corsini—Saletti
algorithm [11] based on Keshner’s extended-ARMA model
[1] is used to synthesis 1/f data in simulations. Because
this synthesis is fundamentally different from a wavelet-
based synthesis, such simulations play an important role
in verifying the robustness of the wavelet-based algorithms
with respect to modeling error. Additionally, in these sim-
ulations we use the Daubechies’ finite-extent wavelet basis
with fifth-order regularity for which the corresponding
conjugate quadrature filters have ten nonzero coefficients.
In accordance with the theorems of Section IV, this prac-
tical basis has more than enough vanishing moments to
accommodate spectral parameters in our principal range of
interest, 0 < v < 2.

All the algorithms of this section exploit the property that
the coefficients of suitable wavelet expansions of Gaussian
1/f processes can be modeled as collections of mutually
independent random variables obeying a particular geomet-
ric scale-to-scale variance progression. This not only makes
the derivation and analysis of the algorithm mathematically
highly tractable, but also leads to some computationally
highly efficient structures for implementing the resulting
algorithms.

As an illustration, consider the linear reversible whitening
filters for 1/f processes. For a 1/f process z(t) with
parameter <, the wavelet coefficients z]* derived out of

4 Actually, the coexistence of 1/ f and white noises in electronic and
optical systems is well-documented. In electronic systems, for instance,
the predominant noise is 1/f noise at frequencies below about 1 kHz,
while at higher frequencies, it is white noise in the form of thermal (i.e.,
Johnson) and shot noise [41].
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Fig. 11. Canonical form realization of the whitening filter for
1/ f-plus-white processes.

such a process may be expressed in the form
= [02'7'"/2]11;"

where the v are then zero-mean, unit-variance, uncorre-
lated random variables. Because the wavelet coefficients
vy thereby correspond to a process v(t) that is stationary
and white, the associated whitening filter for a 1/f process
z(t) involves computing the wavelet coefficients of the
input, scaling those coefficients by [02~7/2]~1, and using
the resulting coefficients in a wavelet expansion to generate
v(t). This linear filter has kernel’

R) = ) ).

Furthermore, the inverse of this whitening filter, i.e., the
corresponding 1/ f synthesis filter, has kernel

KOt T) =) ) T (t) o™ 2 (7).

m

Because 1/f processes are typically accompanied by
white noise, it is, in fact, the whitening filters for processes
that are the superposition of 1/ f and white components that
arise most often. In this case, the kernel associated with
whitening filter for these 1/f-plus-white processes takes
the form

mo(tD) = LY U @)

m

where 0, > 0 is defined by

0% =027 "™ 4 o2 48)

m =

with o2 the spectral density of the white noise component.
The wavelet-based realization of this whitening filter is
depicted in Fig. 11.

A. Discriminating Between 1/ f Signals

As our first example, consider the ability of an optimal
Bayesian detector to discriminate between Gaussian 1/f
processes of distinct parameters in a background of sta-

SIn our notation, the kernel k(t,7) of a linear system defines the
response of the system at time ¢ to a unit impulse at time 7. Consequently
the response of the system to a suitable input z(t) is expressed as

y(t) = /_oo z(7) k(t, 7)dT.
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tionary white Gaussian noise. It is convenient to formulate
this problem in terms of a binary hypothesis test involving
noisy observations r(t). Specifically, we have as our two
hypotheses®

Hy : r(t) = (¢) + w(?)
Hy :r(r) = £(t) + w(t)

(49a)
(49b)

where #(t) and #(t) are Gaussian 1/f processes with
distinct parameters, and w(t) is independent white mea-
surement noise.
Rewriting the hypothesis test in terms of the correspond-
ing wavelet coefficients
Hy:r' =37 +wy'
Hy:r' =2 +wy

leads to a substantial simplification. Under each hypothesis,
the 777" are collections of zero-mean statistically indepen-
dent Gaussian random variables where

Var {r™|Ho} = 62, = 6227 "™ + o2, (50a)
Var {r™|H1} = 62, = 52277 + 02.  (50b)

Most generally, the collection of available observation
coefficients take the form

r={r" e R} ={r*,m € M,n € N(m)}

where
M ={my,my,---,mp} (51a)
N(m) = {ni(m),nz(m),---,nnwm)(m)} (51b)
are arbitrary. However, the special case
M={12,---,M} (52a)
N(m) ={1,2,---, No2™ '} (52b)

is consistent with the collection of coefficients that would be
available in practice from an DWT-based implementation of
the wavelet decomposition involving N = N2 samples
of observed data, where Nj is a constant that depends on
the length of the filter h{n].

For a minimum probability of error (Pr(¢)) decision rule
under the assumption of equally likely hypotheses, the
likelihood ratio test for the problem simplifies to a test of
the form

1 1 1 52
=1 3 o[- o Jorr-n )
D =

H,
-2 0 (53)
Hy

where the o2, are sample variances defined via

1
~2 m\2
05 = ——
"= Ny 2 ) (54)
neN(m)

6We use the notation " and " to distinguish the 1/ f processes and their
respective parameters under the two hypotheses. These symbols should not
be confused with differentiation operators, for which we have generally
reserved the notation ’ and .
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Fig. 12. A canonical form implementation of the optimal receiver
for discriminating between 1/ f models with distinct parameters
based on noisy observations r(t).

summarize the aspects of the data required in the discrim-
ination. This rest can be implemented in the canonical
form depicted in Fig. 12. In this form, the observations
r(t) are processed by 1/f-plus-white whitening filters
corresponding to each hypothesis, for which the respective
kernels are

nwn=22wmiwm
amn=22ww$wm.

Consequently, only one of the residual processes 9(t) and
#(t) is white, depending on which hypothesis is true. To
decide between the two hypotheses, the receiver computes
the difference in energy in the two residuals and compares
it to the appropriate threshold.

Although evaluating the performance of the optimal
receiver is rather difficult in general, a useful gauge of
performance is obtained by exploiting a popular approach
based on the Chernoff bound [35]. Specifically, we can
bound the performance by

Pr(e) < Ler() (55)
where, for any real parameter s

p(s) 2 In E[e**|Hy)
1 a2,
=3 Z N(m){sln 52

meM

—n [sg—'z"+(1——s)]}

m

and where s, is the parameter value yielding the best
possible bound, i.e.,

8« = arg min pu(s).
8

Because
u(0) = p(1) = 0
and
u(s) =0

the parameter s, is located by a simple numerical search
in the range 0 < s < 1.

Using (55) as estimates of the probability of error per-
formance, we obtain the performance plots of Figs. 13—15.
Because the intent of these experiments is to provide a

measure of the degree to which 1/f processes of differ-
ent spectral exponents vy are distinguishable, the variance
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Fig.13. Optimal discriminator performance as a function of SNR,
as estimated via the Chemoff bound.
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1677 H— —
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Fig. 14. Optimal discriminator performance as a function of the
number of samples N of noisy observations, as estimated by the
Chemoff bound. The symbols [J, A, and ¢ correspond to actual
estimates; the lines are provided as visual aides only in this case.

parameters 62 and 62 have been chosen so as to corre-
spond to observations of the same variance under each
hypothesis. The results therefore indicate the probability of
error performance of an optimal detector in discriminating
between two equal-variance 1/f processes whose spectral
exponents differ by A~ based on noisy observations of
length N corresponding to a prescribed SNR. In the tests,
three different spectral exponent regimes are considered,
corresponding to v = 0.33,7 = 1.00, and v = 1.67.
While these tests are obviously not substitutes for more
comprehensive performance studies involving Monte Carlo
simulations with synthetic and real data, the figures provide
at least some indication of the behavior and tradeoffs
inherent in optimal discrimination of this type.

There is, of course, a broad class of related detection
and discrimination problems involving 1/f processes that
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Fig. 15. Optimal discriminator performance as a function of the
parameter separation A~y between the two hypotheses, as estimated
via the Chernoff bound.

may addressed using a related approach. These would
include multiple hypothesis testing problems corresponding
to discrimination among 1/f processes corresponding to
several distinct sets of parameters. When one passes from
a discrete collection of hypotheses to the continuum, it is
natural to re-interpret the discrimination problem as a pa-
rameter estimation problem. The wavelet-based framework
has proved equally useful in solving problems of robust
parameter estimation with noisy 1/f signals.

B. Parameter Estimation for 1/ f Signals

In this section, we describe a class of wavelet-based
algorithms developed in [42] for generating Maximum
Likelihood (ML) estimates of the parameters of a Gauss-
ian 1/f signal from observations corrupted by stationary
white Gaussian noise of unknown spectral density. Such
parameter estimates, in addition to solving a 1/f spectrum
estimation problem, play an important role in classifying
and detecting signals on the basis of their fractal dimension.
In fact, in image processing, where two-dimensional exten-
sions of 1/f processes are used to model natural terrain
and other patterns and textures [8], [26], fractal dimension
can be exploited in distinguishing among various man-made
and natural objects.

From observations of the form

r(t) = z(t) + w(t) (56)

where z(t) is a zero-mean Gaussian 1/f process and w(t)
is independent zero-mean stationary white Gaussian noise,
a collection of wavelet coefficients

r={ry’,me M,n € N(m)}

may be extracted. Because we can again model such
coefficients as mutually independent zero-mean Gaussian
random variables with variance

m __ .2 _ _20—gm 2
Varr,' =0, =02 + oy,
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the corresponding log-likelihood function takes the partic-
ularly simple form

L(y,0% 0%) =Inpr(rly,0?,0%)
1 52,
==3 Z N(m){g—2 +In (21ra,2n)}
meM m
(57
where the M sample variances &,Zn defined in (54) summa-
rize the aspects of the data required in the estimation.
In the absence of noise (o2, = 0), the parameters which

maximize the likelihood function are obtained by solving
for the roots of a polynomial in 8 = 27. In particular

7 mN(m) Nm) | .2
Bumr — - 62 8m
mze;,t Y mN(@m) Y N(m)
meM meM
=0 (58)

from which we get

M = logy Bur (592)

Hui = (hmL — 1)/2 (59b)

Dvi =2 — Hue. (59c¢)

More generally, when ¢ # 0 is unknown, a sim-
ple iterative extension of this solution based on an Esti-
mate—Maximize algorithm [43] can be used to obtain the
corresponding ML estimates [42].

While the ML parameter estimates for this problem are
biased, they are asymptotically efficient and consistent.
Cramér—Rao bounds on estimator performance can, in fact,
be derived in a equally straightforward manner [42]. For
the special case corresponding to 02 = 0 and N =
No2M samples of observed data, evaluating the bounds
asymptotically in the scenario described by (52) yields

var 4, ~ 2/[In2)2N)
var (63y,/0”) ~ 2(logy N)?)/N.

(602)
(60b)

Figure 16 demonstrates the performance, as measured via
64-trial Monte Carlo simulations, of the estimator for -y both
as a function of SNR and as a function of data length N.
These plots correspond to the case in which all signal and
noise parameters are unknown. The percentage rms error
in 6% exhibits qualitatively similar behavior both as a
function of SNR and as a function of data length, though
convergence can be particularly slow for this parameter
[42].

The parameter estimation algorithm can also be used in
parameter tracking applications. As an example, Fig. 17
demonstrates the performance of the algorithms in tracking
both the location and size of a step change in the spectral
exponent v of a noise-free 1/f signal. The signal in Fig.
17(a) has left and right halves corresponding to v = 0.90
and v = 1.10, respectively, but identical variances. Local
estimates of « are computed by applying the parameter
estimation algorithm to the signal under a sliding window of
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Fig. 16. RMS error in the ML estimate of -y as a function of (a)
SNR and (b) data length N. The symbols associated with each y
mark the actual empirical measurements; dashed lines are provided
as visual aides only.
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Fig. 17. Tracking the time-varying spectral exponent y of a
noise-free 1/ f-type signal. (a) 1/f signal with step change in
~. For the left half of the signal, 7 = 0.90, while for right half,
4 = 1.10. (b) Estimate of -y under a time-limited window.

length 16 384 centered about the point of interest. Naturaily,
with such a tracking algorithm, a wider estimation window
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could be used to reduce the variance in the parameter
estimates within each half of the waveform, but at the
expense of an increase in the width of the transition zone.

Smoothing is inherent in any parameter estimation algo-
rithm involving signals embedded in noise. In particular,
the iterative parameter estimation algorithm mentioned in
this section involves repeated smoothing. At each step of
the algorithm, the current parameter estimates are first used
in a extract the signal from the noise, after which new
parameter estimates are obtained from the signal and noise
independently. As a final demonstration, we show how the
problem of smoothing noisy 1/f signals can be addressed
in its own right using the wavelet-based framework.

C. Smoothing of 1/ f Signals

In this section, we consider the problem of extracting a
1/ f signal from a background of additive stationary white
noise. For purposes of illustration, we present Bayesian
estimation algorithms developed in [42] that are optimal
with respect to a mean-square error criterion for Gaussian
processes, keeping in mind that for non-Gaussian processes
we still obtain the best possible linear signal estimates.

Again, given the collection of mutually independent
wavelet coefficients

r={r € R} = {r]",m € M,n € N(m)}

extracted from observations r(¢) of the form (56), in which
the signal and noise parameters -y, 02, 62 are all known, the
optimal estimate £(t) is readily constructed. Specifically,
we may express Z(t) in the form

#t)= ) El7Irr]dm(t)

mneER

a2ﬂ_m m,/m
> [w]mﬁn (®. 6D

m,nER

From (61), we see that the estimator effectively retains
coarse scale information where there is good signal-to-
noise ratio and discards fine-scale information where the
noise predominates. In fact the Wiener filtering that takes
place is consistent with the characteristics of the generalized
spectra involved. Indeed, because at high frequencies the
white-noise spectrum dominates, while at low frequencies
the 1/f signal spectrum dominates, one can interpret the
optimal filter as effectively implementing a form of low-
pass filtering.

It is also possible to describe the optimal estimator (61)
in canonic form, which consists of two stages as depicted
in Fig. 18. In the first stage, the noisy observations r(t) are
processed by a whitening filter with kernel «,,(t,7) given
by (47) to generate an intermediate white “innovations”
process v(t) whose wavelet coefficients are

w(t) N

Fig. 18. The canonic whitening-innovations implementation of
the optimal filter for extracting a ,1/f signal z(t) from noisy
observations r(t).
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Fig. 19. SNR gain (dB) of the signal estimate as a function of
the SNR of the observations. Both the gains predicted by (63) and
gains actually obtained are indicated.

In the second stage, v(t) is processed by an innovations
filter with kernel

0.2 —m
w(en) = L X o) ] @

to generate the optimal estimate Z(¢).

Because of the preponderance of low-frequency energy
in 1/f processes, good performance is achieved by these
estimators even at low SNR. The total mean-square estima-
tion error, relative to noise-free reconstruction of z(t) from
' € R, can be expressed as

e= Y B(Ep o)

m,neER
2ﬂ—m . 0.2
=Y N(m) ["_m—W} (63)
"t

As is apparent from the results of 64-trial Monte Carlo
simulations depicted in Fig. 19, (63) gives a realistic
estimate of the smoothing performance to be expected in
practice.

As a final demonstration, Fig. 20 shows a segment of a
65536-sample 1/f signal, the same signal embedded in
noise, and the optimal signal estimate. In this example,
the spectral exponent is 4 = 1.67, and the SNR in the
observations of 0 dB. The estimated spectral exponent is
AML = 1.66, and the SNR gain of the signal estimate is
13.9 dB.

VI. CONCLUDING REMARKS

In this paper, we have presented a number of resulis
on the characterization, representation, and application of
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Fig. 20. Optimal smoothing of a noisy 1/f signal.

1/ f processes for signal processing. Because the wavelet-
based approach to the topic is relatively new, there remain,
quite naturally, many unanswered questions. A number of
these have been identified in the appropriate sections of
the paper. As an example, better bounds on the correlation
among wavelet coefficients of 1/f processes are needed.
Furthermore, extensions of representation to nondyadic
wavelet bases, i.e., bases in which the dilation factors
may be powers of rational constants other than two, are
comparatively unexplored.

In another direction, there is interest in more general
modeling structures. In many applications, the two-
parameter 1/f model is overly constrained. More flexible
generalizations of these fractal models based on a broader
notion of statistical scaling, and the characteristics of
their wavelet-based representations, are subjects of ongoing
research. Preliminary results in this area are reported in
[44].

Section V provided some representative examples of how
wavelet-based models can be exploited to develop signal
processing algorithms for 1/f processes. Many other de-
tection and estimation problems can be similarly addressed,
and some of these are described in [37], [45]. However, still
others cannot be addressed so directly, an example of which
is optimal prediction of 1/ f processes. The degree to which
wavelet-based representations are useful in addressing these
problems remains to be explored.

Finally, while this paper has focussed on the use of
family of fractal signals in the analysis of naturai and
man-made phenomena, from an engineering perspective
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Fig. 21. A single stage of the wavelet transform computation.
(a) The analysis step: filter-downsample. (b) The synthesis step:
upsample—filter—merge.

the synthesis of fractal signals for applications ranging
from communications to remote sensing may ultimately
prove to be equally valuable. A particular application of a
class of fractal signals to problems of communication over
uncertain channels was developed in [46]. Interestingly,
this class of fractal signals, which obey a deterministic
scale-invariance characterization, have equally important
representations in terms of orthonormal wavelet bases.
Exploring further applications of fractal signals in these and
other areas remains a rich direction for further research.

APPENDIX 1 _
COMPUTATION OF THE WAVELET TRANSFORM

In this Appendix, we summarize a practical, efficient,
discrete-time algorithm due to Mallat [16] for comput-
ing the orthonormal wavelet transform of a signal. This
algorithm exploits a natural correspondence between or-
thonormal wavelet bases and a class of multirate filter
banks.

We first describe the analysis algorithm for recursively
computing the coefficients of an orthonormal wavelet ex-
pansion of a signal. In this algorithm; the sequence of
continuous-time filter-and-sample operations described in
Section II-A is reformulated into a single continuous-to-
discrete conversion procedure followed by iterative discrete-
time processing. Specifically, to extract = for m < M
for a signal z(t), the approximation coefficients a*! are
obtained via the filter-and-sample procedure of (9), after
which the following filter—-downsample algorithm:

ay =) Al - 2nja]"
l

o= gl —2nja*!
1

(64a)
(64b)

depicted in Fig. 21(a) is applied recursively to extract
coefficients z]* at successively coarser scales m.

The synthesis algorithm provides a recussive recon-
struction of resolution-limited signal approximations from
wavelet coefficients. For this algorithm, the series of
conventional modulations (la) is reformulated into an
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iterative discrete-time procedure followed by a single
discrete-to-continuous conversion. In particular, given z7
for m < M, the upsample—filter—merge algorithm

At = Z{h[" — 2™ + g[n - 2]z} (64c)
1

depicted in Fig. 21(b) is applied recursively until the
approximation coefficients M for some desired scale M
are obtained, from which A M.H:v(t) is constructed via the
modulation (6).

Central to both synthesis and analysis algorithms are the
conjugate quadrature filter (CQF) pair h[n], g[n] defined in
terms of the wavelet basis by

bln] = [ " L) 8200 de (653)
gln] = f_ - on (1) ¥(t) dt. (65b)

Typically, h[n] and g[n] have Fourier transforms H (w) and
G(w) that have roughly half-band low-pass and high-pass
characteristics, respectively. In fact, for the case of the
bandlimited multiresolution signal analysis, h[r] and g[n]
are ideal low-pass and high-pass filters, specifically

1, O0<|w|<7/2
H(w) = {O, T/2< |w| <7
{0, 0<|w|<a/2
Glw) = { 1, n/2<|w|< 7.

For filters h[n] and g[n] of length L, a highly efficient im-
plementation of the DWT via an FFT-based algorithm using
polyphase forms generally has an asymptotic computational
complexity of O(log L) per input sample [47]. However,
we remark that there are many subtle issues associated with
measuring complexity of the algorithm, and this complexity
measure can often be misleading [22].

APPENDIX II
PROOFS

A. Proof of Theorem 1

Let wp and w; be constants from Definition 1, and let
A = wj /wy. We first establish the following useful lemma.

Lemma 1 When a 1/ f process x(t) is passed through a
filter with frequency response

1, awp < |w| <aw
Ba(w) = {0, otherwise (66)

for any a > 0, the output y,(t) is wide-sense stationary, has
finite variance and has an autocorrelation satisfying

Elya(t) va(t — 7)) = a "Ry, (ar)  (67)

for all a > 0. Furthermore, for any distinct integers m and
k, the processes yxm (t) and yx+(t) are jointly wide-sense
stationary.

Ry, (1) =
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Proof: First, from Definition 1 we have immediately
that y; (¢) is wide-sense stationary. More generally, consider
the case a > 0. Let b,(t) be the impulse response of the
filter with frequency response (66). To establish (67), it
suffices to note that y,(¢) has correlation function

Rya(t 8 E[ya(t :’/a(s)]

/ / ba(t — &) ba(s — )

- Re(a, B) da dp
=a_2H/ / bi(at — a)bi(as — B)

Ry(a,3) dadp
=a 2" R,, (at,as) (68)

where we have exploited the identities (17b) and
by (t) = aby(at).

However, since y; (t) is wide-sense stationary, the right side
of (68) of a function only of ¢ — s. Hence, y,(t) is wide-
sense stationary and (67) follows. Furthermore, y,(¢) has
variance

R,.(0,0)=a"2HR, (0,0) < 00

where the inequality is a consequence of Definition 1.
To establish our final result, since By~(w) and By (w)
occupy disjoint frequency intervals for m # k, the spectra
of yam(t) and yyx(¢) likewise occupy disjoint frequency
intervals. Thus yy=(t) and yy«(¢) are uncorrelated, and,
hence, jointly wide-sense sense stationary as well.
]
Proceeding, now to a proof of our main theorem, let us
establish that y(t) is wide-sense stationary. Let My, and
My be any pair of integers such that

MM o < wp < wy < AMY W,

and consider preceding the filter (29) with a filter whose
frequency response is

5 1, AMiyy <jw| < AMuw,
=4 = 69
Bw) { 0, otherwise ©)

since this will not affect the output y(t).
Let §(t) be the output of the filter (69) when driven by
z(t). Then since

~ My
B(w) = Z Bjym(w)

m=ML
where Bym(w) is as defined in (66) of Lemma 1, we can
decompose (t) according to
My

i)=Y nn() (70)

m=M[,

where y = (t) is the response of the filter with frequency
response Bym(w) to z(t). Since, by Lemma 1, all the
terms comprising the summation (70) are jointly wide-sense

PROCEEDINGS OF THE IEEE, VOL. 81, NO. 10, OCTOBER 1993



stationary, §(t) is wide-sense stationary. Then since y(t) is
obtained from 7(¢) through the filter (29), the stationarity
of y(t) is an immediate consequence of the stationarity of

y(t) [48]. _

Let us now derive the form of the spectrum of y(t),
i.e., (30). We begin by rewriting (67) of Lemma 1 in the
frequency domain as

Sy (aw) = a~@HHDS,, (w) )
where Sy, (w) is the power spectrum associated with y, (t).
For 1 < a < A, we observe that Sy, (w) and Sy, (w) have
spectral overlap in the frequency range awp < |w| < wi,
and can therefore conclude that the two spectra must be
identical in this range. The reasoning is as follows. If we
pass either y,(t) or y1(t) through the bandpass filter with
frequency response

ton_J1, aw < |w| L wy
Bl(w) = {0, otherwise

whose impulse response is b (t), the outputs must identical,
ie.,

B (t) * ya(t) = B1(1) * a(t) = b (t) * (t).

Since y,(t) and y1(t) are jointly wide-sense stationary, we
then conclude

Sy, ()| BT W) = Sy, (W) B ()
whence
Sy. (W) = Sy, (w),
Combining (72) with (71) we get
Sw (a'w) = a_(2H+1)Sy1 (“"')’
for any 1 < a < A. Differentiating (73) with respect to a
and letting @ — 14, we find that
w8y, (w) = —(2H + 1)8y, (w),
and note that all positive, even, regular solutions to this
equation are of the form
Sy, (w) = oz /lwl,
for some o2 > 0 and v = 2H + 1. Using (74) with (71)
we find, further, that

2/|w|?, A™wp < Jw| € A™w
s _Jaz/lls AMwo < AMwy
v (@) { 0, otherwise.

awg < |w| < wy. 72)

awgy < |w| <wi; (73)
wo < w < wy

wp < |w| L wn 74

Via Lemma 1, the ya=(t) are uncorrelated, so we deduce
that §(¢) has spectrum

My
Sgw)= D Syim(w)

m=Mp
_[ 2w, MWrw < |w| < MMYw,
0, otherwise.

Finally, since
Sy(w) = |B(w)|*S3(w)
our desired result (30) follows.
n
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B. Proof of Theorem 2

To show that a fractional Brownian motion z(t), for
0 < H < 1,is a 1/f process according to Definition 1, it
suffices to consider the effect on 2(t) of any LTI filter with
a regular finite-energy impulse response b(t) and frequency
response B(w) satisfying B(w) = 0. In particular, since
z(t) has correlation given by (24), the output of the filter

W(t) = / bt - 1) a(r) dr (15)

—00
has autocorrelation

Ry(t,s) = E[y(t) y(s)]
L
= TH [Do b(v) dv
./oo [t — s +u—v|*Hb(u) du

as first shown by Flandrin [38]. Since R,(t, s) is a function
only of t — s, the process is stationary, and has spectrum

1
Sy(w) = |B(w)[- MTH;I‘

When we restrict our attention to the case in which B(w)
is the ideal bandpass filter (28), we see that y(t) is not only
stationary, but has finite variance. This establishes that any
fractional Brownian motion z(t) satisfies the definition of
a 1/f process.

That the generalized derivative, fractional Gaussian noise
z'(t), is also a 1/f process follows almost immediately.
Indeed, when z'(t) is processed by the LTI filter with
impulse response b(t) described above, the output is y'(t),
the derivative of (75). Since y(t) is stationary, so is y'(t).
Moreover, y'(t) has spectrum

1

Sy(w) = |Bw)?- oA

where H' is as given by (27). Again, when B(w) is given
by (28), 4/(t) is not only stationary, but has finite variance,
which is our desired result.

]

C. Proof of Theorem 3

Without loss of generality, let us assume o2 = 1. Next,
we define

M
o)=Y Y awen() (76)
m=—M n

as a resolution-limited approximation to xz(t) in which
information at resolutions coarser than 2~ and finer than
2M s discarded, so

p— 3 — m, ;m
o(t) = Jim za(t) = Y D STUI D).
m n
Since for each m the wavelet coefficient sequence zy' is
wide-sense-stationary with spectrum 2~7™, the approxima-

tion 7 (t) is cyclostationary [48] with period 2/, has finite
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variance, and has the associated time-averaged spectrum

M
Suw)= Y 272 "W). 7
m=—M

The limiting time-averaged spectrum
Sulw) = Jim_Sy(w)

gives the desired spectrum expression (32), and corresponds
to the time-averaged spectrum of «(t) as measured at the
output of a bandpass filter for each frequency w in the
passband. The desired octave-spaced ripple relation (34)
for arbitrary integer k follows immediately from (32).

To establish (33), we begin by noting that, given w,
we can choose mg and wg such that w = 2™°wy and
1 < |wo| < 2. Hence, using (34) we see

Se(w) = 27™07 S, (wp)

from which it follows that

[lsﬂfld SI(WO)] ||
S.(w) < Salwo)| =
< S:(w) £ su z(wo) | ——.
- 15|u.,1|)<2 ¢ w7

It suffices, therefore to find upper and lower bounds for
Sz(wo) on 1 < jwg| < 2.

Since 9(t) is Rth-order regular, ¥(w) decays at least as
fast as 1/w® as w — oo. This, together with the fact that
U(w) is bounded according to (4a), implies that

C

¥ < —
) <€ T

for some C' > 1. Using this with (8a) in (32) leads to the
upper bound

Sa(wo) < Y 274 ) 2™ (%27 < oo,

m=0 m=1

To establish the lower bound it suffices to show S, (w) >
0 for every 1 < w < 2, which we establish by contradiction.
Suppose for some 1 < wp < 2

Salwo) =Y 277 ¥(27wp)|* = 0.

Then since all the terms in the sum are nonnegative, this
would imply that each term is zero, from which we could
conclude

> T2 w)|? = 0.

However, this contradicts the wavelet basis identity (36).
Hence, we must have that S(w) > 0 for every 7 < wp <
2m. The complete theorem follows.

[ ]
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D. Proof of Theorem 4

We begin by defining the process zx(t) as the result of
filtering (t) with the ideal bandpass filter whose frequency
response is given by

Bk(w) = {

1, 278 <|w] 2K
0, otherwise

so that
I(ll_r}loo Tk (t) = z(t).

Then by Theorem 1, zx(t) is wide-sense stationary and
has power

swtw) = {
If we denote its corresponding autocorrelation by

RK(T) = E[.’L‘K(t) Z‘K(t - T)]

and its wavelet coefficients by

oK) = [ e ()P de

—00

o2/lw]Y, 27K < |w| < 2K

78
0, otherwise. (78)

the correlation between wavelet coefficients may be ex-
pressed

Elz7(K) zp (K)]
- / / Y () Rec(t — 7) 9 () de dr

= [Curorco sF @l 09

Applying Parseval’s theorem and exploiting (78), we may
rewrite (79) in the frequency domain as

E[z7(K) 27 (K))

9—(m+m')/2
- 2w
_o— K 02 ,
. / — P2 "w) T (27 w)dw
—ox |w|7

2K o2 ,
+ / = g2 M) U (2™ w) duw b
2—K
(80)
Interchanging limits, we get
zo = lim z'(K)
and, in turn,
E[z7zT ] = lim E[z™(K)z™ (K).  (81)
K—o0
Substituting (80) into (81) yields (37). Since
|E[zz™|? < var 7 - varz™

and since

2 .29—ym
o°o52
bl Al ¢

m
varx,’ =
T
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where
J= / w7 ¥ (w)[? dw (82)
0

it suffices to show that (82) converges. Because 1(t) has R
vanishing moments, there exist constants Co and C; such
that

[¥(w)| < Colw|®
[U(w)| < Clw|E.

Using (83) in (82), we obtain, for 0 <y <2Rand R > 1

(83a)
(83b)

1 o0
J= / C2H~7 g + / C2w™ "7 dw < 00
0 1

as required.
[ ]
E. Proof of Theorem 5
Let us define
A=2"Tpn—-2""pn
and
Z(w) = w B2 W) U (2™ W)
for w > 0, so that (38) may be expressed, via (37), as
m,m’ _ UZ I
Prp! = 72 RelI(A) (84)
where
0 .
1(A) = / E(w)e 72 du. (85)
0

Thus to establish the desired result, it suffices to show that
I(A) has the appropriate decay.
We first note that if v > 2R+1, then we cannot guarantee

that I(A) converges for any A. Indeed, since
E(w) ~ O(W?R), w—0

we see that I(A) is not absolutely integrable. Howev}:r,
provided v < 2R, I(A) is absolutely integrable, i.e.,

/ow E(w)| dw < 0.

In this case, we have, by the Riemann—Lebesgue lemma
[30], that
I(A) — 0, A — co.

When 0 < v < 2R, we may integrate (85) by parts Q
times, for some positive integer @, to obtain

(jzi)Q/ E(Q)(w)e_jA“’dw
0

Q-1
1 .
im [2(@ —jAw
+q§:0 Ga) ul)m{)[._ (w)e ]

I(A) =

~ lim [E(Q)(w)e‘m“’]}. (86)

WORNELL: REPRESENTATIONS FOR 1/f FAMILY OF FRACTAL PROCESSES

Due to the vanishing moments of the wavelet we have

E@D(w) ~ OW*R79),  w-0 (87)
while due to the regularity of the wavelet, ¥(w) decays at
least as fast as 1/w® as w — oo, whence
ED(w) ~ O(w™2R777),  w—ooo.  (88)

Hence, the limit terms in (86) for which —2R — vy < ¢ <
2R — « all vanish.

Moreover, when we substitute ¢ = @, (87) and (88)
imply that Z(@)(w) is absolutely integrable, i.e.,

/ " 12 ()] dw < 00 (89)
0

whenever —2R —v+1 < Q < 2R — v+ 1, which implies,
again via the Riemann-Lebesgue lemma, that the integral
in (86) vanishes asymptotically, i.e.,

o0
/ EQW)e % dy -0, A—oco.  (90)
0

Hence, choosing Q@ = [2R—~] in (86) (s0 2R—7 < Q <
2R — v + 1) allows us to conclude
I~OA-PE-T) A - oo ©n

Substituting (91) into (84) then yields the desired result.
[
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