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ABSTRACT

Many problems in signal processing involve a mixture of numerical and symbolic
knowledge. Examples of problems of this sort include the recognition of speech and
the analysis of images. This thesis focuses on the problem of employing a mixture of
symbolic and numerical knowledge within a single system, through the development
of a system directed at a modified pitch detection probiem.

For this thesis, the conventional pitch detection problem was modified by providing a
phonetic transcript and sex/age information as input to the system, in addition to the
acoustic waveform. The Pitch Detector's Assistant (PDA) system that was developed
is an interactive facility for evaluating ways of approaching this problem. The PDA
system allows the user to interrupt processing at any point, change either input data,
derived data, or problem knowledge and continue execution.

This system uses a representation for signals that has infinite domains and facilitates
the representation of concepts such as zero-phase and causality. Probabilistic represen-
tations for the uncertainty of symbolic and numerical assertions are derived. Efficient
procedures for combining such assertions are also developed. The Normalized Local
Autocorrelation waveform similarity measure is defined, and an efficient FFT based
implementation is presented. The insensitivity of this measure to exponential growth
and decay is discussed and its significance for speech analysis.

The concept of a history independent rule system is presented. The implementation of
that concept in the PDA and its significance are described. A pilot experiment is per-
formed that compares the performance of the PDA to the Gold-Rabiner pitch detector.
This experiment indicates that the PDA produces 1/2 as many voicing errors as the
Gold-Rabiner program across all tested signal-to-noise ratios. It is demonstrated that
the phonetic transcript and sex/age information are significant contributors to this per-
formance improvement.
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CHAPTER 1

Introduction

Goals

In this thesis our goal was to develop techniques for combining symbolic and
numerical knowledge in signal processing systems. We felt that systems for solving
problems in which both kinds of knowledge could be found were dominated by either
a symbolic or numerical approach, and that a more balanced application of symbolic

and numerical knowledge would lead to better performance.

1.1. Knowledge-Intensive Problems

There are numerous signal processing problems in which the signals involved and
the phenomena that underlie them do not all fit straightforward mathematical models.
In most if not all of these problems, there is a lot of knowledge available, but this

knowledge can’t all be expressed in simple mathematical terms.

An example of a problem of this sort is tracking seagoing vessels. There are many
pieces of applicable input information: ocean acoustic data, radar data, satellite data,
sightings, course plans, ocean currents, atmospheric conditions, etc. There is
knowledge about wave propagation, ocean thermal and salinity phenomena, mechani-
cal vibration, structural acoustics, propeller ratios, biological noises, typical biological
feeding aréas, typical shipping lanes, behavior patterns of commercial and military
vessels (both national and foreign), activity patterns on ships, theories of sound propa-

gation, etc. Much of this information can be further qualiﬁed by knowledge about
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specific vessels, captains, companies and world events.

Another problem of this sort is the recognition of requests given as speech to a
computer. In this case the input information is primarily acoustic. The pertinent
knowledge includes sampling and filtering issues, acoustic temporal and spectral pro-
perties of speech, phonetic and phonological properties of the language, properties of
noise sources, the phonetic and phonological manifestations of various accents,
dialects, and individual speakers, the grammar of the language, the semantics of the

requests and the nature of the information available to satisfy them.

These are two examples of a wealth of problems of this type. Considering these
problems it is apparent that some information can be thought of as numerical (e.g.
noise power spectra), and some as symbolic (e.g. language grammar). It is our belief
that systems must be capable of employing both types of knowledge effectively if

they are to employ most of the knowledge.
1.2. Knowledge-Based Solutions

Depth versus Breadth

Systems to solve problems of this type can approach the problem of dealing with
this knowledge in different ways. One approach is to take a small subset of the
knowledge and build a system around it. An example might be a system that assumes
a probabilistic model for the sound generated by ships, assumes a dynamic model for
their motion, and computes an estimate of the trajectories of all vessels by choosing
the scenario that maximizes the probability of receiving the signals that were in fact
received. Such systems use a small subset of the available knowledge because the cost

of computing such "optimal® estimates becomes prohibitive very rapidly as the com-
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plexity of the model grows. This approach can be characterized as using a small

amount of knowledge in a very powerful way, a "depth” approach.

Another approach for dealing with knowledge-intensive problems is to employ
heuristics that make use of many pieces of knowledge. In this case, the system is
unlikely to be provably éptimal since the interaction of the components of the system
would be too difficult to analyze. Such systems often don’t have a specific mathemati-
cal model for the problem they solve. Their design is based on concepts of how the
parts of the system should function and interact. Concepts derived from common
sense, experience with other approaches to the task, or from a (more tractable)
mathematical analysis of the subproblem. This approach achieves its performance

through extensive application of the knowledge, it goes for breadth.

Symbolic versus Numerical

In the field of signal processing most systems for problems that do not require a
symbolic result are dominated by the use of numerical knowledge. In part this is
because many such systems emphasize depth, and it is only natural that the ideas that
are used are chosen from the mathematically attractive aspects of the knowledge; such
ideas can be manipulated with the powerful mathematical tools at the signal

processor’s disposal.

However, even in signal processing systems that emphasize breadth, the data is
represented and manipulated in primarily numerical terms. In the majority of signal
processing systems for speech pitch detection, one does not find any reference to
phonetic, or linguistic aspects of pitch production (see chapter 2 for a description of
such knowledge). The focus of systems written by the signal processing community is

on representing the mathematical properties of signals and manipulating those
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properties, not on modeling or manipulating representations of non-numerical

phenomena that might underlie those signals.

Conversely, if one examines systems developed by the expert systems community
for problems that have both numerical and symbolic components, one sees a tendency
to use symbolic representations, and a preference for the use of symbolic processing as
the primary means of problem solving. The HEARSAY[1] system for recognizing spo-
ken database requests, and the SIAP[2] system for determining ship locations from
acoustic data are both dominated by symbolic approaches. In both systems, numerical
processing appears as an initial stage to convert the .nput information to a primarily
symbolic representation, with little use of numerical representations or numerical pro-

cessing thereafter.

Knowledge-Based Signal Processing

There does not appear to be any fundamental reason why a balanced approach to
the use of knowledge is not possible with these problems, systems which would
employ symbolic and numerical representations throughout, and made "equal" use of
symbolic and numerical processing techniques to solve the problem. Such a balance,
by virtue of its potentially greater repertoire of knowledge, could achieve better per-

formance than that possible by employing one approach or the other.

The focus of knowledge-based signal processing (KBSP) is on learning how to
build systems that employ a substantial amount of knowledge to solve knowledge-
intensive problems; systems that freely make use of numerical and symbolic
knowledge, numerical and symbolic processing methods. As was mentioned at the
start of this section, our intent was to learn how to combine symbolic and numerical

3

knowledge in signal processing systems. Specifically, we were looking for new
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computer representations for numerical and symbolic information, ways to combine

those representations, and other ideas that would contribute to building such systems.

The approach we took to achieve these goals was to select a problem that had a
balance of numerical and symbolic knowledge, and build a system to solve it, placing
particular attention on the development of new ideas in the system that would be
applicable to other problems. The problem we selected was a variant of the pitch
detection problem, and the system we built is called the Pitch Detector’s Assistant

(PDA).

1.3. A Modified Pitch Detection Problem

The conventional problem of pitch detection involves analyzing a digitized speech
waveform, and producing an aligned voicing decision and f0 estimate. This thesis
focused on a problem that was somewhat different because solving it was to be a
catalyst for learning about combining symbolic and numerical knowledge, more than

an end in itself.

The pitch detection problem for this thesis was chosen to permit a balanced use of
symbolic and numerical information, to encourage a balanced application of symbolic
and numerical processing techniques, and to achieve this balance from the earliest
stages of processing to the final output. This was accomplished in two ways: by
changing the pitch detection problem statement, and by placing certain demands on the

system that solved it.

The conventional pitch detection task is largely numerical. The input is a numer-
ical sequence and one of the two outputs (fO) is numerical. In addition, conventional
approaches to pitch detection describe time in numerical terms (by indexing with sam-
ples as opposed to using fundamental speech units such as phonemes or syllables).

5
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Therefore, the problem of aligning voicing transitions and fO estimates with the

waveform is also in effect a numerical one.

Since the conventional problem is primarily numerical, our changes involved aug-
menting it symbolically. We made symbolic information available as input, informa-
tion relevant to pitch and voicing determination. In particular, we supplied a phonetic
transcript of the utterance (including word and syllable markings), as well as the sex

and age of the speaker (either MALE, FEMALE or CHILD).

An example of these inputs is shown in figure 1.1. The waveform in the upper

-2.69 0 WAVEFORM 22896
i
| DECLARATIVE
Phrase ! =, —
|
' he has the bluest eyes
Words o =g — o— o )
hi” R=z A blu est't a’2
Syllables = o o—o — R —o
h ¥ [ ® 2z 3A bl u e st t a’” z
Phonemes o o SR Y o < < - Ju]
0 TRANSCRIPT 22896
Sex: Female

Figure 1.1 Inputs: Waveform, Transcript and Sex/Age
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part of the figure is digitized at 10 kHz and represented in the computer as floating
point numbers. The range of values are shown to the left of the vertical axis, and the
range of indices are shown below the horizontal axis. The transcript is shown in the
lower part of the figure. The four types of transcript marks (phrase, words, syllables
and phonemes) are shown in the labeled vertical strata of the picture, and each mark
is identified by a string of characters, with its extent depicted by the line below it.
The widths of the boxes which border these lines signify the uncertainty with which
those boundaries are known. Identical boxes which lie above one another are in reality
just images of the same box as viewed from the different strata. The thin line which
appears under most syllable marks depicts the ‘‘syllabic nucleus”, the vowel or

vowel-like phoneme around which that syllable is built.

Symbolic input of this form helps our goal of combining symbolic and numerical

knowledge in three ways:

° This symbolic information balances the numerical information already
present in the problem, so there are opportunities to combine the two.

[ ) Providing this information as input can reduce the tendency for early pro-
cessing to be dominated by a numerical approach, as has been the case with
a number of expert systems for processing signals.

° Providing the transcript as input alleviated what would otherwise have
been a major task: the analysis of the waveform to generate that informa-
tion. Such a difficult symbolic analysis problem might have led to symbolic
processing being dominant.

Though it is unusual to augment the pitch detection problem in this fashion, there are
potential uses for a system that could solve it. These include the generation of pitch
tracks for use in the enhanced reconstruction of archival speech material, pitch
analysis for talking computer databases, and reference pitch tracks for testing other

pitch detectors. Also, similar problem scenarios exist that are unrelated to speech.
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One example is the enhancement of satellite imagery when road maps of the area are

available.

1.4. A Pitch Detectors Assistant

Another influence oh this thesis was our abstract picture of the computer system
that was to solve it. We intended to investigate many different approaches to combin-
ing numerical and symbolic knowledge. However, there are limits on the complexity
of a system that can be built in one try. Also, it was not clear at the outset exactly
what approaches would be interesting, nor was it clear what approaches would be
feasible in the framework of a thesis. The two alternatives in such a situation are to
build many separate systems each of which demonstrates some new ideas, or to
develop a single system over a long time period by adding new ideas incrementally.

We took the latter approach.

While we did not intend expending all our effort trying to maximize the
knowledge present in this system, it was clear that future systems of this type would
be large and would probably be developed in an incremental fashion. Thus, anything
that we learned about facilitating the extended development of such systems would be
a useful contribution. Also, the amount of knowledge we incorporated into this sys-
tem would depend on the ease of incorporation, and the more knowledge that was
incorpora£ed in our system, the more we would learn about the process and power of
combining symbolic and numerical knowledge. For these reasons we chose to picture

the system we developed as a Pitch Detector’s Assistant (PDA).

This view places a premium on the ability to interact with and extend the capa-
bilities of the system. The focus on extensibility is appropriate for any incrementally

developed system, the focus on interaction helps the developer to analyze deficiencies
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in its behavior that suggest the need for new knowledge, and helps the developer to

debug any problems that occur when the system is being modified.

1.5. An Overview of the Contributions

This thesis makes several contributions related to programming symbolic and

numerical knowledge. Some major results are enumerated below:

®  We argue that converting numerical informaticn to symbolic information
on input, and using only symbolic processing thereafter is inadvisable. We
suggest system architectures with which that can be avoided.

® We present a number of different ways that symbolic and numerical infor-
mation can interact and give examples of such interactions drawn from the
PDA system.

® We offer new representations for uncertainty in symbolic and numerical
assertions, and new methods for processing uncertainty that are derived
mathematically from a few basic principles and implemented efficiently in
the PDA.

® We offer a new model for the representation of signals in systems that
admits a broad class of signals (including those with infinite duration and
those that are periodic) and makes the representation of temporal
phenomena like linear-phase and zero-phase straightforward.

Besides results that pertain to the representation of numerical and symbolic
knowledge in systems, there are results that pertain to signal processing (a new algo-
rithm for measuring waveform similarity that is insensitive to waveform envelope),
rule based systems (a rule system whose results are dependent on the currently active
rules and data, but not dependent the order of entry of rules and data, nor rules and
data that were active but have since been retracted), and pitch detection (the PDA is
shown to outperform the Gold-Rabiner pitch detector{3] over a wide range of signal-
to-noise ratios, and the symbolic information is shown to be a determining factor in

the PDA’s performance).
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1.6. Organization of the Thesis

This thesis is organized into 7 chapters. The Introduction has presented the goals
of the work and motives behind them, described and justified the specific problem we
attempted to solve, and mentioned some of the important contributions of the work.
Chapter 2 presents the knowledge applicable to pitch detection with brief descriptions
of the ideas and references for further reading. Chapter 3 describes the general archi-
tecture of the PDA system, the specific knowledge that is represented in it and how
that knowledge is made to work. Chapter 3 also describes the major components of
the PDA from a conceptual standpoint. Chapter 4 discusses the major components of
the system in detail and examines issues of implementation. Chapter 5 presents a
comparison of the PDA with the G-R pitch detector. Chapter 6 discusses significant
points about the implementation of this system and relates them to the general prob-
lem of representing numerical and symbolic knowledge in systems, and chai)ter 7
discusses some results that relate to signal processing, expert systems and pitch detec-

tion and suggests some directions for future work.
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Domain Knowledge

This chapter presents knowledge that bears on the pitch detection problem. This
knowledge originates from two research areas: speech communications, and signal pro-
cessing. From speech communications there is knowledge about the mechanics, acous-

’tics and linguistics of pitch. From signal processing there is experience with solutions

to this problem in the form of algorithms for pitch detection.

While the following sections describe what we learned about pitch, bear in mind
that it was not all incorporated into the program that we built (chapter 3 discusses the
knowledge that is actually incorporated into our program and how it is used). There
are three purposes served by a chapter which presents the whole spectrum of pitch

knowledge:

Provide a point of comparison.
Since we feel that our program incorporates more knowledge than its prede-
cessors, it is only fair to show all the knowledge so the reader can judge the
significance of our accomplishment.

Illuminate the structure of the knowledge
Much of the effort in building this system involved designing data struc-
tures and procedures to represent pitch and the phenomena which influence
it. Exposure to the available knowledge should help the reader understand
the rationale behind these decisions by clarifying the nature of the things to
be represented.

Provide an archive.
This chapter can serve related work by compiling references to the topics of
pitch and its measurement into a single document.

Chapter 2
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2.1. Knowledge about Pitch Production

2.1.1. An Overview of the Oscillatory System

This is a brief presentation of the physiology of pitch production. A more
detailed account can be found in a paper by Ohalal4] and the references cited therein.
The human vocal system is depicted in an X-ray photograph and schematic diagram in
figure 2.1[5]. From the lungs, a single passage passes through the vocal folds of the
glottis and up to the velum. There it branches with one passage going past the velum

to the nose and the other passage going past the tongue to the mouth.

The velum can be used to close off the passage through the nose (the nasal tract),

so only a single passage extends from the glottis. The tongue, lips and jaw can be used

Figure 2.1 X-ray and schematic of the human vocal system
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to vary the cross-section of the passage through the mouth (the vocal tract). By con-
trolling the topology of the passages with the velum and the geometry of the vocal
tract with the other articulators, humans implement a variable filter that controls the
different sounds of speech. The arrangement of this apparatus that is used for a par-

ticular sound is called the “articulatory configuration” for that sound.

This system of passages is acoustically excited by three possible means: glottal
pulses, turbulence generated by constrictions imposed on the air flow, and transients

caused by abrupt pressure release.

Glottal Pulses

Glottal pulses are the (usually) periodic flaps of the vocal folds that give voiced
speech its characteristic buzzy quality. These vibrations are driven by the air flowing
between the vocal folds{6] like the vibrations of a trumpet player’s lips. The rate of
vibration is influenced by changes in the pressure drop across the vocal folds, changes

~in their tension, and adjustment of the average space between them. Some of these
changes are caused by cons:ious attempts to manipulate fO (the rate of glottal vibra-
tion). Others are the indirect effects of certain articulatory gestures as described

below and in more detail in [4].

Turbulence

For certain articulatory configurations (e.g. "s") the nasal tract is blocked and the
passage through the vocal tract is reduced to a very small opening somewhere along its
length. This causes the particle velocity at the constriction to become very high, lead-
ing to turbulent noise generation. Other examples of sounds produced in this fashion

are "f", "th" and "sh".

13
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There are two terms for excitation of this kind: “‘aspiration” and “frication”.
When the constriction is made with the glottis, but the glottal configuration is such
that vibration does not occur, then the resulting turbulent sound is called aspiration
(as in the sound "h"). When the constriction is made with the tongue lips or teeth (as

in the earlier examples), then the sound is called frication.

Transients

If the above constriction is carried to the point of complete closure, then pressure
builds up in the oral cavity. Phonemes that involve such closure are called stops (e.g.
"p" "t" "g"). When the articulatory configuration is changed after a stop and this pres-

sure is released, two things can happen: turbulent noise and popping.

During release of a stop, the initial opening is small and turbulent noise (frica-
tion) usually occurs at the point of constriction (the so called ‘‘place of articulation’).
As the opening grows, there is less resistance to airflow through the constriction. The
air velocity through the glottis increases, and that can in turn lead to either glottal

vibration or aspiration depending on the state of the glottis.

The other possible occurfence during the release of a stop is the creation of a pop
due to an abrupt change from zero to positive airflow. This event is not an inevitable
consequence of stop release and is not considered a fundamental acoustic correlate of
stop release. Nevertheless, it is important to realize that such a pop can occur because
of the potential confusion between such pops and the low-frequency energy that usu-

ally indicates voicing.

14
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2.1.2. General Properties of Vocal Excitation in Time and Frequency

From the above description we can see several modes of vocal excitation: glottal
vibration, turbulence at the glottis (aspiration), turbulence elsewhere (frication), and
possible pop transients during the release of stops. These modes of excitation have the

following temporal and spectral properties.

Glottal Pulses
An approximation for the glottal waveshape during voiced speech is given in[7] as
gln)= %ll—cos(wn IN ) 0Sn <N 1 (2.1)
= cos (m(n =N [)I2N ,) N Sn SN +N,

= 0 otherwise.

The time response and frequency spectrum of this approximation (using reasonable

values of N, and N, is shown in figure 2.2.

Amplitude x(n) dB Spectrum
1.8, 29.4 \
8.9
0.8 \ ‘ -31.6
2 138 ] Pi

Figure 2.2 Glottal Pulse Approximation in Time and Frequency

15



Chapter 2

Quasi-periodicity

During voiced speech, if the glottal source and vocal tract were perfectly stable
and an infinite amount of data could be analyzed, then the frequency spectrum would
consist of lines at multiples of the fundamental frequency of glottal excitation (f0).
However, there is cycle to cycle variation in the glottal waveshape, temporal variation
in f0, temporal variation in the vocal tract shape (and therefore its impulse response)
and practical Fourier analysis must be done with a windowed data segment. There-
fore, at best the spectrum of voiced speech consists not of lines at the multiples of f0,
but of peaks at or near those multiples. A sample of a voiced speech waveform and its

spectrum is shown in figure 2.3.

Noise Excitation

When there is turbulent excitation of the vocal tract, the frequency spectrum is
one of a filtered white noise source. An example of this mode of excitation is shown in
figure 2.4. The notable distinctions between these two sorts of excitation is that voiced

excitation has substantial low-frequency energy and is generally repetitive in time

Amplitude Voiced Speech dB Spectrum
31080.8 122 |
J il

o0 f TIr HlHr—
Jy J\f LY A

l ﬁ '

-32098.8 ' 62 !

21089 21518 8 Pi

Figure 2.3 Voiced Waveform and Spectrum
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Amplitude Unvoiced Speech dB Spectrum
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Figure 2.4 Unvoiced Waveform and Spectrum

(leading to a spectrum containing uniformly spaced peaks), whereas turbulent excita-
tion has little low frequency power, no temporal regularity and therefore no uniform

peak structure in the frequency domain.

Mixed Excitation

It is possible to have both glottal vibration and frication as in the sound "z". In
this case the glottal portion of the excitation dominates in the low frequency range and
the fricative portion in the high frequencies, leading to a spectrum that has a regular

harmonic shape in some regions and an irregular noise in others[8].

Pops
The time and frequency response of a pop during stop release is shown in figure

2.5. The increased low-frequency energy can be seen as compared with the earlier

spectrum from frication.

17




Chapter 2

Amplitude Stop Burst dB . Spectrum
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Figure 2.5 A Pop in Time and Frequency
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2.1.3. Physiological Factors Influencing FO

Sex and Age

One of the most pronounced influences on fO is the sex and age of the speaker. It
is common knowledge and has been demonstrated in experiments[9] that female speak-

ers and children have much higher nominal fO values than males.

Variation in Excitation Spectrum with Voicing Intensity

For most voiced speech the vocal folds come completely together during part of
the cycle. When voicing is intense and complete glottal closure is achieved, the
abruptness of the closure leads to a fairly broadband excitation. However, when voic-
ing is soft, complete closure may not occur during any part of the cycle, resulting in a
smooth (narrowband) excitation waveshape. This effect is depicted in figure 2.6. The
acoustic implications of this phenomenon is that phonemes which are ‘“‘softly” spoken

may have a depressed high frequency spectrum.
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LOW VOICE EFFORT MEDIUM VOICE EFFORT HIGH VOICE EFFORT

Figure 2.6 Variation in Glottal Waveshape with Intensity

Glottal Excitation During Closure

When voicing is sufficiently intense to completely close the vocal folds during
part of each cycle, recent research({10] suggests that some vibration, and therefore some
vocal tract excitation, may still take place. Acoustically, this means that even with a
closed glottis, one cannot presume that the acoustic signal is solely determined by the
impulse response of the vocal tract (as in some recent works on glottal inverse flter-

ing{11, 12]).

Frication

Frication, achieved by forcing air through a constriction of the vocal tract above
the glottis, leads to an increase in pressure between the glottis and the constriction. If
this occurs during glottal vibration, that increased pressure may lower the rate of
vibration of the vocal folds (due to the reduced pressure differential across them).

Ultimately, this pressure will stop glottal vibration entirely.

If frication takes place without voicing and a rapid transition is made to a follow-
ing voiced state (e.g. "fa"), then the rate of glottal vibration may be temporarily
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elevated due to high airflow. This situation occurs because the glottis is wide open
during the unvoiced fricative to prevent glottal vibration, and because of the pressure
that has built up. When the fricative is released, while the glottis is closing in
preparation for voicing, the high pressure and open vocal tract leads to a surge in the

air velocity that elevates the initial glottal vibration rate.

Stops

Stop production also leads to a pressure rise above the glottis. Like fricatives, if
glottal vibration is taking place, this can first cause a drop in fO followed by the com-
plete cessation of vibration. If a voiced stop is brief enough, vibration may continue

during the entire closure phase of the stop.

Unvoiced stops can also temporarily elevate fO in an immediately following
vowel. These effects (and those for fricatives) are discussed and demonstrated in a

paper by Lea[13].

FO bias due to Articulatory Configuration

The position of the larynx is believed to play a role in fO determination through
the tension it places on the vocal folds. Since different articulatory configurations lead
to different positions of the larynx, there is a bias in fO that depends on the phoneme
being uttered. This has been documented in a variety of experiments[14, 15). At the

present time, this information is only available for vowels.

Rate Limits

Since the fO regulation system is mechanical, there are limits on the rate of change
of fO that can be achieved through active manipulation. These limits have been stu-
died for both professional singers and laypersons{16, 17]. This information bears on
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the types of interpolation that can be performed between pitch estimates. It also sets

limits on acceptable rates of variation for plausible numerical pitch estimates.

An FO model based on Physiology

One model for the behavior of fO is based on the mechanical structures used to
manipulate fO{17]. This model predicts that log(f0) can be modeled as the sum of

responses of second order linear systems.

This model could potentially provide more constraints on pitch variation than the
rate limits mentioned above, so it could potentially be more useful. However, apply-
ing it requires the determination of a driving function, and the designers of this model
have yet to suggest how such an excitation might determined in the absence of a pitch
track. The thrust of their research has been to perform the inverse problem of deter-

mining the model excitation from the pitch track.

2.1.4. Phonetic and Phonological Influences

FO Effects

As was mentioned above, stops, fricatives and vowels can infiuence fO. Though
such effects are physiological in origin, they occur only in specific phonetic contexts, so

they can also be considered phonetic influences.

Stop Timing

Besides having an effect on fO, certain phonemes carry information about voicing
onset time (VOT). Information about the timing of voicing with respect to phoneme
position is not available for all phonemes. However, stops have been studied exten-

sively[18].
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Each stop can be subdivided into three phases:

) A closure phase during which the vocal tract is completely blocked and lit-
tle if any sound is emanated (see “voiced bars” below).

® A burst phase during which fricative energy is produced by the rapid
airflow through the opening constriction.

® A possible aspirative phase due to high airflow at the glottis.

These phases need not all be acoustically apparent. Voiced stops, for example,
have little or no discernible aspiration. Also, when a stop is part of a stressed syllable
(e.g. "repeal”), it is likely to manifest the acoustic behavior described above. However,
when a stop is part of an unstressed syllable (e.g. "letter”) these phases may not all be

clearly in evidence.

In addition to the structural description of stops in terms of these phases,
research also provides information on the timing of the phases. These times are

strongly influenced by the surrounding phonetic context[18].

One use of such timing information is to subsegment the information in the tran-
script. Stops are transcribed in two parts: the closure and the releasé. By using stop
timing information, the release can be further broken down into frication and aspira-
tion. Identifying the fricated portion is useful because the pops that often accompany
such frication can confound the detection of voicing. The surge in low-frequency
power due to the pop may trigger detectors which rely on the presence of such power

to indicate voicing.

Other Timing Effects

Other research on the influence of phonetic context on segment timing can be

found in [19].
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2.1.5. Syntactic Effects

A talker may use fO and timing to distinguish certain words or groups of words
in a sentence for syntactic purposes. This can involve elevated f0, pronounced varia-

tion in f0, and variation in the duration of segments{20].

Word Level

“Content” words may be distinguished from “filler” words in this fashion[21].
For example the noun subject of a sentence might be delivered starting with an

unusual fO rise that a preposition would not receive.

Phrase level

A noun phrase or verb phrase is often accompanied by a rapid rise in fO followed
by a gradual fall{22]. This seems to be a mechanism for helping the listener parse the
sentence, and at least one method of automatically analyzing the syntax of spoken
sentences has been based on this observation[13]. Also, a rising/falling fO pattern on
phrases is a feature of some speech synthesis programs (Dennis Klatt, private com-

munication).

The overall sentence (if it is declarative and not a question) may also have this
rising/falling fO pattern imposed on it. The tendency for average fO to fall during the
course of a sentence is called “declination”. While declination is a generally accepted
aspect of fO behavior in a declarative sentence, some beliéve that it is in fact a side
effect of incremental downsteps in individual syllables, and not a global

phenomenon(23].
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2.1.6. Other Linguistic Factors

Stress and Prominence

When we speak a phrase, we employ two types of stress. The first is lexical
stress. This is stress on some syllables of each word that is governed by the identity
of the word alone (hence the term “lexical’’). For example, “banana” is lexically

stressed on its second syllable.

Lexically unstressed syllables are often underspoken. Some of the phenomena
normally associated with a phoneme may be missing when it appears in an unstressed
syllable[24). This effect can turn a /t/ into a flap (a very brief stop-like sound) in the
word "butter" and suppress the second vowel in "button” turning the pronunciation

into "buttn”".

The second type of stress is prominence. [t is used to mark the significant words
in the phrase being spoken and to emphasize the phrase structure. ‘“‘Lets EAT here.” is
a phrase with the prominence on EAT. This phrase might be used to answer the
inquiry “what should we do at the mall?”’. The phrase ‘‘Lets eat HERE" might be
used to point out a specific store in which to eat within the mall. In both cases the
purpose of the prominence is to point out the significant part of the communication.

Prominence is usually attached to significant verbs or nouns in a sentence[23]).

Prominence is intimately tied to fO since one of the ways of achieving prominence
is with significant transitions in fO. One of the important relations between it and lex-

ical stress is that prominence is always placed on lexically stressed syllables.

Besides influencing the clarity of the acoustic manifestations of various phonemes,

stress or prominence may systematically vary that manifestation. For example,
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vowels which are stressed tend to be longer than those which are unstressed{20, 19].

Tune

The syntactic and linguistic influences on fO have been incorporated into a theory
for describing the approximate fO trajectories used in English (ignoring consonental dip
and articulatory bias)[23, 25]. This theory postulates a series of “‘tones” (much like
the notes of a musical score) that are affixed to some of the lexically stressed syllables
of a sentence. These tones specify a rise, fall or combined rise/fall at the location the
associated syllable. A single “phrase tone’’ is associated with the last prominent syll-
able of the phrase and this tone specifies the behavior of fO out to the end of the
phrase. The set of tones for a sentence is called a ‘“tune’”. The tune, together with
speaker specific fO parameters and information about the overall emphasis, is used to

predict an average pitch contour for the sentence.

While this theory seems very attractive because it collects so many phenomena
into a single description, there are some difficulties with using it. First, it is a develop-
ing theory and is changing in the face of new experimentation. Second, it depends on
knowledge of the tones and their position in the sentence. While such information
may be practical to acquire when experienced transcribers of tune are available, it is

not easy at present.

2.1.7. Extra-Linguistic Factors

Speaking up
FO is influenced when a talker attempts to improve the reliability of their com-

munication by EMPHASIZING THEIR WORDS. To do this the speaker increases the

loudness of his speech and increases the fO variations that are used in it.
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Emotion

Emotion also plays a part in determining the fO of an utterance. Anger tends to

be reflected by dramatic emphasis which leads to large fO variations.

Jitter

Because the human glottis is a biological device, its oscillations exhibit noticeable
cycle to cycle variation in period and waveshape. Experiments with the voicing of
continuous tones has shown period variation of about .5% between successive periods,
and total variation of 1.5%[26, 27). There are no experiments on cycle to cycle period
jitter in normal speech. However, a brief experiment (presented in chapter 5) suggests
that 2% is a reasonable value to use for expected jitter. This figure is important in
pitch detection because it defines when succesive period estimates can be considered the

same.

Glottalization

Some speech waveforms indicate that the excitation is aperiodic glottal pulses
with longer spacings than typical for periodic excitation. Spacings two or more times
those expected for periodic vibration are not unusual. Aperiodically excited speech is

called ‘‘glottalization”.

Certain situations exhibit glottalization frequently. For example, if a word begins
in an unstressed vowel, and the preceding word ends in a vowel then glottalization of
the unstressed vowel is common (M. Bush private communication). Also, at the ends
of sentences and places where fO is unusually low, glottalization is likely[28). (figure

2.7).
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Figure 2.7 End of Sentence Glottalization

Diplophonia

Another unusual behavior of the glottis is its tendency to go into a mode of
vibration that makes alternating pulses identical. This is called diplophonia.
Although only occasional speakers manifest it constantly, it is not uncommon to find
it in the speech of normal talkers at locations where glottalization would be expected

(e.g. at the ends of sentences)(28].

Voice Bars

Voice bars is a term used to describe the parts of a speech spectrogram that appear
when the sound emanating from the throat is recorded rather than the sound from the

mouth or nose. This situation may occur during the closure portion of voiced stops.

While this does not truly represent an irregular voicing mode, the resulting spec-
trum can be almost sinusoidal. Thus if period estimates are to be maintained during
this time interval, the method of detection cannot rely on the existence of several har-

monics of 0.
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2.2. Knowledge from Pitch Detection Algorithms

Since the 1940’s pitch has been numerically determined for a variety of reasons.
One goal is the storage and transmission of a compact representation of speech.
Another is the recognition of speech so computers can be controlled by voice. Further
goals include the diagnosis of vocal system pathology, the identification of speakers
and the analysis of speaker stress. This work provides a body of knowledge about the

behavior of various algorithms when used to detect pitch and voicing.

Signal processing algorithms for pitch detection all contain knowledge about the
pitch detection problem. Some of that knowledge can be readily interpreted, as in the
theory behind the basic algorithm. Other knowledge may not be as easy to interpret
(e.g. limits on the bounds of program loops may signify an assumpt.x'on about the range
of permissible pitch values), or may be so bound up with the specific implementation
that interpretation in the context of an abstract pitch detection problem is impossible

(e.g. the choice of vote bias in the Gold-Rabiner decision scheme).

The remainder of this chapter discusses the knowledge represented in pitch detec-
tors by presenting a general pitch detection idea and giving specific examples of pitch
detectors which use it. We have tried in this discussion to avoid ideas that can’t be
related to the general problem of pitch detection, and only pertain to a particular
method. Thus this is a catalog of pitch detection knowledge not a catalog of pitch
detection algorithms. For a more detailed comparative discussion of various pitch

detectors the reader should examine[29].

A definition of “periodicity”

The primary phenomenon involved in pitch detection is periodicity. By
definition, a signal is periodic if a shifted version of the signal is identical to the
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original signal for some shift (ie. 2P :Vn,x[nl=x[n+P]). The “period” of a

periodic signal is taken to be the smallest shift for which this is true.

In speech processing one describes the signal as ‘“‘quasi-periodic” (meaning
“‘approximately periodic”). In that context it is typical to think of “periodicity” not as
an all or nothing property (as the dictionary would suggest), but as a variable quan-
tity like period. There is no specific definition for the term ‘“‘periodicity’’. Roughly

speaking, we use it to mean: “‘How similar is the signal to a shifted version of itself?’.

Periodicity in the Short Term

Speech is more than just almost periodic. One can assume that over intervals of a
few periods, properties such as waveshape and period are relatively constant(30].
Thus, algorithms for determining period treat it as a slowly varying quantity that
may reasonably be measured on sections of speech data that are a few periods in

length.

" A Common Program Structure

Programs for pitch detection generally operate in two phases. The first phase of
the program transforms a section of the signal into a data structure from which poten-
tial period candidates and periodicity estimates can be readily derived. The second
phase take§ this data structure and either selects a single period choice, or declares the
signal to be unvoiced. These two phases are applied on successive sections of the signal

from left to right until all the data is exhausted.

These two phases can be further subdivided into four steps:

la Preprocessing
An initial analysis that changes the basic structure of the signal without
producing a data structure from which the period and periodicity can be
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easily measured. Typical examples of this are low-pass filtering to elim-
inate signal noise and possible aperiodic high frequency speech energy, and
either clipping[31], frequency equalization[32], or linear prediction[33] to
reduce the formant structure of the signal so the harmonic structure is
more apparent.

Ib  Convert the preprocessed signal into the data structure from which the
period and periodicity can be readily extracted.

2a Decision
Analyze the data structure and choose a period candidate.

2b Postprocessing
Derive a final period estimate on the basis of information about some or all
of the period candidates from 2a. One example of this is non-linear smooth-
ing[34), which can effectively eliminate individual gross errors in the pitch
candidates from 2a.

A simple example of such a program would be one in which the first phase com-
putes the short-time autocorrelation function of the signal section(6], and the second
phase selects the largest peak of the autocorrelation function (other than at the origin)

if it is above a threshold, and declares the speech unvoiced if not.

Because so many pitch detection programs have this form, it is a useful way to
think of them for comparative purposes. However, this structure is not the only way
of arranging such a program (the program developed for this thesis doesn’t fit this
model well). In the following sections we will (where appropriate) point out how a
given algorithm can be decomposed in this way, and how this decomposition compares

with those of other algorithms.

Period Range Limits

Many pitch detection algorithms scan over a finite range of periods (e.g. 3 ms to
15 ms). Searching for a period only in this range constitutes an assumption about the
range of pitch periods in speech (the corresponding frequency range is 60 hz to 330 hz).

While this is a reasonable range for most of the speech of normal male and female

30




Chapter 2

talkers, it excludes the possibility of picking up unusually long glottalized periods or
unusually high fO values in speech from a child. For the speech corpus that was used
for the experiments described in chapter 5 of this document, the above range would be
too restrictive to permit accurate analysis. There were a few periods shorter than 3ms

and periods longer than 15ms were not uncommon.

In terms of the pitch detection knowledge that this period restriction represents,
it is fair to assume that most periods will fall within this range. However, it is inap-
propriate to assume that all periods will be so. Rather than unconditionally constrain
the period estimate to lie within this range, a better approach would be to downgrade
the confidence in a period estimate that lies outside. Such an approach would permit

proper measurement of glottalized periods.

2.2.1. Temporal Similarity

“Temporal similarity” describes any pitch detection method that determines the
periodicity and period of a signal by comparing it to a shifted version of itself. Since
period changes over time in a speech signal, such a comparison must be made using
windowed segments of data. In conceptually simplified terms, such an algorithm
seeks the smallest P such that Vn € N x[n]= x{n+P]. The set of samples N typi-

cally surrounds the location where the period is to be estimated.

The criterion for when x[n]= x[n +P] and the determination of the set N are
the two major things that differentiate the various methods which use temporal simi-

larity as their basis.
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An Average Magnitude Difference Pitch Detector

The average magnitude difference function (AMDF) pitch detector{35] uses tem-
poral similarity to identify the periodicity and period of the signal. It creates a
sequence that displays periodicity as a function of shift (candidate period) by comput-

ing the following expression for each integer value of P in the range [3ms 15ms}):

AMDF[P]l= T Ixlnl=x[n+P]l

Z, (2.2)

where the set V contains 20ms of speech. This computation produces low values of
AMDF [P] when the signal is close to periodic with period P, and high values when it

is not.

In this program, the procedure for selecting a particular shift value (as the final
period estimate) involves a complex tracking algorithm. It uses information about the
period and periodicity, as measured from the previous signal section, to guide the deci-
sion for the current section. This procedure is too complex and algorithm specific to be

worth fully describing here.

The AMDF method fits the two phase description of pitch detection proZrams
well. The first phase constructs the AMDF [P] data structure without preprocessing.
This sequence exhibits the lowest values at locations of strongest periodicity, and the
location corresponds directly to the period estimate. The second phase is a (compli-

cated) decision process, without any distinct postprocessing step.

An Autocorrelation Pitch Detector

The pitch detector designed by Dubnowski et. al. [31] also measures temporal
similarity to determine periodicity and period. In this case, the comparison

x[n]l=x[n+P] is performed using an inner product rather than an absolute

32




Chapter 2

difference (as used by the preceding algorithm). The set N contains 30ms of speech,

and the candidate period P runs from 2.5 ms to 20 ms.

This algorithm uses a preprocessor on the speech signal to spectrally flatten the
signal for improved pitch detector performance. To perform this whitening, first the
mean of the signal section is subtracted out (in case there is a DC offset), then the peak
amplitudes over the first and last thirds of the section are averaged to estimate the
clipping threshold C for that section. Finally, the incoming signal values are mapped

to the values {+1,0,-1} using a threshold function, which is shown in figure 2.8.

output

+1

L

+C input

Figure 2.8 Clipping Function
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To compute the inner product for non-zero shift P, the signal section x[n] is
treated as though it were padded with zeroes. This has the effect of applying a linear
taper to the values of the inner product[6]. The weight applied to the zero shift inner
product is 1.0, and the weight that would be applied to the 30 ms shift inner product

(if it were computed) would be 0.

This sequence of inner products is the data structure resulting from the first
phase of processing. Shift corresponds to period, and value corresponds to periodicity.
Given this data structure, the shift (in the range from 2.5ms to 20ms) which yields
the largest inner product is the period candidate. If that inner product fails to exceed
1/3 the height of the O shift inner product (which is always larger) or if the maximum
amplitude for the section (before clipping) is below 1/20 of the maximum for the

sequence, then the frame is declared unvoiced.

There are some new pieces of knowledge exposed here. One is that whitening has
a potentially beneficial effect when one uses autocorrelation for computing periodicity
with respect to shift. By flattening the spectrum of the speech, whitening reduces the
tendency for the autocorrelation to have large values due to formant structure in the
speech (resonances in the vocal tract) rather than due to periodic glottal excitation;
large values that could lead to erroneous period candidates. The clipping system used
by this pitch detection method is only one of a variety of means to achieve whitening,

others include adaptive filter banks{32] and linear prediction[33].

Another new piece of knowledge involves the motive behind the linear taper on

the inner product values:

“The use of a linear taper on the autocorrelation function effectively enhances the
peak at the pitch period with respect to peaks at multiples of the pitch period. thereby
reducing the possibility of doubling or tripling the pitch-period estimate because of
higher correlations at these lags than at the lag of the actual pitch period.”
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This exposes a fundamental problem in pitch detection. If a signal is periodic with
period P, then it is also periodic with period 2P. To guarantee (or at least encourage)
the selection of the true period, the decision process must either emphasize the
apparent periodicity at small shifts (as this algorithm does) or determine that no

shorter plausible shift exists (as is done in the program written for this thesis).

The final new idea exposed by this pitch detector relates to the silence threshold.
Algorithms that measure periodicity usually have some kind of normalization so they
will work at all amplitude levels. In this algorithm, that normalization is embodied in
the comparison with the zefo shift inner product. Since the inner product at the shift
which corresponds to one period and the inner product at zero shift are both propor-
tional to the energy in the signal section, comparing them yields a procedure that is
insensitive to scaling. When the speech becomes very soft so environmental and elec-
tronic noise sources dominate the signal, this type of algorithrﬁ can “lock on” to

periodicities in the noise which have nothing to do with the speech signal.

To avoid such situations, this (and most other) pitch detectors employ a silence
threshold and either declare the speech unvoiced at low amplitudes, or héve a special
“silent” voicing declaration for that purpose. Clearly the designers of these algo-
rithms believe that voiced speech is only normally produced over a finite amplitude
‘range (20 to 1 according to this particular method). While we have not found any
speech research that corroborates this belief, it does seem to be a reasonable assump-

tion.

2.2.2. Data Reduction

Digitized speech normally has many samples in each pitch period. Since pitch is

considered to be slowly varying, this is many more samples than necessary to encode
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the pitch information. Therefore it should be possible to convert the speech to a
“reduced’’ representation that can still be used to estimate pitch, a representation that

has fewer samples per second of speech. This is the meaning of ‘““data reduction”.

The attraction of data reduction is in eliminating the computational cost that goes
with handling individual samples. Programs sucAh as t.he autocorrelation method above
must make tens of thousands of arithmetic computations for each 300 sample speech
section. If each section could be reduced to a few numbers (e.g. one non-zero sample
positioned at the start of each pitch period) then the computation savings would be

considerable.

Gold-Rabiner

One pitch detector that relies on data reduction is the Gold-Rabiner (G-R) pitch
detector[3]. This program first eliminates aperiodic high-frequency energy with a
900hz low pass filter. The resulting waveform is immediately reduced to a sequence
of extrema (samples that are either larger than or smaller than their immediate neigh-
bors) eliminating perhaps 90-95% of the samples. This extremal sequence is used to
create six alternative streams of pulses by adding or subtracting adjacent extrema.
Three of these streams are synchronized with the peaks in the original extremal

sequence, and have pulse amplitudes as follows:

m , Each pulse is just the height of the corresponding extremal peak.

m , Each pulse is the height of the extremal peak plus the depth of the preced-
ing valley.

m 5 Each pulse is the height of the extremal peak less the height of the preceding
peak. ‘
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The other three streams are synchronized with the valleys in the original extremal

sequence and are defined as follows:

m, Each pulse is just the depth of the corresponding extremal valley.

m g Each pulse is the depth of the extremal valley plus the height of the preced-
ing peak.

m ¢ Each pulse is the depth of the extremal valley less the depth of the preced-
ing valley.

These definitions are illustrated in figure 2.9. and they yield six pulse streams with

the same period as the original speech, but with many fewer samples per second.

These six pulse streams are fed to six identical trigger modules for a further
reduction step. Each module produces a sequence of period estimates by running a
blanking and decay circuit driven by its input pulse stream. Each time one of these
circuits is triggered by a pulse, there follows a “‘dead time’ during which triggering is

prevented. After the dead time, a finite trigger threshold is set (initially to the height

/e

Figure 2.9 Gold-Rabiner Extrema
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of the previous triggering pulse). This threshold decays exponentially with time until
another pulse exceeds it, triggering the module and repeating the process. The dead
time and the decay time are proportional to the average triggering time for that
module. This second reduction procedure is depicted in figure 2.10, which depicts the

action of a single module.

The output of each module is a sequence of period estimates. Each time a module
is triggered, the time since the last triggering consiitutes a period estimate. At any
- given time, the three most recent period estimates are available from each of the six
modules. Every 10 ms a final period estimate is determined from this repertoire of 18

numbers.

The decision process which is the second phase of the G-R pitch. detector is unique.
It is presumed that each of the six modules is producing an equally reliable period esti-
mate, and that only the most recent six estimates are viable choices for the final period
estimate. First, a constituency of 36 ‘‘voters” is established from the 18 available

period estimates. If each voter is labeled Pij where { stands for the module and ; for

VARIASLE BLANKING VARIABLE EXPONENTIAL
T T OECay

o ey
Lt L

Fic. 4. Operation of the detection circuit wh'ch consists of a
variable blanking tinie during which no pulses are accepted,
followed by a variable exponential rundown.

TIME

Figure 2.10 Trigger Modules

38




Chapter 2

the voter from that module, then the voters are defined by figure 2.11. The three most

recent period estimates, two pairwise sums and the triple sum, are all voters from that

module.

The six candidates are the most recent estimates from each of the 6 modules.
Four elections are held using four different tolerances for agreement between the can-
didate and the voter. For each election, a candidate gets one vote from each voter that
agrees with the candidate within the specified tolerance. Since the tolerances for the
four elections are different, and since the larger tolerances result in larger numbers of
votes being cast, a bias is subtracted from each ce~didate’s votes; a bias that grows

with the tolerance and compensates for it.

If the candidate with the highest number of votes (including bias) has a positive
median vote total across all elections, then that candidate wins, and that is the final
period estimate. Otherwise (or if the peak amplitude of the section is less than 1/20 of

the peak amplitude of the sentence) the section is declared unvoiced. Finally, a 3pt
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Figure 2.11 Period Estimates
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median smoother is applied to the sequence of final pitch estimates to correct gross

€rrors.

The G-R pitch detector is probably the most difficult of all pitch detectors to
analyze for the knowledge it contains. Clearly there is knowledge behind the byzan-
tine decision process, and the structure of the pulse streams and trigger modules, since
it works so well. However, it is very difficult to tell what the ideas are, which apply
to pitch detection and which to this specific approach, and which ideas are the most
significant. When one speaks of knowledge that is ‘“‘compiled in” to a program, this is

a classic example.

This method demonstrates that period can be measured solely from extrema.
This is a remarkable thing when you consider how much of a reduction that accom-
plishes, and how simple it is to do. For example, while zero crossings are a similar
reduction and are also simple to find, there are no good examples of pitch detectors

based on zero crossings.

This method assumes that the extrema of a speech signal fit a pattern that the
trigger modules are designed to detect. Specifically, following a ‘‘trigger extremum”
there is a period of uncertainty in extrema, followed by a period of decaying extrema

followed by another trigger extremum.

In the use of sums of recent period estimates as voters we see the intent to correct
for extraneous pulses triggering the modules. Such pulses divide what should be a sin-
gle period estimate into two or more shorter ones. However, the original can be
recovered by summing adjacent estimates as they have done. This particular
knowledge is only significant for methods that are both attempting to use extrema and

being plagued by extraneous pulses.
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Perhaps the other most significant knowledge embodied in G-R is its use of redun-
dancy. By having six trigger modules working on “‘different” views of the signal, and
having a voting procedure to collect information from all those sources, the G-R pitch

detector makes itself less susceptible to individual errors.

Data Reduction by Principle Cycle Analysis

This method[36] first band-pass filters the data to eliminate high frequency oscil-
lation then makes a parametric representation of each half-cycles of the resulting
waveform. This parametric representation is further reduced by analyzing the haif-
cycles and eliminating those that could not be the initial half-cycles of a pitch period.

The goal is the isolation of the “principle cycles” which start each pitch period.

This system is unusual because it uses some notion of the structure of speech to
determine its pitch measurement. Drops in amplitude are used to delimit syllables.
An approximation of the average pitch during each syllable guides the final pitch esti-
mation for that syllable. Thus this program embodies knowledge about the syllabic

nature of speech and the fact that pitch variation within a syllable is small.

2.2.3. Harmonic Structure

When a signal is periodic, it has a spectrum composed of lines at the harmonics of
the f una.amental frequency. If it is quasi-periodic (as voiced speech usually is) then
there are not lines but “peaks” instead. That is, one expects substantial spectral
energy at or near the multiples of the fundamental, and little energy elsewhere. In
the absence of a definitive statement of the nature of the quasi-periodicity, it is not

possible to define the precise nature of these peaks.
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Pitch Detection using Spectral Peak Positions

The fundamental frequency of such a quasi-periodic signal can be estimated by
measuring the spacing of the peaks[37], adjusting a comb (or sieve) until it best fits the
peak pattern[38, 39, 40], or looking for the greatest common denominator of the peak

positions{41, 42].

Pitch detection by Harmonic Sum

These techniques{43, 44] use the entire spectrum to estimate the period rather
than just the peak positions. In some sense, the distinction between these methods and
those immediately preceding resembles the distinction between the data reduction time

domain methods like G-R and the full time domain methods like autocorrelation.

Essentially, these methods take the inner product between the spectrum (or the
log spectrum) and an impulse train. The spacing of the impulses that yields the larg-
est projection becomes the fundamental frequency estimate. The largest estimate typi-

- cally occurs when the impulses align with the peaks in the harmonic spectrum.

Cepstral Pitch Detection

Since the speech signal can be approximated as the convolution of a periodic pulse
train with a low time-width filter function, the cepstrum can be used to turn the con-
volution of these two signals into a sum. This yields a low-time region containing the
details of the vocal-tract response and a high-time region consisting of pulses located
at the period of the speech and its multiples. By determining the spacing of those
pulses or the initial pulse position one can estimate the period. This is the basis for the
cepstral method of pitch detection[45]). We include it in the section on spectral

methods because the computation of the cepstrum depends on computing the spec-
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trum.
2.2.4. Other Methods

Maximum Likelihood Pitch Detection

The assumption that speech is a perfectly periodic signal with additive white
gaussian noise, leads to a procedure for maximum likelihood pitch detection[46, 47].
These algorithms create a periodic signal by convolving the speech with an impulse
train (aliasing). The spacing of the impulses is adjusted to maximize the similarity
between this periodic signal and the original, and the resulting spacing is taken as the
period estimate. It can be shown[44] that these algorithms which are computed in the
time domain are virtually identical to the harmonic sum spectral method mentioned

earlier.

Pitch Detection from Prediction Residual

These methods{33, 48, 49, 50] use “linear prediction” to produce a residual signal
from the speech. By using a short predictor (10th to 16th order), correlations in the
signal that manifest themselves over short lags are removed (namely the correlations
due to the vocal tract response). Once the short term correlations have been elim-
inated, it is possible to detect pitch simply by looking for peaks in the resulting resi-

dual signal.

2.2.5. Voicing Determination

Voicing may be determined numerically in a variety of ways, many of which do
not involve pitch estimation. Some of the standard methods are: low frequency

power, broadband power, periodicity, zero-crossing rate and predictability.
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Low Frequency Power

Low frequency power measures rely on the fact that glottal vibration leads to
low frequency energy over a substantial time interval. Other forms of excitation (e.g.
frication) lead to high-frequency energy or (like stops) to very short duration broad-
band power. Thus a low-pass filter up to 600hz followed by some smoothing to elim-

inate the effects of clicks and stops can yield a useful voicing estimator.

Broadband Power

Broadband power measurements can be used to determine silent intervals if the
packground noise is low. Such a direct determination of silence can eliminate the
wasted processing that would otherwise take place. Also, estimators that factor out
power (such as zero-crossings) can be very erratic at low power. So silence detection
should be coupled with them to prevent this spurious behavior from triggering

incorrect voicing errors.

Periodicity

Periodicity measures make use of the fact that glottal excitation is usually
periodic. This is often used as a voicing method in pitch detectors because the period is
being measured anyway. Unfortunately aperiodic speech is not uncommon, so pitch

detectors that rely solely on periodicity to make their voicing determination will be

prone to errors on some sentences.

Zero-Crossing Rate

The zero—crossing rate of a speech signal is sensitive to glottal vibration because
the low frequency components that result from such excitation push the signal far
from zero for (relatively) long periods of time. If the signal is dominated by noise, the
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small but rapid deviations due to the high frequency components cause many more

zero-crossings to occur.

As was mentioned above, this measure must be accompanied by a determination
that power is present in significant quantities. When there is little power, the rate of
zero—crossings is highly dependent on the nature of the background noise and therefore

should not be used as a means to determine voicing.

Predictability

When there is glottal excitation, the acoustic waveform can be modeled as an
impulse-like sequence exciting a slowly varying filter. In this case, linear prediction
algorithms can reduce the power in the signal dramatically. When the excitation is
random noise, prediction is much less effective in reducing power. Thus, the

effectiveness of a linear predictor can be used as a means of determining voicing.

It is also the case that linear predictor coefficients have different responses to
voiced and unvoiced speech. In particular, the first coefficient of a linear predictor has

been used to help determine voicing{51].

Pattern Recognition Approaches

Numerical pattern recognition approaches to voicing determination rely on a com-
bination of the above measures and training with pre-marked speech to numerically
define the criteria for distinguishing voiced speech from unvoiced speech[51, 52].

2.3. Conclusion

There is considerable knowledge available that pertains in some way to the pitch

detection problem. For reasons discussed in chapter 1, we did not seek to exhaustively

45



Chapter 2

include all of it in the program that was developed for this thesis. The following
chapters discuss the knowledge used in that program and how that knowledge was

employed.



CHAPTER 3

System Architecture

This is the first of t\;vo chapters describing the Pitch Detector’s Assistant (PDA)
program. In Chapter 3 we begin with a general overview of the program and its com-
ponents. The remainder of the chapter breaks the system down first in terms of the
problem structure (knowledge about voicing and fO determination) and then in terms

of the program structure (the rule system, the dependency networks etc.).

Chapter 3 describes the system in terms of the intent of the design and the ideas
that motivated it. The following chapter focuses on the actual implementation of the
program, dealing with practical problems and the engineering decisions that were

necessary to translate the ideas into practice.

3.1.1. An Example of System Operation

Before discussing the design of the system we present an example of its operation.
The input to the system (except for the speaker sex/age) is shown in figure 3.1. The

waveform is shown in the upper part of the figure. It is digitized at 10 khz and

represented in the computer as floating point numbers!. The range of values are shown.
to the left of the vertical axis, and the range of indices are shown below the horizontal
axis. The transcript is shown in the lower part of the figure. The four types of tran-
script marks (phrase, words, syllables and phonemes) are shown in the labelled verti-

cal strata of the picture. Each mark is identified by a string of characters, and its

'While the original data was represented in 16 bit fixed point, all subsequent numerical processing
was done in 32 bit floating point notation.
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Figure 3.1 Inputs: Symbolic Transcript and Waveform

extent is depicted by the line below it. The boxes which border these lines signify the
uncertainty with which those boundaries are known. In each case, the box depicts a
Gaussian density whose mean and standard deviation are shown by the center and
half-width of that box. Identical boxes which lie above one another are in reality just
images of the same box as viewed from the different strata. The dotted line which
appears under most syllable marks depicts the “syllabic nucleus” the vowel or

vowel-like phoneme around which that syllable is built.

The results of processing are shown in figure 3.2. All four plots span time hor-
izontally with the domain (in samples at 10khz) appearing below the horizontal axis

of each plot. The first plot shows the “confidence’ that the speech is glotally excited
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Figure 3.2 The Outputs of the PDA
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(the voicing-odds-factor). The second is a pseudo-intensity plot? of the 3-dimensional
surface which is the probability density of fO as a function of time (the fO-
probability-density). A vertical slice through this surface yields the probability den-
sity for fO at that temporal location. The next plot shows the “‘revised” alignment of
the phonetic transcript (where the depicted boundaries include information from
numerical measurements) and the last plot is a conventional pitch track derived from

the fO probability density and the voicing confidence at each location.

3.1.2. The Symbolic Input

The design of the symbolic transcript input was based on the nature of the prob-
lem knowledge presented in Chapter 2. Phonemes are important because the phonetic
context can be used to infer both pitch and changes in it. Syllables are the objects to
which stress is attached. Words are important because of tendency for gaps to occur
between them as opposed to within them, and because they are the means of indexing
if one is to look up lexical stress. The phrase is the level at which one distinguishes

question from declaration and the phrase delimits the outer bounds of the sentence.

While it may seem that providing a phonetic transcript would essentially solve
the voicing decision problem, there are several reasons why this is not so. First, the
boundaries of phonetic marks lack sufficient precision. Typically, they are only given
with accuracy to the nearest few centiseconds. Since each analysis frame is one cen-
tisecond, errors of several frames are possible. Second, one cannot reliably determine
voicing solely from phonetic identity. Some phonemes (like /z/ before a pause) are

likely to change from voiced to unvoiced over their duration. Others like /r/ may be

2 The density of dots in this plot corresponds to probability density for fO with black being a high
probability density and white being low.
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voiced when used at the beginning of a stressed syllable, and unvoiced in an
unstressed context. Lastly, the phonetic transcript cannot be expected to be com-
pletely accurate. Missing or incorrectly transcribed phonemes are possible. For all

these reasons, the phonetic transcript does not solve the voicing decision problem.

The phoneme marks in the transcript were made by trained phoneticians who
were given a plot of the waveform, its (300hz bandwidth) spectrogram and the words
in the utterance. The phoneticians were not permitted to listen to the sentence. Subse-
quently, additional marks were added to delimit syllables, words and the phrase. In

addition, syllabic stress was indicated for each syllable (chosen from the values:

UNSTRESSED, STRESSED and PROMINENT) based on listening to the sentences?.

In marking the phonemes, the phoneticians were asked to indicate their region of
uncertainty at the boundaries. This was an unfamiliar task for them and in many
cases a phonetician would mark a boundary with just a line (the conventional way of
marking). In these cases, the judgment was made by the author based on the distinct-
ness of the indicators for that boundary in the spectrogram. In any case, a lower limit
of uncertainty of .Olsec was used since that was the approximate resolution of pencil

marks on the spectrogram.

3.1.3. The Outputs

The choice of outputs shown in 3.2 reflects two motives. The first motive was to
show in detail the process by which the PDA program came to its conclusions. The

second was to produce not only the “answer” to the question (the pitch track), but

} These marks were added by the author because they were necessary input to the PDA and were not
a part of the transcriptions provided by the phoneticians. As the author is not a trained linguist, these
added marks are somewhat suspect. However the uncertainty represented by such a marking was felt to
be a proper challenge for the system. *
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also to express the uncertainty that is implicit in that answer (e.g. the voicing

confidence is displayed rather than just a voicing decision).

The first motive is a reflection of the nature of an assistant and the importance of
“interaction’”” between it and the operator. When processing a sentence, the outputs
guide the operator in providing or revising information when they feel that the pro-
gram is “confused’” in some portion of the utterance. The outputs also help the pro-

gram developer to understand and correct deficiencies in the system.

The second motive is that such supplementary information as confidence or
statistics is important to the user of the program. It .s not uncommon for a signal pro-
cessing program to supply only the answer with no other information. This appears to
be unif ormly the case for other pitch detectors. However, there are two reasons for
including information about uncertainty (if it can be estimated inside the program).
First, if the user is a person, such information helps them decide how to interpret the
answer in the context of their problem. Second, such information can be useful if the

results are used in later processing.

When more than one system component contributes an answer to a single ques-
tion, it is necessary to combine those answers. When the number of contributors is
fixed and small, the combination function can be designed based on the known idehtity
of the contributors. The voting matrix of the Gold-Rabiner pitch detector is a good
example of this. However, if, as in PDA, where there may be many changing contribu-
tors, it is awkward to have to rewrite the combination mechanism for each new
configuration. One cure for this is to have all contributors use a common means of
communicating their answers, a means that contains enough information for the com-

bining to be done without knowing the contributors from which the answers came.
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PDA uses the idea of developing a language for answers, and isolating the identity
of the contributor from the contribution. This idea was used in the system for
refining estimates of boundary positions between phonemes, the system for determin-
ing the answer to symbolic valued questions (such as voicing), and the system for
determining the value of fO. This ability to isolate contributor from contribution
seems crucial to the ability to incrementally develop a large system without having a

detailed understanding of the interaction of all of its parts.

Thus we see in the choice of outputs the interactive nature of an assistant, the
desire to express to the user both the answer and the confidence in it, and the need in a
composite system to express both the answers to questions and the supplementary

information needed to combine those answers.

3.2. Pitch Detection in PDA

Since the pitch detection problem breaks down into the subproblems of finding
voicing and f0O, the PDA was designed to solve these two subproblems separately then
combine the results (see figure 3.3). The approach of both subsystems is similar and
can be described as follows: make assertions, verify them, combine results. Before
describing the voicing and FO subsystems we discuss the structures on which they are

based: assertions and rules.

3.2.1. Assertions

Much of the information used and generated by the PDA during the analysis of a
sentence is represented in the form of “‘assertions”. Conceptually, an assertion is a
statement about some aspect of the problem with supplementary information about

confidence or statistics. Assertions may support and be supported by other assertions
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Voicing FO
Analysis Analysis
—

Figure 3.3 Basic Approach

and it is through this support that the confidence or statistics of a given assertion is

determined.

As assertions are added (or removed) from the system, the support they provide
influences other assertions that are already present. The PDA is designed to propagate
the influence of each change through the entire network of assertions. This means that
the confidence in any given assertion is always kept up to date. A more detailed dis-

cussion of the implementation and operation of this network is presented in Chapter 4.

3.2.2. Voicing Related Assertions

In the voicing subsystem, most assertions take the form of symbolic statements
about the utterance as a function of position. Each statement includes a description
(e.g. “voiced” or ‘“‘fricated”’), a domain over which the assertion applies (some portion
of the utterance), and a confidence (a numerical measure typically varying over the

duration of the assertion. The phoneme, word, syllable and phrase marks in the input
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(shown in figure 3.1) and the assertions generated by the PDA (shown in figure 3.4)

are all assertions of this form.
The graphical depiction presented in these pictures shows the ‘“domain” of the
assertion as a line bounded by two boxes. The ‘‘description” is indicated by the string

centered above the line?. For example, at the word level of the input transcript shown

in 3.1 the descriptions are the words of the sentence.

Mark Type Voicing Marks
' !
G
G! BRST 2
NB =
Ng S, NS NS NS NS NS NS NS
NY NV NV NV NV NV NV
NV '_‘ ‘ PVF  PVF PVF
PVF | % < &
: P8 P8 PB
P8 0 —t —
; PA PA PA PA
PA . 2 3 =
| PF  PF PF PF PF
PF — = o <
; PVPV PV PYPY PV PV PV PV PY PV
Py : —G—d O D=0 o——0 =G Yt ] S a3
. PS PS PS PS PS PS PS
PS — —— — — — — S
9 34846

BRST — Stop burst.

NS - Numerically measured silence.

NV — Numerically measured voiced.

G -~ Phonetically inferred gap.

PVF - Phonetically inferred voiced frication.
PB — Phonetically inferred voiced bars.

PA — Phonetically inferred aspiration.

PF — Phonetically inferred frication.

PV -- Phonetically inferred voiced.

PS — Phonetically inferred silence.

Figure 3.4 Voicing Assertions

4 In these figures, the confidence in the assertions is not shown. The confidence contours of some
typical assertions are shown in a later section on combining assertions.
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3.2.3. FO Related Assertions

In the fO subsystem each assertion takes the form of a sequence of probability
densities for fO over a portion of the utterance, and a sequence specifying the
confidence that those densities are ‘‘valid’. Any such assertion may be valid or
invalid at any position within their domain. If the assertion is valid then the given
probability density applies to fO at that index. If it is invalid then there is no addi-
tional information about fO there. The pseudo-intensity plot of fO probability versus
position in figure 3.2 displays the unique top level assertion ( <FINAL-PITCH>) to
which all other fO assertions contribute. This assertion spans the entire utterance and

specifies the probability density for fO at each temporal position.

3.2.4. Combining Assertions

A system called the ‘“‘knowledge manager” is responsible for updating the net-
work of assertions whenever change occurs. This same system is also responsible for
computing the confidence (and in the case of f0O assertions the fQ probability densities)
of assertions. The details of the procedure for determining confidence are given in
Chapter 4, but there are a few points mentioned here to help the reader understand the

material that follows.

The confidence of each voicing assertion is expressed as a special kind of odds.
The odds of some event can be derived from the probablility of that event by the
expression O (x ) = P(x)/(1=P(x)). Thus, the odds of an event ranges from O to co.
Odds are usually expressed as a fraction. For example, 1/1 odds reads "1 to 1" and
implies a 50% probability. Odds that are greater than one are called "in favor” and
odds less than one are called "against”. For example, one would say the odds are 9/1 in

favor of voicing (90% probability) or 1/9 against voicing (10% probability).
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Confidence in the PDA is expressed by what we call the *“odds-factor”.
Specifically, the odds-factor of an assertion is the ratio of the ‘“‘current odds” to the
“a priori odds”. Like odds, odds-factors also range from O to oo. If an assertion is
receiving no support (unlikely since the creator of the assertion typically supports it)
it will have an odds-factor of 1.0, signifying that the assertion odds have not changed

from their a priori value.

The reasons for using odds-factors to represent co.fidence are given in Chapter 4.
The fact that they are used means that the assertions made by the PDA must be inter-
preted in the context of the a priori odds. If the odds-factor for a “voiced” assertion
is 2.0 at some position, it does not mean that the odds are 2/1 in favor of voicing, it
means that the odds are twice as high as they were a priori. If the a priori odds were

1710 against, then they are now 2/10 against.

All voicing assertions (those derived from the transcript as well as those derived
from the waveform) support a single assertion named <VOICED> which spans the
entire utterance. The confidence of <VOICED> is determined by the net contribution
from all supporters at each sample index, through a procedure that is described in
detail in Chapter 4. The odds-factor for <VOICED> is the product of the “support-
factors” from each contributor, with a support-factor of less than one lowering the
confidence of <VOICED> and a support-factor greater than one raising it. It is thé
odds-factor for <VOICED> that is displayed in the output (figure 3.2) as the

confidence of voicing.

To clarify this process, figure 3.5 shows the multiple contributions of support for
<VOICED> over a subinterval of an utterance. The first plot shows the odds-factor

for <VOICED> as a function of time, and the latter plots each show the support-
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Mark Type Transcript
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Figure 3.5 Support for <VOICED>




Chapter 3

factor from a contributing assertion, labelled by the rule through which that assertion
contributes support. For example, the support labelled "from rule <PV-VOICED-
SUPPORT>" is from a phonetic voiced assertion (probably due to a vowel in the
phonetic transcript). This support has a value larger than 1.0 where the vowel is
located (since the vowel increases the confidence of voicing) and 1.0 elswhere (no con-
tribution). On the other hand, the support labelled "from rule <NS-VOICED-
SUPPORT>" has a value less than 1.0 where a numerical silence assertion is located

(since silence decreases the confidence in voicing) and 1.0 elsewhere.

For fO, there is a similar <FINAL-PITCH> assertion. Each supporting pitch
assertion contributes probability densities for fO over its domain, and in <FINAL-
PITCH> they are combined. In figure 3.6 there are windows showing the individual
contributions of fO probability density at a single position. The upper windows each
represent the probability density contributed by a single assertion, this density reflects
both the confidence and the basic density being asserted. The bottom window shows
the final density that results from combining the upper ones. This is one slice of the

fO density shown in the pseudo-intensity plot in 3.2.

3.3. The Rules

The following explanation of rules should help the reader to interpret the rules
given as examples in the following text. A more detailed description of the rule sys-
tem is given later in this chapter, and details about the implementation are provided in

Chapter 4.

This discussion and the explanation of the system that follows use essentially
literal copies of the rules as found in the program. While that form of presentation

may be difficult to understand at first, the rules are presented in this fashion to avoid
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Mark Type Transcript p(f@) Contributor
[ 8.223 !
Phrase !
Nords; i
i Kk |
Syllables g
Phonemes k g !
L 2.8 - 8
20500 21749 8 498
Amglitude Waveform p(¢8) Contributor
8.2087
| !
: RERRRY !
| M;.n;w;:|wUA;a |
0.9 '———’r\'»/\jill? gt }”{l“{m |
i ! ”,’Ilﬂl]!gl‘l Wi
-32808.8 8.0 —L /8
20500 | ] 21743 [°] 498
pif@) Finai Density at 28758 p(f@) Contributor
8.22. ! 8.219 . ‘
i | [
| .
.0 — 41 8 8.0 —: 9
%} 438 g 438
p(f8) Contributor (£8) Contributor
. - 0.80583 o~
// \\
! . | A\
i — \
2.9 @ 2.0 8
%} 4398 "] 438

Figure 3.6 Support for <FINAL-PITCH>

the confusion that sometimes occurs when an “English translation”

details of the program.
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Consider the following rule for voicing determination:

(defrule <phonetic-voiced>
CONDITIONS
(type °'p-mork x)
(same (voicing x) :voiced)
(tet start (start x))
(let end (end x))
ACTIONS
(assert (phonetic-voiced start end) .8 .2)
PREMISE-ODDS
(lombda (x) (odds x)))

The rule’s name is “<phonetic-voiced>". The three uppercase symbols in the text of
the rule precede the (only) three significant parts of any rule. The CONDITIONS part
must be satisfied for the rule to “trigger’”. Triggering of the rule creates an object
called a “binding” which both stands for that triggering of the rule and describes the
unique association of assertions (and other objects) with rule variables that caused the
triggering. Like an assertion, this binding has a confidence (represented as an odds fac-
tor). Unlike an assertion, this confidence is not computed by multiplying the
support-factors of supporters. Instead, the supporters (which are a subset of the vari-
able values) determine the odds-factor of the binding through the PREMISE-ODDS
expression in the rule. Only variables which appear in the premise-odds expression are
in fact supporters of the binding and contribute to its odds-factor. Finally, the
ACTIONS part of the rule is a collection of lisp expressions that specify the changes to
be made when the rule is “fired”. These forms typically make other assertions, but it
is also possible for the actions to cause the binding to give support to existing asser-
tions. This is the way the rules mentioned in figure 3.5 provide support for the asser-

tion <VOICED>.

For the preceding rule, the first form in the conditions declares the variable x,
and specifies that it should be bound to new assertions of type p-mark. Each time a

p-mark (phoneme-mark) assertion is made, the conditions of this rule will be checked
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with the value of x bound to that assertion. The second form in the conditions
specifies that the value of the expression (voicing x ) be :voiced , thus the phoneme-

mark bound to x must be for a voiced phoneme in order for the rule to trigger.

The next two forms are let forms. They both declare variables (start and end
respectively) and assign them to the value of an expression (in this case,
start = (start x ) and end = (end x)). In part, these let clauses serve as a shorthand
to avoid the need to rewrite expressions either in the conditions, the premise-odds or
the actions. In addition, declaring any variable in the conditions (either with a type
form or with a let form) signifies to the knowledge manager that this binding

“depends’’ on the assertion or object that is the value of the variable.

Such dependency is discussed in detail in the section describing the knowledge
manager, but basically it causes any conditions forms involving the variable to be
rechecked whenever that variable value (object or assertion) is changed. Since the
knowledge manager only monitors changes in variable values and not changes in
expressions, assigning a new variable 1o an expression is the only way to make the rule
responsive to that expression. For example, the expression (szarr x ) returns an object

that stands for the boundary at the start of the phoneme-mark.

Suppose the status of the boundary object was significant to the rule. Suppose it
was important that the boundary object was also the start of a word. If at some point
the rule was triggered and a binding was created, then it would be necessary for the
knowledge manager to check the rule conditions if that boundary object were to
change. Such a change might mean that the boundary object was no longer the start of
a word, and that the binding was consequently invalid. The point is, the boundary

object could change without the phoneme-mark changing. The only way to be sensi-
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tive to changes in the boundary-object that is the value of the expression (starrx ) is to

use a let clause to assign a new variable to it.

As it happens, in this rule the values of the variables start and end are not used
in the conditions, so the let clauses only serve as shorthand. The premise-odds form is
a lambda expression. In lisp this is a procedure definition, where the first list after the
word A is the argument list (x in this case), and the remainder of the form are expres-
sions to evaluate, the last of which gives the value of the subroutine. In this rule, the
value of the premise-odds form is just (odds x ) the odds-factor of the phoneme-mark

that triggered the rule. This becomes the odds-factor of the binding.

The reason this is a lambda expression is that it is necessary to have an argument
list. Recall that the supporters of the binding are the values of variables that appear
in the premise-odds form. Rather than have the PDA analyze the premise odds form
to determine what variables are present, a list of the variables used is required. This
both simplifies the task of the PDA and provides a check on the user’s programming,
since they must properly declare all variables and use them all in order not to generate
warnings. Since the argument list and the body of the premise odds form were both

already present, it was only logical to turn it into a common procedure declaration.

Eventually, when the rule is fired, the actions part makes a phonetic-voiced asser-
tion that covers the same interval as phoneme-mark that triggered it. The two
numbers in the (assert ..) form determine how the binding supports the phonetic-
voiced assertion. A detailed description of the meaning of these numbers is given in
Chapter 4, but basically the first number is the “probability of detection” and the
second is the ‘‘probability of false alarm’. The first number specifies the probability

that the rule will be triggered if the actions are appropriate, the second specifies the
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probability that the rule will be triggered if the actions are NOT appropriate. These
two numbers are chosen by the system designer to represent their knowledge of the

rules’ behavior.

The following paragraphs recap the features and purposes of the three parts of a

rule.

e CONDITIONS
These are a set of lisp forms that must be satisfied for the rule to trigger.
They specify the assertions that are necessary and as a side effect they bind
rule variables to these assertions. These variables are passed to both the
PREMISE-ODDS and the ACTIONS part of the rule.

Many forms are just tests that must be satisfied (e.g.
(same (voicing x ) :voiced ) is such a test). Let forms both declare vari-
ables and bind them, and rype forms declare variables, specify that they
should be bound to new assertions, and specify the type of assertion to bind
them to.

For the rule to be triggered, all tests in the rule must be satisfied. For each
(zype ...) form, an assertion of the proper type must be available and all test
forms in the conditions must be true. On each iteration, the rule system
takes each rule that is triggered and creates a binding that specifies the rule
and the variable values that triggered it. Only one binding is created for
each way assertions in the database can be associated with zype variables in
the rule. Thus each rule will fire exactly once on each satisfactory
configuration of assertions in the database.

o ACTIONS
These are a set of lisp forms that change the state of the system by altering
existing assertions, or by adding new assertions to the database. New asser-
tions made during the execution of the ACTIONS are ‘“‘supported” by the
binding in accordance with the probability of detection and probability of
false alarm specified in the assert clause. The absence of such probability
specifications implies the assertion will be support through some other
means.

e PREMISE-ODDS
The premise-odds A expression determines the confidence in the binding that
is created each time a rule is triggered. The variable values that support the
binding must be declared in the argument list of the A expression. The last
form in the A expression specifies the binding’s odds-factor.
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The rules which follow are not an exhaustive list of the rules in the PDA. Sam-
ples are taken from each of the types of rules. For example, though there are 10 rules
for subsegmenting stops (corresponding to different phonetic contexts), only one such

rule ( <silence2> is presented here).
3.4. Determining Voicing

3.4.1. Overview

In PDA voicing is determined in two stages. The system first makes estimates of
the voicing mode in various subintervals within the utterance. Then, by combining
those estimates, it predicts the likelihood of voicing at each sample. The modes of
voicing that PDA seeks to identify are: voiced, frication, aspiration, voiced-frication,
voiced-bars and silence. All these voicing modes can be derived symbolically based on
knowledge of the phonemes and their locations, and a subset of these modes (voiced
and silence) can be found numerically by analyzing power levels in different spectral

bands, and by looking for similarity in time.

Some phonetically derived assertions are first verified by checking for acoustic
properties numerically. The presence (or absence) of these acoustic properties in turn
affects the confidence of the voicing mode assertion. While no corresponding effort was
made to verify numerically derived voicing mode estimates using phonetic informa-
tion , there is no fundamental reason why that could not be done. However, given the
nature of this project there was only time to implement one type of verification, and

the phonetically derived assertions seemed to have the greater need for it.

The flow of analysis from the input to the voicing assertions and finally to

<VOICED> is depicted in figure 3.7. Phoneme marks in the transcript are converted
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Figure 3.7 Determining Voicing

to voicing marks (Voicing Analysis). There is also a rule that spots the locations
where bursts can be expected (Likely Burst) whose actions execute a burst
identification procedure (Burst Ident.). This procedure analyzes the waveform and

may produce a burst-mark if one can be located. From the waveform, broadband,
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low-frequency (0-900hz) and high-frequency (2500hz +) power estimates produce a
set of power curves that are numerically analyzed to generate voicing marks (Power
to Voicing). The “similarity” of the waveform® is also measured (Similar. Detect.),
and for many of the phonetically derived voicing marks, verification of their expected
properties is carried out»using the waveform (Phonetic Verify). Finally, the voicing
marks that have been created and the similarity measurement of the waveform pro-
vide support to the unique assertion <VOICED> (Voiced-Support Rules) which is the

voicing conclusion of the PDA.

3.4.2. Knowledge in the PDA

This section provides a brief description of each of the ideas used in PDA to deter-

mine voicing. The next section shows how those ideas were implemented.

Voicing from Phoneme Voicing

Most phonemes have inherent voicing (vowels are voiced, fricatives are frication, ...).
In PDA there is a table that defines the properties (including voicing mode) of the vari-

ous phonemes.

Voicing from Stop Aspiration

Stops have predictable burst duration and voice onset time (VOT). During the burst
the voicing can be assumed to be frication, and during the rest of the VOT the voicing

can be assumed to be aspiration.

$ By this we mean how similar the waveshape is to the waveshape anywhere nearby. Strong simi-
larity implies voicing.
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Silent Gaps

If there is a gap from the start of the utterance to the first phoneme-mark or from the
last phoneme-mark to the end of the utterance, the speech is likely to be silent there.
If there is a gap between the end of one word and the start of another, the speech is

likely to be silent there also.

Location of Stop Bursts

In the vicinity of an unvoiced stop release, the boundaries of the burst can be located

by scanning outward from the peak in fricative energy.

Voicing from Sonorant Power

Large amounts of “‘sonorant” power (60-600hz) suggests that the speech is voiced.

Voicing from Broadband Power

Low Levels of broadband power signify silence.

Voicing From Similarity

If at any index it is possible to locate a nearby index where the waveform is ‘‘similar”,

then the speech is voiced.
3.4.3. Using the Knowledge

Voicing from Phoneme Voicing

The simplest example of voicing determination is the direct hypothesis of voicing
from the identity of a phoneme. One rule which accomplishes this is shown in figure

3.8. This rule says ‘“‘given a p-mark (phoneme mark) whose voicing is :voiced, make a
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(defrule <phonetic-voiced>

CONDITIONS
(type 'p-mark x) ; $x$ is a phoneme-mark
(same (voicing x) :voiced) ; the phoneme must be voiced
(let start (start x)) ;. shorthand variabies for $start$ and $end$
(let end (end x))
PREMISE-ODDS B
(1ambda (x) (odds x)) ; the binding confidence is that of
; the phoneme-mark $x$
ACTIONS
(ossert
(phonetic-voiced start end) ; assert @ voicing mark
.8 . probability of rule firing if it should (.8)
.2)) ; probability of ruie firing .if it shouidn’'t (.2)

Figure 3.8 Voicing from Phoneme Identity

phonetic-voiced assertion over the interval of that p-mark™$. There is a similar rule

for the following categories: frication, voiced-frication, voiced-bars.

The assertion support numbers of .8 and .2 represent moderate confidence that the
mark given by the phonetician really warrants such an assertion (values of 1.0 and 0.0
would represent absolute confidence, and values of .5 and .5 would represent no

confidence whatever).

Voicing from Stop Aspiration
An example of the determination of voicing from stop aspiration is shown in
figure 3.9. This is one of ten rules that make frication and aspiration assertions from

marks involving unvoiced stops. These are the most complex rules in the system’.

This rule seeks phoneme clusters of the form

¢ A “mark” is our term for some annotation of the utterance.

7 Their number and complexity reflect an interest in experimenting with the expression of
knowledge within the PDA system more than the significance that this information may hold for voicing
determination.
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(defrule <silence2>

CONDITIONS
(type "p-mark stop) ; $stop$ is o phoneme-mark
(iso 'unvoiced-stop-release stop) ; it must be an unvoiced stop release

(let teft (left-neighbor stop)) ; the preceding phoneme-mark
(isa ’'stop-closure left) ; must be o stop closure.
(iet 2nd-left (left-neighbor (left-neighbor stop))) ; 2nd preceding
(let right (right-neighbor stop)) ; following phoneme-mark
(isa 's 2nd-left) : 2nd previous phoneme must be an /s/
(nota *semi-vowel right) ; following phoneme mustn't be o semi-vowe!
(type 'speech-sampling-rate sompling-rote-assertion) ; find Fs assertion
(let sompling-rate (value sompiing-rate-ossertion)) ; extract Fs
(let stop-start (start stop)) ; starting epoch of $stop$
(let stop-end (end stop)) ; ending epoch of $stop$
; find the nominal vot for this stop context
(let avrg-ms (vot-mean-s-stop-vowe! stop 1000.9))
; locals representing the fraction of relecse that is frication
(let fric-fraction (frication-fraction stop))
; and the typical standord deviation in $stop$’'s VOT.
(tet deviation-ms (stop-deviation stop))
PREMISE-ODDS
(1ambda (stop left 2nd-left right sampling-rate deviation-ms avrg-ms)
(min (odds 2nd-left) (odds left) (odds stop) (odds right)
(lete ((dur (// ($1ength (domain stop))
.001 sompling-rate))) ; dur in ms
; determine the binding confidence based on how typical
; this stop’'s VOT is, and the confidence in the stop context.
(odds-gaussian (- dur avrg-ms) (s 2 deviationms) 5))))
ACTIONS
(lets ((dur ($iength (domain stop))) : stop release duration (in sampies)
(fric-dur (round (s dur fric-fraction))) ; duration of frication
; Build an epoch to represent the boundary between frication and
; aspiration. Uncertainty is given by the uncertainty of VOT.
(epoch (epoch:shift stop-start fric-dur
:standard-deviation (s deviation-ms .0@1 sampling-rate))))
; assert marks for the fricaotive ond aspirative portions or the release
(assert (phonetic-frication stop-start epoch) .8 .4)
(assert (phonetic-aspiration epoch stop-end) .8 .4))))

Figure 3.9 Voicing from Stop Timing

/s/ <unvoiced closure> <unvoiced stop release> <not a semivowel>

The variable avrg —ms is assigned to the expected duration of the stop release,
fric —fraction is assigned to the proportion of that release that is expected to be fri-
cated, and deviarion —ms is assigned to the expected standard deviation of the stop
release. All three numbers are properties associated with each stop type, based on the

phonetic context. This information comes from a study of stop durations[18].
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In this rule the premise-odds form uses the statistics of stop duration and the
confidence in the phoneme marks to assign confidence to the bindings created when the
rule fires. As was mentioned earlier, the confidence in the binding in turn determines
the support for the phonetic-frication and phonetic-aspiration assertions made in the

actions of the rule.

A new epoch® must be created to represent the frication/aspiration transition dur-
ing the release, and the rule provides information regarding the certainty of the posi-
tion of that epoch. This is the purpose of deviazion —ms in the ACTIONS of the rule.
The form (epoch :shift ...) creates a new epoch shif*ed from the beginning of the stop
(stop —start ) by the duration of frication (fric —dur ). The :standard —deviation
argument to this function means the resulting epoch will have a larger standard-
deviation than the epoch it was derived from and the amount of increased uncertainty

is given by the deviarion —ms expression in the ACTIONS.

Silent Gaps

Inferring the existence of gaps from the end of the phonetic transcript to the end
of the utterance is accomplished with the rule shown in figure 3.10. This rule says
“Find an utterance, and find a word that is also at the end of a phrase. Make a gap
running from the end of the word to a new epoch created at the end of the utterance.”-
The reason for different versions of the procedure end in the conditions is that the
utterance has no epochs at its start and end. This is also the reason for creating a new
epoch at the location where the utterance ends (the standard deviation of the ending

epoch was chosen as an intuitively reasonable value).

8 “Epoch” is our term for the object that stands for the boundary between marks. Epochs are dis-
cussed in more detail below.
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(defrule <phrase-end-gap>

CONDITIONS
(type ’word-mark word) ; a transcript word mark
(type "utteronce utt) ; the waveform
(type ’'phrase-mark phr) ; the transcript phrase mark
(end-of phr word) ; $word$ ends at phrase end.
(let start (end word)) ; the ending epoch of $word$
(let end ($end utt)) ; $utt$ is not bounded by epochs.
: Therefore, this is just a number.
(< stort end) ; Smart '<' fecn can compare the epoch
; $start$ with the number $end$
PREMISE-ODDS

;: binding confidence is given by the confidence in $word$ and $utt$

(tambda (word utt) (min (odds word) (odds utt)))

ACTIONS

; Since there was no epoch at the end of $utt$, we must make one.

(ossert (gap start (make-simplie-epoch :mean end :sd 190 :support utt))
9 .4))

Figure 3.10 Finding Gaps

This particular rule presents an interesting use of the support factors in the
(assert ...) clause. The values of .9 and .4 say ‘‘This rule is very likely to detect gaps,
but it also has a high false alarm probability”. The likelihood of detecting gaps stems
from the fact that the phone'ticians are not likely to put phoneme-marks past the end
of the sentence. The false alarm probability is high because even though there are no
phoneme-marks there, there may be residual speech in the waveform (coughing, com-

ments from the experimenter, etc.).

Location of Stop Bursts

It is helpful to determine where stop bursts occur because their brief high inten-
sity can cause inappropriate voiced support from modules that determine voicing from
power. In this situation, the retraction of support for the voiced conclusion caused by

the existence of a burst assertion counteracts the power indicators.
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The reasons for numerically locating stop bursts were:

®  The estimates of the end of the burst from information about the phonetic
environment of the stop were highly variable.

° This was an interesting opportunity to demonstrate one technique of com-
bining symbolic and numerical processing. Namely, the use of symbolic
information to select the area of application of a signal processing algorithm.

The rule which accomplishes this task is a simple one because most of the effort is
contained in the signal processing procedure. As can be seen from figure 3.11, the rule
looks for the utterance and an unvoiced stop release phoneme mark then calls the
function scan — for —burst which actually makes the new assertions. This procedure
finds the peak in power interior to the stop and works its way outward looking for a
drop in power. Such a simple algorithm would be impractical as a purely numerical
means of locating bursts, but in the tighter context provided by a stop phoneme mark

it is effective.

Notice that the local variables szart and end are not in fact used in either the
ACTIONS or PREMISE-ODDS of the rule. This is an example of how local variables

signify binding dependency. If those epochs were changed for some reason, the old

(defrule <numeric-burst@>

CONDITIONS

(type 'p-mark x) ; $x$ is o phoneme-mark

(type 'utterance utt) ; $utt$ is the waveform

(isa ':unvoiced stop-reiease x) ; $x$ must be o stop release

(let stort (start x))
(tet end (end x))
PREMISE-ODDS

ACTIONS
(scan-for-burst utt x))

Figure 3.11 Rule to find stop bursts
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binding would become invalid and a new one would be created. Invalidating the old
binding would retract any previous results from the procedure scan — for —burst .
Subsequently, when the rule was fired again (due to the new binding),
scan — for —burst would be reinvoked over the new region delimited by szarr and

end , potentially yielding different results.

Also note that there is no PREMISE-ODDS form. This is because the support for
any numeric-burst marks that are generated by scan —for —burst is determined by

that procedure and not from any of the assertions that triggered this rule.

Voicing from Sonorant Power

Measuring the amount of low-frequency (sonorant) power (0-600hz) is one way
of determining voicing. Unvoiced excitation of the vocal tract (e.g. frication) has
mostly high frequency content, whereas glottal vibration always generates substantial
low-frequency power. The rule for this task (figure 3.12) is like the one for bursts in
that it runs a numerical procedure. In this case, there is no domain gualiﬁcation by
the symbolic information a~d the procedure is free to make numeric-voiced conclu-

sions wherever sonorant power is high.

(defrule <numeric-voicedl>
CONDITIONS
(type 'utterance utt) ; $utt$ is the waveform
; $pwr$ is assertion concerning the maximum sonorant power
(type ’max-sonorant-power pwr)
; $pwr-value$ is the numerical value of thot ossertion.
(let pwr-value (value pwr))
PREMISE-ODDS
ACTIONS
(scan-for-voicing (sonorant-log-power utt) pwr-value))

Figure 3.12 Voicing from Sonorant Power
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As with the previous rule, the odds of the created assertions are determined in
the scanning process, not by condition variables. Thus there is no need for a
PREMISE-ODDS form since the binding's confidence is irrelevant. This reflects two
different purposes of variables in rules. One is the use of variables that have a direct
bearing on the confidence of results, the other is thé use of variables as a mechanism of

controlling the behavior of the system (as in this case).

Voicing from Broadband Power

This rule is essentially equivalent to the previous rule, except that the scanning
process looks for regions of the waveform that have power within a few dB of utter-
ance minimum. The one thing that distinguishes this rule from the previous (as seen
in figure 3.13) is the requirement of a high ~snr assertion in the CONDITIONS. When
experiments were undertaken with noisy speech, it became apparent that the algorithm
used by this rule was ineffective if the speech was noisy. The high —snr is made by
another module if the difference between maximum and minimum power is found to

be greater than 40db.

(defrule <numeric-silencel>

CONDITIONS
(type ‘utterance utt) ; the waveform
(type 'min-power pwr) ; the minimum power assertion

; the waveform has a high signal to noise ratio
(type 'high-snr snr)

PREMISE-ODDS

ACTIONS

(scan-for-silence (broadband-iog-power utt) (value pwr)))

Figure 3.13 Silence from Broadband Power
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Voicing from Similarity

This method of determining voicing was built into the system in a different way
than the previous. Rather than running a scanning procedure and producing numeric-
voiced assertions, this rule (figure 3.14) uses the time varying similarity of the
waveform to establish the confidence in the binding and supports the final voiced

result v directly.

The decision to implement this idea in this fashion was partly due to time limita-
tion. The earlier examples all produced results in the form of voicing assertions which
in turn supported the final voicing assertion. This two step process meant that other
parts of the system had access to the results of those modules. This more direct
implementation saved the extra step of producing numeric-voiced assertions at the

expense of rendering the results invisible to the rest of the system.

(defrule <similarity-voiced-support>

CONDITIONS
(type 'utterance utt) ., the waveform
(type 'voiced v) ; the unique assertion <voiced>

PREMISE-ODDS
(1ambda (utt)
low sonorant power makes this measure invalid
(seq lower
(seq-clip (seq-exponentiate
(seq-scaie (sonorant-log-power utt) .05
(+ 20 (seq-min (sonorant-log-power utt))))
1.2 190.9)
1.0 10.9)
i, use o Ipf on the utt to eliminate uncorrelated power.
;; consider 2.8 similarity as warranting an odds of 1/1 on the premise.
(seq-clip (seq-scale (local-similarity (gr-pd:gr-Ipf utt)) 1.0 1.0)
.1 100.0)))
ACTIONS
(provide-support v .8 .01))

Figure 3.14 Voicing from Similarity
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Another problem with this implementation of the similarity rule is that the
epochs that would have been created for the numeric-voiced assertions were not made.
So any improvement in accuracy that might have come from merging those epochs into

the rest of the epochs of the system has been lost.

3.5. Determining FO

FO is determined through the interaction of the following ideas: numerical esti-
mation of the spacing between similar places in the waveform, fO prediction from
phoneme identity and speaker sex/age, fO prediction from sex/age alone, fO derivative
prediction from phonetic environment and stress, and fO range estimation based on
preliminary (presumably trustworthy) estimates. This organization is depicted

schematically in figure 3.15.
3.5.1. Concepts

Waveform Similarity

This part of the PDA corresponds to the core of conventional pitch detectors, the
part which estimates fO or period using numerical techniques. The basic principle is
that periodic glottal pulses exciting a slowly varying vocal tract lead to periodicity in

the acoustic output that can be used to determine fO.

FO from Phonetic Ildentity

Using information available from speech research{9] the PDA can predict fO from

the identity of vowels and dipthongs and the sex/age of the speaker.
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Waveform

Sex/Age Transcript

y

Phonetic Phonetic Advised Prelim
FO Advice Pitch L(FO)

Pitch

<FINAL-PITCH>
Figure 3.15 Determining FO

FO from Sex/Age

With other phoneme classes, for which no fO bias information is available, a pred-
iction can still be made by using the data for a central vowel like /a/ and specifying a

greater uncertainty in the estimate than in the phoneme specific case.

FO Derivative from Phonetic Context

The effects of consonantal context on the fO trajectory during vowels was investi-

gated by Lea[13]. This information is used by the PDA to advise the numerical pitch
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detector about the likeliest pitch trajectory at the beginning of certain vowels.

FO Range from Preliminary Numerical Results

The pitch range within a single sentence is rarely greater than one octave, fre-
quently less. In part, this range is being estimated by the phonetic identity and
phonetic sex/age information above. However, by collecting a set of estimates of fO

that are felt to be reliable it is also possible to estimate the range numerically.
3.5.2. Examples of Implementation

Waveform Similarity

The numerical period estimation method used by the PDA is based on finding similar
positions in the waveform. The technical details of the algorithm are discussed in
Chapter 4, but in simple terms the algorithm windows the utterance at a location
where the fO estimate is to be made and compares that waveshape with nearby regions
of the utterance that have also been windowed. Spacings between the windows that
lead to similar waveshapes become candidates for estimating the period of the speech
at that location. Figure 3.16 shows the similarity as a function of spacing in the mid-
dle of the vowel sound /i/. This algorithm is typical of time domain algorithms that
are based on correlation measures in that it has a certain amount of background
“clutter” between peaks and that there are peaks at multiples of the ‘“true” period in

both directions.

The rule responsible for computing fO numerically is shown in figure 3.17. The
CONDITIONS extract the utterance from the known assertions and find apriori—f O
which is a function that specifies the odds of a given fO value. This is the result of the

“fO range from preliminary numerical results” module and is discussed below. There
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Warped NLA Similarity of /i/

—_

a \
-208 : 298

Figure 3.16 Typical Speech Similarity for /i/

(defrule <pd-on-remgining support>
CONDITIONS
(type 'utterance utt) ; the waveform
(type ‘opriori-f@ apriori-f@-ossertion) ; a preliminary f@ assertion
(let apriori-f® (value apriori-f@-assertion)) ; and its value
(type "do-final-pd switch) ; operator control switch
PREMISE-ODDS ; confidence is determined numerically
ACTIONS

i ail phonemes

(1ets ((phonemes (get-from-km ‘'p-mark))
; regions that have not yet been processed for similarity

(support (support-without-sim-pitch (apply ’'$Scover phonemes))))
(loop for ivi being the intervals of support do

(format t "kfinal pd on ivl "@" ivl)
(gssert (sim-pitch-gssertions (gr-pd:gr-Ipf utt) ivi 0.00
nil .92 apriori-f@8)))))

Figure 3.17 FO from Similarity

is no need for a PREMISE-ODDS because the certainty information for the resulting fO
assertions are solely determined from the numerical measurements. A low-pass
filtered version of the utterance together with this apriori—f O function and some
control parameters are used to invoke the numerical pitch detector.

The parameters passed to the procedure sim —pitch —assertions are (from left to

right): the interval over which to detect fO (iv/ ), the expected period change per cycle
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(0.0), the *“‘preferred” look direction (nil ), and the range of possible period change per
period (.02). In this particular rule, most of these control parameters are set to a neu-
tral value (for example, no period change is expected and there is no preferred look
direction). The other rules which invoke this procedure do supply ‘‘advice” in the
form of values to these parameters, advice which depends on the phonetic context of
the region being analyzed. The choice of .02 for the period “jitter” was selected based
on speech research[26], and the results of a brief jitter experiment that we conducted.
The details on the influence of these parameters on the pitch detection algorithm are

presented in Chanpter 4.

The variable support in the ACTIONS stands for the set of intervals that have
not yet been numerically tested for pitch. Determining the regions that have already
been analyzed is necessary because the implementation of the idea “fO derivative from
phonetic context” involves running the same numerical algorithm in a few intervals
with advice about what to expect, and two sets of results from the same numerical
algorithm in the same location of the utterance would conflict with independence
assumptions made in the combination of such results. Thus this rule must restrict its
actions to those intervals that have not already been numerically tested by this detec-

tor.

The existance of the switch do —final —pd points out a lack of complex control in
this system. After the PDA has derived all it can from the phonetic input and
waveform (including numerical pitch analysis in regions where phonetic advice is
available), it will cease making assertions (without ever having run the previous rule).
At this point, the operator adds the single assertion do — final —pd , triggering the above

rule and performing numerical pitch analysis on the remaining regions.
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FO from Phonetic Identity

As was discussed in Chapter 2, tables are available that specify fO given the
phoneme and the speaker sex/age (either MALE, FEMALE or CHILD)[9]. In PDA, this
information is used to generate fO probability contours over the phonemes for which it
is available. These contours have their méan given by the value in the table for that
phoneme and speaker, the standard deviation is chosen as 30 Hz, and the odds-factor is

given by the odds-factor of the phoneme in question.

The standard deviation was chosen as a balance between having some useful
effect and encompassing the natural variations of different speakers. While the odds-
factor is dependent on the odds-factor attributed to the phoneme, no use was made in
this system of the ability to give individual phonemes different odds factors. Insteéd.

they were all fixed with a nominal odds-factor of 4.0.

One of the two rules that stem from this idea is shown in figure 3.18. The other

(defrule <phonetic-pitch-fromvowelis>

CONDITIONS

(type ‘p-mark pm) ; a phoneme-mark

(isa ':vowel pm) . a vowel

(type 'sex sex-assertion) ; the sex assertion

(tet sex (value sex-ossertion)) ; its value

PREMISE-00DS ; confidence determined numerically
ACTIONS

; seiect the mean f@ from the sex/age
(let ((f@ (inherit pm (selectq sex (:male :p-b-men)
(:female :p-b-women)
(:child :p-b-children)))))
; mean: f@, standard-deviation: 30hz, odds from the phoneme-mark
(assert (pitch-assertion #'(lombda (ignore) f@) #'(lambda (ignore) 30)
(fen-taper-over-ivi
(1ombda (ignore) (send pm :odds-factor)) pm)
(domain pm)))))

Figure 3.18 FO from Phoneme Identity
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performs the same task for dipthongs. The CONDITIONS require a vowel phoneme
mark and the sex/age of the speaker. The PREMISE-ODDS are not used. The
ACTIONS first look up the proper fO value based on the sex/age using the (inherit ...)
form. Then a pitch assertion is made using that fO, a nominal standard deviation of
30hz, the same domain as the phoneme mark, and a confidence equal to that of the

phoneme mark (tapered to zero outside the domain of the phoneme mark).

In the dipthong form, the one difference is that the fO value slides from the value
attributed to the configuration at the start of the dipthong to that attributed to the

end.

FO from Sex/Age Alone

For regions of the utterance where the above information is not available, a more
coarse fO estimate is made based on the sex/age alone (see figure 3.19). In this case, the
mean {0 comes from that for the neutral vowel /a/ for the speaker type in question.
The standard deviation of 60 hz is broader than the above because this estimate is less
well constrained. Finally, the odds-factor is chosen as a fixed 5/1 odds. In figure 3.20
we see the fO information contributed by the above two ideas. The plot shows time
extending from left to right, fO extending from bottom to top, and probability density
is shown by the darkness of the picture. A vertical slice through this surface would

plot the probability density for fO at that temporal location.

The relatively narrow densities (narrower vertically) are those contributed by
the information that is phoneme specific. The wider density is the more general con-

tribution for the remaining regions of the utterance.
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(defruie <phonetic-f@-on-remaining support>

CONDITIONS

(type 'utterance utt) ; the waveform
(type ’do-final-phonetic-f® switch) ; operator switch
(type ’'sex sex-assertion) ; the sex assertion
(let sex (value sex-ossertion)) ; its value
PREMISE-ODDS

ACTIONS

(lets ((phonemes (get-from km ‘'p-mark))
i+ the support yet to be covered by pitch-gssertions
(support (support-without-phonetic-pitch (apply '$cover phonemes)))
(fe (inherit ’phoneme: <aa> (selectq sex
(:maie :p-b-men)
(:female :p-b-women)
(:child :p-b-children)))))
; iterate over the remaining intervals
; mean: f@ from /a/, stondard-deviation: 60, odds-factor: 5
(loop for ivi being the intervals of support do
(format t "&final-phonetic-f® on “a" ivl)
(assert (pitch-assertion (lambda (ignore) f9)
(lombda (ignore) 60)
(lombda (ignore) 5.9)
ivi)))))

Figure 3.19 FO from Sex and Age

F8 F8 Probability
S8 -
8
%) 34125

Figure 3.20 FO from Phonemes

FO Derivative from Phonetic Context
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Information about speech behavior near consonant vowel boundaries takes two
forms. First, for certain cases there is an expected fO change at the boundary. Second,
sometimes one expects periodicity to be more apparent on one side of the boundary
than the other. In both cases, PDA uses this information to *“‘advise’”’ the numerical

similarity detector in those regions.

To employ information about the change in fO near consonant vowel boundaries
the numerical waveform similarity measure has the ability to make use of estimates
of “period moveout”. As is described in more detail in Chapter 4, the similarity pitch
detector first finds a nearby region of similarity then looks for similarity near double
and triple that distance. When given advice about “period-moveout”, those multiple
period locations are adjusted to reflect the expected moveout. Also the confidence
result, which is based on how closely the double and triple period peaks are to the
nominal values, is influenced by such advice. The directional advice also affects the
confidence result by establishing a penalty for similarity found in the non-preferred

direction.

The rule which performs this task is shown in figure 3.21. The CONDITIONS of
this rule seek an unvoiced obstruent phoneme in a strongly or moderately stressed
syllable followed by a dipthong or a vowel. The utterance, apriori —f O and speech
sampling rate are also acquired in the CONDITIONS. Since the confidence of assertions
will be determined numerically, no PREMISE-ODDS is required. The actions first
establish /vl as the first .03 seconds of the vowel, then the similarity pitch detector is
used over that interval. Notice in this case that the control parameters of the pitch
detector which were defaulted in the previous example (figure 3.17) are being specified

here. For example, the expected period moveout is "positive” time (since voicing will
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(defrule <advised-pd-1>
CONDITIONS
(type 'utterance utt)
(type 'p-mark c)
(not-nul! (memq (send ¢ :phoneme-name)
‘phoneme: (<p> <t> <k> <f> <th> <s3> <sh> <ch> <q>)))
(type 'speech-sampling-rate sampling-rate-assertion) '
(let sampling-rate (vaiue sampling-rate-assertion))
(type 'apriori-f@ agpriori-f@-gssertion)
(let apriori-f® (value apriori-fo-assertion))
(let v (right-neighbor c))

(or (isa :vowel v) (isa :dipthong v) (inherit v :y))

(or (eq (send v :stress) 1) (eq (send v :stress) 2)) ; stressed
PREMISE-ODDS

ACTIONS

(lets ((ivl (interval ($start v)
(+ ($start v) (round (s sompling-rote .23))))))
(assert (sim-pitch-assertions (gr-pd:gr-Ipf utt) ivi
.01 :pos .82 apriori-f@))))

Figure 3.21 FO Advice from Phonetic Context

grow stronger to the right).

FO Range from Preliminary Numerical Results

The apriori—f O assertion is generated through the actions of the two rules
shown in figure 3.22 and figure 3.23. The first simply generates the preliminary-
pitch-assertions using the low passed utterance. The second takes the histogram of

those preliminary estimates that are very confident ("majority range") and establishes

(defrule <preliminary-pd>
CONDITIONS
(type 'utterance utt) ; tne waveform
PREMISE-ODDS
ACTIONS
(assert (preliminary-pitch-assertions (gr-pd:gr-ipf utt) (domain utt))))

Figure 3.22 Preliminary Pitch
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(defrule <numeric-pitch-range>
CONDITIONS
(type *preliminary-pitch-assertions prelim-pd)
(type 'final-piteh final-pitch)
PREMISE-ODDS
ACTIONS :
(let ((range (send prelim-pd :range)))
(cond ((finite-interval-p range)
(lets {((majority-range (send prelimpd :majority-ronge .95))
(left ($end majority-range))
(right (+ left ($iength majority-range))))
(cond ((or (null-interval-p majority-range) (< right 20))
(assert (apriori-f@ (lambda (ignore) 1.0))))
(t
;: since the speech may be glottalized we place no
;s limit on the maximum f@, oniy on the minimum fO.
(assert (apriori-f@
(1ombda (f0)
(cond ((< f@ ($end majority-range)) 1.9)
(t (kbsp:interpolate left f@ right
1.8 .1 :clip))))))))))
{(t (assert (opriori-f@ (lambda (ignore) 1.9)))))))

Figure 3.23 A priori FO

an "upper maximum” fO by extending the maximum observed fO ("lower maximum")
by the spread of the observed fO values. The apriori —f O function that is asserted
will penalize fO values above the "lower maximum" linearly with fO up to 10/1 odds
against at the upper maximum. Note the tests in the actions that cause the
apriori —f O assertion to be simply a constant 1.0 (no effect). This occurs if there were
no fO estimates from the preliminary —pitch —assertions that were sufficiently certain,
or if the number that passed were spread less than 20hz. These events can occur if
there is sufficient noise that few ‘“‘confident” numerical estimates occur. In this case,

the rule becomes disabled.

3.6. Epochs
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3.6.1. Concept

One definition of the word epoch is ‘““a memorable event”. This is the meaning
intended by its use here. Some systems that attack problems related to time (e.g. SIAP
and HEARSAY) represent the position of objects with numbers. For example,
numbers are used to signify the time or frame index of the start of an object like a
word (in HEARSAY) or a spectral line (in SIAP). In PDA we took an alternative
approach of providing a complex data structure to represent time points. This decision
was motivated by the complexity surrounding the manipulation of such events in this

provlem.

The significance of events

Speech is analyzed as a concatenation of objects. Words, syllables, phonemes, seg-
ments all break up speech into concatenated entities. To employ the symbolic
knowledge available to it, PDA needs to know the locations of these objects. For
example, it is known that a pitch fall can be associated with unvoiced-
consonant/vowel boundaries. In order to position such an inflection, it is necessary to

locate the boundary precisely.

The boundaries between these objects are what the PDA considers “significant
events””. In the course of analyzing an utterance, several pieces of (relatively)
independent information may be given about the position of some particular boun-
dary. For example, to locate an uv-consonant/vowel boundary there will be informa-
tion in both the input transcript and positions of threshold crossing generated by the
numerical power measuring procedures. To do the best possible job of estimating the
positions of these events, there must be a means to combine the information from all

these sources. Combining position estimates is one purpose of the Epoch system.
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Alignment of Symbols and Waveforms

Another important use of the Epoch system is the precise alignment of numerical
and symbolic information about the utterance. The PDA uses both numerically
derived and symbolically derived information to guide the operation of some numeri-
cal procedures. For example, if the numerical period estimator is to be advised about
a likely fO fall after an uv-consonant/vowel boundary, then there must be a single
statement about where it is expected to occur. Thus, *he position information derived
from separate numerical and symbolic sources must be combined before it can be used

to guide the period estimator.

The PDA aligns the phonetic transcript and numerical energy measurements with
a single Epoch system. This means that an epoch hypothesized by a symbolic module
and an epoch hypothesized by a numerical module will be ‘“merged” into a single
epoch if the system concludes that they refer to the same underlying event. This
“merger’’ produces a single "cpmposite" epoch that combines the statistical information
from both of the constituent "simple” epochs for better accuracy, and also serves to
logically connect (in a network of epochs and objects) those objects that either of the

two epochs were previously associated with.

All of the above points can be seen in figure 3.24. The small boxes represent the
epochs. The width of the box depicts the uncertainty in the position of the event that
the epoch stands for. Identical epochs that are exactly above one another are in fact

the same epoch redrawn at a different level.

The words, syllables and phonemes are connected with one another because they
came from a single set of simple epochs (generated by the entry of the phonetic tran-

script). Likewise the interval marks starting with 'p’ (ps=phonetic silence,
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Figure 3.24 An Example of Epochs

pv=phonetic voiced) were derived from the phoneme marks, so they too share the sim-
ple epochs that were created by the transcription. However, the 'n’ marks (numerical
silence, numerical voiced) were derived from power measures made on the waveform
and these procedures created their own set of epochs to delimit the numerically com-
puted regions. It is because of the Epoch system that the numerical and phonetic

interval marks are tied together.
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Computing temporal position

Pitch detection includes both voicing and period determination. The correct time
alignment of these two properties with the speech is essential. Since there are inaccu-
racies in the input transcript and in numerical measurements of the waveform, it is
useful for PDA to combine its sources of temporal estimates to determine event posi-

tions more accurately.

This combination is accomplished through a largely numerical process derived
from a few theoretical assumptions. Each epoch includes statistical information that
models the position of the event it represents as a Gaussian distribution (by specifying
mean and standard-deviation). When two or more epochs are “‘sufficiently” close and
are compatible, they are assﬁmed to stem from the same underlying event. They are
further assumed to be independent estimates. These assumptions lead to a formula for
determining the mean and variance of the ‘““‘composite’” estimate. A more detailed

description of the implementation is provided in Chapter 4.

The assumptions

The assumptions of independence and Gaussian statistics were made largely for
convenience. It seemed appropriate to use a unimodal distribution for the statistics of
each event estimate. Smaller errors were more likely than large ones (so it shouldn’t
be uniform). The Gaussian shape is intuitively familiar to most people with a
mathematical background, so providing accuracy assessments in terms of Gaussian
standard deviation was convenient’. Estimates were also assumed to be independent

because if there was dependence there was no readily available way to determine it,

% The operator must provide in the transcript an indication of the inaccuracy of each position esti-

mate so the system can properly merge them with the temporal estimates that are automatically generat-
ed.
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and a dependence assumption would require some sort of specification.

These are certainly powerful assumptions to make, but they seemed reasonable in
this context and they allowed us to derive the mechanism of combining the statistical
estimates rather than picking an ad-hoc procedure. Further, there did not seem to be
another preferable set of assumptions given the information we had about this prob-
lem. While the independent Gaussian assumptions we made are probably wrong in
many cases, any other set of assumptions would be as well. If the performance of the
system were critically dependent on the precision of specifying the statistics of these

estimates, then building a workable system would probably have been impossible.

Sufficiently close

Each epoch provides a probability distribution for the position of the underlying
event it represents. Assuming that a number of such epochs come from a single event,
one can view the probability density as specifying the position of the epoch given
knowledge about the true event position. Thus if many epochs pertain to a single
event, they form a cluster about that event and the system has (estimates) of the

statistics of that cluster that can be used to evaluate it.

Specifically, if the epoch cluster is viewed as a point in n-dimensional space near
the point that corresponds to the true event, it is possible for the system to assess the
chance that the epoch point would be further from the event point than it is. It is this
evaluation that the Epoch system uses to decide if two epochs are sufficiently close

(the details a covered in Chapter 4).
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Consistency of Merges

Another requirement for epoch merging is consistency. It became apparent in
experiments that the criteria of ‘‘closeness’” was insufficient. The most prominent
example was when the starting and ending epochs of a measured burst were merged.
This occurred because they were both uncertain enough to have plausibly been from
the same event. However, in this case it was logically inconsistent to merge them since

they were known to be separated by the burst.

To deal with logical information about merging, a filtering mechanism is provided
in the merging process. In the PDA, the only filter used specifies that the starting and
ending epochs of a given object may not be merged. However, clearly other criteria for
merging could be considered. For example, in figure 3.25 one can see failures: the

numerical burst (BRST) should not extend into the middle of phonetic silence region
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Figure 3.25 Bad Merging
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(PS), and the numerical voiced region (NV) should not be merged with phonetic frica-
tion (PF). In the former case, the numerical burst represents sound and is therefore
incompatible with phonetic silence. In the latter case, the NV should signify a voiced
region; which cannot be the case during the phonetic frication implied by an unvoiced
stop. These situations can and should be detected and corrected by the system. How-
ever, there was insufficient time in this project to deal with these issues. We merely
wish to point out an important potential use of combined numerical and symbolic

processing that should be investigated in future work.

Epochs as nodes

Epochs serve as the connections between objects. Adjacent phonemes are linked
through the epoch that ends one and starts the other. Different levels of abstraction
such as a word and its starting phoneme both start with the same epoch. Different
concepts such as a numeric-voicing assertion and a word may start with the same
epoch. Thus conditions in rules which express connectivity constraints may con-

veniently be determined through examination of the network of objects and epochs.

Epochs as Abstraction

Epochs combine various things related to events under one system.

[ The determination of event positions by combining estimates.

° The representation of adjacency between objects via a network for
efficiency.

. The determination of connectivity in that network through a combination
of numerical closeness and logical consistency tests on the epochs of the
objects.

By representing events explicitly in this way, other parts of the system can make
use of epochs in one abstract way without being concerned with their other uses. For
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example the rule interpreter can use the connectivity between epochs and objects to
determine the left neighbor of some phoneme without being aware of the nature of
epochs as numerical event estimates. This sort of abstraction would have been

difficult to achieve if epochs were represented simply as numbers.

3.6.2. Related systems

Another system whose purpose is the representation of temporal information is
given in[53]. This system allows the user to make statements about intervals in time
in symbolic terms such as: "interval A begins before interval B", "interval D is inside
interval F7, etc. The system can then determine the truth of other statements about

the intervals in question.

This system was intended for the description of time in the context of issues of
causality. For example, in some expert systems[54] it is important to know the order
of events to determine the meaning of certain observations. For example, in medical
diagnosis there are numerous interacting systems within the body. The order of
events (such as a rise in blood pressure versus a change i