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ABSTRACT
This paper explores the approximation properties of a unique basis
expansion, which realizes a bilinear frequency warping between a
continuous-time signal and its discrete-time representation. We in-
vestigate the role that certain parameters and signal characteristics
have on these approximations, and we extend the analysis to awin-
dowed representation, which increases the overall time resolution.
Approximations derived from the bilinear representation and from
Nyquist sampling are compared in the context of a binary detection
problem. Simulation results indicate that, for many types of signals,
the bilinear approximations achieve a better detection performance.

Index Terms— Signal Representations, Approximation Meth-
ods, Bilinear Transformations, Signal Detection

1. INTRODUCTION

Although Nyquist sampling is commonly used in practice, there re-
main several drawbacks to this representation. For example, the
continuous-time (CT) signal must be appropriately bandlimited in
order to avoid frequency aliasing distortions. Additionally, if the
number of time samples used in a particular computation is con-
strained, the Nyquist approximation may do a poor job of represent-
ing the original signal. For these reasons, it is useful to consider
alternative signal representations.

In the 1960’s a basis expansion was proposed [1, 2], imple-
menting a nonlinear frequency warping between a CT signal and
its discrete-time (DT) representation according to the bilinear trans-
form. Since there is a one-to-one relationship between the two fre-
quency domains, this bilinear expansion theoretically avoids both
the bandlimited requirement and the frequency aliasing distortions
associated with Nyquist sampling. Furthermore, the DT expansion
coefficients can be obtained using a cascade of first-order analog sys-
tems. Modern-day integrated circuit technology has made itpracti-
cal to compute these coefficients through conventional circuit design
techniques. Consequently, the bilinear expansion can be considered
as an alternative to Nyquist representations in various applications.

In this paper, we explore the approximation performance of the
bilinear expansion presented in [1] by drawing from properties of
the corresponding basis functions. We consider how varioussignal
characteristics, such as a rational Laplace transform and the energy
distribution over time, affect the approximations. Additionally, we
examine a modified version of the bilinear representation, in which
the CT signal is segmented using a short-duration window. This
segmentation procedure helps to improve the overall approximation
quality by exploiting properties of the representation.
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The analysis presented in this paper has application in contexts
where only a fixed number of DT values can be used to represent a
CT signal. For example, in a binary detection problem, one might
want to limit the number of digital multiplies used to compute the
inner product of two CT signals. Numerical simulations of this sce-
nario suggest that the bilinear expansion achieves a betterdetection
performance than Nyquist sampling for certain signal classes.

2. THE BILINEAR REPRESENTATION

As derived in [1], the network shown in Fig. 1 realizes a one-to-one
frequency warping between the Laplace andZ-transform domains
according to the bilinear transform. Specifically, the Laplace trans-
form F (s) of the signalf(t) and theZ-transformF (z) of the se-
quencef [n] are related through the change of variables

z =
a + s

a − s
(1)

wherea is the real valued parameter indicated in the cascades of
Fig. 1. The relationship in (1) maps the entire range of CT frequen-
cies (jω-axis) onto the range of unique DT frequencies (unit circle).

Fig. 1 can also be viewed as a basis expansion of the CT signal
f(t) in which the Laplace transforms of the basis functions are

Λn(s) =

√
2a

a + s

„
a − s

a + s

«n−1

, n ≥ 1 (2)

As given in [1], the corresponding time-domain expressionsare

λn(t) =
√

2a(−1)n−1e−atLn−1(2at)u(t), n ≥ 1 (3)

whereLn(·) represents a zero-order Laguerre polynomial. It is shown
in [1] that{λn(t)}∞n=1 is an orthonormal set of functions which span
the space of causal, finite-energy signals. Fig. 2 depicts the bilinear
basis functions as the indexn and the parametera vary.

By applying properties of Laguerre polynomials [3, 4] and by
definingξ = 2n − 3, the bilinear basis functions can be bounded
according to the expression

|λn(t)| ≤ C
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(4)
whereβ is a positive constant anda > 0. Eq. (4) will be useful
when analyzing the approximation properties of this representation.
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Fig. 1. First order cascade derived from [1] and [2]. The analysis
network converts the CT signalf(t) into its DT representationf [n].
The synthesis network reconstructs a CT signal from its expansion.

3. BILINEAR APPROXIMATION

In general, representing a CT signal through a basis expansion re-
quires an infinite number of (non-zero) expansion coefficients. We
address this issue by retaining an appropriate subsetIM of bilinear
expansion terms to form anM -term signal approximation. The ap-
proximation errorǫ[M ] is given by

ǫ[M ] =

Z ∞

0

0

@f(t) −
X

n∈IM

f [n]λn(t)

1

A

2

dt (5)

We focus on a nonlinear approximation technique, in which the
setIM is chosen based on the characteristics off(t). Specifically,
because the bilinear basis functions are orthonormal, we retain the
largest-magnitude DT coefficients to minimizeǫ[M ]. We qualita-
tively compare approximation performances through the decay of
expansion coefficients when sorted by absolute value. As proposed
for wavelet approximations in [5, 6], a faster decay corresponds to a
smallerM -term approximation error.

3.1. Effect of the Parametera

As seen in Fig. 2(b), the behavior of the basis functions is affected by
the parametera. Predictably, this has a direct impact on the approxi-
mation performance. As an example, we analyze the bilinear approx-
imations of the windowed sinusoidf(t) ∝ sin(10t) for 0 ≤ t < 1,
and then generalize from this information. The signalf(t) has been
normalized for unit energy.

Fig. 3(a)-(d) show the bilinear coefficientsf [n] for a = 1, 10, 100
and1000, respectively. As seen, the fastest coefficient decay occurs
whena = 10, which is the carrier frequency off(t). An intuitive
basis for this result follows by considering the group delayof the
all-pass filters in the bilinear first-order cascades.

τg(ω) =
d

dω

»

∠

„
a − jω

a + jω

«–

=
2a

a2 + ω2
(6)

For a signal whose energy is tightly concentrated around a fre-
quency ofωo, the effect of an all-pass filter can be roughly approx-
imated as a time delay ofτg(ωo). If the signal has approximately
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Fig. 2. Dependence of the bilinear basis functions on the indexn
and the parametera.

finite duration, successive delays ofτg(ωo) will eventually shift the
bulk of its energy beyond the sampling timet = 0 in Fig. 1. Once
this occurs, the remaining expansion coefficients become very small.
Therefore, in order to minimize the number of significant DT coeffi-
cients for a narrow-band signal, we should maximizeτg(ωo) in (6).
This is accomplished by settinga = ωo.

Although many CT signals of interest are not narrow-band, the
above analysis suggests the following ‘maximin’ strategy to initial-
ize the value ofa: For a signal with most of its information content
effectively band-limited to |ω| ≤ ωM , choose a = ωM .

Because the group delay in Equation (6) is monotonically de-
creasing inω, this strategy guarantees a group delay greater than or
equal toτg(ωM ) for all frequencies in the band[−ωM , ωM ]. Un-
like a Nyquist anti-aliasing filter, this algorithm does noteliminate
high-frequency information. Rather, it tries to capture asmuch sig-
nal energy as possible in the earlier DT coefficients

3.2. Signal Characteristics which Impact Approximation

It is straightforward to verify that signals which have rational Laplace
transforms with all poles located ats = −a can be represented ex-
actly using a finite number of bilinear coefficients. In the time do-
main, this corresponds to polynomials int weighted by the expo-
nential decaye−at. The approximation performance worsens as the
pole location(s) move farther away froms = −a. This is confirmed
in simulation by examining the sorted coefficient decay of signals
fk(t) ∝ t3e−kt andfp(t) ∝ e−at sin(pt) for different values ofk
andp, respectively.

For signals which do not posses rational Laplace transforms, one
important characteristic affecting the bilinear approximation perfor-
mance is the energy distribution over time. We observe this relation-
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Fig. 3. Bilinear Expansion Coefficients forf(t) ∝ sin(10t)
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Fig. 4. Sorted DT coefficients offk(t) ∝ sinc(10(t − k)); a = 10

ship by considering the set of signals

fk(t) ∝


sinc(10(t − k)), 0 ≤ t < 1
0, o.w.

wheresinc(x) = sin(πx)/(πx) andfk(t) has been normalized for
unit energy. A windowedsinc pulse is chosen because of the large
energy concentration around its main lobe in time.

The sorted bilinear coefficients are depicted in Fig. 4. Clearly,
as the energy concentration moves farther from the time origin, the
approximation performance worsens. This empirical observation is
consistent with the basis function behavior as the index increases.
Specifically, from Fig. 2 and as suggested by the bound in (4),the
time dispersion ofλn(t) increases withn. Consequently, it would be
expected that representing signals with primary energy concentration
later in time requires basis functions with higher index values.

4. THE WINDOWED REPRESENTATION

As shown, the bilinear expansion is well-suited to signals with en-
ergy concentrated early in time. We exploit this property through a
windowed representation. Not only does windowing a signal provide
greater time resolution, but it can better align signal energy with the
time origin of individual segments to improve the approximation.

# DT Terms Duration,T
Approximation Type

Lin NL1 NL2

50

Original 0.6840 0.4567 —–
0.2sec 0.6832 0.4532 0.0323
0.25sec 0.5088 0.4156 0.3044
0.34sec 0.6533 0.4260 0.0930
0.5sec 0.5056 0.4062 0.3819

100

Original 0.4487 0.2166 —–
0.2sec 0.4487 0.2319 0.0078
0.25sec 0.4274 0.3474 0.1822
0.34sec 0.4234 0.1871 0.0102
0.5sec 0.4243 0.3412 0.2812

200

Original 0.1588 0.0231 —–
0.2sec 0.1089 0.0422 0.0031
0.25sec 0.3559 0.2478 0.1014
0.34sec 0.1032 0.0322 0.0028
0.5sec 0.3568 0.2455 0.1663

Table 1. ǫ[M ] for f(t) ∝ sinc(100(t − 0.5)). A value ofa = 100
is used for all bilinear expansions.

Mathematically, we treat the original CT signal as a sum of seg-
mentsfk(t) created by a finite-duration windoww(t) as follows:

f(t) =
∞X

k=0

f(t)w(t − kT )
| {z }

fk(t−kT )

s.t.
X

k

w(t − kT ) = 1, ∀t (7)

The choice of window is heavily dependent on the application.
For the binary detection problem in Section 5, we segment using a
non-overlapping rectangular window. Given our assumptionof addi-
tive white noise, this window choice simplifies the resulting analysis.
The rectangular window may also be advantageous for bilinear ap-
proximation, since it yields the shortest segment durationfor a given
value ofT in (7). This may translate to fewer significant expansion
coefficients and a smallerM -term approximation error.

We illustrate the benefit of segmentation by approximating the signal

f(t) ∝


sinc(100(t − 0.5)), 0 ≤ t < 1
0, otherwise

The following terminology is used to denote the three approxi-
mation methods employed in this work:

Lin The firstM coefficients are retained from each segment. Given
the cascades in Fig. 1(a), this linear approximation scheme
minimizes the system hardware requirements.

NL1 TheM largest coefficients are retained from each segment.

NL2 The largest coefficient is selected from each segment. For the
remaining terms, the largest coefficients overall are selected.

Table 1 shows the approximation errors for different rectangular
window sizes and each of the three approximation techniques. There
are two main points to note from this data.

First, the segmented representation can achieve a much lower
error than the original bilinear representation when usingthe NL2
approximation technique, especially as the total number ofDT coef-
ficients decreases. This is due to the increased time resolution.

Second, the approximation performance for window durations
of T = 0.25, 0.5 is notably poorer than forT = 0.2, 0.34. This is
because the former values ofT divide the main lobe in half, caus-
ing one segment to possess a rapidly-increasing signal witha large
amount of energy. Results from Section 3 suggest that a largenum-
ber of expansion terms will be required to represent this segment.



5. BINARY DETECTION PROBLEM

In this section we evaluate the bilinear approximation performance
in a classical binary detection problem. The goal is to determine
whether a desired signals(t) is present in noise based on the received
signalx(t). The channel noiseη(t) is additive white Gaussian noise
(AWGN) with power spectrum,Pη(jω) = σ2

η.
The well-known matched filter solution involves comparing the

integral of the desired and received signals with a threshold γ

Z ∞

0

x(t)s(t)dt ≷ γ (8)

We consider a scenario in which the desired signal is very com-
plex, meaning that we cannot design the analog matched filterh(t) =
s(−t). Therefore, (8) must be implemented using DT representa-
tionsx[n] ands[n]. Furthermore, we restrict the number of DT mul-
tiplies used to approximate the above integral. For an orthogonal
expansion, the detection performance when usingM multiplies is
inversely-related to the approximation errorǫ[M ].

The detection performances of the bilinear and Nyquist approxima-
tions are compared in a series of MATLAB simulations. We consider
the following desired signals (normalized to have unit energy):

s1(t) ∝ t2e−150tu(t)

s2(t) ∝


sin(100t), 0 ≤ t < 1
0, otherwise

s3(t) ∝


sinc(100(t − 0.5)), 0 ≤ t < 1
0, otherwise

s1(t) has a rational Laplace transform.s2(t) is narrow-band in fre-
quency with a constant energy distribution over time.s3(t) has a
wider frequency range with energy concentrated around the main
lobe. All signal are sampled approximately100X faster than the
Nyquist rate of the correspondings(t).

The reduced sets of Nyquist coefficients are obtained by select-
ing those time samples corresponding to the largest magnitudes in
s(nTs). This is denoted ‘Select Largest Samples’ orSLS.

For the bilinear representation, the sequences are segmented with
a non-overlapping rectangular window, and the expansion coeffi-
cients are computed according to Fig.1(a). The trapezoidalrule for
integration is used when numerically simulating the analogsystems.
To reduce the total number of DT coefficients, we employ theLin
andNL2 techniques, based on the desired signals(t).

Receiver Operating Characteristic (ROC) curves for each desired
signal are shown in Fig. 5. The data is based on Monte Carlo experi-
ments witha = 100 andσ2

η = 1. The ‘Ideal’ curve is the theoretical
ROC obtained when directly computing the integral in (8).

The bilinear performance conforms to the intuition gained in
Sections 3 and 4. Specifically, the detection fors1(t) is close to ideal
with only 5 DT multiplies. Conversely, the bilinear approximations
are not as good fors2(t) ands3(t), which do not have energy con-
centrated early in time. As seen in Fig. 5, the performance isnot
ideal, despite the increased number of multiplies.

In contrast, the NyquistSLS method does well only when the
signal energy is localized in time and can be captured using afew
samples, such as the pulses3(t). However,SLS does not perform as
well as theNL2 bilinear approximation for any of the desired signals.

Simulation results based on synthetic signalss1(t)-s3(t) indicate
that using the bilinear representations may be appropriatein certain
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Fig. 5. ROC Curves for the binary detection problem.

binary detection scenarios. TheNL2 performance consistently ex-
ceeded that of the NyquistSLS method for a given number of DT
multiplies. Furthermore, in applications where CT signalsare not
appropriately band-limited, using the bilinear representation may be
favorable to eliminating signal content via an anti-aliasing filter.
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