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ABSTRACT

This paper explores the approximation properties of a unlasis
expansion, which realizes a bilinear frequency warpingvben a
continuous-time signal and its discrete-time repres@matWe in-
vestigate the role that certain parameters and signal cfesistics
have on these approximations, and we extend the analysiwito-a
dowed representation, which increases the overall timelugsn.
Approximations derived from the bilinear representationl &#om
Nyquist sampling are compared in the context of a binarydiiete
problem. Simulation results indicate that, for many typesignals,
the bilinear approximations achieve a better detectiofopaance.

Index Terms— Signal Representations, Approximation Meth-
ods, Bilinear Transformations, Signal Detection

1. INTRODUCTION

Although Nyquist sampling is commonly used in practicer¢he-
main several drawbacks to this representation. For exantipée
continuous-time (CT) signal must be appropriately banidéchin
order to avoid frequency aliasing distortions. Additidpalf the
number of time samples used in a particular computation s co
strained, the Nyquist approximation may do a poor job of@spnt-
ing the original signal. For these reasons, it is useful tasater
alternative signal representations.

In the 1960’s a basis expansion was proposed [1, 2], imple-
menting a nonlinear frequency warping between a CT signdl an

its discrete-time (DT) representation according to thmedr trans-
form. Since there is a one-to-one relationship betweenvtioefre-
quency domains, this bilinear expansion theoreticallyidgs/doth
the bandlimited requirement and the frequency aliasintpdiens
associated with Nyquist sampling. Furthermore, the DT e%juan
coefficients can be obtained using a cascade of first-orddogsys-
tems. Modern-day integrated circuit technology has mageaitti-
cal to compute these coefficients through conventionaliticesign
techniques. Consequently, the bilinear expansion can h&dered
as an alternative to Nyquist representations in variouiGgijpns.

In this paper, we explore the approximation performancédef t
bilinear expansion presented in [1] by drawing from propsrof
the corresponding basis functions. We consider how vasigrsal
characteristics, such as a rational Laplace transform laménergy
distribution over time, affect the approximations. Adaiitally, we
examine a modified version of the bilinear representationyhich
the CT signal is segmented using a short-duration windowis Th
segmentation procedure helps to improve the overall appation
quality by exploiting properties of the representation.
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The analysis presented in this paper has application iregtst
where only a fixed number of DT values can be used to represent a
CT signal. For example, in a binary detection problem, onghtni
want to limit the number of digital multiplies used to compuhe
inner product of two CT signals. Numerical simulations a$tsce-
nario suggest that the bilinear expansion achieves a lutection
performance than Nyquist sampling for certain signal @ass

2. THE BILINEAR REPRESENTATION

As derived in [1], the network shown in Fig. 1 realizes a oo@tie

frequency warping between the Laplace a@nidransform domains
according to the bilinear transform. Specifically, the leaygl trans-
form F'(s) of the signalf(t) and theZ-transformF(z) of the se-

quencef[n] are related through the change of variables
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wherea is the real valued parameter indicated in the cascades of

Fig. 1. The relationship in (1) maps the entire range of Cfjden-

cies (jw-axis) onto the range of unique DT frequencies (unit circle)
Fig. 1 can also be viewed as a basis expansion of the CT signal

f(t) in which the Laplace transforms of the basis functions are
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As given in [1], the corresponding time-domain expressanes
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A (t) = V2a(=1)""" e Ly _1(2at)u(t), n > 1 (3)
whereL,, () represents a zero-order Laguerre polynomial. Itis shown
in [1] that{\.(¢) }n2, is an orthonormal set of functions which span
the space of causal, finite-energy signals. Fig. 2 depietbilmear
basis functions as the indexand the parameter vary.

By applying properties of Laguerre polynomials [3, 4] and by
definingé = 2n — 3, the bilinear basis functions can be bounded
according to the expression
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whereg is a positive constant and > 0. Eq. (4) will be useful
when analyzing the approximation properties of this regméstion.
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(b) Synthesis Network

Fig. 1. First order cascade derived from [1] and [2]. The analysis

network converts the CT signdlt) into its DT representatioifi[n].
The synthesis network reconstructs a CT signal from its esipa.

3. BILINEAR APPROXIMATION

In general, representing a CT signal through a basis expamei
quires an infinite number of (non-zero) expansion coeffisieilVe
address this issue by retaining an appropriate subgetf bilinear
expansion terms to form al/-term signal approximation. The ap-
proximation errok[M] is given by
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We focus on a nonlinear approximation technique, in whigh th
setlys is chosen based on the characteristicg @f. Specifically,
because the bilinear basis functions are orthonormal, vegnréne
largest-magnitude DT coefficients to minimizg\/]. We qualita-
tively compare approximation performances through theayesf
expansion coefficients when sorted by absolute value. Asgsed
for wavelet approximations in [5, 6], a faster decay coroesis to a
smallerM-term approximation error.

3.1. Effect of the Parametera

As seenin Fig. 2(b), the behavior of the basis functionsfesédd by
the parameted. Predictably, this has a directimpact on the approxi-
mation performance. As an example, we analyze the bilirganox-
imations of the windowed sinusoiflt) « sin(10¢) for 0 < ¢ < 1,
and then generalize from this information. The sigfi@l) has been
normalized for unit energy.

Fig. 3(a)-(d) show the bilinear coefficientg:] fora = 1, 10, 100
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Fig. 2. Dependence of the bilinear basis functions on the index
and the parameter.

finite duration, successive delaysmf(w,) will eventually shift the
bulk of its energy beyond the sampling time= 0 in Fig. 1. Once
this occurs, the remaining expansion coefficients becomesreall.

Therefore, in order to minimize the number of significant Efi-

cients for a narrow-band signal, we should maximizéuv,) in (6).

This is accomplished by setting= w,.

Although many CT signals of interest are not narrow-band, th
above analysis suggests the following ‘maximin’ stratemintial-
ize the value ofi: For a signal with most of its information content
effectively band-limited to |w| < was, choose a = wr.

Because the group delay in Equation (6) is monotonically de-
creasing inw, this strategy guarantees a group delay greater than or
equal tory(war) for all frequencies in the band-was, was]. Un-
like a Nyquist anti-aliasing filter, this algorithm does reminate
high-frequency information. Rather, it tries to captureragh sig-
nal energy as possible in the earlier DT coefficients

3.2. Signal Characteristics which Impact Approximation

Itis straightforward to verify that signals which have caial Laplace
transforms with all poles located at= —a can be represented ex-

and1000, respectively. As seen, the fastest coefficient decay sccurdctly using a finite number of bilinear coefficients. In thadi do-

whena = 10, which is the carrier frequency of(¢). An intuitive
basis for this result follows by considering the group detéyhe
all-pass filters in the bilinear first-order cascades.

<(52)]-

For a signal whose energy is tightly concentrated arouné-a fr
quency ofw,, the effect of an all-pass filter can be roughly approx-
imated as a time delay of;(w,). If the signal has approximately
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main, this corresponds to polynomials firweighted by the expo-
nential decay:~**. The approximation performance worsens as the
pole location(s) move farther away frosn= —a. This is confirmed

in simulation by examining the sorted coefficient decay ghals
fu(t) o< t3e ™  and f,(t) oc e~ sin(pt) for different values ok
andp, respectively.

For signals which do not posses rational Laplace transfoons
important characteristic affecting the bilinear approaiion perfor-
mance is the energy distribution over time. We observe #iation-
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ship by considering the set of signals

£(0) O({ ;iync(lO(t—k:)L g.vgv.t< 1

wheresinc(z) = sin(wz)/(7x) and fx(t) has been normalized for

unit energy. A windowedinc pulse is chosen because of the large

energy concentration around its main lobe in time.

The sorted bilinear coefficients are depicted in Fig. 4. Qyea
as the energy concentration moves farther from the timemrige
approximation performance worsens. This empirical olsern is
consistent with the basis function behavior as the indereases.
Specifically, from Fig. 2 and as suggested by the bound int(#),
time dispersion of\,, (¢) increases witl. Consequently, it would be
expected that representing signals with primary energgeuatnation
later in time requires basis functions with higher indexuesl.

4. THE WINDOWED REPRESENTATION

As shown, the bilinear expansion is well-suited to signathwn-
ergy concentrated early in time. We exploit this propertptigh a
windowed representation. Not only does windowing a sigraliple
greater time resolution, but it can better align signal gpevith the
time origin of individual segments to improve the approxiio.

. Approximation Type

# DT Terms Duration,T' o NLCT N
Original 0.6840 | 0.4567 —
0.2sec 0.6832 | 0.4532 | 0.0323
50 0.25sec 0.5088 | 0.4156 | 0.3044
0.34sec 0.6533 | 0.4260 | 0.0930
0.5sec 0.5056 | 0.4062 | 0.3819
Original 0.4487 | 0.2166 —
0.2sec 0.4487 | 0.2319 | 0.0078
100 0.25sec 0.4274| 0.3474 | 0.1822
0.34sec 0.4234| 0.1871 | 0.0102
0.5sec 0.4243 | 0.3412 | 0.2812
Original 0.1588 | 0.0231 —

0.2sec 0.1089 | 0.0422 | 0.0031
200 0.25sec 0.3559 | 0.2478 | 0.1014
0.34sec 0.1032 | 0.0322 | 0.0028
0.5sec 0.3568 | 0.2455 | 0.1663

Table 1 ¢[M] for f(t) x sinc(100(t — 0.5)). A value ofa = 100
is used for all bilinear expansions.

Mathematically, we treat the original CT signal as a sum gf se
mentsfx(t) created by a finite-duration window(t) as follows:

f(t) = ;)f(t)w(t— KT) st > w(t—kT)=1,9t (7)

k
fr(t—kT)

The choice of window is heavily dependent on the application
For the binary detection problem in Section 5, we segmemiguai
non-overlapping rectangular window. Given our assumpticaddi-
tive white noise, this window choice simplifies the resugtamalysis.
The rectangular window may also be advantageous for biliapa
proximation, since it yields the shortest segment durdtoa given
value ofT" in (7). This may translate to fewer significant expansion
coefficients and a smalléi/-term approximation error.

We illustrate the benefit of segmentation by approximativegsignal

sinc(100(t — 0.5)), 0<t<1
ORES { 0, otherwise

The following terminology is used to denote the three approx
mation methods employed in this work:

Lin The firstM coefficients are retained from each segment. Given
the cascades in Fig. 1(a), this linear approximation scheme
minimizes the system hardware requirements.

NL1 The M largest coefficients are retained from each segment.

NL2 The largest coefficient is selected from each segment. [eor th
remaining terms, the largest coefficients overall are setec

Table 1 shows the approximation errors for different regtéar
window sizes and each of the three approximation technidtiesre
are two main points to note from this data.

First, the segmented representation can achieve a much lowe
error than the original bilinear representation when usheNL2
approximation technique, especially as the total numb&Tofoef-
ficients decreases. This is due to the increased time resulut

Second, the approximation performance for window duration
of T' = 0.25, 0.5 is notably poorer than fdf' = 0.2,0.34. This is
because the former values Bfdivide the main lobe in half, caus-
ing one segment to possess a rapidly-increasing signalanihge
amount of energy. Results from Section 3 suggest that a famge
ber of expansion terms will be required to represent thisteey.



5. BINARY DETECTION PROBLEM

In this section we evaluate the bilinear approximation @enfance
in a classical binary detection problem. The goal is to deites
whether a desired signa(t) is present in noise based on the received
signalz(t). The channel noisg(t) is additive white Gaussian noise
(AWGN) with power spectrump, (jw) = o;.

The well-known matched filter solution involves comparihg t
integral of the desired and received signals with a threskol

| atostarz o ®)
0

We consider a scenario in which the desired signal is very-com
plex, meaning that we cannot design the analog matched ilter=
s(—t). Therefore, (8) must be implemented using DT representa-
tionsz[n] ands[n]. Furthermore, we restrict the number of DT mul-
tiplies used to approximate the above integral. For an gghal
expansion, the detection performance when ugifignultiplies is
inversely-related to the approximation eregh/].

The detection performances of the bilinear and Nyquist @ppra-
tions are compared in a series of MATLAB simulations. We dd&rs
the following desired signals (normalized to have unit gger

s1(t) o 2 M%u(t)
0 sin(100t), 0<t<1
52 0, otherwise
sinc(100(t — 0.5)), 0<t<1
ss(t) o { 0, otherwise

s1(t) has a rational Laplace transformu (¢) is narrow-band in fre-
quency with a constant energy distribution over timg(t) has a
wider frequency range with energy concentrated around thie m
lobe. All signal are sampled approximatel90X faster than the
Nyquist rate of the correspondingt).

The reduced sets of Nyquist coefficients are obtained bgtsele
ing those time samples corresponding to the largest matgstin
s(nTs). This is denoted ‘Select Largest SamplesShf

For the bilinear representation, the sequences are segtheith
a non-overlapping rectangular window, and the expansiaffico
cients are computed according to Fig.1(a). The trapezoidelfor
integration is used when numerically simulating the analgiems.
To reduce the total number of DT coefficients, we employlthe
andNL2 techniques, based on the desired sigt&).

Receiver Operating Characteristic (ROC) curves for eadirets
signal are shown in Fig. 5. The data is based on Monte Carlerexp
ments witha = 100 ando;? = 1. The ‘Ideal’ curve is the theoretical
ROC obtained when directly computing the integral in (8).

The bilinear performance conforms to the intuition gained i
Sections 3 and 4. Specifically, the detectiondp(t) is close to ideal
with only 5 DT multiplies. Conversely, the bilinear approximations
are not as good fos2 () andss(t), which do not have energy con-
centrated early in time. As seen in Fig. 5, the performanaeots
ideal, despite the increased number of multiplies.

In contrast, the NyquisBLS method does well only when the [3]
signal energy is localized in time and can be captured usifegva
samples, such as the pulsgt). However, S.Sdoes not perform as
well as theNL2 bilinear approximation for any of the desired signals.
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(51
Simulation results based on synthetic signalét)-ss(t) indicate  [©]

that using the bilinear representations may be appropnatertain
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Fig. 5. ROC Curves for the binary detection problem.

binary detection scenarios. TINL2 performance consistently ex-
ceeded that of the NyquiSL.S method for a given number of DT
multiplies. Furthermore, in applications where CT sigreais not
appropriately band-limited, using the bilinear repreagah may be
favorable to eliminating signal content via an anti-alasiilter.
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