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Abstract

In this paper, we show that a one-dimensional or malti-dimensional sequence is uniquely specified under
mild restrictions by its Fourier transform amplitude (magnitude and one bit of phase information}). In addi-
tion, we develop a numerical algorithm to reconstruct a one-dimensiomal or milti-dimensicnal seguence from
its Fourier transform amplitude. Reconstruction examples obtained using this algorithm are also provided.

I. Introduction

In a wvariety of Eontexts, such as electron microscopyl, Xx~ray crystallographyz, opticsa, and Fourier trans-
form signal coding , it is desirable to reconstruct a sequence from partial Fourier domain information. &s &
conseguence, considerable attention has been paid to, and sope significant results have keen developed in
thig area. For example, it has been previously established  that under wery mild restrictions a finite
extent cne—-dimensional {1-D) or malti-dimensicnal (M-D) seguence is uniquely specified to within a scale fac-
tor by its Fourier transform (FT) phase, and algorithms for implementing the reconstruction have been deve-
loped. It is well known that in contrast, the FT magnitude does not uniquely specify a 1-D seguence. Even
for M—D5 segquences, the FT magnitude specifies a sequence cnly to within translation and a central
symmetry , and reconstruction algorithms develeped so far have been successful for only a very restricted
class of M-D seguences.

In this paper we consider the reconstructicon of 1-D and M-I sequences when the Fourier transform magnitude
and one bit of phase information is known. In particular, it is shown that under very mild restrictions,
this is sufficient to uniguely spacify the sequence.

In Section ITI of this paper, the basic theory is presented. Tn Section IIT an algorithm for implementing
the reconstruction is discussed, and Section IV illustrates several examples.

II. Theory

In this section, we discuss the unique specification of a sequence by its PT magnitude and 1 bit of phase.
We initially consider the one-~dimensional (1-D} case first and then extend the 1-D result to the mualti-
dimensicnal (M=D) case. Before we present the theoretical results, we define the notation that will be used
throughout the paper.

Let x(n) dencte a 1-D sequence which is causal and finite extent so that x(n) is zerc outside 0<n<L-1.
Furthermore we restrict xi{n} to be real-valued. Let X{z) and A{w)} represent the z-transform and Fourier
transforms of #%{n), so that

Xz} = z x(nyz {1}

X(w) = X(z) = ¥ xtme ™ (2)

n=0

ju
z.=es:I

The Fourier transform X{w) can be represented in terms of its real part Xp(w) and imaginary part Xp{w}, or in
terms of its magnitude [X{w)| and phase 9,(w} as follows:

3 Gx{w)
X{w) = X (W) + 3§ X (w) = 1Xtuw) |e (3}
Te ensure that 9,{w} is well defined at all », we assume that X{z}) has no zeros on the unit circle. The
phase function H.{w) in aquation {3} represents the principal wvalue of the phase so that
=T <0 f{w) &w™ {4}
x hl
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The one-bit FT phase information will be represeanted by the function 8*(w) defined as

+1 a-1 < ﬂx(w} <o
s Yy = (5)
hs

-1 otherwise

where @ is a known constant in the range of 0 < a < 7. Thus, the complex plane is divided into two regions

separated by a straight line passing through the origin and at an angle @ with the real axis, as shown in

n/2 . . jul
Figure 1. For example, for o= % P Sx / {w) represents the algebraic sign of Re{X(e] )} . More generally,

§,%(w} is the algebraic sign of re{el{"/2-2}x(u)}. The algebraic sign of zero is assumed to he positive.
The function Gu*{w) is defined as

% a3
Gx(w} =5 (W) [%{wy | (&)

and will be referred to as the Fourier transform amplitude since it contains both magnitude and sign infor-

mation. An example of [X(w)l|, B, (w), Sxa(m} and Gx“(t.u) when a=r/2 and X{z)=1+3z'1+52_2+22'3 i=s shown in
Figqure 2.
Finally, given a positive integer M, we define a constant r and an interval R as:
W1
F = and R = (0,7} for N odd
(7
)
P:E and R = {0,7] for W even

{(a)

Xp(w)
A
- = - - - + + +
- - - - + + +
a e
B A (c)
—- o
- - - - + + + + XR(w} -
= - - + + + +
- - - + o+ + + + T e
Blaure 2:  Fouricr transiorm magritude, clase,
Filoure 1: Mapring of the I-hit pnasc " O]“_" -i‘v--; 2:;jr111:rt]1 t ;_1-—'(\(.]:3'\: T}jj[ _it”.:‘.liﬂ.’:ﬁ ¢
furnotion nmit chaso, amb ufe af che s

— - -3

vizy—1=3u l+Sz +27
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The unigueness of a 1-D sequence when the Fourier transform amplitude G,"{w} is specified, is based on the
following statements. The proof of these statements is given in the Appendix.

Statement A1

Let x{n} and y(n) be two real, causal, and finite extent sequences. If [X(w}| = |¥(w)[, x(n} and y{n}
can always be expressed as

%x{n) bin) * ain)

and

¥in] = £bi{n) * a{N-1-n},
where £=+1 or -1 and afn} and b{n) are veal, causal and finite extent sequences with W corrasponding to¢ the

length of a{n}), i.e. a(n)}=0 ocutside 0<ngN-1.

Statement A2

Let bin} be a real, causal, and finite extent sequence. For any positive integer H, the aguation

N-1

ReiBfz} =z 50 }
z=e

is satisfied for at least P distinct values of & in the interval R, where P and R are as defined in eqg. (7).

Statement A3

Let ain) be a real seguence which is ZRro cutside 0<n<N-1. If the equaticn

N-1

2
In|atz) =z ” }
z=g

]
[=]

is satisfied for at least P distinct values of w in the interval R, then it is identically egual to zero and
afnl=a{N=1-n).

We use the above three statements, whose proofs are shown in the Appendix, to demonstrate the following
statement:

Statement 1

Let x(n) and yin) be two real, causal, and finite extent sequences with z—transforms which have no zeros
on the unit rgirgle. If Gx“fz(w)=Gy”/2(w) for all w, then x{n)=y{n).

To show Statement 1, we note from equations (5) and (6) that the condition Gxﬂfz(w)=GY“/2(w) is equivalent
to

sign{x )} |x@w)] = sign {¥ (i} Jrtw)] (8)
which in turn implies that |X({w)|=|Y{w)}] and therefore that
sign{x_ ()} = sign{¥ ()} (9}

From Statement Al, then, x(n) and yin) can be expressed as

®{n) = b{n) * a{n)
(10}
y{n) =€ bl{a} * a({N-1-a)
where E=+1., Fourier transforming {10}, we obtain:
Af{w) = A{w) Blw)
{11}
viwy = ¢ e T A ey B

To show that £=1 in (11}, we evaluate eq. {9) at w=0 and recognize that Xp(0)=A{0}B(0) and Yp(0)=ca(0}B{0),
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sign{al8)B(0)} = sign{eatorB(0)}. (12)
Since Xfw) iz not zero at w=0, eg. {12) regquires that e=+1.

Since =%, from ({10), showing that =x(n)=y{n) is equivalent teo showing that a{n)=a({¥-1-n}. Toward this
end, we consider the sum

XR(W) + YR(W)

From (11} with €=1, it ¢an be shown that

X () + ¥ (u) = 2 Re[AWw) e 2 ] RelBlw) e (13)

From Statement AZ, there are at least P distinet walues of w in the interval R which we dencte as
wy t=1,2,...,P for which

=0, i=1,2,...,0, wisR (14}

From (13) and {14}
X {w,} + ¥ (w ) =0 , i=1,2;,+4,P, w ER {15)
R i R i i

From (9), both terms of the left hand side of (15) have the gsame sign for all w. Since a sum of two terms

having the same sign can be Zero only when both terms are ZELG, we have
X {w. ) =¥ (w ) =10 and therefore also,
R 1 R i
xR{mi) - YR(wi) =0, i=1,2,...,P, wiER {16}
From {11} and the fact that e=1, it can be shown that {16] can be expressed as
s N-1 ‘o N-1
1%y : M2

Row ) = ¥ (w) = =2 Im[agw) e Im{Blw ) e l =0, i=1,2,...,7, weR (173

F

Since Bl{w) is not zero for any w, it follows from (14) that the second factor in (17} satisfies the property:

oy N1
: My T2 .
Im Blw, e ] =0, i=1,2,...,P, wER (18)

From {17} and (18},

Jw, ——
‘ i 2 :
Im Alw Je ] =0, i=1,2,...,P, 1w ER £19)

From (19} and Statement A3, a{n)Za(N-1-n) so that x{n)Zy(n}, thus demonstrating Statement 1.

The result inm Statement 1 ¢an be generalized in various ways. Specifically, in Statement 1, we have
assumed that a=v/2, which is a specific representation of the 1 bit phase information. It can be shown that
the statement is true for other cholces of O<a<m. When =1 sgo that Sx"(m)=signfﬁx{m}l, a seguence is
uniquely specified by G,"{w) when x(0)=0. Statement 1 also be extended to anti-causal (left-sided)
sequences. The proofs of these extensions can be found in . When the above extensions are incorporated in
Statement 1, we have the following general statement:

Statement 2

Let x{n} and v(n) be two real, causal {or anti-causal}, and finite extent sequences, with z-transforms
which have no zeros on the unit cirecle. If Gx“(m)=Gy“(w) for all w and O<a<m, then xin)=y{n). When o=m,
if G, {(w)=G," (w) and x(0)=y{(0)=0, then x(n)=y(n).

Statements 1 and 2 explicitly require that the seguences be real-valued and causal (or anti=-causal}. The
necessity of these conditions can be illustrated through counter-examples. Consider first the condition that
the sequences he real, and let y{n) equal el {®Tlx(n} where x{n) is real. In this case, it is straightfor-
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ward to show that Gx"(m}=Gya(m]. Since G, (w) does not uniguely specify x(n), Gy%{w) does not uniquely spe~
cify vyin}. To  indicate the necessity of the causality {(or anti-causality) condition, consider as one
counter-example the two-sided sequences x{n) and y{n) for which the z-transforms are

-2 -1 -1
~22 + B =z =(z + 2~z Ji-z +2+2z }

X{z}
(20)

2 -1 -2 -1.2
25+ 4z + 2 -4z + 2z = {z +2 -2 '}

Y(z}

For these two sequences it can be easily shown that [X({w)|=]¥(w)]| and sx"/z(w)=sY“/2(m). In this case, then,
x{n} and y{n) are different sequences but have the same FT amplitude.

In the above discussion, we considered only 1-D seguences. We now extend Statement 2 to M-D seguences.
Let x{n} denocte a M-D sequence x{nqi,n3,...,ny}, and let G,*{w) denote the FT amplitude of x(n), where G,%{w}
represents Gy l{wqi,ws,...,Wy) and is given by 5,%(w)|X{w)|. We define an M-dimensional signal x(n} to have a
one-sided region of support in the M-dimensgional space ny,njs...,ny if it only has non~zero wvalues for one
polarity of each index nj. For example, for a two-dimensicnal sequence there are four possible regions of
support which are consistent with the sequence being one-sided, corresponding to the four guadrants.
Statement 3, which follows, represents a generalization of Statement 2 to encompass M=D sequences.

Statement 3

Let x{n} and y(n) be two real, finite extent sequences with one-sided support and with z-transforms
which have no zeros at |z|=1. If Gxu(g)sz“(g) for all w and 0<a<n, then x(n)=y{n)}. Wwhen a=x, if
Gy {w)=Gy" (w)} and x(2)=y(0)=0, then x{n)=y(n).

We demonstrate the walidity of Statement 3 for a 2«D sequence which has the first-guadrant support with
size My*M3 so that

x(n1,n2) = y(n1,n2) =0 outgide Oin1§n1—1 and 0§n25M2—1

The proof for a higher dimension and for a different guadrant support is analegous to the 2=D case with the
first quadrantasupport.A To demonstrate Statement 3, we map the 2-D sequences x(nqj,np) and y(nq,n3) into two
1-D sequences xX{n) and y(n) by the following trangformation:

x(n1'M2 + n2] = x(n1,n2)

~ {21)
- M + =
yin, 2 n2) y{n,m,)
In essence, the transformation in eg. {21) corresponds to mapping a 2-D sequence to a 1-D sequence by con-
catenating the columns of the 2-D sequence. Clearly, %{n)} and ${n) given by (21) are real, causal, finite
extent seguences. From [(21) it is clear that the transformation iz invertible. Furthermore, it can be
shown that

% =
(w} = X(w,w,)

A (22)
and Yiw)

I
[
g
E

%]

From (22), it follows that the FT amplitudes of %(n) and $(n) are specified by the FT amplitudes of %(nq,ny)
and y(nq,n3). Therefore, if G*{wq,wp}=G,*(wq,wy), then Gp%(w)=Gg® (W),  In addition, since X(z{,z3) and
¥{zq,23) have no zeros at f(zqi=lzpl=1, from (22), X(z) and $(z) have no zeros on the unit circle. Since 2(n)
and ?(n) satisfy all the conditions in Statement 2, it follows from Statement 2 that Q(n)=§(n). Since the
transformation (21) is invertible, x{nq,n3)=yinq,nz} as required by Statement 3.

Thg thecretical result in Statement 3 differs from that by Hayes5 in several respects. In the result by
Hayes , only samples of the FT magnitude are required, but the sequence is restricted to have a non-

factorizable z~transform and the unigue specification of the sequence is only to within a sign, a transla-
tion, and a central symmetry. In Statement 3, the FT amplitude is required, but the seguence may have a
factorizable z-transform and is uniguely specified in the strict sense.
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III. Algorithm

In Section II, we showed that under certain conditions, a sequence is uniguely specified by its FT ampli-
tude. In this section, we discuss an algorithm to implement the reconstruction of a sequence x(n} from its
FT amplitude. The sequence x(n} is assumed to satisfy the conditions of Statement 3. In addition, its FT
amplitude G,%{w) is assumed known.

The algorithm that we have developed is iterative procedure which is similar in style to other itera-
tive procedures studied by Gerchberg-Saxton and Fienup® . In the iterative algorithm, the "time" domain
constraint that x{n) is real and finite extent with a one-sided region of support, and the frequency domain
constraint that the FT amplitude of xi{n) is given by Gy*(w), are imposed separately in each iteration.

Specifically, let X,(w) denote the estimate of X{w) at the pth iteration. The estimate G (w}) is inverse
Fourier transformed to the time domain to obtain xp'in)

X' {n) = F U [X_()] (23}
P P~

From xp'(n), we generate an estimate xp" {n) which satisfies the time domain  constraints

Re[xr‘)(g)] for n £ A
xtin} = (24
P

0 for n £ A
whare A represents the known support region of %{n).
The sequence xp"{n) 1is then Fourier transformed back to the frequency domain to obtain  Xp"(w}

X"{w) = F[x"(n)] (25}
P P

The new freqgquency domain estimate xp+1(g} is then gbtained by enforcing the congtraint that prﬂa(ﬂ):GxG(g)
as follows:

jexn (E'l}
Ix(w)| e« P if S, tw) = 8 (w)
X - x -
P
X g (@) - (26}
3200, (w))
(X(u}] e P if & (W) = <57 qw)
xp - x -

Specifically, the correct magnitude is substituted for the estimated magnitude. If S,» u{£]=5xa{§}, then the
phase of the estimate is retained. Otherwise, the estimate is reflected about a line %hrough the origin and
with slope @ to correct the sign of Sgw (). This completes one iteration. The initial estimate Xg(w) we
have used is given by P -

8
3 XO(Q}
Xo(g) =[x} e (27}
where Bxaig) is given by
™ [a 3
0 o= = for § (W) = +1
2 x —
B ) = (28)
*g
clL+1 for Su(w) = -1
2 x —

The iterative algorithm discussed above is illustrated in Figure 3.

The asymptotic behavior of the algorithm in Figure 3 has not yet been studied theoretically. We have
obgerved experimentally that a stable estimate of the seguence to be retrieved is always attained after a
large number of iterations.

To implement the algorithm in Figure 3, the Fourier and inverse Fourier transform cperations are approxi-
mated by discrete Fourier transform (DFT) and inverse DFT (IDFT) operations. Although the unigueness is not
guaranteed in terms of the FT amplitude samples, we have empirically observed that the algorithm reconstructs
the desired sequence provided that the FT amplitude is densely sampled in the frequency domain, so that the
FT magnitude is completely specified and the discontinuities of S,%(w) are individually resclved by the

SPIE Vol. 359 Applications of Digitsl Image Processing IV (1982} 7 219



Xo(k)

Xplk)

IDFT

TRUNCATION,
DISCARD IMAGINARY PART

xp[n] A

DFT

SUBSTITUTE |X(k)] FOR [Xp(k)];
CHANGE ¢, (k) TO 2a -¢b, (k) IF

S, (k) # 2 (k)

Y
Frgure 3: Bluek diagram of the iteratiwve
alcorithm
o : | P,
samples of 3~ {(w). The FT magnitude P} is com-

pletely aspecified by samples of |X{u)| when the DFT
size is twice the size of the known suppert of x(n} in
gach dimension.

IV. Examples

The algorithm discussed in Section TTI has been
used to reconstruck a2 variety of different 1-D and 2-D
sequences from their FT amplitudes. In this section,
wa present some of these examples.

Figure 4 illustrates one example in which a 1-D
sequence is reconstructed from its FT amplitude. In
Figure 4(a) is shown a 47-point sequence obtained by
sampling female specch at a 10 kHz rate. In Figure
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iigure 4:  Spooech segment samplod at 47 noints
al oricinal soquence; ) rouonstructed

sequencae after 50 itorations

4kt is shown the sequence reconstructed by using the
iterative alaorithm with the DFT size of 1024 after

50 iterations. In addition to the above examcle, a
number of other examples have been considered. In all
cases, wWe observed that the algorithm reconstructs

the desired sequence.

Figqure 5 illustrates an cxample in which a Z-D
sequence is reconstructed from its FT amplitude. In
Figure 5{a) is shown an ilmage of sizo 256256 pixels.
In Figure 5{bk} iz shown the ilmage reconstructed by
using the iterative algorithm using the DFT sive of
512x512 after 10 iterations.

In addition to the examples shown in this section,
wa have studied a number of cther examples. From
these examples, we have made the following observation
about the iterative algorithm. First, for sequences
satisfying the uniqueness constraints, if a DFT size
below some threshold value is used, the algorithm does
not lead to the desired sequonce. Second, the conver-
gence rate of the iterative algorithm is rapid ini-
tially and becomes slow as the number of iterations is
increased, Third, the threshold OFT length is approx-—
imately the same for different choices of o, as long
as ¢ is not too close to O or T. As o approaches 0 or
T, the threshold length is significantly increased.
The choice of o=7/2 permits the use of FFT routines
specific to real seqguences and uses, therefore, less
computation time and less storage spacce. Fourth, we
have observed that the mean sguare orror between the
original and reconstructed seguences decreases Mono—
tonically as the number of iterations increascs.

Fifth, the convergence
significantly improved
cedure similar to that
Furthcr details on the
algorithm can he feound

rate of the algnrithm can be
by uging an acceleration pro-
used by Oppenheim, et.al.?.
behavior of the iterative

in van Hove!®,



Figure 5: Image of size 256x256 pixels

a} original image b} reconstructed image after 10 iterations

V. Conclusions

In this paper, we have shown that a 1-0 or M-D seguence is uniquely specified under mild restrictions by
its PT amplitude. 1In addition, we have developed an iterative algorithm to reconstruct_a 1-D or M-D segquence
from its FT amplitude. when this result is combined with the previous result on the problem of
reconstructing a 1-D or M-D sequence from its FT phase, we obtain a very general result that a 1«0 or M-D
sequence ig uniguely specified by its FT phase or its FT amplitude. In addition, under mild restrictiens, an
iterative algorithm which is similar in style can be used to reconstruct a 1-D or M-D sequence from its FT
phase or amplitude.

Several important questions remain unanswered and remain as topics for future research. In this paper,
the unigueness guestion has been studied under the assumption that the FT amplitude is given for all w. The
unique specification of a sequence by samples of its FT amplitude remains as a topic for Euture research.
The algorithm that we have developed has been empirically observed to converge to the desired sequence. It
is not known theoretically, however, if the algorithm always converges.

Appendix
Statement Al
Let x(n) and y{n) be two real, causal and finite extent sequences. If |¥{w)|=]¥(w)]|, xi{n) and yin) can
always be expressed as
x{n) = bin) * ain)
yin} = ebin) * a(¥N-1-n}

where £=+1 or -1 and ain) and b(n) are real, causal and finite extent with W corresponding to the length of
ain), i.e. a(n)=0 outside 0<n<N-1.

Proof

A general expression of the z-transform X{(z) of a sequence #in) which is causal and has a finite support
is given by

ilz) == ® T | (1 -z, z ) {a1.1}

SPIE Vol. 359 Applications of Digital Image Processing IV (1882)/ 221



where zq, 1=1,2,+..,0Q, are the zeros of X(z), xg is the first non-zero sample, and nq is the positiwve initial
delay in x({n). It is well known that the FT magnitude of a finite extent 1-D sequence remains unchanged only
when the sequence is subject to linear shifts, sign inversions and/or zerc "flipping". The z-transform Y{z)
may therefore be written as

-1
Y(z) = +z ° x | ] (1 =2, 2 1 | [ (=z, + 2 1) tA1.2)
— (L i . i
ieful ielr}

where ny is the positive initial delay in y(n}, {r] is the set of indexes of the R zeros of Y(z) which are
zeros of X{z) reflected across the unit circle and {u} is the set of indexss of zeros which are unchanged
from Xz} te Yiz). We may alsno write (A1.1) and (A1.2) as

X{z} = A{z)*B(2)

v{z) = +C{z]*B(z}
or
x{n) = aln) * bin)
(a1.3)
y{n) = *cin) * bin)
where
-{n,-n.}
Alz) =z | ° l‘ (1 =2, 2
ie{r} *
-n
B(z) = =z 2x TT {1 - =z, 2‘1}
0 . i
ie {ul
-1
C{z) = (—zi + z } (A1.4)
ie{r}

We now show that cin) is afn) time reversed, represented by a’'(n). The length of the segquence a'(n) is
N=n4-nz+R+1, if we include the leading zeros. Therefore,

a'{n) = a(N-1-n)
-1, -(N-1 -R -
A'(z) = Alz )z{ J=z (1-*2.21)=C{z}
ie{r} *
50 that c<(m)=a{N-1-n}. From (A1.3}, the sequences x{n) and y(n) are expressed in the adeguate form. To
characterize a(n} and bi{n), we examine their z-transforms. Since B{(z) contains only a finite number of nega-
tive powers of z, the sequence bin) has a Finite causal support. Since A{z) and A'(z)}=C{z) contain only

negative powers of 2z, it follows that a{n) and a{N-1-n) are causal so that a(n} is zero outside 0<n<H-1. If
the z-transform ¥(z) contains a pair of complex conjugate zeros, then they must belong both to {_u]'_ or both
the {r} for y(n) to be real-valued. The z-transforms A{z) and B(z} may therefore contain complex zeros only
in conjugate pairs so that a{n} and bin) are real. In the case nadng, we simply exchange the roles of x(n)
and y{n}. This completes the proof of Statement A1,

Statement A2
Let bin) be a real, causal, and finite extent sequence. For any positive lInteger ¥, the eguation

=1

2 . _
Re{Biz) = ,ed® ] =0

is =satisfied for at least P distinct values of w in the interval R, where P and R are as defined in eg. (7}
of the text.

To prove this statement, we introduce the notion of unwrapped phase. Given a Fourier transform M{w) which
has ne zeros, we define its unwrapped phase ¢yu(w) as the unique continueus function of ® which satisfies

o, ()
Miw) = |[M{w)|e {(a2.1)
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for all w and which takes the value of 0 or -T at w=0. The unwrapped phase has the following properties. If

we define the function F(w) as

F{w) = D{w) Bl(w)
then it follows that
¢F(u1) = ¢D(w) + ¢B{m) + 2aw
where o o= 1 if ¢D(0) = ¢B(0) = =N a = 0 otherwise

The unwrapped FT phase ¢gp{m) of a causal seguence bin) satisfies
V] L
¢B( ] > ¢IB( ]

The unwrapped phase of the function

. N=-1
—jw ——
2
Diw] = &
is
N-1
bl = w5
We now proceed to the proof of statement B2, Wwe consider the unwrapped phase $gplw) of
.
*» T

F{w) = B{u]e

The equation Re{F(w))=0 has the same roots as the equatinon

T
¢F(w} = 5 + kn , with k an integer,

since F(w) has no zeros. From our previous discussion, we have

N-1
2

Al
Jm

i
¢F(1T) - ¢F(D) —¢B(HJ - ¢'B{0} + ¢D("T} - ¢D(0} et

the

(a2.2)

{A2.3)

(AZ2.4}

({R2.5)

{R2.6)

function

Since the continucus function $pl{w} decreases at least by (¥-1)/2 7 on the interval R, it follows that the
graph of ¢plw) crosses at least N/2 lines of phase /2 + k7 in (0,7] if N is even. Figure 6 shows ¢pl{w} when

b(n}=6{n), for the cases N=4 and N=5.

0 w) WoTW 0 w wp ¥
0k t-w okt Ew
P . e w0 S i.

2 = :'
- _wl !

-5 41 PO 3w : o
2
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Figure 6&: Unwrapoed phase of the function Fiw) for bin}=f(n}.

al K4 ) N=5
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Statement A3

Let ain} be a real valued sequence which is zern  outside 0<n<N=1. If the egquation

N-1
2

m{atz) =z Lad® b =0

is satisfied for at least P distinct values of w in the interval R, then it is identically equal to zero and

ainy=a{¥N-1-n}. P and F are defined as in adq. (7 in the text
M=-1
P—-—z— and R = (0,7} for N odd
N
P = 2 and R = (0,1] for N even
Froof for N odd
With the use of trigonometric formulas, we obtain
.o N=1 N-1
™ N-1
W = v Sl
Giw) I_rn[A(w)e J z a[n] sin| 5 n:lt.u (a3. n
n=0
H-1
2
Glw) = E {a\ M—;l - n) - ar N—;l +u} | sin mw {33.2)

Since the set ?E the (M=1}/2 functiocns sinw, sin2u,...,sin (3-1}w/2 is a Chebychev set on the interwval (0,1}

as is shown in , and since G{w) has at least (N-1]/2 distinct roots in the interval (0,7], it follows that

the coefficients af the expansion in the right-hand gide af (A3.2) must vanish
N=-1 ¢ N=1 ; N1
ai—é——nJ =aL—2-—+nJ = 0; n=1,2,...,T
or
aln} = a(N=1-n}; n=d,1,«44,N=1

When N is even, the expansion of Glw) is

il
2
Glw) = E {ali-g—1—n;l—a[ +r1J} sin(n +%)w

ne={

(S

Singe the functicns sin w/2, sin 3w/ 2,...,s8in N-1/2 w form a Chebychev set on the interval (0,7] as is shown
in , it follows that

N i i
a(‘5-1-n)-a(3+n)=o; n=0, 1,000, 5 - 1
ar
afn) = a{(N-1-n1) ; n=0,%, ..., H=-1
This completes the proof of Statement A3.
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