
Submitted to IEEE Trans. Automat. Contr.

A Universal Approach to Queuing with Distortion Control

Stark C. Draper, Mitchell D. Trott, and Gregory W. Wornell

Submitted August 2003

Abstract

An efficient buffer management algorithm is developed for queues that handle distortion-tolerant data
under finite memory limitations. When multiresolution source codes are used, overflows are avoided, and
significant performance gains realized, by progressively reducing the fidelity of signal descriptions in a
controlled manner. The proposed approach is universal, i.e., it works without knowledge of queue arrival
and departure statistics. More strongly, we show that its performance is sample-path optimal, i.e., it
achieves an average distortion equal to the best achievable by any algorithm, including those designed
with full non-causal knowledge of queue arrival and service times.

Index Terms — congestion control, buffer management, queuing, networks, multimedia, multiresolution,
successive refinement, source coding, transcoding

1 Introduction

If arrivals to a finite-memory queue outpace departures over a span of time, the queue will overflow. The

ensuing uncontrolled data loss can seriously reduce system performance. If, however, the queue buffers

distortion-tolerant data such as audio, video, or images, it can use this characteristic to adjust fidelity as

new signals arrive. In this paper we show how to exploit distortion-tolerance to lower signal fidelity in a

controlled manner, thereby freeing memory resources, avoiding overflows, and increasing end-to-end fidelity

in a dynamic fashion. The resulting buffer control mechanism implements a type of congestion control that

takes into account the relative value of enqueued signal information.

We use multiresolution source codes (e.g., see [4, 14] and the references therein) to exploit the inherent

distortion-tolerance of signals. These codes prioritize source information from most significant to least

This work has been supported in part by the National Science Foundation under Grant No. CCR-0073520, by
MARCO/DARPA Contract No. 2001-CT-888, by Hewlett-Packard through the MIT/HP Alliance, and by Texas Instruments
through the Leadership Universities Program. This work was presented in part at the International Conference on Acoustics,
Speech, and Signal Processing, Orlando, FL, May 2002.

S. C. Draper was with the Department of Electrical Engineering and Computer Science, Massachusetts Institute of Tech-
nology. He is now with the Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto,
Toronto, ON M5S 3G4 (E-mail: sdraper@comm.utoronto.ca).

M. D. Trott is with Hewlett-Packard Laboratories, Palo Alto, CA 94304 (E-Mail: trott@hpl.hp.com).
G. W. Wornell is with the Department of Electrical Engineering and Computer Science, Massachusetts Institute of Tech-

nology, Cambridge, MA 02139 (E-mail: gww@mit.edu).

1

significant. Such structure allows the source to be reconstructed progressively as the code stream becomes

available at the queue output. In a complementary manner, at the queue input, least significant information

can be deleted first to free memory resources, leaving more significant information unperturbed.

The ordered data structure of multiresolution codes lends itself naturally to a pair of storage and transmission

algorithms. On the one hand, if the buffer is close to overflow, least significant information can be deleted

to free memory space. Conversely, most significant information can be transmitted first to guarantee it is

not lost in future overflows. We formalize these intuitive ideas and show they form the basis for an optimal

approach to buffer management. Regardless of the times of arrivals and departures, no algorithm can attain

a lower average distortion. This means that the optimality of this algorithm is universal in that its optimality

is not a function of source statistics.

In order to help understand the performance gains effected by distortion control, we also develop a “baseline”

algorithm that treats all data as distortion intolerant. We compare the performances of the two algorithms

under a simple model of queue arrivals and departures. Under this model, the performance of the universal

algorithm closely approaches a simple bound that is not a function of algorithm design or memory size. While

the use of multiresolution coding for distortion-tolerant data distribution has been proposed before, e.g.,

see [12], the combination with a queuing model, the priority queuing protocols, the bound on performance,

and the sample-path optimality of the universal algorithm are all new.

As one application of these ideas, consider a wired-to-wireless gateway manager routing multimedia content

as in Fig. 1. If the wired half of the infrastructure is of much higher capacity, any communications bottleneck

will likely occur at the gateway. Because system demand can be unpredictable and time varying (e.g., heavier

loads during the day than at night), protocols such as those designed herein that can adapt to a changing

system load in real-time, and without forward planning, are particularly well suited. A second application

is to image storage in, e.g., a digital camera. The first pictures taken can be stored in memory (i.e., the

buffer) at high resolution. As more pictures are taken, the resolution of all images can be progressively

lowered in parallel to fit the new data. The algorithms we develop give a structured way to manage this

resolution/number-of-images tradeoff. We can also prioritize pictures so that favored pictures experience

slower (or even no) lowering of resolution. Such a system could prove useful in autonomous sensor vehicle

such as a submarine or interplanetary probe. System unpredictability may now exist in both input and

output processes: in the input process because the vehicle does not know a priori when it will observe

phenomena of interest, and in the output process because of communication rate variations caused by

changing environmental conditions.

To contextualize this work, we discuss a number of distinct research areas related to the source coding and

buffering situations that we consider. A quantization and queuing model similar to ours is used by a number

2

Infrastructure

gateway manager

High−capacity

infrastructure

Unpredictable system load

(number of users, traffic patterns)

Local area

network

Figure 1: Possible applications of buffer management algorithms include infrastructure gateway managers. The
universal algorithm adjusts to match unpredictable traffic patterns.

of researchers [5, 8, 15, 16] who consider the effects of a variable-length source coder feeding a finite-memory

queue that transmits the buffered information over a fixed-rate channel. These authors propose controlling

the quantization rate based on the state of the queue to avoid overflows and to minimize average distortion.

Our work differs from theirs because, by using multiresolution source codes, we effectively can change the

quantization rate long after the source is quantized by deleting least significant information as a function of

the state of the queue. Furthermore, we consider a queue buffering multiple data streams, each competing

for resources, and our algorithms work across the different streams.

Multiple data streams feeding into finite-memory queues raises issues of network congestion. Our work is

thus somewhat related to “active queue management” congestion control for packetized networks. Some

standard approaches in this field, e.g., see [7, 6, 9] and the references therein, consider dropping or marking

packets at intermediate nodes to allow end-to-end (source-to-destination) control to head off incipient network

congestion. Our approach differs from these in part because we do not drop packets randomly. Rather, packet

dropping is based on the relative importance of the information in the enqueued packets. Our approach is also

more akin to node-by-node congestion control, though it can be used with end-to-end control by assigning

each layer of resolution a different priority. The algorithms we develop are further differentiated by their use

of prioritized transmission from the queue.

Finally, distortion controlled queuing can be combined in a complimentary manner with earlier work on

multiple descriptions coding to give prioritized congestion control in unreliable networks. Multiple descrip-

tion codes are similar to multiresolution codes in that the source can be reconstructed progressively as more

descriptions become available. However, they have an unordered data structure in that progressive recon-

struction is possible for every order of description arrival. This makes multiple descriptions a particularly

appropriate coding paradigm for unreliable networks, e.g., see [2, 11, 1, 3]. Distortion controlled queuing

is easily used to prioritize information streaming in this context. Enqueued signals are still compared to

each other to determine least significant information, but when descriptions pertaining to a particular signal

3

are to be dropped or transmitted, it does not matter which. Note that the reliability gained through the

unordered data structure of multiple descriptions comes at a cost. Multiple description codes require higher

rates of communication to achieve the same distortion than do multiresolution codes, which have an ordered

data structure. Therefore, in reliable networks, or in ones where node-by-node congestion control is used,

ordered multiresolution coding is more efficient. We illustrate the ideas of this paper in this context.

The paper is organized as follows. Section 2 describes the system model and develops a simple bound on the

performance of any algorithm. Section 3 presents the two algorithms for controlling queue memory: baseline

and universal. While the universal algorithm is derived by optimizing a local cost function, and is therefore

“greedy,” we establish its globally optimality in Appendix A. Section 4 compares the algorithms for a simple

process model and concludes the paper.

2 System Model and Performance Bound

In Fig. 2 we depict the system model. Signals arrive at the queue, are stored for some time, and then are

sent on to their destinations (one or many decoders) over a shared packetized link. Three aspects of the

model are important to note. First, each arrival is a ‘full-resolution’ signal in that all information relevant

to that signal arrives concurrently. Second, each packet departs over a link shared by all signal destinations.

Finally, our design objective is to minimize average decoder distortion.

The full-resolution arrival model is well matched to many network situations. In the infrastructure gateway

example, it is a good model when the majority of system delay occurs at the gateway. In the autonomous

vehicle example, arrivals are continuous sensor observations that must be quantized before being stored

in memory. The shared link model allows information about different signals to be concatenated into a

single packet. It is appropriate for broadcast systems such as cellular networks; scenarios where there is a

single destination for all data, as in the sensor vehicle example; or when data streams are multiplexed for

transmission along a sequence of network links. Finally, while the objective of minimizing average (rather

than, e.g., peak) decoder distortion is useful for many distortion-tolerant data streams, it may be less well

matched to others, such as video.

In the interval [0, T] there are Narr signal arrivals where the ith signal to arrive is denoted si. Let Bi denote

the number of bits describing si transmitted to its destination in this interval. The distortion in si at the

end of the interval is given by the distortion-rate trade off D[Bi]. The maximum distortion, incurred when

the decoder has no information about a signal, is dmax ≡ D[0]. We denote the average distortion at time T

4

F
u
ll−

re
s
o
lu

ti
o
n
 s

ig
n
a
ls

(e
.g

.,
 i
m

a
g
e
,
a
u
d
io

,
v
id

e
o
)

To be designed

Queue

PacketsBuffer management algorithm

RAM (finite)

Figure 2: The universal algorithm capitalizes on distortion-tolerance to manage the buffering and distribution of
data. Signals arrive at full resolution and departures are packets of a fixed size.

as dT where

dT =
1

Narr

Narr
∑

i=1

D[Bi]. (1)

This is the function we minimize, ideally for all T .

We assume that D[Bi] is convex and bounded (hence monotonic and continuous) and—to simplify derivations—

differentiable.1 This type of distortion function is appropriate, e.g., for the distortion-rate coding of random

source sequences, for which it would define an expected distortion. In order to ease the presentation of

key ideas, we focus on a common distortion measure for all si, and typically treat bits as infinitely divisible,

thereby avoiding integer constraints in the optimization problems. In Section 5 and Appendix A we comment

on generalizations to signal-specific distortion measures.

In the interval [0, T] there are also Ndep departures (i.e., transmission or service opportunities). Each

departure is a packet of up to P bits. Putting this together with the Narr arrivals gives the inequality

Narr
∑

i=1

Bi ≤ PNdep, (2)

where equality is achieved, e.g., if the queue never empties once the first signal arrives.

1The results of the paper could equivalently be developed in terms of the concave utility function dmax − D[Bi]. We choose
to develop the results in terms of distortion to highlight the potential benefits of accommodating interaction between source
coding (typically an application-layer function) and congestion control (typically a transport or network-layer function).

5

We now derive a lower bound on dT that is independent of memory size:

dT =
1

Narr

Narr
∑

i=1

D[Bi]

≥ D

[

1

Narr

Narr
∑

i=1

Bi

]

(3)

≥ D

[

P
Ndep

Narr

]

, (4)

where (3) follows from Jensen’s inequality, and (4) follows from (2). Assuming the limits exist, define

λ = limT→∞ Narr/T to be the average arrival rate, µ = limT→∞ Ndep/T to be the average departure rate,

and ρ = λ/µ to be the system utilization. A simple lower bound on the long term average distortion

d = limT→∞ dT follows. Since (4) holds for all T ,

d ≥ lim
T→∞

D

[

P
Ndep

Narr

]

= D

[

lim
T→∞

P
Ndep

Narr

]

(5)

= D

[

P lim
T→∞

Ndep

T
lim

T→∞

T

Narr

]

(6)

= D[Pµ/λ] = D[P/ρ]. (7)

In (5) we use the fact that D[·] is continuous since it is convex and bounded, in (6) we can take the limits

individually since both exist by assumption, and in (7) we use the definitions of µ, λ, and ρ.

The performance bound (7) tells us the ideal balance of description rates among signals. A good design

minimizes the variance among description rates while maximizing individual description rates. If all signals

are described at P/ρ, the average system throughput in bits per signal, then the bound (7) is achieved. In

Fig. 3 we plot this bound for a distortion measure that decays exponentially in rate: D[P/ρ] = exp[−0.1P/ρ].

We plot the logarithm of the bound versus the reciprocal of the utilization rate to get a straight line that

demarcates the achievable region. The shaded region below that line cannot be achieved by any algorithm.

The queue is more busy (more arrivals per transmit opportunity) when ρ−1 is small, and less busy when ρ−1

is large.

3 Algorithm Design

Because of its finite size, the system memory can hold a small number of long, precise signal descriptions or

a larger number of short, lossy descriptions. In the former case the queue overflows more frequently than in

the latter. Intuitively, then, we must balance the distortion caused by queue overflow against the distortion

caused by using short descriptions.

6

0 0.5 1 1.5 2 2.5 3 3.5 4
Inverse utilization rate, ρ−1

Lo
ng

 te
rm

 a
ve

ra
ge

 d
is

to
rt

io
n,

 d

100

10−1

10−2

10−3

10−4

Unachievable by any algorithm

Figure 3: Bound on long term average distortion d ≥ D[P/ρ] = exp[−0.1P/ρ] where P = 30.

In this section we present two algorithms that strike such a balance. The first picks a fixed description

length for each signal. In effect, it treats all signals as distortion intolerant. The second uses multiresolution

source codes so that it can adjust—in particular, shorten—signal description length dynamically to match

the evolving state of the queue.

3.1 Baseline Algorithm

Consider the following baseline algorithm. If si arrives and there is space in the buffer, the queue stores it at

some predetermined precision Q (measured in bits), incurring quantization distortion D[Q]. If, as depicted

in Fig. 4-a, the buffer is full when the signal arrives then the signal cannot be stored and is lost. Signals are

transmitted one at a time on a first-in first-out (FIFO) basis, as shown in Fig. 4-b.

Baseline Algorithm

Initialization: Divide the queue memory M into M/Q blocks of size Q.

Storage: If the queue is not full, assign an arriving signal to an available memory block, encoding the signal

at distortion D[Q]. If the queue is full, the signal is lost, incurring distortion dmax = D[0].

Transmission: Send bits from a single encoded signal until the whole description is sent, then switch to

7

Signal 1Signal 2Signal 3
Transmit one at a time, FIFO

Queue

b. Departure

Signal 1Signal 2Signal 3Signal 4

Queue

a. New signal arrives, but queue full

Overflow results in lost signal

Figure 4: Basic idea of baseline algorithm. Signals are assigned static memory blocks and are transmitted one at a
time. If a signal arrives when the queue is full, it is lost.

the next encoded signal.

The queue memory M should be an integer multiple of Q, allowing the storage of K = M/Q signals, but as

mentioned in Section 2 we relax integer constraints in this paper. As long as M � Q this relaxation does

not greatly affect the results.

Of the Narr signals that arrive in [0, T], some number are handled by the queue while the rest overflow and

are lost. Let Nlost ≤ Narr denote the number of the latter. The average distortion dT can be bounded as

0 ≤ dT −

((

1 −
Nlost

Narr

)

D[Q] +
Nlost

Narr
dmax

)

≤
K

Narr
(dmax − D[Q]). (8)

The gap between the upper and lower bounds arises from signals that arrive before T but may still be

enqueued at time T . As Narr grows with T the right side of (8) approaches zero and the bounds converge,

yielding the approximation

dT '

(

1 −
Nlost

Narr

)

D[Q] +
Nlost

Narr
dmax. (9)

A higher quantization rate leads to a smaller first term in (9), but it also increases the likelihood of over-

flows, thereby increasing the second term in (9). The designer’s challenge is to balance these two mechanisms.

8

3.2 Multiresolution Source Codes

Multiresolution source codes are composed of ordered subcodes C1, C2, . . . of rates R1, R2, . . . , respectively.

Distortion D[
∑k

i=1 Ri] is achieved for k = 0, 1, 2, . . . when the first k codewords are available to the decoder.

For random sources, if a multiresolution source code is optimal at each step, i.e., if R(D[
∑k

i=1 Ri]) =
∑k

i=1 Ri,

where R(·) is the rate-distortion function for the source-distortion pair under consideration, it is called a

successively refinable source code [4, 13].

As a first example of a multiresolution source code, consider a scalar source s which is a random variable

uniformly distributed on [0, 1]. Fidelity is measured by absolute distortion d = |s − ŝ|. Using nested uniform

scalar quantizers of rates R1, R2, . . . , an expected distortion-rate trade-off E [d] = 2−2(1+
P

k

i=1
Ri) can be

achieved for k = 0, 1, 2,

As a second example, consider consider a length-n vector source s consisting of independent identically

distributed zero-mean Gaussian random variables of variance σ2, and a squared distortion measure d =

1
n

∑n
j=1(sj− ŝj)

2. As n gets large, it is shown in [4] that this source-distortion pairing approaches successively

refinability. Successive refinability for this pairing means that the average distortion E [d] = σ22−2
P

k

i=1
Ri

is achievable for k = 0, 1, 2,

3.3 Universal Algorithm: Distortion Control

Consider how multiresolution source codes allow us to modify the baseline algorithm. If a new signal

arrives when the buffer is full, instead of losing that signal completely, we make room for it by deleting the

least significant information in the queue. Figure 5-a indicates the mechanics of this “squeeze” algorithm.

Conversely, when a packet is transmitted, the most significant information in the queue is transmitted first.

This transmission protocol tends both to increase the likelihood that more significant information reaches

its destination and to reduce the delay on that information.

These prioritized storage and extraction strategies are greedy since they only look one step into the future

when determining memory allocations. As the number of arrivals and departures grows, determining what

to keep in memory and what to transmit become more complex. In Section 3.3.1 and 3.3.2 we turn these

greedy decision problems into tractable optimization problems. In Section 3.3.3 and Appendix A we show

that the greedy perspective does not lead to a performance loss: no other algorithm can attain a lower dT

for any T .

For many applications it is necessary to introduce granularity in the size of the subcodes, e.g., packet can

only be composed of an integer number of bits from each source. While the optimization problems of

9

M
S

B
4

LS
B

4

M
S

B
3

LS
B

3

M
S

B
2

LS
B

2

M
S

B
1

LS
B

1

Signal 3 Signal 2 Signal 1

M
S

B
1

M
S

B
3

M
S

B
2

M
S

B
4

Concatenate most
significant bits (MSBs)

M
S

B
2

M
S

B
3

M
S

B
1

Packet

Signal 1Signal 2Signal 3Signal 4

b. Departure

Queue

Signal 4

a. Arrival, but queue full

Delete least significant bits (LSBs)

Figure 5: Basic idea of universal approach. Signals are stored in a progressive manner. Most significant information
is transmitted first, and if a new signal arrives when the queue is full, all signals are “squeezed” to fit at lower
fidelities.

Section 3.3.1 and 3.3.2 are presented without integer constraints, we impose such constraints explicitly when

showing sample-path optimality in Section 3.3.3.2

3.3.1 Extraction Algorithm

Suppose signals s1, . . . , sm−1 have arrived in the interval [0, t] and the next event is a packet departure. Define

B−

i and Q−

i , i = 1, . . . , m − 1, respectively as the number of bits describing si already at the decoder and

still retained in the queue’s memory at time t. Equivalent to minimizing average distortion, we minimize

the cumulative distortion at the decoder,
∑m−1

i=1 D[B−

i]. We determine the number of bits δi from each

signal’s encoding to include in the next packet to minimize the distortion after the packet is received. Again

note that the δi are not constrained to be integers. The decoder distortion after this packet is received is
∑m−1

i=1 D[B+
i] where B+

i = B−

i + δi.

We use Lagrange multipliers to optimize the δi. The problem is constrained so that the number of transmitted

bits does not exceed the size of the packet, i.e.,
∑m−1

i=1 δi ≤ P , and so that 0 ≤ δi ≤ Q−

i for all i. Temporarily

2Sample-path optimality is also obtained in the absence of integer constraints, though the argument is less intuitive.

10

ignoring the latter constraints, the cost functional is

L =

m−1
∑

i=1

D[B−

i + δi] + γ

(

m−1
∑

i=1

δi − P

)

. (10)

If the optimal δi are between zero and Q−

i for all i, they can be found by differentiating (10) with respect

to δi:
dL

dδi
= D′[B−

i + δi] + γ = 0. (11)

The convexity of D[·] implies that D′[·] is monotonic, hence (11) tells us that the best transmission policy

attempts to even out the description rates at the decoders. This is in keeping with the intuition given by the

bound (7) that an optimal, but usually unachievable, policy is to send all signals at a constant rate equal to

the average throughput of the system.

Sometimes the policy of making the decoder description rates equal is not implementable because of con-

straints on packet size or because the δi must be non-negative. To optimize the δi while taking into account

these active constraints we use the Kuhn-Tucker conditions.

Theorem 1 (Transmit Packet) Let D[·] be convex, and let {Q−

i } and {B−

i } define the queue and decoder
contents, respectively, prior to transmission. Then the number of bits {δi} to transmit to minimize the

distortion
∑m−1

i=1 D[B−

i + δi] is:

δi =







0 if ∆i < 0,
∆i if ∆i ∈ [0, Q−

i],
Q−

i if ∆i > Q−

i ,
(12)

for i = 1, . . . , m−1, where ∆i = γ−B−

i and where γ is chosen to fill the departing packet, i.e.,
∑m−1

i=1 δi = P .
If fewer than P bits are enqueued, all are transmitted.

After transmission, the decoder holds B+
i = B−

i + δi bits and the queue holds Q+
i = Q−

i − δi bits for each

signal si.

This method for determining which bits to transmit is akin to “water-filling” for colored Gaussian channels

in channel-coding theory, and is illustrated in Fig. 6.

3.3.2 Storage Algorithm

Again suppose that signals s1, . . . , sm−1 have arrived in the interval [0, t], but now the next event is the

arrival of signal sm. The buffer contents at time t, Q−

i , i = 1, . . . , m−1, upper-bound the buffer contents Q+
i

after sm is stored. Since, at most, all M bits of memory can be assigned to sm, for convenience set Q−

m = M .

Define δi, i = 1, 2, . . . , m, to be the number of bits discarded from each signal to store sm. We determine

the {δi} that minimize the a posteriori cumulative distortion across the system,
∑m

i=1 D[Q−

i + B−

i − δi]. We

include bits still in the queue since they may be transmitted at some future time.

11

s
2

s
3

s
4

s
5

s
1

s
2

s
3

s
4

s
5

s
1

_

_ +

+

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

Before packet transmission After packet transmission

δ
 5

 5B

 5Q 5Q

B 5

Figure 6: Determine packet contents by “water-filling” to the dashed line, thereby attempting to equalize signal
description rates at the destinations.

The number of enqueued bits cannot exceed the queue memory, i.e.,
∑m

i=1(Q
−

i − δi) =
∑m

i=1 Q+
i ≤ M where

0 ≤ δi ≤ Q−

i for all i. Making the queue memory constraint an equality, which minimizes distortion, and

temporarily ignoring the other constraints yields the Lagrangian cost functional

L =

m
∑

i=1

D[B−

i + Q−

i − δi] + γ

(

m
∑

i=1

(Q−

i − δi) − M

)

. (13)

If the optimal δi are strictly between zero and Q−

i for all i, they can be determined by differentiating (13)

with respect to δi:
dL

dδi
= D′[B−

i + Q−

i − δi] − γ = 0. (14)

Equation (14) indicates that when storing a new signal, the best policy attempts to even out the overall

signal description rates (in the queue and at the decoder).

Sometimes it is not possible to even out the description rates because of the constraints on the δi. To

optimize the δi while taking into account these active constraints we use the Kuhn-Tucker conditions. This

method for determining which bits to discard is illustrated in Fig. 7 and results in the following theorem:

Theorem 2 (Store Signal) Let D[·] be convex and let {Q−

i } and {B−

i } define the queue and decoder
contents, respectively, prior to the storage of signal sm, where Q−

m = M and B−

m = 0. Then the number of
bits {δi} to discard to minimize the system distortion

∑m
i=1 D[Q−

i + B−

i − δi] is:

δi =







0 if ∆i < 0,
∆i if ∆i ∈ [0, Q−

i],
Q−

i if ∆i > Q−

i ,
(15)

where ∆i = B−

i + Q−

i + γ and γ is chosen to keep the queue memory full, i.e.,
∑m

i=1(Q
−

i − δi) = M . If the
queue has memory available to store sm losslessly, no bits are discarded.

12

s
2

s
3

s
4

s
5

s
1

s
6

s
2

s
3

s
4

s
5

s
1

Before storage of s 6 After storage of s 6

+

+

δ
 5

 5Q

 5B

 5Q

 5B

_

_

Figure 7: Determine memory allocations by “water-filling” to the dashed line, thereby attempting to equalize
system-wide signal description rates.

After storage, the decoder holds B+
i = B−

i bits and the queue holds Q+
i = Q−

i − δi bits for each signal si.

Universal Algorithm with Distortion Control

Transmission:

(a) Calculate {δi} according to Thm. 1.

(b) Concatenate the most significant δi bits of each si into a packet.

(c) Transmit the packet.

(d) Calculate B+
i = B−

i + δi and Q+
i = Q−

i − δi.

Storage:

(a) Calculate {δi} according to Thm. 2.

(b) Discard the δi least significant stored bits of each signal si.

(c) Store sm with a multiresolution encoding at rate Q+
m = M − δi.

3.3.3 Sample-Path Optimality of Universal Algorithm

A queuing algorithm is said to be sample-path optimal if for all realizations of arrivals and departures on

the interval [0, T], there exists no other algorithm with a lower average decoder distortion dT at time T .

13

In Appendix A we prove that the universal algorithm introduced in the previous section is sample-path

optimal. More generally, all “greedy” algorithms are sample-path optimal. This implies a stronger result:

the universal algorithm simultaneously achieves the minimum possible distortion dt at every time t ∈ [0, T].

In contrast to the continuous development in the rest of the paper the proof in Appendix A uses a discrete

argument. While the result can be shown in either a discrete or continuous context, the discrete version

is more intuitive, and the transformation that lies at the heart of the proof may be useful in proving the

optimality of other greedy algorithms.

4 Analysis and Comparison of Algorithms

In this section we compare the long term average performance of the baseline and universal algorithms for

a simple queuing process. The arrival stream of signals is modeled as a Poisson process of rate λ. In an

interval of τ seconds λτ signals are expected to arrive. At the output of the queue, packets of P bits are

emitted according to Poisson process of rate µ that is independent of the arrival process. This gives an

average transmission rate of Pµ bits per second. If, for instance, the quantization rate Q of the baseline

algorithm equals the packet size P then the processes form a standard M/M/1 queue.

4.1 Steady State Performance of Baseline Algorithm

In this section we discuss the steady state performance of the baseline algorithm. These results provide a

benchmark against which we compare the long term performance of the universal algorithm. In Section 3

we developed an approximation (9) on the average distortion dT achieved by the baseline algorithm that

becomes exact as T gets large:

dT '

(

1 −
Nlost

Narr

)

D[Q] +
Nlost

Narr
dmax. (16)

Under the queuing model the right side of (16) converges as T grows. Therefore, letting d = limT→∞ dT , we

get the following expression for steady state average distortion:

d = lim
T→∞

dT =

(

1 − lim
T→∞

Nlost

Narr

)

D[Q] + lim
T→∞

Nlost

Narr
dmax

= (1 − Pr[signal loss])D[Q] + Pr[signal loss]dmax. (17)

A signal is “lost” when it arrives to find the queue full and so it cannot be stored. Because the Poisson

processes is memoryless the steady state probability of signal loss equals equals the steady state probability

that the queue is full.

14

If the utilization rate ρ = λ/µ is known the designer can optimize the precision Q at which signals are

stored. We term this the ‘optimized’ baseline algorithm. If ρ is not known the universal algorithm becomes

particularly attractive because, by the sample-path results of Section 3.3.3, its performance is at least as

good as that of the optimized baseline algorithm. any choice of Q.

4.2 Comparison of Algorithms

In this section we present simulation results for both algorithms. We focus on exponential distortion-rate

trade-offs, D[Bi] = exp(−αBi).

In Fig. 8 we plot the long term average distortion performances of the algorithms versus ρ−1, the inverse

of the utilization rate, for M = 1200, P = 30, and α = 0.1. The experimental performance of the baseline

algorithm when we select the maximum number of signals the buffer can handle at a single time to be

K = 120, K = 40, and K = 20, is plotted with the dotted curves. Experimental points are indicated by

•s, +s, and ×s, respectively. The first is a low-rate situation where three signal descriptions fit in a single

packet (i.e., P
M/K = 3). The second is a medium-rate situation where each packet describes a different signal.

The third is a high-rate situation where it takes two packets to describe each signal. The dashed curve plots

the performance of the numerically-optimized baseline algorithm; each data point is indicated by a ∗. The

solid curve is the performance bound of Fig. 3 given by (7). The experimental performance of the universal

algorithm, indicated by ◦s, closely approximates the bound.

Figure 8 shows that in some regimes the performance of the optimized baseline algorithm can be quite close

to the lower bound, in particular when ρ−1 is small (i.e., the queue is busy). If ρ is known in such situations,

the baseline algorithm can be used with little loss of performance vis-a-vis the bound (7), allowing us to

capitalize on the computational simplicity of that algorithm. However, the larger ρ−1 is (the less busy the

queue is), the larger the performance gap between universal and baseline algorithms. A further disadvantage

of the baseline algorithm is also illustrated by the figure: the performance of the baseline algorithms depends

markedly on knowledge of ρ. In situations where ρ is uncertain, the baseline algorithm cannot guarantee

good results. In these cases the sample-path optimality of the universal algorithm becomes more attractive.

Figure 8 also illustrates the changing character of a given baseline design as a function of utilization rate.

Any baseline design has two distinct regions of operation, separated by the break point where its performance

comes closest to the bound.

In the “communication-constrained” region ρ−1 is smaller (the queue is more busy) than the given baseline

algorithm is designed for. In this region the distortion is dominated by buffer overflow. As the queue

gets busier, the probability of buffer overflow increases, and performance worsens. To lower distortion in

15

0 0.5 1 1.5 2 2.5 3 3.5 4
10

−4

10
−3

10
−2

10
−1

10
0

Inverse utilization rate, ρ−1

Lo
ng

 te
rm

 a
ve

ra
ge

 d
is

to
rt

io
n,

 d

Baseline: Low rate (1/3 packet/signal)
Baseline: Medium rate (1 packet/signal)
Baseline: High rate (2 packets/signal)
Baseline: Optimized
Universal
Bound

Figure 8: Long term average distortion versus inverse utilization rate for various-rate baseline algorithms, universal
algorithm, and bound.

16

this region the probability of overflow must be reduced. This can be accomplished by decreasing signal

quantization rate, which means that it takes less time to transmit each signal in the queue. The beneficial

effect of decreasing the quantization rate in the communication-constrained region can be seen by noting

that the lowest-rate algorithm performs best in the most-busy region near ρ−1 = 0.

In the “quantization-constrained” region ρ−1 is bigger (the queue is less busy) than the given baseline

algorithm is designed for. In this region the distortion is dominated by quantization noise, which is invariant

to changes in utilization rate. To lower distortion in this region the quantization rate must be increased.

The beneficial effect of increasing quantization rate in the quantization-constrained region can be seen by

noticing that the highest-rate algorithm performs best in the least-busy region near ρ−1 = 4.

The results of this section suggest a possible hybrid algorithm. Instead of using hierarchical source codes,

consider an algorithm that varies the fidelity at which new signals are stored depending on the observed

history of queue overflows. If most signals are lost due to overflows, the quantization rate should be reduced.

On the other hand, if the memory is free most of the time, the quantization rate should be increased. The

quantization rate should be controlled as a function of the empirical probability of buffer overflow to stay

close to the performance of the optimized baseline algorithms strikes a good balance between overflow and

quantization distortion.

5 Concluding Comment

In this paper we have focused on signals that share a common distortion measure. The universal algorithm

can be applied to more general problems where the distortion measure is signal specific. This would be

particularly relevant for systems that handle different classes of data, e.g., audio versus image or video.

Different distortion measures could also be used to give different qualities-of-service to different data classes,

or data sources, and to implement a fair allocation of resources between those data classes or sources.

Distortion measures can be designed, for example, to give priority to delay-sensitive data (such as voice), to

favored data (as in the digital camera example), and even to be time-dependent so that the marginal utility

of each piece of information decreases the longer it remains enqueued. As long as all distortion measures

are convex, the priority storage and transmission protocols presented herein will continue to be sample-path

optimal.

17

A Sample-path Optimality of Greedy Queuing with Distortion

Control

In this appendix we show that the universal algorithm described in Sec. 3.3 is sample-path optimal. The

proof is developed by establishing two intermediate results:

I. All greedy protocols (defined below) achieve the same distortion.

II. Any optimal sample path can be transformed into a greedy sample path with the same—optimal—

distortion. Thus there exists a greedy optimal path.

Combining I and II proves that all greedy protocols are sample-path optimal.

We simplify the proof by taking the smallest quanta of signal description and transmission to be 1 bit, so

that sets are discrete and finite. Any other quantization step size serves equally well; one can develop a proof

for the continuous-valued algorithm described in Sec. 3.3 by taking the limit of decreasing step sizes.

A.1 Definitions

A receive/transmit sample path is a sequence of receive events and transmit opportunities that occur during

a finite time interval [0, T]. Each receive event i = 1, . . . , N or transmit opportunity i′ = 1, . . . , N ′ occurs

at some time ti or t′i, respectively. Transmit opportunities are described by the maximum number li′ of bits

that may be transmitted. Receive events are described by the full-length encoding Si of the received signal,

limited in length to the queue storage size M , and by the distortion function D[·] of the signal3. We view a

receive/transmit sample path as being determined by nature, out of control of the system designer.

A queue sample path is the result of applying a queuing discipline to a receive/transmit sample path. In a

queue sample path each transmit opportunity is further described by the set of bits transmitted during that

opportunity. A new type of event is also included: drop events are described by the time ti of the event

and the set of bits that are discarded. We will see presently that, to minimize distortion, drop events should

immediately follow receive events, so that they may be identified using the same set of event indices i.

A queue sample path must satisfy the obvious state evolution rules: receive events add to the queue, transmit

and drop events subtract from the queue, and drop events must be used to keep the queue size at or below

its maximum.

The distortion at the receiver is determined by the distortion-rate function of each signal and by the bits

3The proof may be immediately generalized by using a different distortion function for each signal.

18

delivered to the receiver thus far. Let Bi be the set of bits available at the receiver for signal Si. The total

distortion dT at the receiver is the sum

dT =
∑

i=1,...,N

D[Bi] (18)

of the distortions of the individual signals. We require the distortion function D[·] to be expressible as a sum

of distortion contributions of each bit:

D[Bi] = D[0] −
∑

b∈Bi

D̃(b), (19)

where D[0] is a constant and D̃(b) ≥ 0 is the marginal utility of bit b. For convenience, we number the bits

of Si sequentially and assume they are arranged in order of decreasing marginal utility, i.e.,

D̃i(j) ≥ D̃i(j + 1) (20)

for j = 1, 2,

For many source encodings, such as the multiresolution source codes described in Sec. 3.2, the jth bit

of S is worthless unless the initial bits 1, . . . , j − 1 are also received. We refer to this requirement as

the sequential constraint. The sequential constraint violates the additive model (19), but—so long as the

ordering constraint (20) is maintained—this turns out not to affect our results. We will show that there is no

advantage to transmitting bits of lesser marginal utility in advance of those of greater marginal utility. Note

that the sequential constraint combined with the ordering constraint (20) is a discrete analog to a convexity

constraint on the distortion function D[·], if D[·] is viewed as a function of the number of descriptive bits.

We emphasize that convexity is an essential requirement for our results in applications where the sequential

constraint prevails.

A queue sample path is optimal for a given transmit/receive sample path if there exists no other queue

sample path with a lower distortion dT at time T . This definition of optimal is rather strong, as the queuing

discipline needed to arrive at an optimal path could be noncausal. Because the queue, events, and time

horizon are finite or discrete or both, there always exists at least one optimal path, and in general there will

be many.

A queue sample path is greedy if it meets five conditions, defined more precisely in the lemmas below: (a)

drop events immediately follow receive events, (b) drop events discard the minimum number of bits necessary,

(c) transmit opportunities are filled with the maximum number of bits possible, (d) transmit opportunities

are serviced using enqueued bits of maximum marginal utility, and (e) drop events discard enqueued bits of

minimum marginal utility.

It is easy to see that the universal algorithm produces greedy sample paths. Moreover, we immediately

have result I above: every greedy queue sample path for a given receive/transmit sample path has the same

19

distortion. This follows because greedy paths may differ only in how they break ties in conditions (d) and

(e) above, yet these choices do not change the distortion. In other words, the bits used to describe signals

are only distinguishable—in the sense of distortion minimization—based on their marginal utilities, i.e., on

the amount a particular descriptive bit decreases the total distortion.

A.2 Proof

To prove our central result—that the “universal algorithm” is sample-path optimal—we use several variations

of a common argument to establish result II above. Specifically, we introduce a local transformation of a

queue sample path that either decreases distortion or leaves it unchanged. Applying this transformation

repeatedly to an optimal path reaches a fixed point with some desired property, establishing that there

exists an optimal path with the same property.

Lemma 1 There exists an optimal path for which all drop events immediately follow receive events.

Proof: Consider a queue sample path for which some drop event occurs at a time t strictly between the times ti

and ti+1 of two receive events i and i+1. Construct a new queue sample path in which the drop event instead occurs
at time t = ti. It is easy to see that this new path is feasible: queue occupancy is not increased, and all discarded
bits are enqueued at the time of the drop event. Distortion is unchanged.

There are a finite number of drop events, hence repeated application of this transformation to an optimal queue

sample path creates an optimal path in which all drop events immediately follow receive events.

Lemma 2 There exists an optimal path for which all drop events discard the minimum number of bits
necessary to meet the queue memory constraint.

Proof: Consider a queue sample path for which there exists a drop event i that drives the queue occupancy below
its maximum size M . Construct a new queue sample path in which the drop event i discards a subset of the bits
previously discarded, the subset size selected to exactly meet the queue memory constraint. If the queue was not full
prior to the drop event, discard no bits. Let X be the set of bits previously dropped but now retained in the new
queue sample path.

The new queue sample path may be infeasible, as the queue occupancy may exceed M at various times subsequent
to the modified drop event. To correct this, consider the next receive event i + 1, together with the (optional)
simultaneous drop event. If the queue occupancy exceeds M , modify the drop event i + 1 to discard a sufficient
number of bits in X to meet the memory constraint. This is always possible. Repeat for all subsequent receive events
i + 2, i + 3, . . . , depleting the set X as necessary. The final queue sample path is feasible and has the same distortion
as the original.

Repeated application of this transformation to an optimal queue sample path creates an optimal path in which all

drop events have the minimal size necessary to meet the memory constraint.

Lemma 3 There exists an optimal path for which every transmit opportunity is maximally exploited. That
is, the number of bits transmitted at opportunity i′ equals either the number of bits in the queue at time ti′

or the number of bits li′ available in the transmit opportunity, whichever is smaller.

20

Proof: Consider a queue sample path for which there exists an underutilized transmit opportunity. Construct
a new queue sample path in which the transmit opportunity is fully utilized by arbitrarily selecting additional bits
from the queue for transmission. Delete these bits from subsequent drop or transmit events. The new queue sample
path remains feasible, and its distortion is equal to or smaller than the original.

Repeated application of this transformation to an optimal queue sample path creates an optimal path in which all

transmit opportunities are maximally exploited.

Lemma 4 There exists an optimal path for which (i) every transmit opportunity is serviced using the en-
queued bits of maximum marginal utility, and (ii) every drop event discards enqueued bits of minimum
marginal utility.

Proof: We prove the two statements of the lemma in parallel. Without loss of generality we view a transmit (resp.
drop) event of size l as a sequence of l one-bit transmit (resp. drop) events.

Consider a queue sample path in which a bit b from signal Si is transmitted (resp. dropped) time t. The marginal
utility of b is D̃(b). Let b̃ be a bit of greatest (resp. least) marginal utility over all enqueued bits at time t. If b and
b̃ have the same marginal utility then do nothing. Otherwise, looking in to the future up to time T , the bit b̃ may
be transmitted, dropped, or left in the queue. Construct a new queue sample path in which b̃ is transmitted (resp.
discarded) at time t and b meets the fate previously assigned to b̃. It is easy to see that this transformation cannot
increase distortion, for if both bits are transmitted (resp. dropped or held) the distortion does not change, while if b̃
was dropped or held (resp. transmitted) distortion decreases.

Repeated application of this transformation to an optimal queue sample path, working sequentially from time 0 to T ,

creates an optimal path in which all transmit opportunities are serviced using enqueued bits of maximum marginal

utility and all drop events discard enqueued bits of least marginal utility.

Combining Lemmas 1–4 proves that there exists a greedy optimal path, thereby establishing result II and

completing the proof.

21

References

[1] M. Alasti, K. Sayrafian-Pour, A. Ephremides, and N. Farvardin. Multiple description coding in networks

with congestion problem. IEEE Trans. Inform. Theory, 47:891–902, March 2001.

[2] A. Albanese, J. Blömer, J. Edmonds, M. Luby, and M. Sudan. Priority encoding transmission. IEEE

Trans. Inform. Theory, 42:1737–1744, November 1996.

[3] J. G. Apostolopoulos, T. Wong, W. Tan, and S. J. Wee. On multiple descriptions streaming with content

delivery networks. In Proc. IEEE INFOCOMM, June 2002.

[4] W. H. Equitz and T. M. Cover. Successive refinement of information. IEEE Trans. Inform. Theory,

37:269–275, March 1991.

[5] N. Farvardin and J. W. Modestino. Adaptive buffer-instrumented entropy-coded quantizer performance

for memoryless sources. IEEE Trans. Inform. Theory, 32:9–22, January 1986.

[6] S. Floyd and K. Fall. Promoting the use of end-to-end congestion control in the Internet. IEEE/ACM

Trans. Networking, 7:458–472, August 1999.

[7] S. Floyd and V. Jacobson. Random early detection gateways for congestion avoidence. IEEE/ACM

Trans. Networking, 1:397–413, August 1993.

[8] D. Harrison and J. W. Modestino. Analysis and further results on adaptive entropy-coded quantization.

IEEE Trans. Inform. Theory, 36:1069–1088, September 1990.

[9] C. V. Hollot, V. Misra, D. Towsley, and W. Gong. Analysis and design of controllers for AQM routers

supporting TCP flows. IEEE Trans. Automat. Contr., 47:945–959, 2002.

[10] B. Prabhakar, E. Uysal-Biyikoglu, and A. El Gamal. Energy-efficient transmission over a wireless link

via lazy packet scheduling. In Proc. IEEE INFOCOMM, pages 386–394, April 2001.

[11] R. Puri, K.-W. Lee, K. Ramchandran, and V. Bharghavan. An integrated source transcoding and

congestion control paradigm for video streaming in the Internet. IEEE Trans. Multimedia, 3:18–32,

March 2001.

[12] K. Ramchandran and M. Vetterli. Multiresolution joint source-channel coding. In H. V. Poor and G. W.

Wornell, editors, Wireless Communications: Signal Processing Perspectives, chapter 7, pages 282–329.

1998.

[13] B. Rimoldi. Successive refinement of information: Characterization of the achievable rates. IEEE Trans.

Inform. Theory, 40:253–259, January 1994.

22

[14] J. M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans. Signal

Processing, 41:3445–3462, December 1993.

[15] D. Tse, R. Gallager, and J. Tsitsiklis. Optimal buffer control for variable-rate lossy compression. In

Proc. 31st Allerton Conf. on Communication, Control and Computing, September 1993.

[16] D. N. C. Tse. Variable-rate Lossy Compression and its Effects on Communication Networks. PhD

thesis, Mass. Instit. of Tech., 1994.

23

